KR100529132B1 - Method for manufacturing an infrared bolometer - Google Patents

Method for manufacturing an infrared bolometer Download PDF

Info

Publication number
KR100529132B1
KR100529132B1 KR1019980063203A KR19980063203A KR100529132B1 KR 100529132 B1 KR100529132 B1 KR 100529132B1 KR 1019980063203 A KR1019980063203 A KR 1019980063203A KR 19980063203 A KR19980063203 A KR 19980063203A KR 100529132 B1 KR100529132 B1 KR 100529132B1
Authority
KR
South Korea
Prior art keywords
layer
heat absorbing
absorbing layer
bolometer
sacrificial
Prior art date
Application number
KR1019980063203A
Other languages
Korean (ko)
Other versions
KR20000046516A (en
Inventor
용윤중
Original Assignee
주식회사 대우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1019980063203A priority Critical patent/KR100529132B1/en
Publication of KR20000046516A publication Critical patent/KR20000046516A/en
Application granted granted Critical
Publication of KR100529132B1 publication Critical patent/KR100529132B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si

Abstract

본 발명은 제 1 및 제 2 희생층(300, 310)을 갖는 적외선 볼로메터의 제조방법에 관한 것으로, 제 2 희생층(310)의 상부에 제 1 열흡수층(292)을 증착시키는 단계, 제 1 열흡수층(292)의 상부에 티탄늄층을 형성한 후 패터닝하여 볼로메터 요소(285)를 형성하는 단계, 제 1 열흡수층(292)의 상부에 볼로메터 요소(285)를 둘러싸도록 제 2 열흡수층을 증착시키는 단계, 제 2 열흡수층(294)의 상부에 제 3 희생층(320)을 증착시키는 단계 및 제 1, 제 2 및 제 3 희생층(300, 310, 320)을 동시에 제거하는 단계를 포함하는 것에 의해, 희생층(300, 310, 320)을 제거할 때 제 2 희생층(310)과 제 1 열흡수층(292) 및 제 3 희생층(320)과 제 2 열흡수층(294)간의 원자의 분리가 제 1 열흡수층(292) 및 제 2 열흡수층(294)에서 동시에 같은 양만큼 발생하여 응력도 대칭적으로 발생하므로, 구조물의 휨현상을 방지할 수 있다. The present invention relates to a method of manufacturing an infrared bolometer having first and second sacrificial layers (300, 310), and depositing a first heat absorption layer (292) on top of a second sacrificial layer (310). 1 forming a titanium layer on top of heat absorbing layer 292 and patterning to form bolometer element 285, a second row to surround bolometer element 285 on top of first heat absorbing layer 292 Depositing an absorbing layer, depositing a third sacrificial layer 320 on top of the second heat absorbing layer 294, and simultaneously removing the first, second, and third sacrificial layers 300, 310, 320. The second sacrificial layer 310, the first heat absorbing layer 292, the third sacrificial layer 320, and the second heat absorbing layer 294 when the sacrificial layers 300, 310, and 320 are removed. Since the separation of atoms of the liver occurs at the same time in the first heat absorbing layer 292 and the second heat absorbing layer 294 at the same amount, the stress is also generated symmetrically. There can stop.

Description

적외선 볼로메터의 제조방법{METHOD FOR MANUFACTURING AN INFRARED BOLOMETER}Manufacturing method of infrared bolometer {METHOD FOR MANUFACTURING AN INFRARED BOLOMETER}

본 발명은 물체가 방사하고 있는 각종 적외선(온도)을 검출하는 적외선 볼로메터 제조방법에 관한 것으로, 더욱 상세하게는 균일한 응력분포를 나타내는 흡수층을 포함하는 적외선 볼로메터의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an infrared bolometer for detecting various infrared rays (temperature) emitted by an object, and more particularly, to a method for manufacturing an infrared bolometer including an absorption layer exhibiting a uniform stress distribution.

일반적으로 볼로메터는 적외선 센서의 일종으로서, 물체에서 방사되는 적외선을 흡수하여 열에너지로 바뀔 때 그로 인한 온도상승으로 전기저항이 변화하는 것을 측정하여 직접 접촉하지 않아도 물체 표면의 온도를 감지할 수 있는 특징을 가진다.In general, a bolometer is a type of infrared sensor that absorbs infrared radiation emitted from an object and measures the change in electrical resistance due to a rise in temperature when it is converted into thermal energy so that the temperature of the surface of the object can be detected without direct contact. Has

적외선은 파장이 가시광보다 길고 전파보다 짧은 전자파의 일종으로 자연계에 존재하는 물체는 사람을 비롯하여 모두 적외선을 방사하고 있다. 단, 물체의 온도에 따라 그 파장이 다르므로 온도검출이 가능하다. Infrared is a kind of electromagnetic wave whose wavelength is longer than visible light and shorter than radio waves. All objects in nature emit infrared rays, including humans. However, since the wavelength is different depending on the temperature of the object, temperature detection is possible.

이와 같은 볼로메터는 금속 또는 반도성 재료를 이용하여 제조된다. 금속 볼로메터 요소는 온도의 변화에 자유전자의 밀도가 지수적으로 변화하는 특성을 가지며, 반도성 재료 볼로메터 요소는 온도변화에 따른 저항변화에 있어서 큰 민감성을 얻을 수 있다. 그러나 반도성 재료 볼로메터는 박막형으로 제조하기가 어려워 실용화되기 어려운 문제점이 있다.Such bolometers are manufactured using metal or semiconducting materials. The metal bolometer element has the characteristic that the density of free electrons changes exponentially with the change of temperature, and the semiconducting material bolometer element can obtain a great sensitivity to the resistance change with the temperature change. However, the semiconducting material bolometer is difficult to be manufactured in a thin film type, which makes it difficult to be practical.

도 1 및 도 2는 종래의 일실시예에 따른 볼로메터를 예시한 것으로, 미합중국 특허 No.5,300,915에 "열센서(THERMAL SENSOR)"라는 명칭으로 공개되어 있다.1 and 2 illustrate a bolometer according to a conventional embodiment, which is disclosed under the name "THERMAL SENSOR" in US Patent No. 5,300,915.

도 1은 종래의 일실시예에 따른 볼로메터를 도시한 단면도이고, 도 2는 도 1의 사시도를 개략적으로 도시한 도면이다.1 is a cross-sectional view showing a bolometer according to a conventional embodiment, Figure 2 is a schematic view showing a perspective view of FIG.

종래의 볼로메터(10)는 부상된 검출레벨(11)과 하부레벨(12)로 이루어져 있다. 하부레벨(12)은 단결정 실리콘 기판과 같은 상부가 평평한 반도성 기판(13)을 가지고 있다. 반도성 기판(13)의 상부표면(14) 위에는 다이오드, X-버스라인, Y-버스라인, 접속단자, X-버스라인의 끝에 위치하는 접촉패드 등을 구비하는 집적회로(15)가 통상적인 실리콘 집적회로 제조기술을 이용하여 제조되어 있다. 집적회로(15)는 실리콘 질화막(16)으로 이루어진 보호층으로 코팅되어 있다. 선형으로 패인 도랑(17)은 부상된 검출레벨(11)에 의해 덮여져 있지 않다.The conventional ballometer 10 consists of a floating detection level 11 and a lower level 12. The lower level 12 has a semiconductive substrate 13 having a flat top, such as a single crystal silicon substrate. On the upper surface 14 of the semiconductive substrate 13, an integrated circuit 15 having a diode, an X-bus line, a Y-bus line, a connection terminal, a contact pad positioned at the end of the X-bus line, and the like are conventionally used. It is manufactured using silicon integrated circuit manufacturing technology. The integrated circuit 15 is coated with a protective layer made of silicon nitride film 16. The trench 17 linearly recessed is not covered by the floating detection level 11.

부상된 검출레벨(11)은 실리콘 질화막층(20), 연속적인 'ㄹ'자형으로 형성된 금속저항층(21), 실리콘 질화막층(20)과 연속적인 'ㄹ'자형으로 형성된 금속저항층(21) 위에 형성된 또다른 실리콘 질화막층(22), 실리콘 질화막층(22) 위에 형성된 적외선 흡수코팅(23) 등으로 이루어져 있다. 아래쪽으로 뻗어있는 실리콘 질화막층(20')(22')은 부상된 검출레벨(11)을 지지하는 기울어진 네 개의 다리를 만드는 동안 동시에 만들어진다. 다리의 개수는 네 개보다 적을수도 많을수도 있다. 두 레벨사이에는 빈공간(26)이 형성되어 서로 이격되어 있다. 제조공정동안, 빈공간(26)은 실리콘 질화막층(20)(20')(22)(22')이 증착될 때까지 용해성유리나 용해성 재료로 제거되기 쉬운 재료로 증착되어 채워져 있다가 용해성유리나 용해성재료가 제거되어 빈공간(26)으로 남게된다.The floating detection level 11 includes the silicon nitride film layer 20, the metal resistance layer 21 formed in a continuous 'L' shape, and the metal resistance layer 21 formed in a continuous 'L' shape with the silicon nitride film layer 20. Another silicon nitride film layer 22 formed on the upper layer), the infrared absorption coating 23 formed on the silicon nitride film layer 22 and the like. The silicon nitride film layers 20 'and 22' extending downward are made simultaneously while making four inclined legs supporting the injured detection level 11. The number of legs may be less than four. An empty space 26 is formed between the two levels so as to be spaced apart from each other. During the manufacturing process, the void 26 is deposited and filled with a material that is easy to remove with soluble glass or a soluble material until the silicon nitride film layers 20, 20 ', 22, and 22' are deposited. The material is removed and left in the void 26.

상술한 볼로메터에 있어서의 하나의 결점은 도 2에 도시된 바와 같이, 부상된 검출레벨(11)에 지지역할을 하는 다리가 함께 형성되어 있기 때문에 적외선을 흡수하는 전체면적이 줄어들기 때문에 최대의 흡수면적(Fill Factor)을 얻을 수 없다는 것이다.One drawback in the above-described bolometer is that the maximum area is absorbed because the total area absorbing infrared rays is reduced because the bridges that support the injured detection level 11 are formed together, as shown in FIG. Fill factor cannot be obtained.

이와 같은 문제점을 해결하기 위해 본 출원인은 증가된 흡수면적을 갖도록 한 볼로메터 및 그 제조방법에 대하여 대한민국 특허청에 1998년 6월 30일자로 특허출원번호 제 98-25555 호로 출원하였다.In order to solve such a problem, the applicant filed a patent application No. 98-25555 dated June 30, 1998 to the Korean Patent Office for the bolometer and its manufacturing method to have an increased absorption area.

도 3 및 도 4는 선출원된 볼로메터를 나타내는 사시도 및 도 3의 볼로메터 제조공정중에서 제 1 열흡수층 및 제 2 열흡수층간의 응력관계를 설명하기 위한 단면도로서, 적외선 볼로메터(201)는 구동기판레벨(210), 지지교각(240)을 갖는 지지레벨(220) 및 흡수층(295)와 흡수층(295)에 의해 둘러싸여진 연속적인 'ㄹ'자형으로 형성된 볼로메터 요소(285)로 구성되는 흡수레벨(230)을 포함한다.3 and 4 are perspective views illustrating a pre- filed ballometer and a cross-sectional view for explaining a stress relationship between the first heat absorbing layer and the second heat absorbing layer in the process of manufacturing the ballometer of FIG. 3, wherein the infrared ballometer 201 is a driving substrate. Absorption level consisting of level 210, support level 220 with support piers 240, and bolometer element 285 formed in a continuous '-' shape surrounded by absorbent layer 295 and absorbent layer 295; 230.

도시된 바와 같이, 지지교각(240)은 흡수레벨(230)의 아래에 형성된다. 즉, 지지교각(240)이 흡수레벨(230)과 동일상에 형성되어 있지 않으므로, 흡수레벨(230) 전체가 적외선 흡수 작용을 할 수 있다. 따라서, 적외선 볼로메터(201)의 전체적인 흡수면적이 증가되는 것이다.As shown, the support piers 240 are formed below the absorption level 230. That is, since the support bridge 240 is not formed on the same phase as the absorption level 230, the entire absorption level 230 can act as an infrared absorption. Therefore, the overall absorption area of the infrared bolometer 201 is increased.

한편, 상술한 볼로메터(201)의 제조공정중 흡수층(295)를 구성하는 제 1 열흡수층(292) 및 제 2 열흡수층(294)의 제조공정을 도 4를 참조하면서 개략적으로 살펴보면 다음과 같다.Meanwhile, a manufacturing process of the first heat absorbing layer 292 and the second heat absorbing layer 294 constituting the absorbing layer 295 during the manufacturing process of the above-described ballometer 201 will be described below with reference to FIG. 4. .

즉, 실리콘 산화물(SiO2)로 이루어지는 제 1 열흡수층(292)은 다결정 실리콘(poly-Si)으로 이루어진 희생층(310)의 상부에 PECVD법을 사용하여 증착된 후, 그 위에 티탄늄(Ti)층이 스퍼터링법으로 증착되고 금속식각법으로 패터닝되어 볼로메터 요소(285)가 형성된다.That is, the first heat absorbing layer 292 made of silicon oxide (SiO 2 ) is deposited on the sacrificial layer 310 made of polycrystalline silicon (PE-Si) using PECVD, and then titanium (Ti) is deposited thereon. The layer is deposited by sputtering and patterned by metal etching to form a bolometer element 285.

그 다음으로, 제 1 열흡수층(292)과 동일한 재료로 이루어지는 제 2 열흡수층(294)이 볼로메터 요소(285)를 둘러싸도록 제 1 열흡수층(292)의 상부에 증착되어 흡수층(295)이 형성된다.Next, a second heat absorbing layer 294 made of the same material as the first heat absorbing layer 292 is deposited on top of the first heat absorbing layer 292 so as to surround the bolometer element 285 so that the absorbing layer 295 is formed. Is formed.

그후, 제 2 열흡수층(294)의 상부에는 일반적인 적외선 흡수코팅(297)이 형성된다.Thereafter, a general infrared absorption coating 297 is formed on the second heat absorption layer 294.

이러한 종래의 적외선 볼로메터의 제조방법에 있어서, 제 1 열흡수층 아래에만 희생층이 존재하므로, 희생층 제거시 제 1 열흡수층과 희생층간에 원자간의 분리가 일어나 응력이 발생한다. 그러므로, 제 1 열흡수층과 제 2 열흡수층간의 응력의 비대칭성이 발생하여 구조물의 휨현상이 발생하게 된다.In the conventional method of manufacturing an infrared bolometer, since the sacrificial layer exists only below the first heat absorbing layer, the separation of atoms occurs between the first heat absorbing layer and the sacrificial layer when stress is removed. Therefore, the asymmetry of the stress between the first heat absorbing layer and the second heat absorbing layer is generated, resulting in the bending of the structure.

본 발명은 이와 같은 종래의 문제점을 해결하기 위한 것으로, 제 1 열흡수층과 제 2 열흡수층간에 대칭적인 응력분포를 나타내는 적외선 볼로메터의 제조방법을 제공하는 것을 그 목적으로 한다.An object of the present invention is to provide a method of manufacturing an infrared bolometer which exhibits a symmetrical stress distribution between a first heat absorbing layer and a second heat absorbing layer.

이와 같은 목적을 실현하기 위해, 본 발명에 따른 적외선 볼로메터 제조방법은 희생층의 상부에 제 1 열흡수층을 증착시키는 단계, 제 1 열흡수층의 상부에 티탄늄층을 형성한 후 패터닝하여 볼로메터 요소를 형성하는 단계, 제 1 열흡수층의 상부에 볼로메터 요소를 둘러싸도록 제 2 열흡수층을 증착시키는 단계, 제 2 열흡수층의 상부에 또 하나의 희생층을 증착시키는 단계 및 희생층을 동시에 제거하는 단계를 포함하는 것을 특징으로 한다.In order to realize the above object, the method of manufacturing an infrared bolometer according to the present invention comprises the steps of depositing a first heat absorption layer on top of a sacrificial layer, forming a titanium layer on top of the first heat absorption layer, and then patterning the bolometer element. Forming a second heat absorbing layer to surround the bolometer element on top of the first heat absorbing layer, depositing another sacrificial layer on top of the second heat absorbing layer, and simultaneously removing the sacrificial layer Characterized in that it comprises a step.

본 발명의 상술한 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 첨부된 도면을 참조하여 다음에 설명하는 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.The above objects and various advantages of the present invention will become more apparent from the preferred embodiments of the invention described below with reference to the accompanying drawings by those skilled in the art.

이하, 본 발명의 바람직한 일실시예를 도 5 및 도 6을 참조하여 상세하게 설명한다. 아래의 기술에 있어서, 종래와 동일한 구성부재에 대해서는 동일부호를 부여하여 설명한다. Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. 5 and 6. In the following description, the same components as in the prior art will be described with the same reference numerals.

도시된 바와 같이, 본 발명에 따른 적외선 볼로메터(201)의 구성은 구동기판레벨(210), 지지레벨(220), 적어도 한쌍 이상의 포스트(270), 흡수레벨(230)로 구성된다.As shown, the configuration of the infrared bolometer 201 according to the present invention is composed of a driving substrate level 210, a support level 220, at least one or more posts 270, the absorption level 230.

구동기판레벨(210)은 집적회로(도시되지 않음)가 형성되어 있는 기판(212)과 한쌍의 접속단자(214), 및 보호층(216)을 포함한다. 금속으로 만들어진 각각의 접속단자(214)는 기판(212)의 상부에 형성되어, 기판(212)의 집적회로에 전기적으로 접속되어 적외선 방사에너지 흡수작용에 의한 볼로메터(201)의 저항변화를 집적회로에 전달하는 역할을 한다. 보호층(216)은 잔류응력이 보상되고 절연성이 우수한 재료 예를들면, 실리콘 질화막으로 이루어져 있으면서 기판(212)을 덮고 있도록 형성되어 공정중에 기판(212)에 손상이 가지않도록 한다.The driving substrate level 210 includes a substrate 212 on which an integrated circuit (not shown) is formed, a pair of connection terminals 214, and a protective layer 216. Each connection terminal 214 made of metal is formed on the substrate 212, and is electrically connected to the integrated circuit of the substrate 212 to integrate the resistance change of the bolometer 201 due to the absorption of infrared radiation energy. It serves to deliver to the circuit. The protective layer 216 is formed so as to cover the substrate 212 while being made of a material, for example, a silicon nitride film, having a residual stress compensated and having excellent insulation, so as not to damage the substrate 212 during the process.

지지레벨(220)은 실리콘 질화막으로 만들어진 한쌍의 지지교각(240)을 포함하는데, 지지교각(240)의 상부에는 티탄늄(Ti) 같은 금속으로 만들어진 전도선(265)이 형성되어 있다. 지지교각(240)의 앵커부분에는 비아홀(252)이 형성되어 있어서, 이 비아홀(252)을 통해 전도선(265)의 한끝이 접속단자(214)에 전기적으로 연결될 수 있다.The support level 220 includes a pair of support piers 240 made of silicon nitride, and a conductive line 265 made of a metal such as titanium (Ti) is formed on the support piers 240. A via hole 252 is formed in the anchor portion of the support pier 240, and one end of the conductive line 265 may be electrically connected to the connection terminal 214 through the via hole 252.

흡수레벨(230)은 잔류응력이 보상되고 절연성이 우수한 재료 예를들면, 실리콘 산화물중 이산화규소(SiO2)로 이루어진 제 1 열흡수층(292)과 예를들면, 실리콘 산화물중 이산화규소(SiO2)로 이루어진 제 2 열흡수층(294)으로 구성되는 흡수층(295)과, 흡수층(295)에 의해 둘러싸여진 볼로메터 요소(285)를 포함한다.Absorption level 230 of the residual stress is compensated and the insulation, for superior material for example, such as silicon dioxide (SiO 2), first heat absorption layer 292 consisting of silicon oxide, silicon oxide-silicon dioxide (SiO 2 ), An absorbent layer 295 composed of a second heat absorbing layer 294, and a bolometer element 285 surrounded by the absorbent layer 295.

한편, 각각의 포스트(270)는 흡수레벨(230)과 지지레벨(220)의 사이에 위치한다. 각각의 포스트(270)는 실리콘 질화막 같은 절연물질(274)에 의해서 둘러싸여져 있고 티탄늄(Ti) 같은 금속으로 만들어진 전관(272)을 포함하는데, 전관(272)의 상부 끝은 볼로메터 요소(285)의 한쪽 끝에 전기적으로 연결되어 있고, 하부 끝은 지지교각(240)의 전도선(265)에 전기적으로 연결되어 있음으로서 흡수레벨(230)의 볼로메터 요소(285)의 양끝은 전관(272), 전도선(265), 접속단자(214)를 통하여 구동기판레벨(210)의 집적회로에 전기적으로 연결된다. 이러한 구성에 의해, 적외선 에너지가 흡수되었을 때, 볼로메터 요소(285)의 저항값이 바뀌고, 바뀐 저항값에 의하여 전압, 또는 전류가 변화한다. 변화된 전류나 전압은 집적회로에 입력시켜 증폭되어 출력되고, 증폭된 전류나 전압은 검출회로(도시되지 않음)에 의해 읽혀져 적외선 센싱이 된다.On the other hand, each post 270 is located between the absorption level 230 and the support level 220. Each post 270 is surrounded by an insulating material 274, such as a silicon nitride film, and includes an electric conduit 272 made of a metal, such as titanium (Ti), wherein the upper end of the electric conduit 272 is a bolometer element 285. And the lower end is electrically connected to the conductive line 265 of the support piers 240 so that both ends of the bolometer element 285 of the absorption level 230 are connected to the front tube 272. The conductive line 265 is electrically connected to the integrated circuit of the driving substrate level 210 through the conductive line 265 and the connection terminal 214. With this configuration, when infrared energy is absorbed, the resistance value of the bolometer element 285 changes, and the voltage or current changes according to the changed resistance value. The changed current or voltage is input to the integrated circuit, amplified and output, and the amplified current or voltage is read by a detection circuit (not shown) to be infrared sensing.

이하, 도 6을 참조하여 본 발명에 따른 적외선 볼로메터의 제조방법을 상세하게 설명한다.Hereinafter, a method of manufacturing an infrared bolometer according to the present invention will be described in detail with reference to FIG. 6.

도 6a 내지 도 6i는 도 5의 I-I선에 따른 적외선 볼로메터의 단면도로서, 본 발명에 따른 적외선 볼로메터의 제조공정을 설명하기 위한 것이다.6A to 6I are cross-sectional views of the infrared bolometer taken along the line I-I of FIG. 5 to explain the manufacturing process of the infrared bolometer according to the present invention.

도시된 바와 같이, 본 발명은 집적회로(도시되지 않음)와 한쌍의 접속단자(214)를 포함한 기판(212)의 준비로서 시작된다. 이 각각의 접속단자(214)는 기판(212) 상부에 위치하면서 집적회로에 전기적으로 접속되어 있다.As shown, the present invention begins with the preparation of a substrate 212 comprising an integrated circuit (not shown) and a pair of connection terminals 214. Each of the connection terminals 214 is positioned above the substrate 212 and electrically connected to the integrated circuit.

계속적으로, 실리콘 질화막(SiNx) 같은 잔류응력이 보상된 절연성이 우수한 재료로 만들어진 보호층(216)이 PECVD 방법을 사용하여 증착됨으로서, 도 6a에 도시된 바와 같이, 기판(212)과 접속단자(214)를 완전하게 덮고 있는 구동기판레벨(210)이 형성된다.Subsequently, a protective layer 216 made of a material having excellent insulation, such as a silicon nitride film (SiN x ), having excellent compensation for residual stress, is deposited using the PECVD method, so that the substrate 212 and the connection terminal are shown in FIG. 6A. Drive substrate level 210 is formed which completely covers 214.

다음으로, 도 6b에 도시된 바와 같이, 다결정 실리콘(poly-Si) 같은 재료로 구성되고, 평평한 상부표면을 가진 제 1 희생층(300)이 저압기상증착법(LPCVD)을 사용하여 증착된다. 그후, 제 1 희생층(300)이 부분적으로 제거됨으로서 한쌍의 빈구멍(305)이 형성된다.Next, as shown in FIG. 6B, a first sacrificial layer 300 composed of a material such as poly-crystalline silicon and having a flat upper surface is deposited using low pressure vapor deposition (LPCVD). Thereafter, the first sacrificial layer 300 is partially removed to form a pair of empty holes 305.

그 다음으로, 도 6c에 도시된 바와 같이, 실리콘 질화물(SiNx) 같은 재료로 만들어진 지지층(250)이 빈구멍(305)을 포함한 제 1 희생층의 상부에 PECVD 법을 사용하여 증착된다. 이어서, 접속단자(214)가 노출되도록 지지층(250)에 한쌍의 비아홀(via hole:252)이 형성된다.Next, as shown in FIG. 6C, a support layer 250 made of a material such as silicon nitride (SiN x ) is deposited using the PECVD method on top of the first sacrificial layer including the voids 305. Next, a pair of via holes 252 are formed in the support layer 250 to expose the connection terminal 214.

그런 후에, 도 6d에 도시된 바와 같이, 티탄늄 같은 금속으로 만들어진 전도성층(260)이 비어홀(252)을 포함한 지지층(250)의 상부에 스퍼터링으로 증착되는데, 여기에서 비어홀(252) 내부에 금속으로 만들어진 전도성층(260)이 채워지면서 전도성층(260)이 접속단자(214)와 전기적으로 연결된다.Thereafter, as shown in FIG. 6D, a conductive layer 260 made of a metal such as titanium is deposited by sputtering on top of the support layer 250 including the via hole 252, where the metal inside the via hole 252 is formed. The conductive layer 260 is filled with the conductive layer 260 is electrically connected to the connection terminal 214.

다음으로, 도 6e에 도시된 바와 같이, 전도성층(260)과 지지층(250)은 각각 금속식각방법과 실리콘 질화막 식각방법을 이용하여 패턴되면서 상부에 전도선(265)이 형성되어 있는 한쌍의 지지교각(240)을 형성함으로서 지지레벨(220)이 형성된다.Next, as illustrated in FIG. 6E, the conductive layer 260 and the support layer 250 are patterned using a metal etching method and a silicon nitride film etching method, respectively, and a pair of supports having a conductive line 265 formed thereon. The support level 220 is formed by forming the bridge 240.

계속적으로, 다결정 실리콘으로 만들어진 제 2 희생층(310)이 지지교각(240)과 제 1 희생층(300)의 상부에 평평한 상부표면이 형성되도록 저압기상증착(LPCVD)법을 사용하여 증착된다. 그런 다음, 제 2 희생층(310)을 식각법을 사용하여, 도 6f에 도시된 바와 같이, 한쌍의 구멍(315)이 형성되도록 한다.Subsequently, a second sacrificial layer 310 made of polycrystalline silicon is deposited using low pressure vapor deposition (LPCVD) to form a flat upper surface on top of the support bridge 240 and the first sacrificial layer 300. Thereafter, the second sacrificial layer 310 is etched to form a pair of holes 315 as shown in FIG. 6F.

다음으로, 도 6g에 도시된 바와 같이, 잔류응력이 보상되고 절연성이 우수한 재료, 예를들면 실리콘 산화물(SiO2)로 이루어지는 제 1 열흡수층(292)이 제 2 희생층(310)의 상부에 PECVD법을 사용하여 증착된 후, 지지교각(240)의 전도선(265)이 노출되도록 제 1 열흡수층(292)에 한쌍의 노출구멍(296)이 형성된다.Next, as shown in FIG. 6G, a first heat absorption layer 292 made of a material having excellent residual stress and excellent insulation, for example, silicon oxide (SiO 2 ), is disposed on the second sacrificial layer 310. After deposition using the PECVD method, a pair of exposed holes 296 are formed in the first heat absorption layer 292 so that the conductive line 265 of the support bridge 240 is exposed.

계속적으로, 티탄늄(Ti)층이 노출구멍(296)을 포함한 제 1 열흡수층(292)의 상부에 스퍼터링법을 사용하여 증착되는데, 이때 노출구멍(296)의 내부는 티탄늄 층으로 채워지면서 한쌍의 전관(272)을 형성한다. 그런 다음, 티탄늄 층은 도 6h에 도시된 바와 같이 금속식각법을 사용하여 볼로메터 요소(285)가 형성되도록 패턴된다.Subsequently, a layer of titanium (Ti) is deposited using a sputtering method on top of the first heat absorption layer 292 including the exposure hole 296, wherein the inside of the exposure hole 296 is filled with a titanium layer. A pair of front tubes 272 are formed. Then, the titanium layer is patterned to form the bolometer element 285 using metal etching as shown in FIG. 6H.

다음으로, 도 6i에 도시된 바와 같이, 제 1 열흡수층(292)과 동일한 재료 즉, 실리콘 산화물(SiO2)로 이루어진 제 2 열흡수층(294)을 제 1 열흡수층(292)의 상부에 볼로메터 요소(285)를 둘러싸도록 증착하여 볼로메터 요소(285)를 포함하는 흡수층(295)을 형성한다.Next, as illustrated in FIG. 6I, a second heat absorbing layer 294 made of the same material as the first heat absorbing layer 292, that is, silicon oxide (SiO 2 ) is disposed on the upper surface of the first heat absorbing layer 292. Deposition surrounds the meter element 285 to form an absorbing layer 295 including the bolometer element 285.

이어서, 도 6j에 도시된 바와 같이, 본 발명의 특징적인 제조공정에 따라 제 2 희생층(310)과 동일한 재료인 다결정 실리콘으로 이루어지는 제 3 희생층(320)이 제 2 열흡수층(294)의 상부에 형성되도록 저압기상증착(LPCVD)법을 사용하여 증착된다.Subsequently, as shown in FIG. 6J, the third sacrificial layer 320 made of polycrystalline silicon, which is the same material as the second sacrificial layer 310, of the second heat absorbing layer 294 according to the characteristic manufacturing process of the present invention. It is deposited using low pressure vapor deposition (LPCVD) to form on top.

그후, 제 3 희생층(320), 제 2 희생층(310) 및 제 1 희생층(300)이 식각방법을 사용하여 동시에 제거된다.Thereafter, the third sacrificial layer 320, the second sacrificial layer 310, and the first sacrificial layer 300 are simultaneously removed using an etching method.

상술한 바와 같이 본 발명은 바람직한 예를 중심으로 설명 및 도시되었으나, 본 기술분야의 숙련자라면 본 발명의 사상 및 범주를 벗어나지 않고 다양하게 변형 실시 할 수 있음을 알 수 있을 것이다.As described above, the present invention has been described and illustrated with reference to preferred examples, but it will be understood by those skilled in the art that various modifications can be made without departing from the spirit and scope of the present invention.

상술한 바와 같이 본 발명에 따르면, 제 2 열흡수층 상부에도 제 1 열흡수층 하부에 마련된 희생층과 동일한 재료의 희생층이 형성된 후 동시에 제거되므로, 희생층 제거에 따른 희생층과 제 1 열흡수층 및 제 2 열흡수층간의 원자의 분리가 제 1 열흡수층 및 제 2 열흡수층에서 동시에 같은 양만큼 발생하여 응력도 대칭적으로 발생한다. 따라서, 희생층 제거후 구조물의 휨현상을 방지할 수 있다.As described above, according to the present invention, since the sacrificial layer of the same material as the sacrificial layer provided below the first heat absorbing layer is formed on the second heat absorbing layer at the same time, the sacrificial layer and the first heat absorbing layer according to the sacrificial layer are removed. Separation of atoms between the second heat absorbing layer occurs simultaneously in the same amount in the first heat absorbing layer and the second heat absorbing layer, so that the stress is also symmetrically generated. Therefore, bending of the structure after removing the sacrificial layer can be prevented.

도 1은 종래의 볼로메터의 단면도,1 is a cross-sectional view of a conventional bolometer,

도 2는 도 1에 도시된 볼로메터의 사시도,2 is a perspective view of the bolometer shown in FIG.

도 3은 선출원된 볼로메터의 사시도,3 is a perspective view of a pre- filed bolometer,

도 4는 도 3의 볼로메터 제조공정중에서 제 1 열흡수층 및 제 2 열흡수층간의 응력관계를 설명하기 위한 단면도,4 is a cross-sectional view for explaining a stress relationship between the first heat absorbing layer and the second heat absorbing layer in the process of manufacturing the ballometer of FIG. 3;

도 5는 본 발명에 따른 볼로메터의 사시도,5 is a perspective view of a bolometer according to the present invention;

도 6은 본 발명에 따른 볼로메터의 제조공정을 설명하기 위한 단면도.Figure 6 is a cross-sectional view for explaining a manufacturing process of the ballometer according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

210 : 구동기판레벨 220 : 지지레벨 230 : 흡수레벨210: driving substrate level 220: support level 230: absorption level

212 : 기판 214 : 접속단자 216 : 보호층212 substrate 214 connection terminal 216 protective layer

240 : 지지교각 252 : 비아홀 265 : 전도선240: support pier 252: via hole 265: conduction line

270 : 포스트 285 : 볼로메터 요소270: post 285: the bolometer element

292 : 제 1 열흡수층 294 : 제 2 열흡수층 295 :흡수층292: first heat absorbing layer 294: second heat absorbing layer 295: absorbing layer

300 : 제 1 희생층 310 : 제 2 희생층 320 : 제 3 희생층300: first sacrificial layer 310: second sacrificial layer 320: third sacrificial layer

Claims (4)

제 1 및 제 2 희생층을 갖는 적외선 볼로메터의 제조방법에 있어서,In the method of manufacturing an infrared bolometer having a first and a second sacrificial layer, 상기 제 2 희생층의 상부에 제 1 열흡수층을 증착시키는 단계;Depositing a first heat absorption layer on the second sacrificial layer; 상기 제 1 열흡수층의 상부에 티탄늄층을 형성한 후 패터닝하여 볼로메터 요소를 형성하는 단계;Forming a titanium layer on top of the first heat absorbing layer and then patterning to form a bolometer element; 상기 제 1 열흡수층의 상부에 상기 볼로메터 요소를 둘러싸도록 제 2 열흡수층을 증착시키는 단계;Depositing a second heat absorbing layer on top of the first heat absorbing layer to surround the bolometer element; 상기 제 2 열흡수층의 상부에 제 3 희생층을 증착시키는 단계 및Depositing a third sacrificial layer on top of the second heat absorption layer; and 상기 제 1, 제 2 및 제 3 희생층을 동시에 제거하는 단계를 포함하는 적외선 볼로메터의 제조방법.And removing the first, second and third sacrificial layers simultaneously. 제 1 항에 있어서, 상기 제 2 및 상기 제 3 희생층은 서로 동일한 재료로 이루어지는 것을 특징으로 하는 적외선 볼로메터의 제조방법.The method of claim 1, wherein the second and the third sacrificial layers are made of the same material as each other. 제 1 항에 있어서, 상기 제 1 및 제 2 열흡수층의 하부에 형성된 희생층은 다결정 실리콘으로 이루어지는 것을 특징으로 하는 적외선 볼로메터의 제조방법.The method of claim 1, wherein the sacrificial layer formed under the first and second heat absorption layers is made of polycrystalline silicon. 제 1 항에 있어서, 상기 제 3 희생층은 제 2 열 흡수층 상부에 저압기상증착법을 사용하여 증착되는 것을 특징으로 하는 적외선 볼로메터의 제조방법.The method of claim 1, wherein the third sacrificial layer is deposited on the second heat absorbing layer using low pressure vapor deposition.
KR1019980063203A 1998-12-31 1998-12-31 Method for manufacturing an infrared bolometer KR100529132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980063203A KR100529132B1 (en) 1998-12-31 1998-12-31 Method for manufacturing an infrared bolometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980063203A KR100529132B1 (en) 1998-12-31 1998-12-31 Method for manufacturing an infrared bolometer

Publications (2)

Publication Number Publication Date
KR20000046516A KR20000046516A (en) 2000-07-25
KR100529132B1 true KR100529132B1 (en) 2006-01-27

Family

ID=19569808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980063203A KR100529132B1 (en) 1998-12-31 1998-12-31 Method for manufacturing an infrared bolometer

Country Status (1)

Country Link
KR (1) KR100529132B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501296B1 (en) * 2001-08-22 2005-07-18 주식회사 대우일렉트로닉스 Infrared bolometer manufacture method

Also Published As

Publication number Publication date
KR20000046516A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US6144030A (en) Advanced small pixel high fill factor uncooled focal plane array
US6690014B1 (en) Microbolometer and method for forming
US5939971A (en) Infrared bolometer
US6094127A (en) Infrared bolometer and method for manufacturing same
KR100529132B1 (en) Method for manufacturing an infrared bolometer
EP1137918B1 (en) Infrared bolometer
JP2002533667A (en) Infrared bolometer and manufacturing method thereof
KR100313043B1 (en) Method for manufacturing an infrared bolometer
KR100299642B1 (en) Three-level infra-red bolometer
KR20000044814A (en) Infrared bolometer
KR20000044813A (en) Infrared bolometer
JP3866040B2 (en) Structurally stable infrared bolometer
KR100299643B1 (en) Method for manufacturing a three-level infra-red bolometer
EP1141669B1 (en) Infrared bolometer and method for manufacturing same
KR100529133B1 (en) Infrared rays absorption bolometer
KR20000004158A (en) Infrared ray absorbing bolometer and preparation thereof
KR20000007216A (en) Bolometer for absorbing infra-red rays and method of fabricating the same
KR20000004154A (en) Infrared ray absorption bolometer and fabrication method thereof
KR100501296B1 (en) Infrared bolometer manufacture method
KR20000044811A (en) Method of forming infrared bolometer
KR100529130B1 (en) Infrared bolometer manufacture method
KR20000004155A (en) Fabrication method of an infrared ray absorption bolometer
KR20000046515A (en) Infrared ray bolometer
KR20000032556A (en) Method for manufacturing an infrared bolometer
KR20000004156A (en) Preparation method of infrared ray absorbing bolometer

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111101

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee