KR100519386B1 - 제지슬러지를 이용한 합성가스 제조방법 - Google Patents

제지슬러지를 이용한 합성가스 제조방법 Download PDF

Info

Publication number
KR100519386B1
KR100519386B1 KR10-2003-0042150A KR20030042150A KR100519386B1 KR 100519386 B1 KR100519386 B1 KR 100519386B1 KR 20030042150 A KR20030042150 A KR 20030042150A KR 100519386 B1 KR100519386 B1 KR 100519386B1
Authority
KR
South Korea
Prior art keywords
synthesis gas
paper sludge
reaction
catalyst
nickel
Prior art date
Application number
KR10-2003-0042150A
Other languages
English (en)
Other versions
KR20050001812A (ko
Inventor
김상용
박철환
이관영
김학주
이승규
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR10-2003-0042150A priority Critical patent/KR100519386B1/ko
Publication of KR20050001812A publication Critical patent/KR20050001812A/ko
Application granted granted Critical
Publication of KR100519386B1 publication Critical patent/KR100519386B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 유기성 산업폐기물인 제지슬러지를 탄화수소원으로 하여 촉매를 이용한 가스화반응으로 화학산업의 기초물질인 합성가스를 제조하는 방법에 관한 것으로, 더욱 상세하게는 공기가 없는 상태의 관형 스테인레스 개질기내에서 건조된 제지슬러지와, 니켈계 담지촉매인 Ni/MgO 또는 Ni/Al2O3 촉매와, 수증기(steam)를 500 ~ 800℃의 온도로 가스화반응시킴으로써 수소와 일산화탄소가 다량 함유된 합성가스를 제조하는 것을 특징으로 하는 제지슬러지를 이용한 합성가스 제조방법에 관한 것이다.

Description

제지슬러지를 이용한 합성가스 제조방법{A method on manufatcturing of synthesis gas from paper sludge}
본 발명은 유기성 산업폐기물인 제지슬러지를 탄화수소원으로 하여 촉매를 이용한 가스화반응으로 화학산업의 기초물질인 합성가스를 제조하는 방법에 관한 것으로, 더욱 상세하게는 공기가 없는 아르곤분위기의 관형 스테인레스 개질기내에서 건조된 제지슬러지와, 니켈계 담지촉매인 Ni/MgO 또는 Ni/Al2O3 촉매와, 수증기(steam)를 500 ~ 800℃의 온도로 가스화반응시킴으로써 수소와 일산화탄소가 다량 함유된 합성가스를 제조하는 것을 특징으로 하는 제지슬러지를 이용한 합성가스 제조방법에 관한 것이다.
일반적으로 합성가스는 코크스 또는 석탄과 같은 고체연료를 산소나 공기를 써서 백열상태로 가열하고 이것에 수증기를 동시에 또는 간헐적으로 불어넣는 수성(水性) 가스화법과, 저급 탄화수소가스(메탄·에탄·프로판·부탄 등), 나프타, 중유 등의 유체연료를 고온에서 촉매를 사용하여 수증기와 반응시키는 수증기개질법(스팀 리포밍(steam reforming)이라고도 하며, 저급 탄화수소가스, 나프타에는 니켈계 촉매, 중유에는 촉매를 사용하지 않고 고온·고압 하에서 반응시킨다)으로 크게 구별되며, 어느 경우에나 수소·일산화탄소·이산화탄소를 주성분으로 하는 혼합가스가 생긴다. 혼합가스는 불순물을 제거하는 각종 정제공정을 거쳐서 다음, 합성반응에 알맞은 가스조성으로 조정되며, 이 합성가스 중 수소가스는 촉매작용을 통해 메탄올이나 디메틸에탄올로 전환시키거나, 피셔-트롭스(Fischer-Tropsch) 합성반응을 이용하여 피셔-트롭스디젤이라는 디젤과 유사한 성질을 가지는 액체 등으로 전환하여 연료로 사용하게 된다.
이와 같이 현재까지 수증기개질법에 의한 합성가스의 제조시에는 탄화수소원으로 천연가스, 석유액화가스, 나프타 등이 사용되어 왔으나, 주원료로 사용되는 천연가스, 석유액화가스, 나프타 등의 한정된 매립량과 고갈 및 화석에너지의 연소로 인한 환경오염때문에 화석에너지원을 대신한 대체 에너지원의 개발에 세계 각국이 박차를 가하고 있으며, 대체 탄화수소원으로 바이오매스(Biomass)를 이용하여 생물체를 열분해시키거나 발효시켜 메탄·에탄올·수소와 같은 연료, 즉 바이오매스에너지를 채취하는 방법이 연구되고 있다.
바이오매스(Biomass)는 에너지 전용의 작물과 나무, 농산품과 사료작물, 농작 폐기물과 찌꺼기, 임산 폐기물과 부스러기, 수초, 동물의 배설물, 도시 쓰레기, 그리고 여타의 폐기물에서 추출된 재생가능한 유기 물질로 현재 에너지원으로 쓰여지고 있는 목재, 식물, 농·임산 부산물, 도시 쓰레기와 산업 폐기물 내의 유기성분 등을 일컫는 것으로서, 환경친화적인 탄화수소원으로 지구상에서 1년간에 생산되는 바이오매스는 석유의 전체 매장량과 맞먹으며 적정하게 이용하면 고갈될 염려가 없다는 이점이 있어 대체 연료로서 충분한 활용가치가 있다.
그러나, 상기와 같은 바이오매스 중 유기성 폐기물은 재활용되지 못하고 매립과 소각 등에 의해 처리되고 있으나, 이러한 방법은 다이옥신을 비롯한 공해물질을 발생시킬 뿐 아니라 유기성 폐기물이 가지고 있는 발열량을 이용하지 못하고 폐기처분된다는 문제점이 있었다.
본 발명에서는 바이오매스 중 목질계 바이오매스로 제지공정에서 산업폐기물로 발생되는 제지슬러지를 이용하여 합성가스를 얻어내고자 하는 것으로, 제지슬러지를 이용한 종래기술로 한국공개특허 제 2001-0069804호(제지슬러지를 이용한 대체연료 제조장치 및 그 방법)에서는 제지슬러지를 식용유 기름에 튀겨 직접 연료로 사용하는 방법 및 장치가 개시되었으며, 한국공개특허 제 2003-006200호(제지공장의 슬러지를 이용한 땔감의 제조방법)에서는 제지슬러지를 건조시켜 표면을 탄화한 후 파쇄하여 땔감으로 사용하는 방법이 개시되었으나, 이와 같은 방법들은 제지슬러지 자체를 직접 연료원으로 재사용하는 것이어서 많은 양의 에너지를 얻기 어려우며, 메탄올이나 디메틸에탄올 등의 고급연료를 얻어낼 수 없다는 문제점들이 있었다.
본 발명은 상기와 같은 문제점들을 해결하기 위한 것으로, 바이오매스 중 유기성 산업폐기물인 제지슬러지를 대체 에너지원으로 이용하여 수증기개질법에 의한 촉매가스화 반응으로 수소와 일산화탄소가 다량 함유된 합성가스를 얻어냄으로써 이 합성가스를 이용하여 다음 단계의 연료를 생산하도록 하는 것에 그 목적이 있다.
이와 같은 목적을 달성하기 위하여 아르곤충전에 의해 공기가 존해하지 않는 아르곤 분위기로 조성된 관형 스테인레스 개질기내에서 건조된 제지슬러지와, 니켈계 담지촉매인 Ni/MgO 또는 Ni/Al2O3 촉매와, 수증기(steam)를 500 ~ 800℃의 고온으로 가스화반응시킴으로써 수소와 일산화탄소가 다량 함유된 합성가스를 제조하는 것에 본 발명의 특징이 있다.
제지공장의 부산물로 발생되는 제지슬러지는 셀룰로오스, 헤미셀룰로오스, 리그닌 등과 같은 탄수화물로 구성된 섬유질 세립물로 구성되어 있다. 이 중에서 오탄당인 셀룰로오스의 구성비율이 대략 40% 이상으로 가장 큰 비율을 차지하고 있으며, 제지슬러지의 원소분석 결과 탄소, 수소, 산소 등의 원소로 구성되어 있으며, 본 발명에서는 이러한 원소분석에 따라 제지슬러지를 탄화수소원으로 이용하여 수증기개질법에 따른 촉매 가스화반응을 통해 생성물인 수소, 일산화탄소, 메탄, 이산화탄소가 혼합된 합성가스를 얻고자 한다.
본 발명에서 수증기개질법에 따른 촉매 가스화반응시 일어나는 반응들은 다음과 같다.
CHxOy + (1-y)H2O -----> CO + ((x/2)+1-y)H2
CO + H2O <-----> CO2 + H2
CO + 3H2 -----> CH4 + H2O
상기 반응식들은 제지슬러지를 수증기개질법에 따라 촉매 가스화반응시 동시다발적으로 일어나며, 반응식 1은 수증기개질반응이고, 반응식 2는 수성가스 전환반응이며, 반응식 3은 메탄화반응으로 촉매에 의한 형상선택성에 의해 합성가스를 발생시키는 쪽으로 반응이 진행하게 된다.
본 발명에 따른 합성가스 제조방법을 상세히 설명하면 다음과 같다.
도 1에 도시된 바와 같이 수분이 제거된 고형의 건조 제지슬러지(2)를 관형 스테인레스 개질기(1)에 충진하되, 먼저 관형 스테인레스 개질기(1)의 내측 하부에는 니켈계 담지촉매(3)인 Ni/MgO 또는 Ni/Al2O3 촉매를 반응물의 전체중량에 대하여 7.0 ~ 9.0 중량%를 충진한 다음 그 상부에 건조 제지슬러지(2)를 반응물의 전체 중량에 대하여 대략 절반정도의 양인 45 ~ 55 중량%를 충진하고, 나머지 절반은 수증기(steam)(4)를 반응물의 전체 중량에 대하여 45 ~ 55 중량%로 첨가한 후 반응물의 연소를 방지하기 위하여 관형 스테인레스 개질기(1)는 아르곤을 30 ~ 50 ㎖/min의 유속으로 1시간 ~ 2시간 동안 공급하여 공기가 존재하지 않는 아르곤 분위기로 조성한다.
상기 제지슬러지(2)는 10 ~ 30 mesh 정도로 분쇄된 것으로 함수량이 3% 미만의 것을 사용하게 되는데, 함수량이 적을수록 반응이 활발히 진행되어 가스화율(%)이 높아지고, 합성가스를 이용한 다음 반응단계인 연료생성반응시 활용도의 지표가 되는 합성가스의 H2/COx의 비율이 0.5 ~ 2사이의 수치를 나타내게 되어 높은 수득율과 활용도를 지닌 합성가스를 생산하게 된다.
상기 관형 스테인레스 개질기(1)는 통상적으로 수증기개질법에서 사용되는 관형개질기(tubular reformer)로서, 본 발명에서는 지름이 1 inch이며, 길이가 20cm인 원통형 관형개질기를 사용하였다.
반응물이 모두 충진된 관형 스테인레스 개질기(1)는 관형 스테인레스 개질기(1)의 외부를 둘러싼 전기히터(5)에 의해 상온에서부터 40 ~ 50℃/min의 속도로 승온시켜 반응온도를 500 ~ 800℃로 유지하게 되며, 1시간 30분 ~ 2시간 30분 동안 촉매 가스화 반응을 진행시켜 합성가스를 제조하게 된다.
상기 반응에 사용된 촉매의 제법은 다음과 같다.
1. 니켈계 담지촉매인 Ni/MgO의 제법
니켈계 담지촉매인 Ni/MgO는 incipient-wetness법에 따라 제조되는데, 분말상태의 MgO(UBE ind., Japen) 10g에 10% 농도의 Ni(C5H7O2)2 용액을 스포이드로 조금씩 가하여 분말상태의 MgO 표면 전체가 촉촉한 상태가 될 때까지 적신 후, 100℃의 건조기(오븐)에서 12시간정도 건조시키는 과정을 5회반복하고, 다시 400℃의 건조기(오븐)에서 16시간동안 소성시켜 분말상태의 니켈계 담지촉매인 Ni/MgO를 완성한다.
2. 니켈계 담지촉매인 Ni/Al2O3의 제법
니켈계 담지촉매인 Ni/Al2O3는 incipient-wetness법에 따라 제조되는데, 550℃에서 12시간동안 소성한 분말상태의 Al2O3 15g과 증류수 200㎖와 분말상태의 Ni(NO3)2·6H2O 4.954g을 넣고 녹인 후 둥근플라스크에서 12시간 동안 교반시킨 다음 거름종이에 걸러 필터링하고, 이 필터링된 고형물을 70 ~ 80℃의 물로 수세한 후 100℃의 건조기(오븐)에서 12시간 동안 건조시키고, 건조시킨 시료를 다시 450℃의 건조기(오븐)에서 6시간 동안 소성시켜 분말상태의 니켈계 담지촉매인 Ni/Al2O3를 완성한다.
상기된 각 촉매를 이용하여 합성가스를 제조하는 각각의 실시예는 다음과 같다.
<실시예 1>
관형 스테인레스 개질기에 Ni/MgO 촉매 1.25g을 충진시키고, 그 상부에 완전히 건조된 제지슬러지 7g을 충진시킨 후 수증기 7g을 첨가하고 아르곤을 40 ㎖/min의 유속으로 1시간동안 공급하여 공기가 존재하지 않는 아르곤 분위기로 조성한 다음 전기히터를 이용하여 45℃/min의 속도로 승온시켜 반응온도를 700 ℃로 유지하여 2시간동안 제지슬러지를 촉매 가스화반응시킨다.
관형 스테인레스 개질기에서 생성된 합성가스는 관형 스테인레스 개질기와 연결된 응축기를 통과시켜, 이 응축기에서 수증기(H2O)가 제거된 수소(H2), 일산화탄소(CO), 메탄(CH4), 이산화탄소(CO2) 가스만이 최종생성물로 남게 된다.
반응 종료 후 반응물의 분석은 가스 크로마토그래피(한국 돈암사 DS 6200제품과 미국 SRI사 8610B제품을 사용)를 이용하였고 분석결과는 표 1과 같다.
< 표 1 > Ni/MgO 촉매를 사용하였을 때의 결과
촉 매 생성물의 선택도(%) 가스화율(%) 생성된 가스의 부피(ℓ) H2/COx
H2 CO CH4 CO2
Ni/MgO 49.6 7.0 9.2 34.2 50.5 1.14 1.33
<실시예 2>
관형 스테인레스 개질기에 Ni/Al2O3 촉매 1.25g을 충진시키고, 그 상부에 완전히 건조된 제지슬러지 7g을 충진시킨 후 수증기 7g을 첨가하고 아르곤을 40 ㎖/min의 유속으로 1시간동안 공급하여 공기가 존재하지 않는 아르곤 분위기로 조성한 다음 전기히터를 이용하여 45℃/min의 속도로 승온시켜 반응온도를 700 ℃로 유지하여 2시간동안 제지슬러지를 촉매 가스화반응시킨다.
관형 스테인레스 개질기에서 생성된 합성가스는 관형 스테인레스 개질기와 연결된 응축기를 통과시켜, 이 응축기에서 수증기(H2O)가 제거된 수소(H2), 일산화탄소(CO), 메탄(CH4), 이산화탄소(CO2) 가스만이 최종생성물로 남게 된다.
반응 종료 후 반응물의 분석은 가스 크로마토그래피(한국 돈암사 DS 6200제품과 미국 SRI사 8610B제품을 사용)를 이용하였고 분석결과는 표 2와 같다.
< 표 2 > Ni/MgO 촉매를 사용하였을 때의 결과
촉 매 생성물의 선택도(%) 가스화율(%) 생성된 가스의 부피(ℓ) H2/COx
H2 CO CH4 CO2
Ni/Al2O3 45.4 8.2 8.4 38.0 49.4 1.08 0.98
상기와 같이 니켈계 담지촉매 중 Ni/MgO 또는 Ni/Al2O3를 사용하여 수증기개질법에 따른 촉매 가스화 반응을 진행하였을 때 합성가스 중 H2/COx의 비율이 0.5 ~ 2.0 사이의 수치를 나타냄으로써 이 합성가스를 이용한 메탄올합성이나 디메틸에탄올의 합성 등 다음 단계의 반응이 활발히 진행될 수 있으며, 기타 다른 촉매를 사용하여 반응시에는 합성가스 중 H2/COx의 비율이 너무 작거나 크게 나타나게 되어 합성가스를 이용한 메탄올합성이나 디메틸에탄올의 합성 등 다음 단계의 반응이 이루어지지 않거나 그 생성물의 양이 극히 적어 경제적 활용성이 떨어지게 된다.
상기와 같이 본 발명에 의하면 바이오매스 중 유기성 산업폐기물인 제지슬러지를 대체 에너지원으로 이용하여 수소와 일산화탄소가 다량 함유된 합성가스를 제조할 수 있으며, 이와 같이 제조된 합성가스 중 H2/COx의 비율이 0.5 ~ 2.0 사이의 수치를 나타냄으로써 합성가스를 이용한 메탄올 또는 디메틸에탄올의 합성이나, 피셔-트롭스(Fischer-Tropsch) 합성반응을 이용하여 피셔-트롭스디젤 등의 연료를 생상하는 다음 단계의 반응이 활발히 진행되고 많은 양의 연료를 생성할 수 있게 되며 또한, 유기성 산업폐기물인 제지슬러지를 소각처리하지 않음으로써 공해물질이 발생되지 않아 환경오염을 방지할 수 있는 효과가 있다.
도 1은 본 발명에 따라 관형 스테인레스 개질기에 반응물질을 충진한 상태의 개략도
< 도면의 주요부분에 대한 부호의 설명 >
1. 관형 스테인레스 개질기
2. 제지슬러지
3. 니켈계 담지촉매
4. 수증기
5. 전기히터

Claims (3)

  1. 수증기개질법에 따라 촉매를 사용하여 합성가스를 제조하는 방법에 있어서, 수분이 제거된 고형의 건조 제지슬러지를 관형 스테인레스 개질기에 충진하되, 먼저 관형 스테인레스 개질기의 하부에는 니켈계 담지촉매를 반응물의 전체중량에 대하여 7.0 ~ 9.0 중량%를 충진하고 그 상부에 건조 제지슬러지를 반응물의 전체 중량에 대하여 45 ~ 55 중량%를 충진하며, 수증기를 반응물의 전체 중량에 대하여 45 ~ 55 중량%로 첨가한 후 반응물의 연소를 방지하기 위하여 관형 스테인레스 개질기는 아르곤을 30 ~ 50 ㎖/min의 유속으로 1시간 ~ 2시간 동안 공급하여 공기가 존재하지 않는 아르곤 분위기로 조성한 다음 반응온도를 500 ~ 800℃로 유지하며 1시간 30분 ~ 2시간 30분 동안 촉매 가스화 반응을 진행시켜 합성가스를 제조하는 것을 특징으로 하는 제지슬러지를 이용한 합성가스 제조방법.
  2. 제 1항에 있어서, 상기 니켈계 담지촉매는 Ni/MgO 인 것을 특징으로 하는 제지슬러지를 이용한 합성가스 제조방법.
  3. 제 1항에 있어서, 상기 니켈계 담지촉매는 Ni/Al2O3 인 것을 특징으로 하는 제지슬러지를 이용한 합성가스 제조방법.
KR10-2003-0042150A 2003-06-26 2003-06-26 제지슬러지를 이용한 합성가스 제조방법 KR100519386B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0042150A KR100519386B1 (ko) 2003-06-26 2003-06-26 제지슬러지를 이용한 합성가스 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0042150A KR100519386B1 (ko) 2003-06-26 2003-06-26 제지슬러지를 이용한 합성가스 제조방법

Publications (2)

Publication Number Publication Date
KR20050001812A KR20050001812A (ko) 2005-01-07
KR100519386B1 true KR100519386B1 (ko) 2005-10-06

Family

ID=37217411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0042150A KR100519386B1 (ko) 2003-06-26 2003-06-26 제지슬러지를 이용한 합성가스 제조방법

Country Status (1)

Country Link
KR (1) KR100519386B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632146B1 (ko) 2015-03-31 2016-06-21 (주)정석이엔씨 바이오매스 가스화 장치
KR101632147B1 (ko) 2015-04-01 2016-06-22 (주)정석이엔씨 바이오매스 발전설비

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987979B1 (ko) * 2008-10-14 2010-10-18 고려대학교 산학협력단 니켈 담지 촉매를 혼합한 바이오매스 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632146B1 (ko) 2015-03-31 2016-06-21 (주)정석이엔씨 바이오매스 가스화 장치
KR101632147B1 (ko) 2015-04-01 2016-06-22 (주)정석이엔씨 바이오매스 발전설비

Also Published As

Publication number Publication date
KR20050001812A (ko) 2005-01-07

Similar Documents

Publication Publication Date Title
Foong et al. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production
Lee et al. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels
Wang et al. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts
Demirbaş Hydrogen production from biomass by the gasification process
Skoulou et al. Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas
Ptasinski Thermodynamic efficiency of biomass gasification and biofuels conversion
US8173044B1 (en) Process for biomass conversion to synthesis gas
Jia et al. High quality syngas production from catalytic gasification of woodchip char
Karimi-Maleh et al. Advanced integrated nanocatalytic routes for converting biomass to biofuels: A comprehensive review
CN101918305A (zh) 利用甲醇生产氢气和燃料,生产氢气和燃料的方法及设备
WO1996030464A1 (en) Catalytic supercritical gasification of wet biomass
US20210140054A1 (en) Methods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes
Kaur et al. Thermochemical route for biohydrogen production
Bhaskar et al. Thermochemical route for biohydrogen production
Faraji et al. Experimental and simulation study of peanut shell-derived activated carbon and syngas production via integrated pyrolysis-gasification technique
Hossain et al. Hydrogen production by gasification of biomass and opportunity fuels
Devi et al. Energy recovery from biomass using gasification
Krishna et al. Gasification of lignocellulosic biomass
Kan et al. Hydrogen production from biomass
CN102712847B (zh) 生物精炼方法
CA2657786A1 (en) Method and apparatus for steam hydro-gasification in a fluidized bed reactor
KR100519386B1 (ko) 제지슬러지를 이용한 합성가스 제조방법
Pandey et al. Syngas production via biomass gasification
Olufemi Comparative study of temperature effect on gasification of solid wastes in a fixed bed
Chaiklangmuang et al. Performance of active nickel loaded lignite char catalyst on conversion of coffee residue into rich-synthesis gas by gasification

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140903

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 18