KR100520857B1 - Methods and apparatus for multi-spectrum analysis in noninvasive infrared spectroscopy - Google Patents

Methods and apparatus for multi-spectrum analysis in noninvasive infrared spectroscopy Download PDF

Info

Publication number
KR100520857B1
KR100520857B1 KR1019980705964A KR19980705964A KR100520857B1 KR 100520857 B1 KR100520857 B1 KR 100520857B1 KR 1019980705964 A KR1019980705964 A KR 1019980705964A KR 19980705964 A KR19980705964 A KR 19980705964A KR 100520857 B1 KR100520857 B1 KR 100520857B1
Authority
KR
South Korea
Prior art keywords
sample
wavelengths
radiation
analyte
wavelength
Prior art date
Application number
KR1019980705964A
Other languages
Korean (ko)
Other versions
KR19990082235A (en
Inventor
스티번 에프. 멀린
가멀 케이릴
Original Assignee
센시스 메디컬, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센시스 메디컬, 인크. filed Critical 센시스 메디컬, 인크.
Publication of KR19990082235A publication Critical patent/KR19990082235A/en
Application granted granted Critical
Publication of KR100520857B1 publication Critical patent/KR100520857B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

근적외선 및 중적외선 범위 내의 멀티 스펙트럼 분석을 사용하여 샘플 내에 존재하는 피분석물의 농도를 측정하기 위한 방법 및 장치가 개시되어 있다. 대략 1100 내지 5000 nm의 범위 내의 파장들의 복수의 개별적인, 비중첩 영역들을 포함하는 입사 방사선이 샘플을 스캔하는데 사용된다. 샘플로부터 나온 확산적으로 반사된 방사선이 검출되고, 피분석물의 농도를 나타내는 값이 화학미터법 기술의 응용을 이용하여 얻어진다. 파장들의 각각의 비중첩 영역으로부터 얻어진 정보는 배경 간섭을 제거하기 위해 교차-상관(cross-correlated)될 수 있다.A method and apparatus are disclosed for determining the concentration of analyte present in a sample using multispectral analysis in the near and mid infrared range. Incident radiation comprising a plurality of individual, non-overlapping regions of wavelengths in the range of approximately 1100 to 5000 nm is used to scan the sample. Diffusely reflected radiation from the sample is detected and a value indicative of the concentration of the analyte is obtained using the application of chemical metric techniques. Information obtained from each non-overlapping region of wavelengths can be cross-correlated to remove background interference.

Description

비침투적 적외선 분광학에서 멀티-스펙트럼 분석을 위한 방법 및 장치Methods and apparatus for multi-spectrum analysis in noninvasive infrared spectroscopy

본 발명은 멀티-스펙트럼 분석(multi-spectral analysis)을 사용한 샘플에서 표적 피분석물의 농도를 측정하기 위한 방법 및 장치이다. 본 발명은 광범위한 화학적 분석에 응용할 수 있으며, 구체적으로는 혈액 피분석물의 비침투적 분광 분석(noninvasive infrared spectroscopy)에 응용할 수 있다.The present invention is a method and apparatus for measuring the concentration of a target analyte in a sample using multi-spectral analysis. The present invention can be applied to a wide range of chemical assays, and specifically to noninvasive infrared spectroscopy of blood analytes.

다양한 혈액 성분의 농도 측정은 신체 이상 및 질병의 진단과 치료를 위한 여러 과정에서 응용될 수 있다. 한가지 중요한 응용은 혈당의 측정이다. 특히, 당뇨병을 앓고 있는 환자는 혈당의 농도를 정기적으로 검진받아야 하며, 인슐린 의존성(insulin-dependent) 또는 I형 당뇨병에 대해서는, 하루에 여러 번 혈당 검진을 받는 것이 종종 필수적이거나 바람직하다. 또한, 혈중 콜레스테를 농도의 측정은 관상 동맥 질병을 앓고 있는 치료 또는 예방에 중요한 정보를 제공하며, 빌리루빈(bilirubin) 및 알코올과 같은 다른 유기 혈액 피분석물의 측정도 다양한 진단 환경에서 중요하다.Measurement of the concentration of various blood components can be applied in various procedures for the diagnosis and treatment of body abnormalities and diseases. One important application is the measurement of blood sugar. In particular, patients suffering from diabetes should be regularly checked for blood glucose levels, and for insulin-dependent or type I diabetes, it is often necessary or desirable to have blood glucose tests several times a day. In addition, measurement of blood cholesterol levels provides important information for the treatment or prevention of coronary artery disease, and measurement of other organic blood analytes such as bilirubin and alcohol is also important in a variety of diagnostic environments.

혈액 피분석물 농도를 얻는 가장 정확하고 광범위한 실용화된 방법은 환자로부터의 혈액의 추출을 포함하는데, 이 혈액은 고정확도 및 민감한 분석 평가 기술을 사용하는 실험실에서 또는 보다 덜 정확한 자가 시험 방법을 사용함으로써 분석된다. 특히, 전통적인 혈당 감시 방법은 각각의 시험을 위해 혈액 샘플을 (예를 들어, 손가락 끝의 절개에 의해) 채취하고 혈당계(클루코스 농도를 판독하는 분광 광도계) 또는 색채 캘리브레이션 방법을 사용하여 클루코스 레벨을 판독할 당뇨병 환자를 필요로 한다. 이러한 침투적 혈액 추출법은 당뇨병 환자에게 고통과 지겨운 부담을 주게 되며 당뇨병 환자를 감염, 특히 필수적인 시험 주파수의 광에 노출시키게 된다. 이러한 이유로 당뇨병 환자에 의해 감시 과정이 거부될 수 있다.The most accurate and widespread practical method of obtaining blood analyte concentrations includes the extraction of blood from patients, which can be used in laboratories using high accuracy and sensitive analytical evaluation techniques or by using less accurate self test methods. Is analyzed. In particular, traditional blood glucose monitoring methods take a blood sample (eg, by incision at the fingertip) for each test and use a glucose meter (spectrophotometer to read the clocos concentration) or a color calibration method using a glucos level. Requires diabetics to read. This invasive blood extraction poses pain and burdensome burden to diabetics and exposes diabetics to infection, especially at the light of essential test frequencies. For this reason, the surveillance process may be rejected by diabetics.

따라서, 특히 당뇨병 환자들의 혈당 감시 환경에서, 혈액 피분석물 농도를 비침투적으로 측정하기 위한 간단하고 정확한 방법 및 장치가 당해 기술 분야에서 요망된다는 것이 인지된다. 상기 문제점에 접근하는 한 가지 방법은 근적외선(near-IR 또는 "NIR") 분석의 전통적인 방법을 사용하는 것이며, 하나 이상의 특정 파장의 흡광도(absorbance)의 측정이 제공된 샘플로부터 피분석물 특성 정보를 추출하는데 사용된다.Accordingly, it is recognized that simple and accurate methods and apparatus for non-invasive measurement of blood analyte concentrations are desired in the art, particularly in the blood glucose monitoring environment of diabetics. One way to approach this problem is to use the traditional method of near-infrared (near-IR or "NIR") analysis, extracting analyte characteristic information from a sample provided with the measurement of absorbance of one or more specific wavelengths. It is used to

액체 샘플의 근적외선 흡광도 스펙트럼은 샘플의 다양한 유기 성분에 대한 많은 정보를 포함하고 있다. 특히, 유기 분자 구조(탄소-탄소, 탄소-수소, 탄소-질소 및 질소-수소 화학 결합)와 연관된 진동, 회전, 및 스트레칭 에너지(stretching energy)는 샘플 내에 존재하는 다양한 유기 성분의 농도에 대해 검출되고 관련될 수 있는 근적외선 영역 내에 섭동(perturbations)을 생성한다. 그러나, 복잡한 샘플 매트릭스에서, 근적외선 스펙트럼은 또한 일부가 피분석물들 간의 구조의 유사성, 피분석물 농도의 상대적인 레벨, 피분석물들 간의 간섭 관계, 및 특정 시스템에서 고유의 전자적 및 화학적 "잡음"으로 인해 상당량의 간섭을 포함한다. 이러한 간섭은 액체 샘플 피분석물의 농도를 측정하기 위한 근적외선 분광 측정을 사용하여 얻어진 측정의 효율과 정확도를 감소시킨다. 그러나, 비침투적 혈액 피분석물 측정을 제공하기 위한 많은 근적외선 장치 및 방법이 개시되어 있다.The near infrared absorbance spectrum of a liquid sample contains a lot of information about the various organic components of the sample. In particular, vibration, rotation, and stretching energy associated with organic molecular structures (carbon-carbon, carbon-hydrogen, carbon-nitrogen, and nitrogen-hydrogen chemical bonds) are detected for concentrations of various organic components present in the sample. Create perturbations in the near-infrared region that can be associated and related. However, in complex sample matrices, the near-infrared spectrum is also partially due to the similarity of the structures between the analytes, the relative levels of the analyte concentrations, the interference relations between the analytes, and the inherent electronic and chemical "noise" in certain systems. Includes a significant amount of interference. This interference reduces the efficiency and accuracy of the measurements obtained using near infrared spectroscopy to measure the concentration of the liquid sample analyte. However, many near infrared devices and methods have been disclosed for providing noninvasive blood analyte measurements.

Purdy 등에 의한 U.S. 특허 제5,360,004호는 혈액 피분석물의 농도 측정 방법 및 장치를 개시하고 있으며, 인체 일부가 2가지 이상의 개별적인 대역의 연속 파장 입사 방사선을 포함하는 방사선으로 조사된다. Purdy 등은 약 1440 및 1935 nm에서 발생하는 수분에 대한 NIR 흡수 스펙트럼의 2개의 피크에서 특별히 방사선을 차단하는 필터링 기술을 강조하고 있다. 이러한 선택적인 차단은 인체의 일부가 조사될 때 수분에 의한 방사선의 흡수로 발생할 수 있는 가열 효과를 피하기 위해 수행된다.U.S. by Purdy et al. Patent 5,360,004 discloses a method and apparatus for measuring the concentration of blood analytes, wherein a part of the human body is irradiated with radiation comprising continuous wavelength incident radiation of two or more separate bands. Purdy et al. Emphasize a filtering technique that specifically blocks radiation at two peaks of the NIR absorption spectrum for moisture occurring at about 1440 and 1935 nm. This selective blocking is performed to avoid the heating effect that can occur with absorption of radiation by moisture when a part of the human body is irradiated.

반대로, Yang 등에 의한 U.S. 특허 제5,267,152는 NIR 수분 흡수 피크(예를 들어, "물 전송 윈도우(water transmission window)"를 포함하는 IR 스펙트럼 부분만을 사용하여 혈당 농도를 측정하기 위한 비침투적 장치 및 기술을 개시하고 있다. 광학적으로 제어되는 광은 조직 소스(tissue source)로 유도되고 다음에 통합 구체(integrating sphere)에 의해 집광된다. 이 집광된 광은 분석되어 저장되어 있는 기준 캘리브레이션 곡선을 사용하여 혈당 농도가 계산된다.In contrast, Yang et al., U.S. Patent 5,267,152 discloses a non-invasive device and technology for measuring blood glucose concentration using only the IR spectral portion comprising an NIR water absorption peak (eg, a “water transmission window.”) Optical The controlled light is directed to a tissue source and then collected by an integrating sphere, which is then analyzed and stored to calculate blood glucose levels using a stored reference calibration curve.

또한, 복잡한 샘플의 피분석물 농도의 측정에 사용되는 장치가 개시되어 있다.Also disclosed is a device for use in the measurement of analyte concentrations in complex samples.

예를 들어, Richardson 등에 의한 U.S. 특허 제5,242,602호는 다수의 활성 또는 불활성 수분 처리 성분을 검출하도록 수성 시스템(aqueous systems)을 분석하기 위한 방법을 개시하고 있다. 상기 방법은 200 내지 2500 nm의 범위에 걸친 성분의 흡광도 또는 방사 스펙트럼의 측정, 및 다수의 퍼포먼스 인디케이터(performance indicators)의 양을 측정하도록 얻어진 스펙트럼 데이타의 세그먼트를 추출하기 위한 화학미터법 알고리즘(chemometrics algorithms)의 응용을 포함한다.See, eg, U.S. by Richardson et al. Patent 5,242,602 discloses a method for analyzing aqueous systems to detect multiple active or inert moisture treatment components. The method uses chemometrics algorithms to extract segments of spectral data obtained to measure absorbance or emission spectra of components over a range of 200 to 2500 nm, and to measure the amount of multiple performance indicators. Includes the application of.

Nygaard 등에 의한 U.S. 특허 제5,252,829호는 적외선 감쇠 측정 기술을 사용하여 우유 샘플 내의 요소 농도를 측정하기 위한 방법 및 장치를 개시하고 있다. 다변수 기술들(multivariate techniques)이 부분 최소 제곱 알고리즘(partial least squares algorithms), 주 성분 회귀, 다중 선형 회귀, 또는 인공 신경망 지식을 사용하여 공지된 성분의 스펙트럼 기여도를 측정하도록 수행된다. 관심있는 피분석물 신호를 차단하는 성분 기여도를 계산함으로써 캘리브레이션이 수행된다. 그러므로, Nygaard 등은 다수 피분석물 적외선 감쇠의 기술과 보다 정확한 측정을 얻기 위해 배경 피분석물들의 영향에 대한 보상을 설명하고 있다.U.S. by Nygaard et al. Patent 5,252,829 discloses a method and apparatus for measuring urea concentration in a milk sample using infrared attenuation measurement techniques. Multivariate techniques are performed to measure the spectral contribution of known components using partial least squares algorithms, principal component regression, multiple linear regression, or artificial neural network knowledge. Calibration is performed by calculating the component contribution to blocking the analyte signal of interest. Therefore, Nygaard et al. Describe the technique of multiple analyte infrared attenuation and compensation for the effects of background analytes to obtain more accurate measurements.

Ross 등에 의한 U.S. 특허 제4,306,152호는 탁한 샘플의 측정 정확도 또는 분석하기 어려운 액체 샘플의 배경 흡수(즉, 유체의 전체 또는 기저 레벨 광흡수)의 효과를 최소화하도록 설계된 광학 유체 분석기를 개시하고 있다. 상기 장치는 관심있는 샘플 성분의 특징적인 광 흡수 및 근사적인 배경 흡수에 대해 선택된 파장의 또다른 신호를 측정하고, 다음에 피분석물 의존 신호의 배경 성분을 감소시키도록 감산한다.U.S. by Ross et al. Patent 4,306,152 discloses an optical fluid analyzer designed to minimize the measurement accuracy of a turbid sample or the effect of background absorption (i.e. total or base level light absorption of a fluid) that is difficult to analyze. The device measures another signal of the selected wavelength for characteristic light absorption and approximate background absorption of the sample component of interest, and then subtracts to reduce the background component of the analyte dependent signal.

상술한 방법 및 장치를 사용하여 얻어진 정보의 정확도는 배경, 즉 근적외선 범위 내의 흡수 스펙트럼을 갖는 비피분석물에 의해 발생된 스펙트럼 간섭에 의해서 제한된다. 상당 수준의 배경 잡음은 특히 피분석물이 매우 적을 때 고유의 시스템 제한을 나타낸다. 이러한 제한의 관점에서, 예를 들어, 증가된 방사선 세기를 사용하도록 하는 수분 흡수 피크치를 피함으로써, 또는 분석될 스펙트럼 정보의 양을 감소시킴으로써, 또는 배경 흡수의 근사치를 기초로 한 감산 또는 보상 기술을 사용함으로써 신호 대 잡음 비를 향상시키려는 시도가 이루어져 왔다. 이러한 기술들은 몇가지 향상을 가져왔지만, 액체 매트릭스 내, 특히 혈당 감시의 환경에서의 피분석물 농도의 보다 정확한 측정을 가능하게 할 수 있는 방법 및 장치 제공의 필요성이 남아 있다.The accuracy of the information obtained using the methods and apparatus described above is limited by the spectral interference generated by the analyte having an absorption spectrum in the background, i.e., the near infrared range. Significant background noise represents inherent system limitations, especially when the analyte is very small. In view of these limitations, for example, by avoiding water absorption peaks that make use of increased radiation intensity, or by reducing the amount of spectral information to be analyzed, or by subtracting or compensating techniques based on an approximation of background absorption. Attempts have been made to improve the signal-to-noise ratio. While these techniques have made some improvements, there remains a need for providing methods and devices that can enable more accurate measurement of analyte concentrations in liquid matrices, particularly in the context of blood glucose monitoring.

〈발명의 요약〉<Summary of invention>

따라서, 본 발명의 주요 목적은 다양한 배경 매트릭스를 가지며 또한 가능하게는 실질적인 성분 간섭을 갖는 샘플에 존재하는 피분석물의 농도를 측정하는 방법을 제공함으로써 상술한 필요성을 충족시키는 것이다. 상기 방법은 샘플 내에 존재하는 다양한 성분 중에서 구조의 유사성, 피분석물 농도의 상대적인 크기, 및 다양한 샘플 성분과 수단 변화에 기인한 스펙트럼 간섭의 원인을 설명한다.Accordingly, it is a primary object of the present invention to meet the aforementioned needs by providing a method for measuring the concentration of an analyte present in a sample having various background matrices and possibly possibly substantial component interference. The method accounts for the similarity of structures among the various components present in the sample, the relative magnitude of the analyte concentration, and the causes of spectral interference due to various sample components and means change.

상기 방법은 일반적으로, (1) 피분석물의 농도에 대해 높은 상관성을 갖는 근적외선 내의 파장의 여러 개별적인, 비중첩 영역들을 식별하는 단계; (2) 샘플 성분의 상호 작용의 결과로서 스펙트럼 감쇠된 방사선을 얻기 위해 상기 영역들을 포함하는 입사 방사선을 갖는 샘플을 조사하는 단계; (3) 상기 스펙트럼 감쇠된 방사선을 검출하는 단계; (4) 파장의 비중첩 영역들 내의 파장에서 스펙트럼 감쇠된 방사선의 세기를 측정하는 단계; 및 (5) 피분석물의 농도를 나타내는 값을 얻도록 상기 측정을 상관시키는 단계를 포함한다.The method generally comprises: (1) identifying several individual, non-overlapping regions of wavelength in the near infrared that have a high correlation with the concentration of the analyte; (2) irradiating a sample with incident radiation comprising the regions to obtain spectral attenuated radiation as a result of the interaction of sample components; (3) detecting the spectral attenuated radiation; (4) measuring the intensity of the spectral attenuated radiation at the wavelength within the non-overlapping regions of the wavelength; And (5) correlating the measurements to obtain a value representative of the concentration of the analyte.

본 발명의 한 가지 특징에 따르면, 근적외선 및 중적외선(mid-infrared) 영역 양자 모두로부터의 스펙트럼 데이타가 피분석물 특성 정보를 얻도록 분석되는 방법이 제공된다. 그러므로, 상기 방법은 선택된 피분석물의 농도와 실질적으로 상관되거나 측정 및 기계 파라미터들(measurement and instrumentation parameters)에 대한 정보를 제공하는 일반적으로 대략 1100 내지 5000 nm의 범위 내의 근적외선 및 중적외선 영역의 여러 개별적인, 비중첩 영역들의 파장의 식별을 포함한다.According to one aspect of the invention, a method is provided wherein spectral data from both near and mid-infrared regions is analyzed to obtain analyte characterization information. Therefore, the method is generally associated with the concentration of the selected analyte or provides several individual information in the near-infrared and mid-infrared regions, typically in the range of approximately 1100-5000 nm, which provides information on measurement and instrumentation parameters. The identification of the wavelength of the non-overlapping regions.

본 발명의 또다른 특징에 따르면, 일반적으로 (1) 피분석물의 농도에 대한 높은 상관도를 갖는 근적외선 범위 내의 파장의 여러 개별적인, 비중첩 영역을 선택하는 단계; (2) 스펙트럼 변경된 방사선을 얻도록 선택된 스펙트럼 범위를 포함하는 적외선 광을 사용하여 샘플을 조사하는 단계; (3) 각각의 비중첩 영역으로부터의 방사선의 한 부분을 분리 또는 강조하도록 스펙트럼 변경된 방사선을 광학적으로 필터링하는 단계; (4) 검출기를 사용하여 광학적으로 필터링된 방사선의 세기를 수집 및 측정하는 단계; 및 정의된 수학적 모델을 광학적으로 필터링된 방사선에 사용함으로써 피분석물 농도를 나타내는 값을 얻는 단계를 포함하는 방법이 제공된다.According to another feature of the invention, generally, (1) selecting several individual, non-overlapping regions of wavelength within the near infrared range with high correlation to the concentration of an analyte; (2) irradiating the sample using infrared light comprising a spectral range selected to obtain spectral altered radiation; (3) optically filtering the spectrally altered radiation to isolate or highlight a portion of radiation from each non-overlapped region; (4) collecting and measuring the intensity of the optically filtered radiation using a detector; And obtaining a value representative of the analyte concentration by using the defined mathematical model in optically filtered radiation.

본 발명의 목적은 또한 가변 배경 매트릭스 및 실질적인 성분 간섭을 갖는 샘플 내에 존재하는 피분석물의 농도를 측정하기 위한 분광 측정 장치를 제공하는 것이다. 상기 장치는 샘플로부터 반사되는 감쇠된 방사선을 수집 및 측정할 수 있는 검출기들의 배열을 포함한다. 상기 장치는 기계 배경 잡음(instrument background noise)과 간섭 스펙트럼 정보에 관련된 신호 뿐만 아니라 피분석물 특성 신호도 포함하는 스펙트럼 정보를 얻기위해 다중 스펙트럼 분석에 사용된다. 캐모메트릭 기술들이 피분석물 특성 정보와 피분석물의 농도와의 상관을 향상시킬 수 있는 필터 소자를 구성하고 피분석물 농도값을 결정할 수 있는 시스템 알고리즘을 유도하는데 사용된다. 본 발명의 한 특징에서, 회절 격자 시스템이 동시에 수백개의 데이타 포인트 또는 파장까지 분석할 수 있는 선형 검출기 어레이에 의해 검출된 피분석물 특성 스펙트럼 정보를 얻는데 사용된다.It is also an object of the present invention to provide a spectroscopic measuring device for measuring the concentration of analyte present in a sample having a variable background matrix and substantial component interference. The apparatus includes an array of detectors capable of collecting and measuring attenuated radiation reflected from a sample. The apparatus is used in multispectral analysis to obtain spectral information including not only signals related to instrument background noise and interference spectral information, but also analyte characteristic signals. Chamometric techniques are used to construct a filter element that can improve the correlation between analyte characterization information and the analyte concentration and to derive a system algorithm for determining analyte concentration values. In one aspect of the invention, a diffraction grating system is used to obtain analyte characteristic spectral information detected by a linear detector array capable of analyzing up to several hundred data points or wavelengths simultaneously.

도 1은 본 발명에 따라 구성된 근적외선 및 중적외선 영역 양자 모두에서 파장을 분석할 수 있는 검출기들의 선형 어레이를 구비한 장치의 개략도.1 is a schematic diagram of a device with a linear array of detectors capable of analyzing wavelengths in both near and mid-infrared regions constructed in accordance with the present invention.

도 2는 본 발명에 따라 구성된 다른 예의 장치의 개략도.2 is a schematic diagram of another example device constructed in accordance with the present invention;

도 3은 비보 클루코스 허용 오차 연구(vivo glucose tolerance study) 동안 취해진 시간 종속 스캔을 도시한 그래프.3 is a graph depicting time dependent scans taken during a vivo glucose tolerance study.

도 4는 본 발명의 방법을 사용하여 처리된 혈당 농도의 비침투적 측정으로부터 얻어지는 결과를 도시한 그래프.4 is a graph depicting the results obtained from non-invasive measurements of blood glucose levels treated using the method of the present invention.

본 발명을 수행하기 위한 모드들Modes for Carrying Out the Invention

본 발명을 상세히 설명하기 전에, 본 발명은 설명되는 특정 구성 부품으로 제한되지 않는다는 것을 이해하여야 한다. 또한, 본 명세서에 사용된 용어는 특정한 실시예만을 설명하기 위한 것이지, 제한하려는 의도는 아니라는 것을 이해하여야 한다. 본 명세서와 첨부된 특허 청구의 범위에서 사용된 단수형 "a", "an" 및 "the"는 문장에서 달리 규정하지 않는 한 복수의 대상물을 포함하는 것에 유의하여야 한다. 따라서, 예를 들어, "an analyte"의 언급은 피분석물들의 혼합물을 포함하고, "an optical transfer cell"의 언급은 2개 이상의 광 전송 셀을 포함하며, "a means for reflectively transmitting radiation"의 언급은 2개 이상의 상기와 같은 수단을 포함하고, "a wavelength"의 언급은 2개 이상의 파장을 포함하고, "a chemometrics algorithm"은 2개 이상의 알고리즘을 포함하는 것 등을 의미한다.Before describing the invention in detail, it is to be understood that the invention is not limited to the specific components described. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural objects unless the context otherwise specifies. Thus, for example, reference to "an analyte" includes a mixture of analytes, reference to "an optical transfer cell" includes two or more light transmission cells, and the term "a means for reflectively transmitting radiation". Reference includes two or more such means, reference to “a wavelength” includes two or more wavelengths, “a chemometrics algorithm” means including two or more algorithms, and the like.

본 명세서 및 청구범위에서, 다음의 의미를 갖도록 정의된 다수의 용어들이 참조될 것이다.In this specification and claims, reference is made to a number of terms that are defined to have the following meanings.

"Chemometrics"은 화학적 분석 적용에서 수학적, 통계적 및 패턴 인식 기술의 적용에 관한 것이다. 이는, 예를 들면 Brown et al. (1990) Anal. Chem. 62:84-101을 참조한다. 화학미터법은 진보된 신호 처리 및 캘리브레이션 기술을 사용하는 무침입성 진단 기기를 개발하여 사용하는 내용으로 여기서 실시된다. 신호 처리는 분석 신호의 물리적으로 중요한 정보의 접근 가능성을 개선하는데 사용된다. 신호 처리 기술의 예는 푸리에 변환, 제1 및 제2 도함수, 및 디지털 또는 적응 필터링을 포함한다."Chemometrics" relates to the application of mathematical, statistical and pattern recognition techniques in chemical analysis applications. This is described, for example, by Brown et al. (1990) Anal. Chem. See 62: 84-101. Chemistry is practiced here with the development and use of non-invasive diagnostic instruments using advanced signal processing and calibration techniques. Signal processing is used to improve the accessibility of the physically important information of the analysis signal. Examples of signal processing techniques include Fourier transforms, first and second derivatives, and digital or adaptive filtering.

화학미터법의 내용에서, "calibration"은 수량화하기 위하여 측정 데이터를 화학 농도에 관련시키는 과정을 말한다. 특히, 화학미터법을 사용하는 통계적 캘리브레이션은 복합 세트의 데이터로부터 특정 정보를 추출하는데 사용될 수 있다. 이러한 캘리브레이션 방법은 선형 회귀, 다중-선형 회귀, 부분 선형 회귀, 및 주성분 분석을 포함한다. 다른 적용으로, 캘리브레이션은 모의 신경망, 일반 알고리즘 및 회전형 주성분 분석을 사용하여 실행될 수 있다.In the context of chemical metric, "calibration" refers to the process of relating measurement data to chemical concentrations for quantification. In particular, statistical calibration using chemimetric methods can be used to extract specific information from a complex set of data. Such calibration methods include linear regression, multi-linear regression, partial linear regression, and principal component analysis. In another application, calibration can be performed using simulated neural networks, general algorithms, and rotational principal component analysis.

복합 화학 매트릭스 내의 하나 이상의 성분에 대한 정보를 검출하는 기기는 하나 이상의 화학적 성분에 대해 특화되는 정보를 나타내기 위해 분석 알고리즘(화학미터법을 사용하여 유도된 것과 같은)에 의존해야 한다. 화학미터법 기술은 진보된 형식의 클러스터 분석을 제공하기 위하여 미지수를 캘리브레이트된 표준과 데이터베이스를 비교하고 통계적 및 수학적 모델의 정보로 사용될 수 있는 미지의 표본으로부터 특징을 추출하는데 사용될 수 있다.Instruments that detect information about one or more components in a complex chemical matrix must rely on analytical algorithms (such as those derived using chemical metric methods) to present information specific to one or more chemical components. Chemmetric techniques can be used to compare unknowns to calibrated standards and databases and to extract features from unknown samples that can be used as information in statistical and mathematical models to provide advanced forms of cluster analysis.

"주성분 분석" (PCA)는 화학미터법 기술을 복합 매트릭스 내의 화학적 피분석물의 분광기 측정에 적용할 때 수행될 수 있는 데이터 감소의 한 방법이다. PCA는 한 성분을 다른 성분과 구별하는 정보를 보유하면서 다수의 서로 밀접한 관계가 있는 변수의 규모를 감소시키는데 사용된다. 이러한 감소는 본래의 서로 밀접한 관계가 있는 변수 세트(예를 들면, 흡수 스펙트럼)를 본래 세트 내에 있는 대부분의 정보를 나타내는 실질적으로 보다 작은 비상관 주성분 (PC) 변수 세트로 변형시키는 고유벡터 변형을 사용하여 실행된다. 새로운 변수 세트는 첫번째가 본래의 변수 모두에 존재하는 대부분의 변화를 거의 보유하지 않도록 정리된다. 이는, 예를 들면 Jolliffe, L.T., Principal Component Analysis, Sprinter-Verlag, New York (1986)을 참조한다. 보다 상세하게는, 각각의 PC는 모든 본래의 측정 변수의 선형 조합이다. 첫번째는 관측 변수의 가장 큰 분산 방향으로의 벡터이다, 다음의 PC는 측정 데이터의 가장 큰 변화를 나타내고 미리 계산된 PC에 직교인 것으로 선택된다. 따라서, PC는 중요도가 떨어지는 순서로 구성된다."Principal Component Analysis" (PCA) is a method of data reduction that can be performed when applying chemimetric techniques to spectrophotometric measurements of chemical analytes in complex matrices. PCA is used to reduce the magnitude of many closely related variables while retaining information that distinguishes one component from another. This reduction uses eigenvector transformations that transform the original closely related set of variables (e.g., the absorption spectrum) into a substantially smaller set of uncorrelated principal components (PC) variables representing most of the information in the original set. Is executed. The new set of variables is arranged so that the first retains most of the changes present in all of the original variables. See, eg, Jolliffe, L.T., Principal Component Analysis, Sprinter-Verlag, New York (1986). More specifically, each PC is a linear combination of all original measurement variables. The first is the vector in the direction of the largest dispersion of the observation variables, the next PC represents the largest change in the measurement data and is chosen to be orthogonal to the precomputed PC. Thus, PCs are organized in descending order of importance.

용어 "가중 상수"는 부분 최소 제곱 회귀 및/또는 주성분 회귀의 파장 계수, 또는 미지 표본에 대한 값(피분석물 농도와 같은)을 계산하는데 사용될 수 있는 임의의 통계적 캘리브레이션으로부터 얻어진 임의의 상수를 포함한다. "파장 가중인자"는 스펙트럼 데이터로부터 파장-특정 정보를 강조할 수 있는 광 필터 수단의 구성에 사용되는 가중 상수의 실시예이다. 파장-특정 정보는 분석 대상 표본에 관련있는 소정의 값(예를 들면, 피분석물 농도)을 측정하는데 사용될 수 있다. 파장 가중 인자는 특정 필터 밀도(예를 들면, 중성 또는 파장-특정), 필터 두께 등으로 있는데, 이러한 매개 변수들은 상술된 통계적 캘리브레이션 기술을 사용하여 측정되었다.The term “weighting constant” includes any constant obtained from the wavelength coefficients of partial least squares regression and / or principal component regression, or any statistical calibration that can be used to calculate values for unknown samples (such as analyte concentrations). do. A "wavelength weighter" is an embodiment of weighting constants used in the construction of optical filter means capable of emphasizing wavelength-specific information from spectral data. The wavelength-specific information can be used to measure certain values (eg, analyte concentrations) related to the sample to be analyzed. Wavelength weighting factors are specific filter densities (eg, neutral or wavelength-specific), filter thickness, etc. These parameters were measured using the statistical calibration technique described above.

파장 가중 인자를 구체화한 광학 필터가 선택된 피분석물 농도와 고 상관도를 갖는 파장들을 선택적으로 강조하는데 사용될 수 있다. "고 상관도" 또는 "근 상관도"는 특정한 파장에서의 흡수 스펙트럼과 특정한 피분석물 농도 간의 양적인 연관성을 말하는 것이며, 2개의 변수가 0.9 이상의 상관 계수 (r)를 갖는다.Optical filters embodying wavelength weighting factors can be used to selectively highlight wavelengths that have a high correlation with the selected analyte concentration. "High correlation" or "root correlation" refers to the quantitative association between an absorption spectrum at a particular wavelength and a particular analyte concentration, with two variables having a correlation coefficient (r) of at least 0.9.

"중성 농도 필터"는 평탄한 흡수 스펙트럼을 갖는 표준 광 필터 수단을 말한다. 중성 농도 필터는 필터 시스템의 상관 필터와 협력하여 사용되어, 선택된 파장에서의 피분석물로 인한 흡수도를 감쇠시키기 위해 가중 인자를 제공하고 또한 시스템에 의해 제공되는 상관의 정확성을 개선할 수 있다. 중성 농도 필터는 관심있는 범위 내의 모든 파장에서의 방사선을 동등하게 감쇠시키는데 충분한 흡수 스펙트럼을 가질 수 있다."Neutral concentration filter" refers to standard light filter means having a flat absorption spectrum. Neutral concentration filters can be used in conjunction with the filter system's correlation filter to provide weighting factors to attenuate absorbance due to the analyte at the selected wavelength and also improve the accuracy of the correlation provided by the system. The neutral concentration filter may have an absorption spectrum sufficient to equally attenuate radiation at all wavelengths within the range of interest.

본 명세서에 사용된 바와 같이, "수성 매체"는 수분을 포함하는 임의의 합성물을 포함한다. 일반적으로, 수성 매체는 주 성분으로서 수분을 포함하며, 다시말해 적어도 약 50 vol. %의 양의 수분이 존재한다. 이러한 수성 매체는 예를 들어 포유류의 조직을 포함한다.As used herein, "aqueous medium" includes any compound that includes moisture. Generally, the aqueous medium contains water as the main component, ie at least about 50 vol. Moisture in an amount of% is present. Such aqueous media include, for example, mammalian tissue.

용어 "혈액 피분석물"는 near-IR 범위에서 흡수하는 혈액 성분을 말하는데, 그 측정은 환자 감시 또는 건강 보호의 평가에 있어 유용하다.The term “blood analyte” refers to a blood component that absorbs in the near-IR range, the measurement of which is useful for the evaluation of patient surveillance or health care.

본 명세서에 사용된 바와 같이, 용어 "단파장 적외선" 또는 "near-IR"은 약 660nm에서 3500nm까지의 범위이지만, 전형적으로 약 1050 내지 2850 nm의 범위이고, 보다 전형적으로는 약 1100 내지 약 2500 nm의 범위인 스펙트럼의 방사선을 내포한다.As used herein, the term “short wavelength infrared” or “near-IR” ranges from about 660 nm to 3500 nm, but typically ranges from about 1050 to 2850 nm, more typically from about 1100 to about 2500 nm. Contains radiation in the spectrum that is in the range of.

용어 "중적외선(mid-infrared)" 또는 "mid-IR"은 약 3501 nm 내지 약 6000 nm 범위의 스펙트럼의 방사선을 포함한다.The term “mid-infrared” or “mid-IR” includes radiation in the spectrum ranging from about 3501 nm to about 6000 nm.

용어 "배경 흡수"는 분석되어야 할 수성 표본의 전체 또는 기본 레벨의 광흡수에 관한 것으로, 선택된 성분의 흡수는 상기 선택된 성분의 농도를 대부분 가리키는 하나 이상의 특성 파장에서 벗어난다. 배경 흡수의 레벨이 다수의 간섭 성분이 발견되는 복합 수성 매체와 같이, 선택된 성분의 특성 흡수에 비하여 높을 때, 관심있는 성분의 특성 파장에서의 흡수에 있어 크기의 완만한 변화에 대한 정확한 측정은 여기에 설명된 화학미터법 기술을 적용하는 것이 필요하다. 특히, 이는, 예를 들면 혈액 피분석물의 측정에 있어 관심있는 성분의 전체 농도가 수성 매체에 비해 낮은 경우에 대한 적용이다.The term “background absorption” relates to the light absorption of the entire or base level of the aqueous sample to be analyzed, wherein the absorption of the selected component deviates from one or more characteristic wavelengths which mostly indicate the concentration of the selected component. When the level of background absorption is high relative to the characteristic absorption of the selected component, such as a composite aqueous medium in which many interference components are found, an accurate measurement of the gentle change in size in the absorption at the characteristic wavelength of the component of interest is here. It is necessary to apply the chemimetric techniques described in. In particular, this is the case when the total concentration of the components of interest is low compared to aqueous media, for example in the measurement of blood analytes.

일반적인 방법Common way

분광 광도계 방법은 near-IR 방사선을 사용하여 액체 표본 내의 피분석물의 농도를 측정하기 위해 제공된다. 종래의 기술과는 대조적으로, 본 방법은 고도의 정확성으로 피분석물 농도를 측정하는데 사용될 수 있는 측정 세트를 얻기 위해 near-IR 영역에 포함되어 있는 모든 스펙트럼 정보를 사용한다.A spectrophotometer method is provided for measuring the concentration of analyte in a liquid sample using near-IR radiation. In contrast to the prior art, the method uses all the spectral information contained in the near-IR region to obtain a set of measurements that can be used to measure the analyte concentration with a high degree of accuracy.

상기 방법은 (1) 일반적으로 1100 내지 3000 nm에 걸친 근적외선 범위, 또는 근적외선 범위 및 일반적으로 3501 내지 5000 nm에 걸친 중적외선 범위으로부터의 파장의 여러 개별적인, 비중첩 영역들을 선택하는 단계 - 상기 각각의 영역은 스펙트럼 범위를 정의함 - , (2) 감쇠된 스펙트럼 변형된 방사선을 얻도록 선택된 스펙트럼 범위를 포함하는 적외선 광을 사용하여 샘플을 조사하는 단계, (3) 상기 각각의 선택된 스펙트럼 범위 내에서 얻어진 하나 이상의 파장에서의 스펙트럼 감쇠된 방사선의 세기를 수집하여 측정하는 단계, (4) 상기 피분석물 농도를 나타내는 값을 얻도록 그 측정들을 상관시키는 단계를 포함한다.The method comprises the steps of: (1) selecting several individual, non-overlapping regions of wavelength from the near infrared range, generally over 1100 to 3000 nm, or the near infrared range, and generally the mid-infrared range over 3501 to 5000 nm, each of said Region defines a spectral range, (2) irradiating a sample using infrared light comprising a selected spectral range to obtain attenuated spectral modified radiation, and (3) obtaining within each selected spectral range Collecting and measuring the intensity of spectral attenuated radiation at one or more wavelengths, and (4) correlating the measurements to obtain a value representative of the analyte concentration.

이 방법을 사용하여 얻어진 스펙트럼 정보는 정확한 피분석물 농도값에 도달하도록 수학적 변형이 조합될 수 있다, 예를 들면, 부분 최소 제곱 (PLS) 분석, 또는 주성분 회귀 (PCR) 분석과 같은 표준 통계적 기술은 특정 파장에서의 방사선 흡수도를 피분석물 구조 및 농도에 상관하는데 사용될 수 있다. PLS 기술은, 예를 들면 Geladi et al. (1986) Analytica Chimica Acta 185:1-17에 기술되어 있다. PCR 기술의 설명인 경우에는, Jolliffe, L.T., Principal Component Analysis, Sprinter-Verlag, New York (1986)이 참조될 수 있다.Spectral information obtained using this method can be combined with mathematical modifications to reach accurate analyte concentration values, for example standard statistical techniques such as partial least squares (PLS) analysis, or principal component regression (PCR) analysis. Can be used to correlate radiation absorbance at a particular wavelength to the analyte structure and concentration. PLS techniques are described, for example, in Geladi et al. (1986) Analytica Chimica Acta 185: 1-17. For a description of the PCR technique, Jolliffe, L.T., Principal Component Analysis, Sprinter-Verlag, New York (1986) can be referred to.

따라서, 신체 조직 표본으로부터 혈액 피분석물 농도를 측정하는데 있어, 한가지 방법으로는 근적외선 내, 대략 1100 내지 3500 nm의 범위 내의 파장의 3개의 비중첩 영역의 선택을 포함한다. 양호하게, 필수적이지는 않지만, 제1 영역은 1100 내지 1350 nm의 범위 내에 있고, 제2 영역은 1430 내지 1450 nm 또는 1930 내지 1959 nm의 범위 내에 있으며, 제3 영역은 2000 내지 2500 nm의 범위내에 있으며, 각각의 영역은 "스펙트럼 범위"를 정의한다. 제1 영역은 단백질 및 다른 세포 성분들이 주요 스펙트럼 활동을 나타내는 파장들을 포함하고, 제2 영역은 수분의 흡수 스펙트럼에 지배를 받으며, 제3 영역은 유기 피분석물 분자들이 현저한 스펙트럼 활동을 나타내는 파장들을 포함한다.Thus, in measuring blood analyte concentrations from body tissue specimens, one method involves the selection of three non-overlapping regions of wavelength in the near infrared, in the range of approximately 1100 to 3500 nm. Preferably, but not necessarily, the first region is in the range of 1100 to 1350 nm, the second region is in the range of 1430 to 1450 nm or 1930 to 1959 nm, and the third region is in the range of 2000 to 2500 nm. Each region defines a "spectrum range." The first region contains wavelengths in which proteins and other cellular components exhibit major spectral activity, the second region is governed by the absorption spectrum of moisture, and the third region contains wavelengths in which organic analyte molecules exhibit significant spectral activity. Include.

이들 성분들은 또한 우점종이 아닌 그 영역의 흡수 스펙트럼에 기여한다. 따라서, 각각의 영역으로부터 얻어진 스펙트럼 감쇠된 방사선은 피분석물-특정 정보를 얻기 위하여 통계적 방법을 사용하여 감쇠되어야 하는 다량의 서로 밀접한 관계가 있는 정보를 포함한다.These components also contribute to the absorption spectrum of that region, not the dominant species. Thus, the spectral attenuated radiation obtained from each region contains a large amount of closely related information that must be attenuated using statistical methods to obtain analyte-specific information.

본 발명은 또한 분석 신호의 물리적으로 중요한 정보의 접근 가능성을 개선하는 신호 처리의 사용에 관련이 있다. 따라서, 특정 파장에서 얻어진 신호의 세기값은 기기 노이즈의 영향을 감소시키도록 처리될 수 있다. 다음에, 처리된 신호는 공지된 통계적 기술을 사용하여 다변화 분석이 행해진다.The invention also relates to the use of signal processing to improve the accessibility of physically important information of the analysis signal. Thus, the intensity value of the signal obtained at a particular wavelength can be processed to reduce the effects of device noise. The processed signal is then subjected to diversification analysis using known statistical techniques.

데이터 감소의 PCA 방법은 한 성분을 다른 성분으로부터 구별하는 정보를 보유하면서, 다수의 서로 밀접한 관계가 있는 변수의 규모를 감소시키는 본 발명의 실시에 사용되는 하나의 바람직한 방법이다. 데이터 감소는 본래의 서로 밀접한 관계가 있는 변수 세트를 본래 세트 내의 대부분의 정보를 표현하는 실질적으로 보다 작은 비상관 주성분 (PC) 변수 세트로 변형시키는 고유벡터 변형을 사용하여 실행된다. 새로운 변수 세트는 첫번째가 본래 세트에 존재하는 대부분의 변화를 거의 보유하지 않도록 정리된다.The PCA method of data reduction is one preferred method used in the practice of the present invention to reduce the magnitude of a number of closely related variables while retaining information that distinguishes one component from another. Data reduction is performed using eigenvector transformations that transform the original closely related variable set into a substantially smaller set of uncorrelated principal components (PC) variables that represent most of the information in the original set. The new set of variables is arranged so that the first retains most of the changes that exist in the original set.

주성분 벡터는 흡수도의 평균값에 대한 직교 회전에 의해 변형되어, 공지된 파장과 피분석물에 기여하는 그 파장에서의 흡수도의 상대값 모두를 얻는다. 3가지 스펙트럼 영역 각각으로부터 얻어진 정보에 대해 이러한 분석을 수행하며, 선형 알고리즘을 거쳐 주성분 벡터를 상호 상관하고, 간섭 피분석물의 영향을 제거하는 감산 방법을 사용함으로써, 피분석물의 농도를 측정하기 위해 시스템 알고리즘에 사용될 수 있는 값이 얻어진다.The principal component vector is transformed by orthogonal rotation with respect to the average value of the absorbance to obtain both the known wavelength and the relative value of the absorbance at that wavelength contributing to the analyte. A system for measuring the concentration of an analyte by performing such an analysis on information obtained from each of the three spectral regions, using a subtractive method that cross-correlates the principal component vectors via a linear algorithm and removes the influence of the interfering analyte. A value that can be used for the algorithm is obtained.

다변화 기술은 각 스펙트럼 영역의 특정 파장에서의 방사선 세기를 특정 표본 매트릭스, 예를 들면 신체 조직 내의 피분석물 농도에 관련시키는 모델을 제공하는데 사용된다. 이 모델은 동시에 얻어지는 두 세트의 예시적인 측정을 사용하여 구성되는데, 측정의 제1 세트, "예측 세트"는 스펙트럼 데이터, 예를 들면 선택된 파장에서의 방사선 세기를 포함하고, 측정의 제2 세트, "캘리브레이션 세트"는 침입성 표본링 기술을 사용하여 측정된 매우 정확한 피분석물 농도를 포함한다. 프로시져는 캘리브레이션 및 예측 데이터 세트를 제공하기 위하여 피분석물 농도의 범위 전체에 걸쳐 실행된다.Diversification techniques are used to provide a model that relates the radiation intensity at a particular wavelength in each spectral region to the analyte concentration in a particular sample matrix, eg, body tissue. The model is constructed using two sets of exemplary measurements obtained simultaneously, wherein the first set of measurements, " prediction set, " includes spectral data, for example radiation intensity at a selected wavelength, and a second set of measurements, “Calibration Set” includes highly accurate analyte concentrations measured using invasive sampling techniques. The procedure is run across a range of analyte concentrations to provide calibration and prediction data sets.

캘리브레이션 및 예측 세트 모두에서 얻어진 측정은 업계에 유효한 다변화 모델 개발 소프트웨어 프로그램의 사용에 의한 것과 같이, 초기 모델을 제공하기 위하여 다변화 분석이 행해진다, 초기 모델은 예측 데이터에 적용되어 침입성 기술에 의해 얻어진 값에 비교될 수 있는 피분석물 농도값을 유도한다. 상기 단계를 반복해서 수행함으로써, 본 발명의 방법에 의해 얻어진 데이터를 분석하는데 사용하기 위한 시스템 알고리즘을 수립하는데 사용될 수 있는 개량된 수학적 모델이 개발된다.Measurements obtained in both calibration and prediction sets are subjected to diversification analysis to provide an initial model, such as by the use of an industry diversified model development software program, the initial model being applied to the predictive data and obtained by invasive techniques. Induce analyte concentration values that can be compared to values. By performing the above steps repeatedly, an improved mathematical model is developed that can be used to establish a system algorithm for use in analyzing the data obtained by the method of the present invention.

본 발명의 실제 적용에서, 다양한 비중첩 스펙트럼 영역으로부터의 비 피분석물(non-analyte) 특성 정보가 예를 들어, 각각의 스펙트럼 스캔을 정규화(normalize)하고, 배경 및 베이스 라인 간섭을 감산하고, 부정확한 측정을 검출하기 위해 사용된 신호 값들을 제공하는데 사용될 수 있다.In practical applications of the present invention, non-analyte characteristic information from various non-overlapping spectral regions can be used, for example, to normalize each spectral scan, subtract background and baseline interference, It can be used to provide signal values used to detect inaccurate measurements.

약 1320 내지 1340nm에 걸치는 스펙트럼 범위에서 취해진 측정은, 신체 조직 표본 내의 혈액 피분석물 농도를 측정할 때, 영역에 존재하는 어떠한 주요 흡수대도 없으므로 매우 반사적이고 감쇠되지 않는 신호를 제공한다. 그 범위에서 조사의 세기를 수집하여 측정함으로써, 표본을 조사하는데 사용되는 near-IR 광의 실제 세기를 평가하는데 사용될 수 있는 값이 구해진다. 그 값은 각각의 개별 스캔을 정규화하고 본 발명의 방법을 사용하여 얻어진 피분석물 농도값의 정확성에 영향을 미칠 수 있는 광원 세기의 변동을 교정하는데 사용될 수 있다.Measurements taken in the spectral range over about 1320-1340 nm provide a highly reflective and non-attenuated signal since there are no major absorption bands present in the area when measuring blood analyte concentrations in body tissue samples. By collecting and measuring the intensity of irradiation in that range, a value is obtained that can be used to evaluate the actual intensity of the near-IR light used to irradiate the specimen. The value can be used to normalize each individual scan and correct for variations in light source intensity that may affect the accuracy of the analyte concentration values obtained using the method of the present invention.

추가로, 약 1430 내지 1450nm에 걸치는 스펙트럼 범위에서 취해진 측정은, 수분에 대한 near-IR 흡수 스펙트럼에서 약 1440 및 1935nm로 발생하는 두개의 우세한 흡수 피크치의 결과로서 실질적으로 무-반사, 매우 감쇠된 신호를 제공한다. 이들 범위들중 하나 또는 모두에서 조사의 세기를 수집하여 측정함으로써, 조사된 표본에 의해 전체적으로 흡수되지 않는 near-IR 광의 세기를 평가하는데 사용될 수 있는 값이 얻어진다. 그 값은 다른 영역에서 얻어진 피분석물-특정 신호로부터 배경 또는 기본-라인 정보를 감산하고/하거나 부정확한 측정을 검출하고자 내부 기준을 제공하는데 사용될 수 있다. 그 값은 피부결 및 나이에 따라 변하는 정반사(specular reflection)로 인한 페데스탈 효과(pedestal effect)를 교정하기 위하여 본 방법을 사용하여 얻어진 각각의 스펙트럼 측정으로부터 감산될 수 있다.In addition, measurements taken in the spectral range spanning about 1430-1450 nm are substantially anti-reflective, highly attenuated signals as a result of two predominant absorption peaks occurring at about 1440 and 1935 nm in the near-IR absorption spectrum for moisture. To provide. By collecting and measuring the intensity of the irradiation in one or both of these ranges, a value is obtained that can be used to evaluate the intensity of near-IR light that is not absorbed entirely by the irradiated sample. The value can be used to subtract background or base-line information from analyte-specific signals obtained in other areas and / or to provide internal criteria to detect inaccurate measurements. The value can be subtracted from each spectral measurement obtained using this method to correct the pedestal effect due to skin reflection and age-specific specular reflection.

제1 영역(예를 들면, 약 1320 내지 1340nm에 걸치는 스펙트럼 영역)으로부터 얻어진 실질적으로 감쇠되지 않은 신호의 측정 및 제2 영역(예를 들면, 약 1430 내지 1450nm 및 약 1930 내지 1950nm에 걸치는 스펙트럼 영역)으로부터 얻어진 매우 감쇠된 신호의 측정은 산란 반사된 방사선을 정반사된 방사선과 비교하는데 사용될 수 있다. 두 영역에서의 신호가 상대적으로 비교할 만한 값을 가지면, 조직 표본에 조사하는데 사용된 대부분의 방사선이 피부 표면으로부터 반사되어, 혈액 피분석물과 상호작용하기 위해 피부를 투과하지 못하게 될 것이다. 이 정보는 조직 표본의 적당한 기기 스캔을 얻지 못하여 발생하는 비효율적인 측정을 식별하는데 사용될 수 있다.Measurement of substantially non-attenuated signals obtained from a first region (e.g., a spectral region spanning about 1320-1340 nm) and a second region (e.g., a spectral region spanning about 1430-1450 nm and about 1930-1950 nm) The measurement of the highly attenuated signal obtained from can be used to compare the scattered reflected radiation with the specularly reflected radiation. If the signals in the two regions have relatively comparable values, most of the radiation used to irradiate the tissue sample will be reflected off the skin surface and will not penetrate the skin to interact with the blood analyte. This information can be used to identify inefficient measurements resulting from failure to obtain adequate instrument scans of tissue samples.

본 발명의 한 특징에 따르면, 샘플 내의 피분석물의 농도를 측정하는 방법이 적외선 영역 내의 파장들의 여러 개별적인, 비중첩 영역들로 얻어진 비침투적 측정들과 야외 또는 옥내 응용에 특히 적합한 광학 처리 시스템을 사용하여 제공된다. 상기 방법은 일반적으로 (1) 양호하게 1100 내지 3000 nm에 걸친 근적외선 범위로부터, 또는 1100 내지 3500 nm에 걸친 근적외선 범위와 3501 내지 5000 nm에 걸친 중적외선 범위로부터의 파장들의 여러 개별적인, 비중첩 영역들을 선택하는 단계, (2) 스펙트럼 변형된 방사선, 즉 반사된 방사선을 얻도록 선택된 스펙트럼 범위들을 포함하는 적외선 광을 사용하여 샘플을 조사하는 단계, (3) 각각의 비중첩 영역으로부터 방사선의 한 부분을 분리시키거나 강조하도록 스펙트럼 변형된 방사선을 선택적으로 필터링하는 단계, (4) 검출기를 사용하여 선택적으로 필터링된 방사선의 세기를 수집하고 측정하는 단계, 및 (5) 정해진 수학적 모델을 광학적으로 필터링된 방사선에 사용함으로써 피분석물 농도를 나타내는 값을 얻는 단계를 포함한다. 상기 수학적 모델은 상술한 화학미터법 기술을 사용하여 얻어진 상관 알고리즘을 포함할 수 있다.According to one aspect of the present invention, a method for measuring the concentration of an analyte in a sample provides a non-invasive measurement obtained with several individual, non-overlapping regions of wavelengths in the infrared region and an optical processing system particularly suitable for outdoor or indoor applications. Is provided using. The method generally comprises (1) several individual, non-overlapping regions of wavelengths preferably from the near infrared range over 1100 to 3000 nm, or from the near infrared range over 1100 to 3500 nm and the mid-infrared range over 3501 to 5000 nm. Selecting, (2) irradiating a sample using infrared light comprising spectral ranges selected to obtain spectral modified radiation, ie reflected radiation, and (3) removing a portion of the radiation from each non-overlapping region. Selectively filtering the spectrally modified radiation to isolate or highlight, (4) collecting and measuring the intensity of the selectively filtered radiation using a detector, and (5) optically filtering the given mathematical model Obtaining a value representative of the analyte concentration by use of The mathematical model may comprise a correlation algorithm obtained using the above-described chemical metric technique.

본 발명의 방법은 다수의 분광 광도계 구성을 사용하여 수행될 수 있다. 도 1을 참조하면, 액체 샘플 내의 피분석물의 농도를 측정하기 위한 하나의 특정한 장치가 일반적으로 (10)으로 표시되어 있다. 상기 장치는 대략 1100 내지 5000 nm의 범위 내의 파장들의 복수의 개별적인, 비중첩 영역들을 제공하는 방사선 원(12)을 포함한다. 다수의 적절한 방사선 원은 당해 기술 분야에 공지되어 있으며 본 명세서에서는 예를 들어, 간섭 필터들을 가로질러 유도되는 백열 광원, 연관된 초퍼 휠(chopper wheel)에 의해 변조되는 할로겐 광원, 레이저 다이오드 어레이, 또는 고속 발광 다이오드(LED) 어레이가 사용될 수 있다. 한 특정한 장치에서, 방사선 원(12)은 파장들의 3개의 개별적인 영역을 제공하는데, 상세히 제1 영역은 1100 내지 1350 nm 내의 파장이고, 제2 영역은 1930 내지 1950 nm의 근사적인 범위 내의 파장이며, 제3 영역은 2000 내지 3500 nm의 근사적인 범위 내의 파장이다.The method of the present invention can be performed using a number of spectrophotometer configurations. With reference to FIG. 1, one particular apparatus for measuring the concentration of an analyte in a liquid sample is generally indicated at 10. The apparatus includes a radiation source 12 that provides a plurality of individual, non-overlapping regions of wavelengths in the range of approximately 1100 to 5000 nm. Many suitable radiation sources are known in the art and are described herein, for example, incandescent light sources induced across interference filters, halogen light sources modulated by an associated chopper wheel, laser diode array, or high speed. Light emitting diode (LED) arrays can be used. In one particular apparatus, the radiation source 12 provides three separate regions of wavelengths, in particular the first region is a wavelength within 1100 to 1350 nm, the second region is a wavelength within an approximate range of 1930 to 1950 nm, The third region is a wavelength in the approximate range of 2000 to 3500 nm.

또한, 상기 장치(10)는 방사선 원으로부터의 입사 방사선을 피분석물을 포함하는 샘플 매체(16)와의 접촉부로 발사하는 샘플 간섭 광학 수단(14)을 포함한다. 샘플 매체와 접촉한 후에, 산란 반사된 광으로서 샘플로부터 나온 스펙트럼 변형된 방사선이 수집되고 일반적으로 (18)로 표시된 다단 필터 수단(multi-stage filter means)에 전달된다.The apparatus 10 also includes sample interfering optical means 14 for firing incident radiation from a radiation source into contact with a sample medium 16 containing an analyte. After contact with the sample medium, spectral modified radiation from the sample as scattered reflected light is collected and transmitted to a multi-stage filter means, generally indicated at 18.

다양한 구성으로, 표본 인터페이스 광학 수단(14)은 표본 매체와 직접 접촉하여 장치를 배치함으로써 발사가 실행되는 곳과 같이, 매체(16)와 장치(10)의 근접한 인터페이스가 가능하도록 설계되어, 방사선원을 분석될 표본에 거의 가까이 근접시킬 수 있다. 발사후, 반사된 방사선은 광 수렴 수단 또는 빔 굴절 광학과 같이, 광 능동 수단을 사용하여 수집된다. 대안적으로, 표본 인터페이스 광학 수단(14)은 원격 장치가 배치 및 동작될 수 있도록 장치에 결합되는 광섬유 도파관을 포함할 수 있다. 단일 광섬유 다발이 매체로 그리고 매체로부터 방사선을 전송하는데 사용되는 다른 구성이 제공된다. 단일 다발의 끝단에 배치된 광전극은 near-IR 방사선을 표본 매체(14)로 전송하고 번들(bundle)을 통해 장치(10)로 되돌아가는 스펙트럼이 변형된 방사선을 수신한다. 사파이어 또는 고도의 수정은, 이들 재료들이 near-IR 스펙트럼 범위에서 매우 우수한 전송 특성을 가지므로 상기 광섬유 도파관의 광 소자로서 사용될 수 있다.In various configurations, the sample interface optical means 14 is designed to enable a close interface between the medium 16 and the device 10, such as where firing is performed by placing the device in direct contact with the sample medium, thereby providing a radiation source. You can get close to the sample to be analyzed. After firing, the reflected radiation is collected using light active means, such as light converging means or beam refracting optics. Alternatively, the sample interface optical means 14 may comprise an optical fiber waveguide coupled to the device such that the remote device can be placed and operated. Another configuration is provided in which a single fiber optic bundle is used to transmit radiation to and from a medium. A photoelectrode placed at the end of a single bundle transmits near-IR radiation to the sample medium 14 and receives the spectrum-modified radiation returning back to the device 10 via a bundle. Sapphire or highly modified can be used as the optical element of the optical fiber waveguide because these materials have very good transmission properties in the near-IR spectral range.

도 1을 참조하면, 샘플(16)로부터 나온 반사된 광은 다단 필터 수단(18)으로 통과한다. 특히, 광은 외부적으로 발생되거나 또는 장치(10)에 으해 발생된 신호에 응답하여 조정되는 흡수 특성을 가질 수 있는 가변 필터 수단(20)을 포함하는 제1 단으로 통과한다. 가변 필터 수단은 일반적으로 외부 신호 또는 시스템 명령에 의해 지시받은 대로 방사선의 세기를 가변적으로 감쇠시키도록 조정되는 흡수 특성을 갖는 중성 농도 필터와 같은 스크린 필터를 포함한다. 가변 필터 수단(20)에 의해 제공된 감쇠의 정도는 가변 필터로부터 나온 방사선이 프리필터링(pre-filtering)된 방사선의 세기에 관계없이 일정한 값을 가지는 것을 보장하도록 선택된 소정의 인자를 기초로 한다.Referring to FIG. 1, the reflected light from the sample 16 passes to the multistage filter means 18. In particular, the light passes to a first stage comprising variable filter means 20 which may be externally generated or have absorption characteristics which are adjusted in response to the signal generated by the device 10. The variable filter means generally comprise a screen filter, such as a neutral concentration filter having an absorption characteristic that is adjusted to variably attenuate the intensity of the radiation as indicated by an external signal or system command. The degree of attenuation provided by the variable filter means 20 is based on a predetermined factor selected to ensure that the radiation from the variable filter has a constant value regardless of the intensity of the pre-filtered radiation.

가변 필터 수단(20)으로부터 나온 감쇠된 방사선은 방사선 원(12)에 의해 발사된 파장들의 개별적인 비중첩 영역들 각각으로부터 하나 이상의 파장을 선택적으로 통과시킬 수 있는 광학 특성을 갖는 주요 피분석물 필터(22)에 전달된다. 주요 피분석물 필터에 의해 통과된 파장은 피분석물의 농도와 상관하도록 선택된다.The attenuated radiation from the variable filter means 20 is the primary analyte filter having an optical property capable of selectively passing one or more wavelengths from each of the individual non-overlapping regions of the wavelengths emitted by the radiation source 12 ( 22). The wavelength passed by the primary analyte filter is chosen to correlate with the concentration of the analyte.

제2 필터 수단(24)은 주요 피분석물 필터로부터 나온 선택적으로 통과된 파장들이 제2 필터 수단과 상호작용하도록 주요 피분석물 필터(22)에 관련된 장치(10) 내에 배치된다. 제2 필터 수단은 각각의 통과된 파장의 세기가 제2 필터 수단에 의해 감쇠되도록 선택된 흡수 특성을 갖는다. 제2 필터 수단에 의해 제공되는 감쇠는 예를 들어 화학미터법 기술을 사용하여 유도된 가중 인자의 독립적인 세트에 의해 결정될 수 있다.The second filter means 24 is arranged in the apparatus 10 associated with the primary analyte filter 22 such that the selectively passed wavelengths from the primary analyte filter interact with the second filter means. The second filter means has an absorption characteristic selected such that the intensity of each passed wavelength is attenuated by the second filter means. The attenuation provided by the second filter means can be determined by an independent set of weighting factors derived using, for example, chemimetric techniques.

한 특정한 구성에서, 가중 인자들은 피분석물을 포함하는 샘플로부터 얻어진 본래의 스펙트럼의 부분적인 최소 제곱 또는 주요 성분 회귀를 사용하여 결정된다. 제2 필터 수단(24)은 적어도 1100 내지 5000 nm 범위의 방사선을 전송할 수 있는 적절한 기판층을 사용하여 구성될 수 있다. 기판층은 일반적으로 복수의 제2 필터 밀도를 제공하도록 당해 기술 분야에서 상용되고 있는 하나 이상의 금속 및/또는 산화물층으로 코팅된다. 이러한 코팅은 당해 기술 분야에 널리 공지된 에멀션 또는 화학적 기상 증착(CVD) 기술을 사용하여 기판에 적용될 수 있다. 대안적인 장치에서, 제2 필터 수단은 회전형 주성분 분석 또는 최소 제곱 분식 기술을 사용하여 결정된 가중 함수에 비례하는 광학 밀도의 스펙트럼 라인을 갖는 포토그래픽 마스크이다.In one particular configuration, weighting factors are determined using partial least squares or principal component regression of the original spectrum obtained from the sample comprising the analyte. The second filter means 24 can be constructed using a suitable substrate layer capable of transmitting radiation in the range of at least 1100 to 5000 nm. The substrate layer is generally coated with one or more metal and / or oxide layers commonly used in the art to provide a plurality of second filter densities. Such coatings may be applied to the substrate using emulsion or chemical vapor deposition (CVD) techniques that are well known in the art. In an alternative arrangement, the second filter means is a photographic mask having spectral lines of optical density proportional to the weighting function determined using rotational principal component analysis or least squares fractional techniques.

제2 필터 수단에 의한 감쇠 후에, 독립적인 파장들은 하나 이상의 황화납 검출기, 갈륨 아세나이드 검출기 등과 같은 검출 수단(26)으로 전달된다. 한 특정한 장치 구성에 있어서, 약 1100 내지 5000 nm의 전체 범위에 걸친 특정을 얻는 것이 바람직하며, 하나 이상의 리드 셀레나이드(PbSe) 검출기가 사용될 수 있다.After attenuation by the second filter means, independent wavelengths are transferred to a detection means 26 such as one or more lead sulfide detectors, gallium arsenide detectors, and the like. In one particular device configuration, it is desirable to obtain specifications over the entire range of about 1100 to 5000 nm, and one or more lead selenide (PbSe) detectors may be used.

검출 수단(26)은 제2 필터 수단으로부터 나온 감쇠된 파장들을 검출하고 이를 피분석물 농도를 측정하기 위한 피분석물 특수 알고리즘에 사용될 수 있는 신호로 변환시킨다. 특히, 제2 검출 수단으로부터 얻어진 신호들은 손쉽게 아날로그/디지탈 변환기를 사용하여 디지탈 신호로 변환될 수 있다. 디지탈화된 정보는 마이크로프로세서 또는 다른 전자 메모리 수단으로의 입력에 손쉽게 이용될 수 있는데, 이는 표시 장치 상에 표시되거나 출력 기록기 상에 기록될 수 있는 피분석물 농도를 제공하는데 사용된다.The detection means 26 detects the attenuated wavelengths from the second filter means and converts them into a signal that can be used in an analyte specific algorithm for measuring the analyte concentration. In particular, the signals obtained from the second detection means can be easily converted to digital signals using an analog / digital converter. The digitized information can be readily used for input to a microprocessor or other electronic memory means, which is used to provide analyte concentrations that can be displayed on a display device or recorded on an output recorder.

대안적인 구성에서, 장치(10)는 다단 필터 수단(18) 대신에 회절 격자 시스템과 선형 검출기를 포함할 수 있다. 샘플(16)로부터 나온 반사된 광은 그로부터 이산 파장들을 선택적으로 통과시키도록 구성된 회절 격자 시스템으로 통과될 수 있으며, 상기 통과된 파장들은 특히 피분석물의 농도와 상관된다. 다음에, 상기 통과된 파장들은 PbS계 선형 검출기 어레이 등과 같은 선형 검출기 어레이로 전달된다. 약 1100 내지 5000 nm의 전체 범위에 걸친 측정을 얻기 위한 특정한 응용에서, PbSe계 선형 검출기가 사용될 수 있다. PbSe 선형 어레이들은 예를 들어 제품명 MULTIPLEXIRTM(Graseby Infrared, Orlando, Fla.로부터 입수가능) 하에서 얻어질 수 있다.In an alternative arrangement, the device 10 may comprise a diffraction grating system and a linear detector instead of the multistage filter means 18. Reflected light from the sample 16 can be passed from there into a diffraction grating system configured to selectively pass discrete wavelengths, which in particular correlate with the concentration of the analyte. The passed wavelengths are then transferred to a linear detector array, such as a PbS based linear detector array. In certain applications for obtaining measurements over the full range of about 1100 to 5000 nm, PbSe based linear detectors may be used. PbSe linear arrays can be obtained, for example, under the product name MULTIPLEXIR (available from Grabyby Infrared, Orlando, Fla.).

상술한 바와 같이, 선형 검출기 어레이는 피분석물 농도를 측정하기 위한 피분석물 특수 알고리즘에 사용될 수 있는 신호들을 제공하도록 회절 격자 시스템에 의해 통과된 파장들을 수집하고 측정한다.As described above, the linear detector array collects and measures the wavelengths passed by the diffraction grating system to provide signals that can be used in an analyte specific algorithm for measuring analyte concentration.

장치(10)는 합성 스펙트럼 배경을 갖는 수성 매체와 같은 다양한 합성 매체내의 피분석물 농도의 측정을 얻는데 사용될 수 있다. 한 응용에서, 상기 장치는 혈액 피분석물,제한하는 것은 아니지만, 구체적으로 글루코스, 요소(BUN), 지질, 빌리루빔, 및 알코올과 같은 유기 혈액 비분석물의 농도 측정에 사용될 수 있다. 혈액 피분석물은 비트로 샘플 매치(예를 들어, 혈액 샘플) 내에 존재할 수 있거나 또는 상기 장치는 조직 내의 혈액 피분석물을 측정하는데 사용될 수 있다. 그러나, 상기 장치(10)는 예를 들어, 혈중 알코올의 측정시 또는 가정 건강 모니터링, 예를 들어, 혈당 측정의 응용 분야에 특히 적합하다.Apparatus 10 may be used to obtain measurements of analyte concentrations in various synthetic media, such as aqueous media having synthetic spectral backgrounds. In one application, the device can be used to measure concentrations of blood analytes, but not limited to, organic blood non-analytes such as glucose, urea (BUN), lipids, bilirubin, and alcohols. The blood analyte can be present in a sample match (eg, a blood sample) in a bit or the device can be used to measure the blood analyte in the tissue. However, the device 10 is particularly suitable for the application of, for example, the measurement of blood alcohol or for the monitoring of home health, for example blood glucose measurement.

도 2를 참조하면, 샘플 내의 피분석물의 농도를 측정하기 위한 다른 장치가 (50)으로 표시되어 있다. 상기 장치는 대략 1100 내지 5000 nm의 범위 내의 파장들의 복수의 개별적인, 비중첩 영역들을 제공하는 방사선 원(52)을 포함한다. 또한, 상기 장치(50)는 방사선 원으로부터 입사 방사선을 피분석물을 포함하는 샘플 매체(56)와의 접촉부로 발사하는 샘플 인터페이스 광학 수단(54)을 포함한다. 상기 샘플 매체와의 접촉 후에, 산란 반사된 광으로서 샘플로부터 나온 스펙트럼 변형된 방사선이 수집되고 특정 파장들의 광을 통과시키도록 구성된 필터 수단(58)에 전달된다.Referring to FIG. 2, another device for measuring the concentration of analyte in a sample is indicated by 50. The apparatus includes a radiation source 52 providing a plurality of individual, non-overlapping regions of wavelengths in the range of approximately 1100 to 5000 nm. The apparatus 50 also includes sample interface optical means 54 for emitting incident radiation from a radiation source to a contact with a sample medium 56 comprising an analyte. After contact with the sample medium, spectral modified radiation from the sample as scattered reflected light is collected and transmitted to a filter means 58 configured to pass light of certain wavelengths.

동작 시에, 입사 방사선은 방사선 원(52)으로부터 샘플 인터페이스 광학 수단을 통해 샘플 매체로 발사되는데, 상기 샘플 인터페이스 광학 수단은 특정한 샘플 매체가 분석될 때 상기 장치의 근접 인터페이스를 가능하게 하도록 설계될 수 있다. 발사 후에, 반사된 방사선은 광 수렴 수단(즉, 렌즈) 또는 빔 편향 광학계와 같은 광학 활성 수단을 사용하여 수집된다. 샘플 인터페이스 광학 수단(54)은 원격 장치 변위 및 동작을 가능하게 하는 장치(50)에 결합된 광섬유 도파관을 포함할 수 있다. 상술한 바와 같이, 한 대안적인 시스템은 매체로 및 매체로부터 방사선을 전달하도록 단일 광섬유 다발을 사용한다.In operation, incident radiation is emitted from the radiation source 52 through the sample interface optical means to the sample medium, which sample interface optical means can be designed to enable the proximity interface of the device when a particular sample medium is analyzed. have. After firing, the reflected radiation is collected using optically active means such as light converging means (ie lenses) or beam deflection optics. The sample interface optical means 54 may comprise an optical fiber waveguide coupled to the device 50 to enable remote device displacement and operation. As mentioned above, one alternative system uses a single fiber optic bundle to deliver radiation to and from the medium.

반사된 방사선은 λ1, λ2, λ3, ... , λn으로 표시된 복수의 이산 필터 소자를 포함하는 필터 수단(58)으로 향하게 된다. 필터 수단(58)은 비분석물 특정 정보, 측정 배경에 대한 정보, 및 기계 변화 또는 간섭 효과에 대한 보정에 사용될 수 있다. 필터 수단으로부터 나온 선택된 파장들은 일반적으로 D1, D2, D3, ... , Dn으로 표시된 복수의 이산 검출기 수단을 구비한 검출기들(60)의 배치에 의해 검출된다. 검출기들은 필터 수단으로부터 나온 각각의 선택된 파장 범위가 단일, 이산 검출기에 의해 검출된다. 적합한 검출기 구성들은 당해 기술 분야에 공지되어 있으며 예를 들어, PbS 또는 PbSe 검출기들의 배열을 포함할 수 있다. 각각의 검출기는 검출된 방사선을 피분석물 농도를 나타내는 값을 얻는데 사용될 수 있는 전기 신호로 변환시킨다.The reflected radiation is directed to the filter means 58 comprising a plurality of discrete filter elements represented by λ 1 , λ 2 , λ 3 ,..., Λ n . Filter means 58 may be used for non-analyte specific information, information about the measurement background, and correction for mechanical changes or interference effects. The selected wavelengths from the filter means are generally detected by the arrangement of detectors 60 with a plurality of discrete detector means, denoted D 1 , D 2 , D 3 ,..., D n . The detectors are detected by a single, discrete detector with each selected wavelength range coming from the filter means. Suitable detector configurations are known in the art and may include, for example, an array of PbS or PbSe detectors. Each detector converts the detected radiation into an electrical signal that can be used to obtain a value representative of the analyte concentration.

검출기들로부터 얻어진 신호들은 아날로그/디지탈 변환기를 사용하여 디지탈 신호들, 예를 들어, 검출된 파장들의 세기를 나타내는 디지탈 신호들로 손쉽게 변환된다. 다음에, 이 디지탈화된 정보는 추가 처리(예를 들어, 시스템 알고리즘에 사용되는)를 위해 마이크로프로세서로 입력되는 것이 가능하거나, 또는 상기 정보가 전자 표시 수단을 통해 표시될 수 있다. 각각의 이산 검출기로부터 얻어진 아날로그 신호들은 디지탈 형태로의 변환을 위해 아날로그/디지탈(A/D) 변환기로 전달된다. 아날로그 신호들은 당해 기술 분야에 공지되어 있는 기술들을 사용하여 변환 이전에 전치 증폭(pre-amplify)될 수 있다. 다음에, A/D 변환기로부터의 디지탈 정보는 피분석물에 대해 특정되는 시스템 알고리즘을 사용하여 피분석물 농도를 계산하도록 마이크로프로세서로 손쉽게 입력된다. 마이크로프로세서는 검출된 신호들에 대해 화학미터법 알고리즘을 사용함으로써 피분석물 농도를 계산한다. 비분석물 특정 알고리즘은 상술한 화학미터법과 같은 반복 교정 및 통계 모델링 기술을 사용하여 결정될 수 있다.The signals obtained from the detectors are easily converted into digital signals, for example digital signals indicative of the intensity of the detected wavelengths, using an analog / digital converter. This digitalized information can then be input to the microprocessor for further processing (eg, used in system algorithms), or the information can be displayed via electronic display means. Analog signals obtained from each discrete detector are passed to an analog / digital (A / D) converter for conversion to digital form. Analog signals can be pre-amplified prior to conversion using techniques known in the art. The digital information from the A / D converter is then easily entered into the microprocessor to calculate the analyte concentration using a system algorithm specific to the analyte. The microprocessor calculates the analyte concentration by using a chemimetric algorithm on the detected signals. Non-analyte specific algorithms can be determined using iterative calibration and statistical modeling techniques, such as the chemimetric methods described above.

본 발명의 실제 응용에서, 필터 수단(58)은 분석물의 농도와 함께 통과된 파장의 상관성을 향상시킬 수 있는 흡수 특성을 갖는 적어도 하나의 이산 필터 소자를 포함하도록 구성될 수 있다. 특히, 필터 수단은 예를 들어, 화학미터법 기술을 사용하여 유도된 가중 인자의 독립적인 세트에 의해 결정된 대로 통과된 파장의 세기를 감쇠시키는 하나 이상의 필터 소자를 포함할 수 있다. 이러한 가중 인자들은 피분석물을 포함하는 샘플로부터 얻어진 본래의 스펙트럼의 부분 최소 제곱 또는 주요 성분 회귀를 사용하여 유도될 수 있다.In practical applications of the present invention, the filter means 58 may be configured to include at least one discrete filter element having an absorption characteristic that can improve the correlation of the wavelength passed with the concentration of the analyte. In particular, the filter means may comprise one or more filter elements which attenuate the intensity of the wavelength passed as determined by an independent set of weighting factors derived, for example using chemimetric techniques. These weighting factors can be derived using partial least squares or principal component regression of the original spectrum obtained from the sample comprising the analyte.

또다른 대안적인 구성에서, 필터 수단(58)은 2단 필터를 포함하는데, 제1 단은 샘플로부터 반사된 감쇠 방사선으로부터 선택된 파장 범위들의 개체군(population)을 선택적으로 통과시키도록 구성된 복수의 부분을 포함한다. 상기 선택적으로 통과된 파장들은 피분석물 특정 정보, 측정 배경에 대한 정보, 및 기계 변화 또는 간섭 효과를 보정하는데 사용될 수 있는 정보를 포함한다. 상기 필터의 제2 단은 상기 제1 단에 바로 인접하여 배치되며, 제1 단으로부터 나온 상기 통과된 파장들 각각의 세기를 감쇠시키는 역할을 한다. 상기 2단 필터의 제2 단은 필터의 제1 단으로부터 나온 통과된 파장들 각각의 세기를 균등하게 감쇠시키기에 충분한 평탄화된 흡수 스펙트럼을 갖는 중성 농도 필터일 수 있다.In another alternative arrangement, the filter means 58 comprises a two stage filter, the first stage comprising a plurality of portions configured to selectively pass a population of wavelength ranges selected from attenuated radiation reflected from the sample. Include. The selectively passed wavelengths include analyte specific information, information about the measurement background, and information that can be used to correct for mechanical change or interference effects. The second end of the filter is disposed immediately adjacent to the first end and serves to attenuate the intensity of each of the passed wavelengths from the first end. The second stage of the two stage filter may be a neutral concentration filter having a flattened absorption spectrum sufficient to evenly attenuate the intensity of each of the passed wavelengths from the first stage of the filter.

상기 장치(50)는 합성 스펙트럼 배경을 갖는 수성 매체와 같은 다양한 합성 매체에 존재하는 관심있는 하나 이상의 피분석물의 농도를 확인하는데 사용될 수 있다. 특히, 상기 장치는 혈액 피분석물, 특히 제한하는 것은 아니지만, 글루코스, 요소(BUN), 지질, 빌리루빈, 및 알코올과 같은 유기 혈액 피분석물의 농도 측정에 사용될 수 있다. 상술한 바와 같이, 혈액 피분석물의 농도는 비트로 샘플에 사용하여 처리될 수 있거나, 팔뚝 조직 스캔으로부터 얻어진 반사 측정과 같은 조직의 근적외선 스캔을 사용하여 분석이 수행될 수 있다.The device 50 may be used to identify the concentration of one or more analytes of interest present in various synthetic media, such as aqueous media having synthetic spectral backgrounds. In particular, the device can be used to measure the concentration of blood analytes, especially but not limited to organic blood analytes such as glucose, urea (BUN), lipids, bilirubin, and alcohols. As noted above, the concentration of blood analyte can be processed using the sample as a bit, or the analysis can be performed using a near infrared scan of the tissue, such as a reflection measurement obtained from a forearm tissue scan.

장치(50)가 조직 원으로부터 혈액 피분석물 측정을 얻는데 사용될 때, 샘플 인터페이스 광학 수단(54)을 통해 방사선 원(52)으로부터 발사된 입사 방사선이 피검자의 팔뚝과 같은 조직의 피부 표면을 침범하게 된다. 샘플 인터페이스 광학 수단은 조직을 향해 일정한 각(angle)으로 방사선을 유도하여 방사선은 표면 근방의 조직 물질에 의해 흡수되고 산란된 방사선으로서 반사된다. 입사 방사선은 혈액과 조직 성분에 의한 적외선 흡수의 결과로 스펙트럼 변형된다. 입사 근적외선 방사선의 부분들은 조직 원 내에 존재하는 혈액 성분으로부터 흡수, 분산, 확산 및 반사된다. 이러한 스펙트럼 변형된 방사선은 각각 광학적으로 활성화된 혈액 성분에 대한 특정한 정보를 포함한다.When the device 50 is used to obtain a blood analyte measurement from a tissue source, incident radiation emitted from the radiation source 52 via the sample interface optical means 54 causes the skin surface of the tissue, such as the forearm of the subject, to invade. do. The sample interface optical means induces radiation at a constant angle towards the tissue such that the radiation is absorbed by the tissue material near the surface and reflected as scattered radiation. Incident radiation is spectrally modified as a result of infrared absorption by blood and tissue components. Portions of incident near infrared radiation are absorbed, dispersed, diffused, and reflected from blood components present in the tissue source. Each of these spectral modified radiation contains specific information about the optically activated blood component.

장치(50)를 사용하여 혈액 글루코스 레벨의 측정시에, 혈액 글루코스 분자의 진동 동작이 산란-반사 근적외선 방사선을 사용하여 검출되고 측정된다. 진동 동작은 오버톤 진동(overtone vibrations) 및 조합 진동을 포함하는 글루코스 분자들의 회전 및 병진 동작 모두를 포함한다. 이러한 동작들 중, 오버톤 진동이 지배적이며 대략 1670 내지 1690 nm의 범위에서 발생한다. 글루코스 조합 진동 대역들은 대략 2120 내지 2280 nm의 범위에서 발생한다. 글루코스는 대략 1320 내지 1340 nm의 근적외선 범위 내에서는 현저한 광학적 활동을 갖지 않는다.In measuring blood glucose levels using the device 50, vibrational motion of blood glucose molecules is detected and measured using scatter-reflecting near infrared radiation. Vibration motions include both rotational and translational motions of glucose molecules, including overtone vibrations and combined vibrations. Of these operations, overtone vibration is dominant and occurs in the range of approximately 1670-1690 nm. Glucose combination vibration bands occur in the range of approximately 2120 to 2280 nm. Glucose does not have significant optical activity within the near infrared range of approximately 1320-1340 nm.

따라서, 장치(50)는 4개의 개별적인 부분을 갖는 필터 수단(58)을 포함하는데, 여기서 제1 부분은 대략 1300 내지 1360 nm의 범위 내의 파장들의 영역으로부터 반사된 방사선을 통과시키도록 구성되고, 제2 부분은 대략 1430 내지 1450 nm의 범위 또는 대략 1930 내지 1950 nm의 범위 내의 파장들의 영역으로부터 반사된 방사선을 통과시키도록 구성되며, 제3 부분은 대략 1670 내지 1690 nm의 범위 내의 파장들의 영역으로부터 반사된 방사선을 통과시키도록 구성되고, 제4 부분은 대략 2120 내지 2280 nm의 범위 내의 파장들의 영역으로부터 반사된 방사선을 통과시키도록 구성된다.Thus, the device 50 comprises a filter means 58 having four separate parts, wherein the first part is configured to pass radiation reflected from a region of wavelengths in the range of approximately 1300 to 1360 nm, and The two portions are configured to pass radiation reflected from a region of wavelengths in the range of approximately 1430-1450 nm or in the range of approximately 1930-1950 nm, and the third portion reflects from the region of wavelengths in the range of approximately 1670-1690 nm. And pass through the reflected radiation from the region of wavelengths in the range of approximately 2120 to 2280 nm.

필터 수단의 제3 및 제4 부분에 의해 통과된 파장들의 세기는 피분석물 특정 정보를 포함한다. 상술한 바와 같이, 제3 및 제4 필터 부분은 조직 샘플 내에 존재하는 글루코스의 농도와 함께 통과된 방사선의 상관성을 향상시키는 가중 인자들을 포함한다. 필터의 제1 부분으로부터 얻어진 정보는 각각의 측정 시에 배경 스펙트럼 기여도를 예측하는데 사용될 수 있으므로, 제3 및 제4 필터 부분으로부터 얻어진 측정을 보정 또는 정규화하는데 사용될 수 있다. 제2 필터 부분(물 흡수 정보)으로부터 얻어진 신호들은 무효 측정, 예를 들어, 조직 샘플의 적절한 기계 스캔을 얻는 것이 실패한 경우를 식별하도록 내부 검사로서 사용되거나 상기 정보는 제3 및 제4 필터 부분으로부터 얻어진 측정에서 온도 변화에 대한 보정에 사용될 수 있다.The intensity of the wavelengths passed by the third and fourth portions of the filter means comprises the analyte specific information. As noted above, the third and fourth filter portions include weighting factors that enhance the correlation of the radiation passed with the concentration of glucose present in the tissue sample. The information obtained from the first portion of the filter can be used to predict the background spectral contribution at each measurement and thus can be used to correct or normalize the measurements obtained from the third and fourth filter portions. The signals obtained from the second filter portion (water absorption information) can be used as an internal test to identify when an invalid measurement, e.g., to obtain an appropriate mechanical scan of a tissue sample, or the information is from the third and fourth filter portions. It can be used to compensate for temperature changes in the measurements obtained.

본 발명이 양호한 특정 실시예에 관하여 설명되었지만, 다음의 예뿐 아니라 상기 설명은 설명하기 위한 것이지 본 발명의 범위를 제한하는 것은 아니라는 것을 이해하여야 한다. 본 기술 분야에 숙련된 당업자에게는 본 발명의 범위 내에서의 다른 특징, 장점 및 수정이 본 발명에 포함된다는 것이 명백할 것이다.Although the present invention has been described with respect to specific preferred embodiments, it is to be understood that the above description as well as the following examples are intended to be illustrative and not limiting the scope of the invention. It will be apparent to those skilled in the art that other features, advantages and modifications within the scope of the invention are included in the invention.

실시예Example

비침투적 글루코스 측정은 본 발명의 방법을 사용하여 얻어졌다. 특히, 약 1100nm 내지 3500nm의 near-IR 영역에서 반사 광 측정이 실행되었다. 스펙트럼 스캔은 텅스텐-수은(W-Hg) 방사선원, 리드 황화물 (PbS) 검출기 및 nm/0.4 초의 스캔속도를 갖는 기기를 사용하여 자생 전완물(volunteer forearm subjects)로부터 수집되었다.Noninvasive glucose measurements were obtained using the method of the present invention. In particular, reflected light measurements were performed in the near-IR region of about 1100 nm to 3500 nm. Spectral scans were collected from volunteer forearm subjects using a tungsten-mercury (W-Hg) radiation source, lead sulfide (PbS) detector, and an instrument with a scan rate of nm / 0.4 sec.

다수의 특정 스펙트럼 범위는 전완 조직 스캔으로부터 글루코스 농도를 결정하는데 사용될 수 있는 정보를 포함하는 것으로서 구별되었다. 특화된 영역은 비침투적으로 얻어진 시험관 내의 혈당 농도 결정과 협력하여 수행되는 생체 내의 클루코스 허용치의 연구로부터 결정되었다. 특히, 생체 내의 허용치를 연구하는 동안 얻어진 시간-의존 스캔이 도 3에 도시되어 있다. 알 수 있는 바와 같이, 약 2120 내지 2180nm의 범위 전체에 걸쳐 반사 세기차의 현저한 변화가 연구 기간 동안 기록되었다. 이들 변화들은 허용치를 시험하는 동안에 혈당 레벨의 증가에 직접 관련하여 증가하며, 글루코스 특정 정보가 2120 내지 2180nm의 범위를 포함한다는 것을 나타내었다.Many specific spectral ranges have been distinguished as including information that can be used to determine glucose concentration from forearm tissue scans. Specialized regions were determined from studies of in vivo glucose tolerances performed in concert with non-invasive determination of blood glucose concentrations in vitro. In particular, the time-dependent scan obtained during the study of tolerances in vivo is shown in FIG. 3. As can be seen, a significant change in the reflection intensity difference over the range of about 2120 to 2180 nm was recorded during the study. These changes increased directly in relation to the increase in blood glucose levels during the tolerance test, indicating that the glucose specific information included a range of 2120 to 2180 nm.

일단 특정 스펙트럼 범위가 식별되면, 비침투적 글루코스 측정은 4개의 독특한 스펙트럼 범위로부터의 정보를 사용하여 얻어졌다. 제1 스펙트럼 범위는 약 1320 내지 1340nm로 발생하는 방사선을 포함하였다. 이 범위는 매우 크게 반사된 신호를 제공하고, 이 범위에서는 어떠한 주요 글루코스 흡수대는 없다. 제1 스펙트럼 범위로부터 얻어진 정보는 방사선 원의 변동을 교정하기 위해 각각의 개별 스캔을 정규화하는데 사용될 수 있고, 기계적인 섭동으로 인해 변한다.Once specific spectral ranges were identified, noninvasive glucose measurements were obtained using information from four unique spectral ranges. The first spectral range included radiation occurring at about 1320-1340 nm. This range provides a very large reflected signal and there is no major glucose absorption band in this range. The information obtained from the first spectral range can be used to normalize each individual scan to correct for variations in the radiation source and vary due to mechanical perturbation.

제2 스펙트럼 범위는 약 1440 내지 1460nm, 또는 약 1940 내지 1960nm로 발생하는 방사선을 포함하였다. 이들 범위들은 산란 반사된 방사선을 감쇠시키는 큰 흡착수 대역으로 인한 실질적으로 무반사되는 신호를 제공한다. 이들 범위들로부터 얻어진 정보는 다른 측정으로부터 배경 및 기본 라인 감산에 사용될 수 있다. 이 측정은 정반사 신호값으로 인한 변동을 설명하기 위해 페데스탈 조정을 허용하고, 부적당한 측정을 검출하는데 사용될 수 있다.The second spectral range included radiation occurring at about 1440 to 1460 nm, or about 1940 to 1960 nm. These ranges provide a substantially antireflective signal due to a large band of adsorption water that attenuates scattered reflected radiation. The information obtained from these ranges can be used for background and base line subtraction from other measurements. This measurement allows pedestal adjustment to account for variations due to specular signal values and can be used to detect improper measurements.

제3 범위는 약 1670 내지 1690nm에서 발생하는 방사선을 포함하였다. 이 범위는 글루코스 진동 배음대로 인한 피분석물-특정 정보를 제공한다.The third range included radiation occurring at about 1670-1690 nm. This range provides the analyte-specific information due to the glucose oscillating harmonics.

제4 범위는 약 2120 내지 2280nm에서 발생하는 방사선을 포함하였다. 이 범위는 글루코스 조합 진동 대역에 기인한 피분석물-특정 정보를 제공한다.The fourth range included radiation occurring at about 2120 to 2280 nm. This range provides the analyte-specific information due to the glucose combination oscillation band.

제1 범위로부터 얻어진 신호는 다른 영역의 신호를 정규화하는데 사용되었다. 이 과정은, 각각의 스펙트럼 스캔에 따라 반복될 때 광원의 변화와 관련된 문제를 제거하고 내부 기준을 제공하는 역할을 한다. 따라서, 광 인터페이스, 예를 들면 환자 배치의 차이로 인한 측정 변화는 실질적으로 감소되었다.The signal obtained from the first range was used to normalize the signal in the other region. This process serves to eliminate problems associated with changes in the light source and to provide internal criteria when repeated with each spectral scan. Thus, measurement changes due to differences in optical interfaces, eg patient placement, have been substantially reduced.

배경 정보는 제2 범위에서 얻어진 신호를 제3 및 제4 피분석물-특정 범위에서 얻어진 신호로부터 감산함으로써 제거되었다. 이와 같이, 피부결 및 나이에 따라 변하는 정반사에 의해 생성되는 페데스탈 효과가 교정되었다.Background information was removed by subtracting the signal obtained in the second range from the signal obtained in the third and fourth analyte-specific ranges. In this way, the pedestal effect produced by the skin and age and the specular reflection changes with age was corrected.

제3 및 제4 범위로부터 정규화되고 기본 라인이 교정된 신호는 분석학적 화학미터법 분석에 적용되었다. 도 4는 제2 및 제3 범위의 신호들 간의 정규화된 차이를 도시한다.Signals normalized from the third and fourth ranges and the baseline corrected were subjected to analytical chemimetric analysis. 4 shows a normalized difference between signals in the second and third ranges.

도 4에 도시되어 있는 결과로 알 수 있듯이, 혈당 레벨의 증가로 두 범위들 간의 신호차가 증가된다.As can be seen from the results shown in FIG. 4, the signal difference between the two ranges is increased by increasing the blood glucose level.

Claims (28)

신체 조직 샘플 내의 유기 혈액 피분석물(analyte)의 농도를 측정하는 방법에 있어서,A method of measuring the concentration of an organic blood analyte in a body tissue sample, (a) 빔 경로 내에서 1100과 5000 나노미터 사이의 파장 영역 내의 입사 방사선(incident radiation)을 상기 샘플에 조사(irradiating)하는 단계;(a) irradiating the sample with incident radiation in a wavelength region between 1100 and 5000 nanometers in a beam path; (b) 상기 샘플로부터 나오는 반사된 방사선을 수집하는 단계:(b) collecting the reflected radiation from the sample: (c) 상기 빔 경로에 배치된 검출 수단으로 상기 샘플로부터 나오는 반사된 방사선을 수신하는 단계;(c) receiving reflected radiation from the sample with detection means disposed in the beam path; (d) 검출된 반사된 방사선을 신호로 변환하는 단계;(d) converting the detected reflected radiation into a signal; (e) 상기 피분석물의 농도를 측정하기 위해 상기 신호를 분석하는 단계; 및(e) analyzing the signal to determine the concentration of the analyte; And (f) 부정확한 측정들을 검출하기 위한 기준을 제공하는 것; 및 상기 조직 샘플의 적절한 기계 스캔을 얻기 위하여 실패로부터 발생하는 무효의 측정들을 식별하는 것 중의 적어도 하나를 위해, 근적외선 흡수 스펙트럼(near-IR absorption spectrum)에서 특히 수분(water)에 대한 상기 신체 조직 샘플로부터의 방사선의 세기를 측정하는 단계(f) providing criteria for detecting inaccurate measurements; And the body tissue sample, particularly for water, in the near-IR absorption spectrum, for at least one of identifying invalid measurements resulting from failure to obtain an appropriate mechanical scan of the tissue sample. Measuring the intensity of radiation from the 를 포함하는 방법.How to include. 제1항에 있어서,The method of claim 1, 상기 검출 수단은,The detection means, PbSe(lead selenide) 선형 검출기 어레이;Lead selenide (PbSe) linear detector arrays; PbS(lead sulfide) 선형 검출기 어레이;Lead sulfide (PbS) linear detector arrays; PbSe, PbS, 및 GaAs(Gallium Arsenide) 중 임의의 것으로부터 제조된 적어도 하나의 검출기At least one detector made from any of PbSe, PbS, and Gallium Arsenide (GaAs) 중 하나를 포함하는 방법.How to include one of the. 제1항에 있어서,The method of claim 1, 상기 적외선 스펙트럼은 1100 내지 1350 nm의 범위 내의 파장들의 스펙트럼 영역, 2000 내지 3500 nm의 범위 내의 파장들의 추가 스펙트럼 영역, 및 이들 스펙트럼 영역들 사이의 파장들의 또 다른 추가 스펙트럼 영역을 포함하는 방법.Wherein said infrared spectrum comprises a spectral region of wavelengths in the range of 1100 to 1350 nm, an additional spectral region of wavelengths in the range of 2000 to 3500 nm, and another further spectral region of wavelengths between these spectral regions. 제1항에 있어서,The method of claim 1, 상기 유기 혈액 피분석물은 글루코스(glucose), 요소(BUN), 지질(lipids), 빌리루빈(bilirubin), 및 에틸 알코올로 구성된 그룹으로부터 선택되는 방법.Said organic blood analyte is selected from the group consisting of glucose, urea (BUN), lipids, bilirubin, and ethyl alcohol. 제4항에 있어서,The method of claim 4, wherein 상기 혈액 피분석물은 글루코스인 방법.Said blood analyte is glucose. 신체 조직 샘플의 유기 혈액 피분석물의 농도를 측정하는 방법에서 무효의 측정들을 식별하기 위한 방법으로서,A method for identifying invalid measurements in a method of measuring the concentration of an organic blood analyte in a body tissue sample, 1100과 5000 나노미터 사이의 파장 영역 내의 입사 방사선을 상기 샘플에 조사하는 단계;Irradiating the sample with incident radiation in a wavelength region between 1100 and 5000 nanometers; 상기 샘플로부터 나오는 반사된 방사선을 수집하는 단계;Collecting the reflected radiation from the sample; 상기 샘플로부터 나오는 반사된 방사선을 검출하는 단계;Detecting reflected radiation from the sample; 상기 검출된 반사된 방사선을 신호로 변환하는 단계; 및Converting the detected reflected radiation into a signal; And 상기 입사 방사선은 거의 흡수하고 산란반사된(diffusely reflected) 방사선은 감쇠시키는 파장 대역들에서, 상기 신호에 의해 나타내어지는, 상기 샘플로부터 나오는 반사된 방사선의 세기를 측정함으로써 정반사(specular reflection) 방사선의 세기를 측정하는 단계The intensity of specular reflection radiation by measuring the intensity of the reflected radiation coming from the sample, represented by the signal, at wavelength bands that absorb the incident radiation and attenuate the diffusely reflected radiation To measure 를 포함하는 방법.How to include. 제1항에 있어서,The method of claim 1, 상기 근적외선 흡수 스펙트럼은 1430-1450nm 및 1930-1950nm 범위의 스펙트럼 영역들을 포함하는 방법.The near infrared absorption spectrum comprises spectral regions in the range of 1430-1450 nm and 1930-1950 nm. 제7항에 있어서,The method of claim 7, wherein 상기 수분에 대한 상기 근적외선 흡수 스펙트럼은 1440nm 및 1935nm에서 흡수 피크들을 포함하는 방법.The near infrared absorption spectrum for the moisture includes absorption peaks at 1440 nm and 1935 nm. 제1항에 있어서,The method of claim 1, 상기 신체 조직 샘플로부터의 방사선의 세기는 1320-1340nm 범위의 스펙트럼 영역으로부터 얻어진 실질적으로 감쇠되지 않은 신호들을 포함하고, 1430-1450nm 및 1930-1950nm 범위의 스펙트럼 영역들로부터 얻어진 크게 감쇠된 신호들을 포함하는 방법.The intensity of the radiation from the body tissue sample includes substantially non-attenuated signals obtained from the spectral region in the range 1320-1340 nm and includes heavily attenuated signals obtained from the spectral regions in the range 1430-1450 nm and 1930-1950 nm. Way. 제6항에 있어서,The method of claim 6, 상기 파장 대역들은 수분 대역들을 포함하는 방법.The wavelength bands comprise moisture bands. 제6항에 있어서,The method of claim 6, 상기 파장 대역들은 1440-1460 나노미터 및 1940-1980 나노미터 중 임의의 것을 포함하는 방법.Wherein the wavelength bands include any of 1440-1460 nanometers and 1940-1980 nanometers. 제6항에 있어서,The method of claim 6, 정반사 측정값을, 산란반사된 방사선이 실질적으로 감쇠되지 않은 파장 대역으로부터의 신호 측정값과 비교하는 단계Comparing specular reflection measurements with signal measurements from a wavelength band where the scattered radiation is substantially not attenuated. 를 더 포함하며,More, 상기 양쪽 측정값들에 대한 실질적으로 비교가능한 값들은 무효 측정을 나타내는 방법.Substantially comparable values for both measurements indicate an invalid measurement. 인체 조직 샘플 내의 유기 혈액 피분석물의 농도를 측정하기 위한 장치에 있어서,An apparatus for measuring the concentration of an organic blood analyte in a human tissue sample, (a) 적외선 스펙트럼 내의 복수의 개별적인 비중첩 스펙트럼 영역들을 포함하는 입사 방사선으로 상기 샘플을 조사하기 위한 수단;(a) means for irradiating said sample with incident radiation comprising a plurality of individual non-overlapping spectral regions within an infrared spectrum; (b) 상기 샘플로부터 나온 반사된 방사선을 수집하고 상기 반사된 방사선을 빔 경로(beam path)로 향하게 하기 위한 수단;(b) means for collecting the reflected radiation from the sample and directing the reflected radiation to a beam path; (c) 상기 빔 경로 내에 배치된 가변 필터 수단(adjustable filter means) - 상기 가변 필터 수단은 상기 빔 경로 내의 상기 방사선의 세기를 감쇠시킴 - ;(c) adjustable filter means disposed in the beam path, the variable filter means attenuating the intensity of the radiation in the beam path; (d) 상기 가변 필터 수단으로부터 나온 감쇠된 방사선을 수신하고, 그로부터 이산 파장들을 선택적으로 통과시킬 수 있는 주요 피분석물 필터 수단(principal analyte filter means) - 상기 이산 파장들은 상기 피분석물의 농도와 특정하게 상관됨 - ;(d) principal analyte filter means capable of receiving attenuated radiation from said variable filter means and selectively passing discrete wavelengths therefrom, said discrete wavelengths being specific to the concentration of said analyte; Correlated with-; (e) 상기 주요 피분석물 필터 수단으로부터 나온 상기 이산 파장들을 수신하고 상기 파장들의 세기를 감쇠시킬 수 있는 제2 필터 수단;(e) second filter means capable of receiving said discrete wavelengths from said primary analyte filter means and attenuating the intensity of said wavelengths; (f) 상기 제2 필터 수단으로부터 나온 상기 감쇠된 파장들을 수신하기 위한 검출 수단; 및(f) detection means for receiving the attenuated wavelengths from the second filter means; And (g) 상기 검출된 파장들을 상기 파장들의 세기를 나타내는 신호로 변환시키기 위한 수단(g) means for converting the detected wavelengths into a signal representing the intensity of the wavelengths 을 포함하는 장치.Device comprising a. 제13항에 있어서,The method of claim 13, 상기 가변 필터 수단은 필터 시스템 내의 상관 필터들과 협조하여 사용되는 중성 농도 필터(neutral density filter)를 포함하는 장치.Said variable filter means comprising a neutral density filter used in cooperation with the correlation filters in the filter system. 제13항에 있어서,The method of claim 13, 상기 제2 필터 수단은 필터 시스템 내의 상관 필터들과 협조하여 사용되는 중성 농도 필터를 포함하는 장치.And said second filter means comprises a neutral concentration filter used in coordination with the correlation filters in the filter system. 제15항에 있어서,The method of claim 15, 상기 제2 필터 수단에 의해 제공된 감쇠는 가중 인자들(weighting factors)을 사용하여 설정되는 장치.The attenuation provided by the second filter means is set using weighting factors. 제16항에 있어서,The method of claim 16, 상기 가중 인자들은 캐모메트릭 기술들(chemometrics techniques)을 이용하여 유도되는 장치.Wherein the weighting factors are derived using chemometrics techniques. 제17항에 있어서,The method of claim 17, 상기 가중 인자들은 상기 피분석물의 흡수 스펙트럼의 회전형 주성분 분석(rotated principal components analysis)을 사용하여 유도되는 장치.Wherein the weighting factors are derived using rotated principal components analysis of the absorption spectrum of the analyte. 제13항에 있어서,The method of claim 13, 상기 검출기 수단은 PbSe(lead selenide) 검출기를 포함하는 장치.And the detector means comprises a lead selenide detector. 신체 조직 샘플 내의 유기 혈액 피분석물의 농도를 측정하기 위한 장치에 있어서,An apparatus for measuring the concentration of an organic blood analyte in a body tissue sample, (a) 적외선 스펙트럼 내의 복수의 개별적인 비중첩 스펙트럼 영역을 포함하는 입사 방사선으로 상기 샘플을 조사하기 위한 수단;(a) means for irradiating said sample with incident radiation comprising a plurality of individual non-overlapping spectral regions within an infrared spectrum; (b) 상기 샘플로부터 나온 반사된 방사선을 수집하고 상기 반사된 방사선을 빔 경로(beam path)로 향하게 하기 위한 수단;(b) means for collecting the reflected radiation from the sample and directing the reflected radiation to a beam path; (c) 상기 빔 경로 내에 배치되며, 상기 샘플로부터 나온 상기 반사된 방사선으로부터의 적어도 하나의 파장을 선택적으로 통과시키도록 구성된 복수의 섹션(section)을 포함하는 필터 수단;(c) filter means disposed in the beam path and including a plurality of sections configured to selectively pass at least one wavelength from the reflected radiation from the sample; (d) 상기 필터 수단으로부터 나온 각각의 파장이 개별적인 검출기에 의해 검출되도록 배열된 복수의 검출기; 및(d) a plurality of detectors arranged such that each wavelength from said filter means is detected by a separate detector; And (e) 상기 검출된 파장들을 상기 파장들의 세기를 나타내는 신호로 변환시키기 위한 수단(e) means for converting the detected wavelengths into a signal representing the intensity of the wavelengths 을 포함하는 장치.Device comprising a. 제20항에 있어서,The method of claim 20, 상기 필터 수단은, 상기 샘플로부터 나온 상기 반사된 방사선으로부터의 적어도 하나의 파장을 선택적으로 통과시키도록 구성된 복수의 섹션을 포함하는 제1 단(first stage)과, 상기 제1 단에 인접하게 배치되며 상기 필터 수단의 상기 제1 단으로부터 나온 선택적으로 통과된 파장의 각각의 세기를 감쇠시킬 수 있는 제2 단을 갖는 2단 필터(two-stage filter)를 포함하는 장치.The filter means comprises a first stage comprising a plurality of sections configured to selectively pass at least one wavelength from the reflected radiation from the sample and disposed adjacent to the first stage; And a two-stage filter having a second stage capable of attenuating each intensity of a selectively passed wavelength from said first stage of said filter means. 제21항에 있어서,The method of claim 21, 상기 2단 필터의 상기 제2 단은 중성 농도 필터인 장치.And said second stage of said two stage filter is a neutral concentration filter. 제20항에 있어서,The method of claim 20, 상기 필터 수단은 복수의 개별적인 필터 소자를 포함하는 장치.The filter means comprises a plurality of individual filter elements. 제23항에 있어서,The method of claim 23, 상기 적어도 하나의 개별적인 필터 소자는 통과된 파장과 상기 피분석물의 농도와의 강화된 상관관계를 제공하도록 선택된 흡수 특성을 포함하는 장치.Wherein the at least one individual filter element comprises an absorption characteristic selected to provide an enhanced correlation of the wavelength passed and the concentration of the analyte. 제20항에 있어서,The method of claim 20, 상기 복수의 검출기는 PbSe(lead selenide) 검출기들을 포함하는 장치.And the plurality of detectors comprises lead selenide (PbSe) detectors. 제20항에 있어서,The method of claim 20, 상기 필터 수단은 1300 내지 1360 nm의 범위 내의 파장들의 제1 스펙트럼 분석 영역으로부터 적어도 하나의 파장을 통과시키도록 구성된 제1 섹션, 1670 내지 1690 nm의 범위 내의 파장들의 제2 스펙트럼 분석 영역으로부터 적어도 하나의 파장을 통과시키도록 구성된 제2 섹션, 1930 내지 1950 nm의 범위 내의 파장들의 제3 스펙트럼 분석 영역으로부터 적어도 하나의 파장을 통과시키도록 구성된 제3 섹션, 및 2120 내지 2280 nm의 범위 내의 파장들의 제4 스펙트럼 분석 영역으로부터 적어도 하나의 파장을 통과시키도록 구성된 제4 섹션을 포함하는 장치.The filter means is configured to pass at least one wavelength from a first spectral analysis region of wavelengths in the range of 1300 to 1360 nm, at least one from a second spectral analysis region of wavelengths in the range of 1670 to 1690 nm. A second section configured to pass a wavelength, a third section configured to pass at least one wavelength from a third spectral analysis region of wavelengths in a range of 1930 to 1950 nm, and a fourth of wavelengths in a range of 2120 to 2280 nm And a fourth section configured to pass at least one wavelength from the spectral analysis region. 인체 조직 샘플 내의 유기 혈액 피분석물의 농도를 측정하기 위한 장치에 있어서,An apparatus for measuring the concentration of an organic blood analyte in a human tissue sample, (a) 적외선 스펙트럼 내의 복수의 개별적인 비중첩 스펙트럼 영역을 포함하는 입사 방사선으로 상기 샘플을 조사하기 위한 수단;(a) means for irradiating said sample with incident radiation comprising a plurality of individual non-overlapping spectral regions within an infrared spectrum; (b) 상기 샘플로부터 나온 반사된 방사선을 수집하고 상기 반사된 방사선을 빔 경로로 향하게 하기 위한 수단;(b) means for collecting reflected radiation from said sample and directing the reflected radiation to a beam path; (c) 상기 빔 경로 내에 배치되며, 상기 샘플로부터 나온 반사된 방사선을 수신하고 그로부터 이산 파장들을 선택적으로 통과시킬 수 있는 회절 격자 수단 - 상기 이산 파장들은 상기 피분석물의 농도와 특정하게 상관됨 - ;(c) diffraction grating means disposed in the beam path and capable of receiving reflected radiation from the sample and selectively passing discrete wavelengths therefrom, wherein the discrete wavelengths specifically correlate with the concentration of the analyte; (d) 상기 회절 격자 수단으로부터 나온 상기 통과된 파장들을 수신하기 위한 선형 검출기 어레이; 및(d) a linear detector array for receiving the passed wavelengths from the diffraction grating means; And (g) 상기 검출된 파장들을 상기 파장들의 세기를 나타내는 신호로 변환시키기 위한 수단(g) means for converting the detected wavelengths into a signal representing the intensity of the wavelengths 을 포함하는 장치.Device comprising a. 제27항에 있어서,The method of claim 27, 상기 선형 검출기 어레이는 PbSe(lead selenide) 선형 검출기 어레이를 포함하는 장치.And the linear detector array comprises a lead selenide (PbSe) linear detector array.
KR1019980705964A 1996-02-02 1997-01-31 Methods and apparatus for multi-spectrum analysis in noninvasive infrared spectroscopy KR100520857B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/597,480 US6040578A (en) 1996-02-02 1996-02-02 Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US08/597,480 1996-02-02
US8/597,480 1996-02-02

Publications (2)

Publication Number Publication Date
KR19990082235A KR19990082235A (en) 1999-11-25
KR100520857B1 true KR100520857B1 (en) 2006-01-27

Family

ID=24391694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980705964A KR100520857B1 (en) 1996-02-02 1997-01-31 Methods and apparatus for multi-spectrum analysis in noninvasive infrared spectroscopy

Country Status (16)

Country Link
US (2) US6040578A (en)
EP (2) EP0877925B1 (en)
JP (3) JPH11506206A (en)
KR (1) KR100520857B1 (en)
CN (1) CN1185478C (en)
AT (1) ATE245279T1 (en)
AU (1) AU716192B2 (en)
BR (1) BR9707245B1 (en)
CA (1) CA2244121C (en)
CZ (1) CZ230498A3 (en)
DE (1) DE69723548T2 (en)
HK (1) HK1019636A1 (en)
HU (2) HUP9901866A2 (en)
PL (1) PL328015A1 (en)
TW (1) TW459132B (en)
WO (1) WO1997028437A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105422A (en) * 2018-03-05 2019-09-17 주식회사 바이오메디랩스 method for measuring blood grucose and wearable type apparatus for the same
KR20230043504A (en) * 2021-09-24 2023-03-31 주식회사 휘라포토닉스 Optical waveguide module for optical blood glucose sensor
KR20230111866A (en) * 2022-01-19 2023-07-26 울산과학기술원 Method and apparatus for stand-off detecting liquid chemicals based on wavelength-tunable quantum cascade laser

Families Citing this family (432)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212424B1 (en) * 1998-10-29 2001-04-03 Rio Grande Medical Technologies, Inc. Apparatus and method for determination of the adequacy of dialysis by non-invasive near-infrared spectroscopy
US6240306B1 (en) 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US7890158B2 (en) * 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
US7383069B2 (en) * 1997-08-14 2008-06-03 Sensys Medical, Inc. Method of sample control and calibration adjustment for use with a noninvasive analyzer
US6871169B1 (en) 1997-08-14 2005-03-22 Sensys Medical, Inc. Combinative multivariate calibration that enhances prediction ability through removal of over-modeled regions
DE19858426C2 (en) * 1997-12-17 2002-01-31 Steffen Leonhardt Device for measuring human blood sugar levels
JP3345590B2 (en) * 1998-07-16 2002-11-18 株式会社アドバンテスト Substrate processing method and apparatus
FR2782163B1 (en) * 1998-08-07 2000-12-08 Schlumberger Ind Sa METHOD FOR MEASURING THE SPECTRAL ABSORPTION OF A BODY AND DEVICE FOR IMPLEMENTING THE METHOD
US6262795B1 (en) * 1998-08-28 2001-07-17 Philip Semiconductors, Inc. Apparatus and method for the improvement of illumination uniformity in photolithographic systems
US6067463A (en) * 1999-01-05 2000-05-23 Abbott Laboratories Method and apparatus for non-invasively measuring the amount of glucose in blood
US6493566B1 (en) * 1999-01-22 2002-12-10 Instrumentation Metrics, Inc. Classification system for sex determination and tissue characterization
CA2358473A1 (en) * 1999-01-22 2000-07-27 Instrumentation Metrics, Inc. System and method for noninvasive blood analyte measurements
US6280381B1 (en) 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
US6690464B1 (en) * 1999-02-19 2004-02-10 Spectral Dimensions, Inc. High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units
US7123844B2 (en) * 1999-04-06 2006-10-17 Myrick Michael L Optical computational system
US6529276B1 (en) * 1999-04-06 2003-03-04 University Of South Carolina Optical computational system
AT408376B (en) * 1999-04-07 2001-11-26 Lendl Bernhard Dr METHOD FOR INFRARED-OPTICALLY DETERMINING THE CONCENTRATION OF AT LEAST ONE ANALYTIC IN A LIQUID SAMPLE
US7299080B2 (en) * 1999-10-08 2007-11-20 Sensys Medical, Inc. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US7317938B2 (en) * 1999-10-08 2008-01-08 Sensys Medical, Inc. Method of adapting in-vitro models to aid in noninvasive glucose determination
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US20050107676A1 (en) * 2003-03-07 2005-05-19 Acosta George M. Method and apparatus for noninvasive glucose concentration estimation through near-infrared spectroscopy
WO2001061293A1 (en) * 2000-02-18 2001-08-23 Spectral Dimensions, Inc. Multi-source spectrometry
DE60126600T2 (en) * 2000-04-17 2007-11-22 Becton Dickinson And Co. METHOD OF ANALYSIS FOR SUBSTANCE MIXTURES
US7606608B2 (en) * 2000-05-02 2009-10-20 Sensys Medical, Inc. Optical sampling interface system for in-vivo measurement of tissue
US20060211931A1 (en) * 2000-05-02 2006-09-21 Blank Thomas B Noninvasive analyzer sample probe interface method and apparatus
US7519406B2 (en) * 2004-04-28 2009-04-14 Sensys Medical, Inc. Noninvasive analyzer sample probe interface method and apparatus
CA2411049A1 (en) * 2000-06-02 2001-12-13 Hema Metrics, Inc. System and method for measuring blood urea nitrogen, blood osmolarity, plasma free haemoglobin and tissue water content
WO2002010726A2 (en) * 2000-08-01 2002-02-07 Sensys Medical, Inc. Combinative multivariate calibration that enhances prediction ability through removal of over-modeled regions
US6549861B1 (en) 2000-08-10 2003-04-15 Euro-Celtique, S.A. Automated system and method for spectroscopic analysis
WO2002016905A2 (en) 2000-08-21 2002-02-28 Euro-Celtique, S.A. Near infrared blood glucose monitoring system
US7138156B1 (en) 2000-09-26 2006-11-21 Myrick Michael L Filter design algorithm for multi-variate optical computing
US7126682B2 (en) * 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
US6574490B2 (en) 2001-04-11 2003-06-03 Rio Grande Medical Technologies, Inc. System for non-invasive measurement of glucose in humans
US8581697B2 (en) * 2001-04-11 2013-11-12 Trutouch Technologies Inc. Apparatuses for noninvasive determination of in vivo alcohol concentration using raman spectroscopy
US7043288B2 (en) 2002-04-04 2006-05-09 Inlight Solutions, Inc. Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US8174394B2 (en) * 2001-04-11 2012-05-08 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
JP2003042948A (en) * 2001-08-03 2003-02-13 Univ Waseda Instrument for measuring glucose concentration
FR2829286B1 (en) * 2001-09-03 2008-04-04 Ge Med Sys Global Tech Co Llc DEVICE AND METHOD FOR TRANSMITTING X-RAYS
CA2463151A1 (en) * 2001-10-11 2003-04-17 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detector combinations
US7050157B2 (en) * 2001-11-08 2006-05-23 Optiscan Biomedical Corp. Reagent-less whole-blood glucose meter
US7061593B2 (en) * 2001-11-08 2006-06-13 Optiscan Biomedical Corp. Device and method for in vitro determination of analyte concentrations within body fluids
US6958809B2 (en) 2001-11-08 2005-10-25 Optiscan Biomedical Corporation Reagent-less whole-blood glucose meter
US6989891B2 (en) * 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
AU2002346485A1 (en) * 2001-11-21 2003-06-10 Optiscan Biomedical Corporation Method and apparatus for adjusting signal variation of an electronically controlled infrared transmissive window
US6862534B2 (en) * 2001-12-14 2005-03-01 Optiscan Biomedical Corporation Method of determining an analyte concentration in a sample from an absorption spectrum
US7009180B2 (en) * 2001-12-14 2006-03-07 Optiscan Biomedical Corp. Pathlength-independent methods for optically determining material composition
DE10163972B4 (en) * 2001-12-22 2005-10-27 Roche Diagnostics Gmbh Method and device for determining a light transport parameter and an analyte in a biological matrix
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US8504128B2 (en) * 2002-03-08 2013-08-06 Glt Acquisition Corp. Method and apparatus for coupling a channeled sample probe to tissue
US8718738B2 (en) * 2002-03-08 2014-05-06 Glt Acquisition Corp. Method and apparatus for coupling a sample probe with a sample site
US20050054908A1 (en) * 2003-03-07 2005-03-10 Blank Thomas B. Photostimulation method and apparatus in combination with glucose determination
US20050187439A1 (en) * 2003-03-07 2005-08-25 Blank Thomas B. Sampling interface system for in-vivo estimation of tissue analyte concentration
US7697966B2 (en) * 2002-03-08 2010-04-13 Sensys Medical, Inc. Noninvasive targeting system method and apparatus
US20070149868A1 (en) * 2002-03-08 2007-06-28 Blank Thomas B Method and Apparatus for Photostimulation Enhanced Analyte Property Estimation
EP1499231A4 (en) * 2002-03-08 2007-09-26 Sensys Medical Inc Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US7145143B2 (en) * 2002-03-18 2006-12-05 Honeywell International Inc. Tunable sensor
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6654125B2 (en) 2002-04-04 2003-11-25 Inlight Solutions, Inc Method and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
US7343185B2 (en) * 2002-06-21 2008-03-11 Nir Diagnostics Inc. Measurement of body compounds
US6956649B2 (en) * 2002-11-26 2005-10-18 Sensys Medical, Inc. Spectroscopic system and method using a ceramic optical reference
JP4633472B2 (en) * 2002-12-19 2011-02-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical analysis system
US7613488B1 (en) 2002-12-20 2009-11-03 Niresults Inc. Apparatus and methods for compensation of blood volume effects on NIR spectroscopic measurements of blood analytes
US20040132168A1 (en) * 2003-01-06 2004-07-08 Peter Rule Sample element for reagentless whole blood glucose meter
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
WO2004069164A2 (en) * 2003-01-30 2004-08-19 Euro Celtique Sa Wireless blood glucose monitoring system
US20050159656A1 (en) * 2003-03-07 2005-07-21 Hockersmith Linda J. Method and apparatus for presentation of noninvasive glucose concentration information
DE602004030549D1 (en) * 2003-04-04 2011-01-27 Lumidigm Inc MULTISPEKTRALBIOMETRIESENSOR
US7668350B2 (en) * 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
US7627151B2 (en) * 2003-04-04 2009-12-01 Lumidigm, Inc. Systems and methods for improved biometric feature definition
US7751594B2 (en) * 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US7545963B2 (en) * 2003-04-04 2009-06-09 Lumidigm, Inc. Texture-biometrics sensor
US7539330B2 (en) * 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US7347365B2 (en) * 2003-04-04 2008-03-25 Lumidigm, Inc. Combined total-internal-reflectance and tissue imaging systems and methods
US7633621B2 (en) * 2003-04-11 2009-12-15 Thornton Robert L Method for measurement of analyte concentrations and semiconductor laser-pumped, small-cavity fiber lasers for such measurements and other applications
US7283242B2 (en) * 2003-04-11 2007-10-16 Thornton Robert L Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser
US20050106749A1 (en) * 2003-04-15 2005-05-19 Braig James R. Sample element for use in material analysis
EP1618389A1 (en) * 2003-04-15 2006-01-25 Optiscan Biomedical Corporation Sample element qualification
US7271912B2 (en) * 2003-04-15 2007-09-18 Optiscan Biomedical Corporation Method of determining analyte concentration in a sample using infrared transmission data
US7092344B2 (en) * 2003-04-18 2006-08-15 Lucere Enterprises, Ltd. Apparatus for creating a multi-dimensional data signal
DE10326152A1 (en) * 2003-06-06 2005-01-05 Aventis Pharma Deutschland Gmbh Method and device for the quantitative analysis of solutions and dispersions by means of near-infrared spectroscopy
US20060097173A1 (en) * 2003-10-15 2006-05-11 Sanofi-Aventis Deutschland Method and device for the quantitative analysis of solutions and dispersions by means of near infrared spectroscopy
US20050007582A1 (en) * 2003-07-07 2005-01-13 Lumidigm, Inc. Methods and apparatus for collection of optical reference measurements for monolithic sensors
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7459713B2 (en) 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
US7214190B1 (en) 2003-09-09 2007-05-08 Kitchener Clark Wilson Apparatus and method for noninvasive monitoring of analytes in body fluids
US20070234300A1 (en) * 2003-09-18 2007-10-04 Leake David W Method and Apparatus for Performing State-Table Driven Regression Testing
KR100518810B1 (en) * 2003-09-19 2005-10-05 삼성전자주식회사 Analysis system for analyzing chemical agent of sample and a method thereof
CA2481857A1 (en) * 2003-09-19 2005-03-19 Nir Diagnostics Inc. Near infrared risk assessment of diseases
US20050073690A1 (en) * 2003-10-03 2005-04-07 Abbink Russell E. Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL)
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
WO2005087097A1 (en) 2004-03-08 2005-09-22 Masimo Corporation Physiological parameter system
US20080033275A1 (en) * 2004-04-28 2008-02-07 Blank Thomas B Method and Apparatus for Sample Probe Movement Control
US8868147B2 (en) 2004-04-28 2014-10-21 Glt Acquisition Corp. Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US20110178420A1 (en) * 2010-01-18 2011-07-21 Trent Ridder Methods and apparatuses for improving breath alcohol testing
US8730047B2 (en) 2004-05-24 2014-05-20 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US20080319286A1 (en) * 2004-05-24 2008-12-25 Trent Ridder Optical Probes for Non-Invasive Analyte Measurements
US8515506B2 (en) * 2004-05-24 2013-08-20 Trutouch Technologies, Inc. Methods for noninvasive determination of in vivo alcohol concentration using Raman spectroscopy
US7508965B2 (en) * 2004-06-01 2009-03-24 Lumidigm, Inc. System and method for robust fingerprint acquisition
US8229185B2 (en) * 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
TWI356036B (en) * 2004-06-09 2012-01-11 Smithkline Beecham Corp Apparatus and method for pharmaceutical production
CN101031790B (en) * 2004-06-17 2011-04-13 拜尔健康护理有限责任公司 Coaxial diffuse reflectance read head
US7343186B2 (en) * 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
WO2006020292A2 (en) * 2004-07-20 2006-02-23 Prescient Medical, Inc. Systems and methods for medical interventional optical monitoring with molecular filters
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US7310153B2 (en) 2004-08-23 2007-12-18 Palo Alto Research Center, Incorporated Using position-sensitive detectors for wavelength determination
US7522786B2 (en) * 2005-12-22 2009-04-21 Palo Alto Research Center Incorporated Transmitting light with photon energy information
KR100612861B1 (en) 2004-10-05 2006-08-14 삼성전자주식회사 Method and apparatus for generating tunable wavelengths for body fluids concentration measurement
US7388202B2 (en) * 2004-10-21 2008-06-17 Optiscan Biomedical Corporation Method and apparatus for determining an analyte concentration in a sample having interferents
US20070083160A1 (en) * 2005-10-06 2007-04-12 Hall W D System and method for assessing measurements made by a body fluid analyzing device
US7860542B2 (en) * 2005-02-14 2010-12-28 Optiscan Biomedical Corporation Analyte detection system with reduced sample volume
US7364562B2 (en) * 2005-10-06 2008-04-29 Optiscan Biomedical Corp. Anti-clotting apparatus and methods for fluid handling system
US8251907B2 (en) 2005-02-14 2012-08-28 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
US8936755B2 (en) 2005-03-02 2015-01-20 Optiscan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
US7785258B2 (en) * 2005-10-06 2010-08-31 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
US8140140B2 (en) 2005-02-14 2012-03-20 Optiscan Biomedical Corporation Analyte detection system for multiple analytes
US7481787B2 (en) * 2005-02-14 2009-01-27 Optiscan Biomedical Corporation Fluid handling cassette having a spectroscopic sample cell
US8425444B2 (en) * 2006-04-11 2013-04-23 Optiscan Biomedical Corporation Anti-clotting apparatus and methods for fluid handling system
US20060189926A1 (en) * 2005-02-14 2006-08-24 Hall W D Apparatus and methods for analyzing body fluid samples
EP1860990B1 (en) 2005-03-01 2018-09-19 Masimo Laboratories, Inc. Multiple wavelength sensor equalization
EP1853159A4 (en) * 2005-03-04 2014-12-17 Covidien Lp Method and apparatus for determining blood analytes
US20060217602A1 (en) * 2005-03-04 2006-09-28 Alan Abul-Haj Method and apparatus for noninvasive targeting
US7251037B2 (en) 2005-03-07 2007-07-31 Caleb Brett Usa, Inc. Method to reduce background noise in a spectrum
US7248370B2 (en) * 2005-03-07 2007-07-24 Caleb Brett Usa, Inc. Method to reduce background noise in a spectrum
CN101557758B (en) * 2005-03-25 2015-01-07 Cnoga控股有限公司 Optical sensor device and image processing unit for measuring chemical concentrations, chemical saturations and biophysical parameters
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US7698105B2 (en) * 2005-05-23 2010-04-13 Sensys Medical, Inc. Method and apparatus for improving performance of noninvasive analyte property estimation
US7330746B2 (en) * 2005-06-07 2008-02-12 Chem Image Corporation Non-invasive biochemical analysis
US7330747B2 (en) * 2005-06-07 2008-02-12 Chemimage Corporation Invasive chemometry
US8140139B2 (en) 2005-06-14 2012-03-20 Dominion Assets, Llc Method and apparatus for the non-invasive sensing of glucose in a human subject
US20060281982A1 (en) * 2005-06-14 2006-12-14 Diasense, Inc. Method and apparatus for the non-invasive sensing of glucose in a human subject
US8597208B2 (en) * 2005-09-06 2013-12-03 Covidien Lp Method and apparatus for measuring analytes
WO2007028233A1 (en) 2005-09-06 2007-03-15 Nir Diagnostics Inc. Method and apparatus for measuring analytes
US20070179435A1 (en) * 2005-12-21 2007-08-02 Braig James R Analyte detection system with periodic sample draw and body fluid analyzer
US9561001B2 (en) 2005-10-06 2017-02-07 Optiscan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
EP1968447A4 (en) * 2005-11-21 2009-09-02 Nir Diagnostics Inc Modified method and apparatus for measuring analytes
WO2007062202A1 (en) * 2005-11-28 2007-05-31 University Of South Carolina Novel multivariate optical elements for optical analysis system
US7420677B2 (en) * 2005-12-22 2008-09-02 Palo Alto Research Center Incorporated Sensing photon energies of optical signals
US7433552B2 (en) 2005-12-22 2008-10-07 Palo Alto Research Center Incorporated Obtaining analyte information
US7315667B2 (en) * 2005-12-22 2008-01-01 Palo Alto Research Center Incorporated Propagating light to be sensed
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
US7358476B2 (en) * 2005-12-22 2008-04-15 Palo Alto Research Center Incorporated Sensing photons from objects in channels
US8437582B2 (en) * 2005-12-22 2013-05-07 Palo Alto Research Center Incorporated Transmitting light with lateral variation
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
EP2033196A2 (en) 2006-06-26 2009-03-11 University of South Carolina Data validation and classification in optical analysis systems
US7995808B2 (en) * 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
US8175346B2 (en) * 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
JP2009544108A (en) * 2006-07-19 2009-12-10 ルミダイム インコーポレイテッド Multispectral image for multiple biometric authentication
US8355545B2 (en) * 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
WO2008062439A2 (en) * 2006-09-05 2008-05-29 Bansod Prashant Non-invasive blood glucose measurement using mid-infrared absorption spectroscopy
WO2008030927A2 (en) * 2006-09-06 2008-03-13 Optiscan Biomedical Corporation Infusion flow interruption method and apparatus
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
CA2664691A1 (en) * 2006-09-29 2008-04-03 Ottawa Health Research Institute Correlation technique for analysis of clinical condition
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
WO2008045538A2 (en) 2006-10-12 2008-04-17 Masimo Corporation Perfusion index smoother
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
EP2078187A2 (en) 2006-11-02 2009-07-15 University of South Carolina Multi-analyte optical computing system
WO2008064130A2 (en) 2006-11-17 2008-05-29 Bloom Matthew B Mir spectroscopy of tissue
US7718948B2 (en) * 2006-12-04 2010-05-18 Palo Alto Research Center Incorporated Monitoring light pulses
US8414499B2 (en) 2006-12-09 2013-04-09 Masimo Corporation Plethysmograph variability processor
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US8821799B2 (en) * 2007-01-26 2014-09-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
US9164037B2 (en) 2007-01-26 2015-10-20 Palo Alto Research Center Incorporated Method and system for evaluation of signals received from spatially modulated excitation and emission to accurately determine particle positions and distances
US7852490B2 (en) * 2007-02-05 2010-12-14 Palo Alto Research Center Incorporated Implanting optical cavity structures
US7502123B2 (en) * 2007-02-05 2009-03-10 Palo Alto Research Center Incorporated Obtaining information from optical cavity output light
US7633629B2 (en) * 2007-02-05 2009-12-15 Palo Alto Research Center Incorporated Tuning optical cavities
US7936463B2 (en) * 2007-02-05 2011-05-03 Palo Alto Research Center Incorporated Containing analyte in optical cavity structures
US8285010B2 (en) * 2007-03-21 2012-10-09 Lumidigm, Inc. Biometrics based on locally consistent features
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US20100084557A1 (en) * 2007-05-01 2010-04-08 Urodynamix Technologies Ltd. Light intensity control for near infrared spectroscopy
EP1987762A1 (en) * 2007-05-03 2008-11-05 F.Hoffmann-La Roche Ag Oximeter
WO2008144575A2 (en) 2007-05-18 2008-11-27 Optiscan Biomedical Corporation Fluid injection and safety system
US20090160656A1 (en) * 2007-10-11 2009-06-25 Mahesh Seetharaman Analyte monitoring system alarms
US8412293B2 (en) * 2007-07-16 2013-04-02 Optiscan Biomedical Corporation Systems and methods for determining physiological parameters using measured analyte values
US20090156911A1 (en) * 2007-10-08 2009-06-18 Optiscan Biomedical Corporation Low draw volume analyte detection systems
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US20100145175A1 (en) * 2008-08-22 2010-06-10 Soldo Monnett H Systems and methods for verification of sample integrity
US8597190B2 (en) 2007-05-18 2013-12-03 Optiscan Biomedical Corporation Monitoring systems and methods with fast initialization
WO2008154024A1 (en) * 2007-06-11 2008-12-18 Hartley, Frank Mid-ir spectral measurements for real-time identification of analytes in an industrial and laboratory setting
JP5034720B2 (en) * 2007-07-04 2012-09-26 パナソニック株式会社 Blood glucose measurement system
US20090036759A1 (en) * 2007-08-01 2009-02-05 Ault Timothy E Collapsible noninvasive analyzer method and apparatus
WO2009049252A1 (en) 2007-10-10 2009-04-16 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
WO2009049245A1 (en) * 2007-10-11 2009-04-16 Optiscan Biomedical Corporation Synchronization and configuration of patient monitoring devices
US8320983B2 (en) 2007-12-17 2012-11-27 Palo Alto Research Center Incorporated Controlling transfer of objects affecting optical characteristics
US8153949B2 (en) * 2008-12-18 2012-04-10 Palo Alto Research Center Incorporated Obtaining sensing results indicating time variation
US7701580B2 (en) * 2008-02-01 2010-04-20 Palo Alto Research Center Incorporated Transmitting/reflecting emanating light with time variation
US7894068B2 (en) * 2008-02-04 2011-02-22 Palo Alto Research Center Incorporated Producing filters with combined transmission and/or reflection functions
US8629981B2 (en) 2008-02-01 2014-01-14 Palo Alto Research Center Incorporated Analyzers with time variation based on color-coded spatial modulation
US8373860B2 (en) * 2008-02-01 2013-02-12 Palo Alto Research Center Incorporated Transmitting/reflecting emanating light with time variation
US8768423B2 (en) 2008-03-04 2014-07-01 Glt Acquisition Corp. Multispot monitoring for use in optical coherence tomography
WO2009134724A1 (en) 2008-05-02 2009-11-05 Masimo Corporation Monitor configuration system
EP2312995B1 (en) 2008-05-05 2017-06-28 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US8437825B2 (en) 2008-07-03 2013-05-07 Cercacor Laboratories, Inc. Contoured protrusion for improving spectroscopic measurement of blood constituents
US8515509B2 (en) 2008-08-04 2013-08-20 Cercacor Laboratories, Inc. Multi-stream emitter for noninvasive measurement of blood constituents
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8437821B2 (en) * 2009-01-06 2013-05-07 Panasonic Corporation Non-invasive body information measurement apparatus
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US20100246902A1 (en) * 2009-02-26 2010-09-30 Lumidigm, Inc. Method and apparatus to combine biometric sensing and other functionality
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
AR076873A1 (en) * 2009-05-14 2011-07-13 Pioneer Hi Bred Int REVERSE MODELING FOR THE PREDICTION OF CHARACTERISTICS FROM MULTI-SPECTRAL AND HYPER-SPECTRAL DATA SETS DETECTED REMOTELY
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US8928877B2 (en) 2011-07-06 2015-01-06 Optiscan Biomedical Corporation Sample cell for fluid analysis system
WO2011011462A1 (en) 2009-07-20 2011-01-27 Optiscan Biomedical Corporation Adjustable connector and dead space reduction
US10475529B2 (en) 2011-07-19 2019-11-12 Optiscan Biomedical Corporation Method and apparatus for analyte measurements using calibration sets
US9554742B2 (en) 2009-07-20 2017-01-31 Optiscan Biomedical Corporation Fluid analysis system
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US8872908B2 (en) * 2009-08-26 2014-10-28 Lumidigm, Inc Dual-imager biometric sensor
BR112012005738A2 (en) * 2009-09-14 2016-03-08 Sleep Methods system and method for anticipating the onset of an obstructive sleep apnea event
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US8702627B2 (en) 2009-10-15 2014-04-22 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
WO2011069122A1 (en) 2009-12-04 2011-06-09 Masimo Corporation Calibration for multi-stage physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
GB2490817A (en) 2010-01-19 2012-11-14 Masimo Corp Wellness analysis system
US9724024B2 (en) 2010-03-01 2017-08-08 Masimo Corporation Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
JP5143175B2 (en) * 2010-03-31 2013-02-13 株式会社サイム Identification method and identification device based on Raman scattering, and Raman scattering spectrum measurement method and measurement device
JP5604959B2 (en) * 2010-04-27 2014-10-15 セイコーエプソン株式会社 Light measuring device
EP2585165B1 (en) 2010-05-03 2017-06-21 Optiscan Biomedical Corporation Adjustable connector, improved fluid flow and reduced clotting risk
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
WO2011148280A1 (en) 2010-05-27 2011-12-01 Koninklijke Philips Electronics N.V. Apparatus and method for measuring an analyte such as bilirubin, using light
WO2011156522A1 (en) 2010-06-09 2011-12-15 Optiscan Biomedical Corporation Measuring analytes in a fluid sample drawn from a patient
US20140132957A1 (en) * 2010-07-09 2014-05-15 Methode Electronics, Inc. Optical measurement of an analyte
DE102010040783A1 (en) * 2010-09-15 2012-03-15 Robert Bosch Gmbh Measuring device for determination of tissue alcohol concentration
US8821397B2 (en) 2010-09-28 2014-09-02 Masimo Corporation Depth of consciousness monitor including oximeter
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
EP2673721A1 (en) 2011-02-13 2013-12-18 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US8723140B2 (en) 2011-08-09 2014-05-13 Palo Alto Research Center Incorporated Particle analyzer with spatial modulation and long lifetime bioprobes
US9029800B2 (en) 2011-08-09 2015-05-12 Palo Alto Research Center Incorporated Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
WO2013056160A2 (en) 2011-10-13 2013-04-18 Masimo Corporation Medical monitoring hub
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US12004881B2 (en) 2012-01-04 2024-06-11 Masimo Corporation Automated condition screening and detection
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US9267572B2 (en) 2012-02-08 2016-02-23 Masimo Corporation Cable tether system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
WO2013148605A1 (en) 2012-03-25 2013-10-03 Masimo Corporation Physiological monitor touchscreen interface
EP4268712A3 (en) 2012-04-17 2024-01-17 Masimo Corporation Hypersaturation index
KR20150036207A (en) 2012-06-28 2015-04-07 퀵 엘엘씨 MOBILE SMART DEVICE INFRARED LIGHT MEASURING APPARATUS, πMETHOD, AND SYSTEM FOR ANALYZING SUBSTANCES
US20150018646A1 (en) * 2013-07-12 2015-01-15 Sandeep Gulati Dynamic sample mapping noninvasive analyzer apparatus and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
US20160249836A1 (en) * 2012-07-16 2016-09-01 Sandeep Gulati Sample optical pathlength control using a noninvasive analyzer apparatus and method of use thereof
US20150018644A1 (en) * 2012-07-16 2015-01-15 Sandeep Gulati Multiplexed pathlength resolved noninvasive analyzer apparatus with non-uniform detector array and method of use thereof
US9585604B2 (en) * 2012-07-16 2017-03-07 Zyomed Corp. Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US20160242682A1 (en) * 2012-07-16 2016-08-25 Sandeep Gulati Noninvasive analyzer apparatus and method of use thereof for separating distributed probing photons emerging from a sample
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
WO2014070310A2 (en) * 2012-11-05 2014-05-08 Roc8Sci Co. Apparatus and method for detecting and quantifying analytes in solution
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US20140204200A1 (en) * 2013-01-24 2014-07-24 Wipro Limited Methods and systems for speed calibration in spectral imaging systems
WO2014125804A1 (en) * 2013-02-13 2014-08-21 パナソニック株式会社 Multispectral imaging device and multispectral imaging method
WO2014164139A1 (en) 2013-03-13 2014-10-09 Masimo Corporation Systems and methods for monitoring a patient health network
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
WO2015020911A2 (en) 2013-08-05 2015-02-12 Cercacor Laboratories, Inc. Blood pressure monitor with valve-chamber assembly
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US20150099950A1 (en) 2013-10-07 2015-04-09 Masimo Corporation Regional oximetry sensor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
WO2015095239A1 (en) 2013-12-18 2015-06-25 Optiscan Biomedical Corporation Systems and methods for detecting leaks
US10213550B2 (en) 2014-01-23 2019-02-26 Covidien Lp Systems and methods for monitoring clinical procedures using regional blood oxygen saturation
US9867561B2 (en) 2014-01-27 2018-01-16 Covidien Lp Systems and methods for determining whether regional oximetry sensors are properly positioned
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
GB2523989B (en) 2014-01-30 2020-07-29 Insulet Netherlands B V Therapeutic product delivery system and method of pairing
US9861317B2 (en) 2014-02-20 2018-01-09 Covidien Lp Methods and systems for determining regional blood oxygen saturation
US9322756B2 (en) * 2014-02-21 2016-04-26 Maxim Integrated Products, Inc. Nondispersive infrared micro-optics sensor for blood alcohol concentration measurements
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
SG11201701248PA (en) * 2014-08-20 2017-03-30 Inst Nat Sante Rech Med Method for correcting an infrared absorption spectrum
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
WO2016036985A1 (en) 2014-09-04 2016-03-10 Masimo Corportion Total hemoglobin index system
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
JP2016080680A (en) * 2014-10-15 2016-05-16 セイコーエプソン株式会社 Method for detecting signal, method for creating calibration curve, method for quantification, signal detector, and measurement device
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
KR102335739B1 (en) 2014-12-19 2021-12-06 삼성전자주식회사 Apparatus and method for measuring a blood glucose in a noninvasive manner
EP3037805B1 (en) 2014-12-23 2018-11-28 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for measuring a spectral sample response
US10806385B2 (en) * 2015-01-21 2020-10-20 National Institutes For Quantum And Radiological Science And Technology Device for measuring concentration of substance in blood, and method for measuring concentration of substance in blood
US10328202B2 (en) 2015-02-04 2019-06-25 Covidien Lp Methods and systems for determining fluid administration
EP3253289B1 (en) 2015-02-06 2020-08-05 Masimo Corporation Fold flex circuit for optical probes
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
KR102594704B1 (en) 2015-02-06 2023-10-27 마시모 코오퍼레이션 Connector assembly for medical sensors with pogo pins
US10737024B2 (en) 2015-02-18 2020-08-11 Insulet Corporation Fluid delivery and infusion devices, and methods of use thereof
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
WO2016191307A1 (en) 2015-05-22 2016-12-01 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
CA2994172A1 (en) 2015-08-11 2017-02-16 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
JP6940483B2 (en) 2015-08-31 2021-09-29 マシモ・コーポレイション Wireless patient monitoring system and method
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
WO2017082864A1 (en) 2015-11-10 2017-05-18 Halliburton Energy Services, Inc. Incorporation of integrated computational elements within optical analysis tools having a miniaturized operational profile
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
WO2017123525A1 (en) 2016-01-13 2017-07-20 Bigfoot Biomedical, Inc. User interface for diabetes management system
WO2017124006A1 (en) 2016-01-14 2017-07-20 Bigfoot Biomedical, Inc. Adjusting insulin delivery rates
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
KR102497849B1 (en) * 2016-05-09 2023-02-07 삼성전자주식회사 Method and apparatus for predicting analyte concentration
WO2018009612A1 (en) 2016-07-06 2018-01-11 Patient Doctor Technologies, Inc. Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
EP3482175B1 (en) 2016-07-08 2023-07-19 Danmarks Tekniske Universitet Infrared upconversion spectrometer for the mid-ir range
CN106308814A (en) * 2016-08-09 2017-01-11 上海润寿智能科技有限公司 Blood sugar non-invasive detection instrument based on near infrared spectrum analysis and realization method thereof
WO2018058041A1 (en) 2016-09-23 2018-03-29 Insulet Corporation Fluid delivery device with sensor
EP3525661A1 (en) 2016-10-13 2019-08-21 Masimo Corporation Systems and methods for patient fall detection
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
WO2018119239A1 (en) 2016-12-22 2018-06-28 Cercacor Laboratories, Inc Methods and devices for detecting intensity of light with translucent detector
US11027063B2 (en) 2017-01-13 2021-06-08 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US11024064B2 (en) 2017-02-24 2021-06-01 Masimo Corporation Augmented reality system for displaying patient data
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
JP7166264B2 (en) 2017-02-24 2022-11-07 マシモ・コーポレイション A system for displaying medical monitoring data
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
US11185262B2 (en) 2017-03-10 2021-11-30 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
CN110891472B (en) 2017-04-28 2023-04-04 迈心诺公司 Spot check measuring system
CN110809804B (en) 2017-05-08 2023-10-27 梅西莫股份有限公司 System for pairing a medical system with a network controller using an adapter
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
KR102611362B1 (en) 2017-08-15 2023-12-08 마시모 코오퍼레이션 Waterproof connector for non-invasive patient monitors
WO2019079643A1 (en) 2017-10-19 2019-04-25 Masimo Corporation Display arrangement for medical monitoring system
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
WO2019089655A1 (en) 2017-10-31 2019-05-09 Masimo Corporation System for displaying oxygen state indications
US10694995B2 (en) 2017-12-05 2020-06-30 Renegade Optophysics, Llc Diagnostic eye goggle system
CN108226086A (en) * 2018-01-22 2018-06-29 上海海洋大学 A kind of red wine alcoholic strength and total sugar content quantitative analysis method
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
EP3531110A1 (en) * 2018-02-23 2019-08-28 Samsung Electronics Co., Ltd. Apparatus and method for estimating concentration of blood compound
JP7182887B2 (en) * 2018-03-27 2022-12-05 キヤノン株式会社 Biological information measuring device and biological information measuring method
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US20210236844A1 (en) * 2018-04-27 2021-08-05 Koninklijke Philips N.V. A method and device for real time monitoring and prediction of bilirubin levels and associated notifications in neonates
WO2019213493A1 (en) 2018-05-04 2019-11-07 Insulet Corporation Safety constraints for a control algorithm-based drug delivery system
US11918352B2 (en) 2018-05-15 2024-03-05 Isbrg Corp. Non-invasive determination of a physiological state of interest in a subject
KR101938110B1 (en) 2018-06-05 2019-04-11 한국기초과학지원연구원 Apparatus for measuring thermal image in multi modes and method thereof
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
CN112789070A (en) 2018-09-28 2021-05-11 英赛罗公司 Mode of activity of the artificial pancreas System
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
JP7128960B2 (en) 2018-10-11 2022-08-31 マシモ・コーポレイション Patient connector assembly with vertical detent
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
EP3864668A1 (en) 2018-10-11 2021-08-18 Insulet Corporation Event detection for drug delivery system
KR20210084490A (en) 2018-10-12 2021-07-07 마시모 코오퍼레이션 System for transmission of sensor data using dual communication protocol
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
US12004869B2 (en) 2018-11-05 2024-06-11 Masimo Corporation System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising
US11986289B2 (en) 2018-11-27 2024-05-21 Willow Laboratories, Inc. Assembly for medical monitoring device with multiple physiological sensors
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
USD920343S1 (en) 2019-01-09 2021-05-25 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
MX2021012686A (en) 2019-04-17 2022-01-06 Masimo Corp Patient monitoring systems, devices, and methods.
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
US20210059585A1 (en) * 2019-08-26 2021-03-04 nanoLambda Korea On-chip integrated multi-wavelengths biological sensing device
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US11801344B2 (en) 2019-09-13 2023-10-31 Insulet Corporation Blood glucose rate of change modulation of meal and correction insulin bolus quantity
US11935637B2 (en) 2019-09-27 2024-03-19 Insulet Corporation Onboarding and total daily insulin adaptivity
US20210117525A1 (en) 2019-10-18 2021-04-22 Masimo Corporation Display layout and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
CA3157995A1 (en) 2019-10-25 2021-04-29 Cercacor Laboratories, Inc. Indicator compounds, devices comprising indicator compounds, and methods of making and using the same
EP4354455A2 (en) 2019-12-06 2024-04-17 Insulet Corporation Techniques and devices providing adaptivity and personalization in diabetes treatment
US11833329B2 (en) 2019-12-20 2023-12-05 Insulet Corporation Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns
DE102019135877B4 (en) * 2019-12-30 2021-09-30 TRUMPF Venture GmbH System for measuring the presence and / or concentration of an analytical substance dissolved in body fluid
US11551802B2 (en) 2020-02-11 2023-01-10 Insulet Corporation Early meal detection and calorie intake detection
US11986630B2 (en) 2020-02-12 2024-05-21 Insulet Corporation Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk
US11547800B2 (en) 2020-02-12 2023-01-10 Insulet Corporation User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
US11721105B2 (en) 2020-02-13 2023-08-08 Masimo Corporation System and method for monitoring clinical activities
US11324889B2 (en) 2020-02-14 2022-05-10 Insulet Corporation Compensation for missing readings from a glucose monitor in an automated insulin delivery system
JP2023518303A (en) 2020-03-20 2023-04-28 マシモ・コーポレイション Wearable device for non-invasive body temperature measurement
US11607493B2 (en) 2020-04-06 2023-03-21 Insulet Corporation Initial total daily insulin setting for user onboarding
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US11684716B2 (en) 2020-07-31 2023-06-27 Insulet Corporation Techniques to reduce risk of occlusions in drug delivery systems
EP4199778A1 (en) 2020-08-19 2023-06-28 Masimo Corporation Strap for a wearable device
USD946596S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946597S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946598S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
US11904140B2 (en) 2021-03-10 2024-02-20 Insulet Corporation Adaptable asymmetric medicament cost component in a control system for medicament delivery
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
US11738144B2 (en) 2021-09-27 2023-08-29 Insulet Corporation Techniques enabling adaptation of parameters in aid systems by user input
US11439754B1 (en) 2021-12-01 2022-09-13 Insulet Corporation Optimizing embedded formulations for drug delivery
WO2023128770A1 (en) * 2021-12-27 2023-07-06 Cjv Soluciones Contables Y Tributarias S.A.C. System, device and method for non-invasive determination of bioparameters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360004A (en) * 1992-12-09 1994-11-01 Diasense, Inc. Non-invasive determination of analyte concentration using non-continuous radiation

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2255300A1 (en) * 1972-11-11 1974-05-22 Siemens Ag METHOD AND EQUIPMENT FOR THE COLORIMETRIC EXAMINATION OF SUBSTANCES FOR SIGNIFICANT COMPONENTS
US4306152A (en) * 1979-07-23 1981-12-15 Anarad, Inc. Optical fluid analyzer
DE2934190A1 (en) * 1979-08-23 1981-03-19 Müller, Gerhard, Prof. Dr.-Ing., 7080 Aalen METHOD AND DEVICE FOR MOLECULAR SPECTROSCOPY, ESPECIALLY FOR DETERMINING METABOLISM PRODUCTS
US4491730A (en) * 1980-08-14 1985-01-01 Panametrics, Inc. Method and apparatus for feedback stabilized photometric detection in fluids
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
DE3541165A1 (en) * 1985-11-21 1987-05-27 Hellige Gmbh DEVICE FOR CONTINUOUSLY DETERMINING CONCENTRATION CHANGES IN MIXTURES
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
JPH0827235B2 (en) * 1987-11-17 1996-03-21 倉敷紡績株式会社 Spectroscopic method for measuring sugar concentration
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US5086229A (en) * 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US5023804A (en) * 1989-05-23 1991-06-11 The Perkin-Elmer Corporation Method and apparatus for comparing spectra
US4975581A (en) * 1989-06-21 1990-12-04 University Of New Mexico Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids
CA2028261C (en) * 1989-10-28 1995-01-17 Won Suck Yang Non-invasive method and apparatus for measuring blood glucose concentration
US5070874A (en) * 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5222495A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths
US5054487A (en) * 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection
WO1991011136A1 (en) * 1990-02-02 1991-08-08 Boston Advanced Technologies, Inc. Systems for material analysis based on reflectance ratio detection
US5349188A (en) * 1990-04-09 1994-09-20 Ashland Oil, Inc. Near infrared analysis of piano constituents and octane number of hydrocarbons
US5146091A (en) * 1990-04-19 1992-09-08 Inomet, Inc. Body fluid constituent measurement utilizing an interference pattern
US5121337A (en) * 1990-10-15 1992-06-09 Exxon Research And Engineering Company Method for correcting spectral data for data due to the spectral measurement process itself and estimating unknown property and/or composition data of a sample using such method
US5209231A (en) * 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
GB9106672D0 (en) * 1991-03-28 1991-05-15 Abbey Biosystems Ltd Method and apparatus for glucose concentration monitoring
US5242602A (en) * 1992-03-04 1993-09-07 W. R. Grace & Co.-Conn. Spectrophotometric monitoring of multiple water treatment performance indicators using chemometrics
DK39792D0 (en) * 1992-03-25 1992-03-25 Foss Electric As PROCEDURE FOR DETERMINING A COMPONENT
US5355880A (en) * 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
US5424545A (en) * 1992-07-15 1995-06-13 Myron J. Block Non-invasive non-spectrophotometric infrared measurement of blood analyte concentrations
US5460177A (en) * 1993-05-07 1995-10-24 Diasense, Inc. Method for non-invasive measurement of concentration of analytes in blood using continuous spectrum radiation
DE69430152T2 (en) * 1993-06-25 2002-10-31 Edward W Stark Method and device for measuring glucose-related substances
US5435309A (en) * 1993-08-10 1995-07-25 Thomas; Edward V. Systematic wavelength selection for improved multivariate spectral analysis
DE4339067A1 (en) * 1993-11-16 1995-05-18 Jenoptik Jena Gmbh Method and arrangement for the non-invasive, transcutaneous determination of substance concentrations in body fluid or human tissue
US5459317A (en) * 1994-02-14 1995-10-17 Ohio University Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose
US5553613A (en) * 1994-08-17 1996-09-10 Pfizer Inc. Non invasive blood analyte sensor
SG38866A1 (en) * 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360004A (en) * 1992-12-09 1994-11-01 Diasense, Inc. Non-invasive determination of analyte concentration using non-continuous radiation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105422A (en) * 2018-03-05 2019-09-17 주식회사 바이오메디랩스 method for measuring blood grucose and wearable type apparatus for the same
KR102033914B1 (en) 2018-03-05 2019-10-18 주식회사 바이오메디랩스 method for measuring blood glucose and wearable type apparatus for the same
KR20230043504A (en) * 2021-09-24 2023-03-31 주식회사 휘라포토닉스 Optical waveguide module for optical blood glucose sensor
KR102644079B1 (en) * 2021-09-24 2024-03-07 주식회사 휘라포토닉스 Optical waveguide module for optical blood glucose sensor
KR20230111866A (en) * 2022-01-19 2023-07-26 울산과학기술원 Method and apparatus for stand-off detecting liquid chemicals based on wavelength-tunable quantum cascade laser
KR102628110B1 (en) 2022-01-19 2024-01-23 울산과학기술원 Method and apparatus for stand-off detecting liquid chemicals based on wavelength-tunable quantum cascade laser

Also Published As

Publication number Publication date
HUP9901866A2 (en) 1999-09-28
HUP9901855A2 (en) 1999-09-28
HK1019636A1 (en) 2000-02-18
US6236047B1 (en) 2001-05-22
EP1324018A3 (en) 2003-11-12
WO1997028437A1 (en) 1997-08-07
KR19990082235A (en) 1999-11-25
JP2006126219A (en) 2006-05-18
DE69723548D1 (en) 2003-08-21
EP0877925B1 (en) 2003-07-16
AU716192B2 (en) 2000-02-24
EP0877925A1 (en) 1998-11-18
AU1844897A (en) 1997-08-22
US6040578A (en) 2000-03-21
ATE245279T1 (en) 2003-08-15
EP1324018A2 (en) 2003-07-02
BR9707245A (en) 2001-09-11
CZ230498A3 (en) 1999-07-14
JP2002310908A (en) 2002-10-23
BR9707245B1 (en) 2009-05-05
CN1185478C (en) 2005-01-19
TW459132B (en) 2001-10-11
CA2244121C (en) 2003-07-15
CN1214768A (en) 1999-04-21
HUP9901855A3 (en) 2000-03-28
CA2244121A1 (en) 1997-08-07
PL328015A1 (en) 1999-01-04
DE69723548T2 (en) 2004-06-09
JPH11506206A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR100520857B1 (en) Methods and apparatus for multi-spectrum analysis in noninvasive infrared spectroscopy
CA2244111C (en) Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
WO1997028437A9 (en) Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy
US5750994A (en) Positive correlation filter systems and methods of use thereof
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
US5459317A (en) Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose
US7640140B2 (en) Method of processing noninvasive spectra
US20030023148A1 (en) Targeted interference subtraction applied to near-infrared measurement of analytes
CA2397611A1 (en) Classification and characterization of tissue through features related to adipose tissue
WO2003058191A2 (en) An intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
JPH09159606A (en) Liquid-correlation spectrometry
AU713502C (en) Method and apparatus for multi-spectral analysis in noninvasive NIR spectroscopy
JPH11178813A (en) Method and device for quantitatively determining glucose concentration
WO1996013204A1 (en) Determination of analyte concentration using non-continuous radiation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081106

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee