KR100510831B1 - A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor - Google Patents

A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor Download PDF

Info

Publication number
KR100510831B1
KR100510831B1 KR10-2001-0083682A KR20010083682A KR100510831B1 KR 100510831 B1 KR100510831 B1 KR 100510831B1 KR 20010083682 A KR20010083682 A KR 20010083682A KR 100510831 B1 KR100510831 B1 KR 100510831B1
Authority
KR
South Korea
Prior art keywords
water
hydrogen sulfide
cog
hydrogen
coke oven
Prior art date
Application number
KR10-2001-0083682A
Other languages
Korean (ko)
Other versions
KR20030053722A (en
Inventor
서병섭
이현
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-2001-0083682A priority Critical patent/KR100510831B1/en
Publication of KR20030053722A publication Critical patent/KR20030053722A/en
Application granted granted Critical
Publication of KR100510831B1 publication Critical patent/KR100510831B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent

Abstract

농안수중의 황성분을 제거하는 농안수처리방법 및 황성분이 제거된 농안수를 이용하여 코크 오븐가스를 정제하는 방법에 관한 것으로, 농안수중에 함유되어 있는 유화수소의 당량 대비 5-20% 초과 당량의 황산철을 투입하고 형성된 황화철 침전물을 제거함으로써 농안수중의 유화수소가 제거된다. 유화수소 제거처리된 25℃이하의 농안수와 코크 오븐가스를 기액첩촉시켜 코크 오븐가스중의 유화수소가 고효율로 제거된다. 황화수소가 고효율로 제거된 COG를 연료로 사용함으로써 SOX의 발생량이 감소되고 환경친화적인 크린 연료의 제조가 가능하다.This method relates to a method for treating a coke oven gas by using a non-sulphur water treatment method for removing sulfur components from farm water, and a method for purifying coke oven gas using non-sulphur water. Hydrogen emulsification in the farmed water is removed by introducing iron and removing the formed iron sulfide precipitate. The hydrogen sulfide in the coke oven gas is removed with high efficiency by gas-liquid contacting the coarse water and the coke oven gas of 25 degrees C or less processed by emulsification removal. Hydrogen sulfide is reduced, the amount of generation of SO X by using a COG removed with high efficiency in the fuel and it is possible to manufacture of environmentally friendly clean fuel.

Description

농안수의 처리방법 및 처리된 농안수를 이용한 코크 오븐가스 정제방법{A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor} A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor}

본 발명은 농안수 처리방법 및 처리된 농안수를 이용한 코크 오븐가스 정제방법에 관한 것이다. 보다 상세하게는 농안수중의 황성분을 제거하는 농안수처리방법 및 황성분이 제거된 농안수를 이용하여 코크 오븐가스를 정제하는 방법에 관한 것이다. The present invention relates to a coke oven gas purification method using the treated method and the treated non-go. More specifically, the present invention relates to a method for treating a coarse oven gas using a method for treating a non-agricultural water and a method for removing coarse sulfur from a non-sulphur.

코크스 제조과정에서 코크오븐가스(Coke Oven Gas, 이하, 단지 'COG'라 한다.)와 수분이 발생되며, COG에는 암모니아 및 유화수소 가스가 함유되어 연소시에 SOx와 NOx를 발생시켜 대기 환경오염의 원인이 된다. 또한, 상기 수분에는 코크스 건류중에 화학반응에 의해서 생성된 여러 가지 화합물이 존재하는데, 특히 암모니아가 다량 함유되어 있어서 안수라고 하며, 이 안수 중에는 암모니아와 유황화합물, 특히 유화수소가 포함되어 있다.Coke Oven Gas (hereinafter referred to simply as 'COG') and water are generated during the coke manufacturing process, and COG contains ammonia and hydrogen sulfide gas to generate SOx and NOx during combustion, thereby polluting the atmosphere. Cause. In addition, the water contains various compounds produced by chemical reactions in the coke distillation. Especially, it contains a large amount of ammonia, which is called ordination. The ordination contains ammonia and sulfur compounds, especially hydrogen sulfide.

한편, 안수는 코크 오븐가스 중의 유화수소 제거를 위한 흡수 중화제로 이용됨으로, 가스 처리공정인 유화수소 스크러버에 사용되는 안수 중에 유화수소 농도가 높으면 흡수 중화 효과가 감소하여 COG 정제 효율이 감소된다. 또한, 안수중의 유화수소는 공정 설비를 부식시키고 환경에 악영향을 미친다. On the other hand, since the ordination is used as an absorption neutralizer for removing hydrogen sulfide in the coke oven gas, when the concentration of hydrogen sulfide is high in the ordination used for the hydrogenation scrubber, which is a gas treatment process, the absorption neutralization effect is reduced, thereby reducing COG purification efficiency. In addition, hydrogen sulfide in ordination corrodes process equipment and adversely affects the environment.

종래의 안수 중에 함유되어 있는 유화수소 처리는 안수를 증류하는 설비인 암모니아 스틸 그리고 유화수소를 탈리하고, 암모니아를 농축하는 디소시에이터에서 행하여져 왔다. 상기 두가지 목적을 동시에 실현시키는 상호 보완적인 두개 설비를 병합 운전을 하고 있으며, 이 공정에서 제조된 농안수는 COG중 유화수소 제거를 위한 포집용 안수로 사용된다. Hydrogen emulsion treatment contained in conventional ordination has been performed in ammonia steel, which is a facility for distilling ordination, and in a desorter which desorbs hydrogen and concentrates ammonia. The two complementary facilities that simultaneously realize the above two objectives are combined and operated, and the untreated water prepared in this process is used as a collecting ordination for removing hydrogen sulfide from COG.

그러나 이 공정을 거쳐서 발생된 (농)안수중에는 여전히 유화수소가 다량 존재한다. 따라서, 이를 포집용 안수로 사용할 때 안수중에 존재하는 유화수소는 COG중에 함유된 유화수소 제거에 악영향을 미친다. 즉, 안수중에 존재하는 유화수소는 COG중에 함유되어 있는 유화수소가 안수중에 용해되는 것을 방해함으로 COG중의 유화수소 제거효율이 저하된다. However, there is still a large amount of hydrogen emulsified in the (concentrated) ordination generated through this process. Therefore, when it is used as a collecting ordination, the hydrogen sulfide present in the ordination adversely affects the removal of the hydrogen sulfide contained in the COG. That is, the hydrogen sulfide present in the ordination prevents the hydrogen sulfide contained in the COG from dissolving in the ordination, thereby reducing the hydrogen sulfide removal efficiency in the COG.

이에 본 발명의 목적은 COG 정제용으로 사용되는 농안수 중에 포함되어 있는 유화수소를 제거하기 위한 농안수처리방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a method for treating a farming and drinking water for removing hydrogen sulfide contained in the farming and drinking water used for COG purification.

본 발명의 다른 목적은 상기 유화수소가 제거 처리된 농안수를 사용하여 COG중의 유화수소를 제거하는 COG 정제방법을 제공하는 것이다. Another object of the present invention to provide a COG purification method for removing the hydrogen sulfide in the COG using the concentrated hydrogen water treated with the hydrogen emulsion.

본 발명의 일 견지에 의하면, According to one aspect of the invention,

농안수에 농안수중에 함유되어 있는 유화수소의 당량 대비 5-20%초과 당량의 황산철을 투입하는 단계; 및Injecting 5-20% of the equivalent amount of iron sulfate to the amount of hydrogen emulsified water contained in the farm water; And

상기 유화수소와 황산철의 반응에 의해 형성된 황화철 침전물을 제거하는 단계;를 포함하여 구성되는 농안수처리방법이 제공된다. There is provided a farm water treatment method comprising a; removing the iron sulfide precipitate formed by the reaction of hydrogen sulfide and iron sulfate.

본 발명의 다른 견지에 의하면, According to another aspect of the present invention,

상기 본 발명의 방법으로 처리된 25℃이하의 농안수와 코크 오븐가스를 기액첩촉시켜 코크 오븐가스중의 유화수소를 제거하는 코크 오븐 가스 정제방법이 제공된다. The coke oven gas purification method which removes hydrogen sulfide in coke oven gas by gas-liquid contacting the coke oven gas and the coke oven gas of 25 degrees C or less processed by the method of the present invention is provided.

이하, 본 발명에 대하여 상세히 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

COG 정제에 사용되는 농안수중의 불순물인 유화수소는 COG 가스중에 포함되어 있는 유화수소의 포집을 방해한다. 즉, 농안수중에 유화수소가 존재함으로 COG중의 존재하는 유화수소와의 농도차가 적어져 농안수가 포집할 수 있는 COG중의 유화수소의 양이 감소하며 따라서, COG중의 유화수소 제거율이 저하된다. Hydrogen emulsification, an impurity in the surface water used for COG refining, prevents the collection of hydrogen emulsification contained in COG gas. That is, the presence of hydrogen emulsified water in the farmed water decreases the concentration difference with the hydrogen sulfide present in the COG, so that the amount of hydrogen emulsified in the COG that the farmed water can collect is reduced, and thus, the hydrogen removal rate in the COG is lowered.

본 발명에서는 농안수가 COG중의 유화수소를 효과적으로 포집할 수 있도록 유화수소중에 포함되어 있는 황성분을 불용성 황화물로 침전시키고 이를 제거함으로써 농안수중에 포함되어 있는 유화수소를 제거한다. 이와 같이 유화수소성분이 감소된 농안수를 사용함으로써 COG중의 유화수소 정제효율이 또한 증대된다. In the present invention, the sulfur component contained in the hydrogen sulfide is precipitated with insoluble sulfide and removed to remove the hydrogen sulfide contained in the agricultural and hydrophobic water so that the farmed water can effectively collect the hydrogenated hydrogen in the COG. As such, the use of concentrated water with reduced hydrogen sulfide component also increases the hydrogen purification efficiency in COG.

농안수는 일반적으로 디소시에이트에 유입된 코크스 제조과정에서 발생한 안수 및 암모니아 스틸에서 암모니아 증류시 발생하는 암모니아가스중에서 유화수소가 탈리되고 암모니아가 농축된 것이다. In general, the surface water is hydrogen sulfide desorbed and ammonia is concentrated in the ammonia gas generated from ammonia distillation from the ordination and ammonia steel generated in the coke manufacturing process introduced into the desorate.

유화수소의 물에 대한 용해도는 258mg/100g(20℃, 1기압)로 유화수소는 물에 쉽게 용해된다. 이와 같이 용해된 유화수소는 농안수중에서 하기 반응식 1과 같이 용해되어 수소이온(H+)과 황이온(S-2)로 존재한다. 따라서, 본 발명에서는 상기 황이온의 불용성 침전물을 형성하여 농안수를 이용한 COG의 정제시 COG 정제효율 감소의 원인이 되는 유화수소를 제거하는 것이다.The solubility of hydrogen emulsion in water is 258mg / 100g (20 ℃, 1 atm), so hydrogen sulfide is easily dissolved in water. Hydrogen emulsified in this way is dissolved in farmed water as in Scheme 1 and present as hydrogen ions (H + ) and sulfur ions (S -2 ). Therefore, in the present invention, by forming an insoluble precipitate of the sulfur ions to remove the hydrogen sulfide which causes the reduction of the COG purification efficiency during the purification of COG using the farming water.

황이온을 불용성 침전물 형태의 황화물로 제거하기에 바람직한 금속 양이온으로는 철이온(Fe++), 코발드이온(Co++), 니켈이온(Ni++), 망간(Mn++ ), 아연이온(Zn++)등을 들 수 있으며, 황이온과의 결합력등을 고려하여 철이온이 가장 바람직한 것이다.Preferred metal cations for the removal of sulfur ions as sulfides in the form of insoluble precipitates are iron ions (Fe ++ ), cobalt ions (Co ++ ), nickel ions (Ni ++ ), manganese (Mn ++ ), zinc Ions (Zn ++ ), iron ions are the most preferable in consideration of the bonding strength with sulfur ions.

이들은 황이온(S-2)과 하기 식 3과 같이 당량 반응하나, 황화물을 형성하는 양이온이 동일한 당량으로 존재하는 경우, 부반응등에 의해 충분한 황이온 제거효율을 나타내지 못함으로 양이온 성분을 황 이온성분의 당량대비 5-20%의 과량, 바람직하게는 5-15%과량, 보다 바람직하게는 약 10%과량으로 투여한다. 양이온 성분을 황이온성분 당량대비 상기 과량으로 첨가되는 경우 농안수중의 황화수소가 95%이상 제거된다.They react with sulfur ions (S -2 ) equivalently as shown in Equation 3 below, but when cations forming sulfides are present in the same equivalents, they do not exhibit sufficient sulfur ion removal efficiency by side reactions. 5-20% excess, preferably 5-15% excess, more preferably about 10% excess. When the cationic component is added in an excessive amount relative to the sulfur ion component equivalent, hydrogen sulfide in the farmed water is removed by 95% or more.

이하, 황이온과 철이온의 불용성 침전물 형성에 대하여 보다 상세히 설명한다. Hereinafter, the formation of insoluble precipitates of sulfur ions and iron ions will be described in more detail.

유화수소는 하기 반응식 1과 같이 수용액중(20℃, 1기압)에 이온상태로 용해된다. 한편, 황산철은 반응식 2와 같이 수용액중에 용해되어 이온상태로 존재하며, 따라서, 수용액중 유화수소와 황산철의 전체 용해, 해리반응은 반응식 3과 같다. 이 때, 황이온(S-2)와 철이온(Fe+2)이 반응하여 FeS의 불용성 침전물을 형성하며, 상기 FeS 불용성 침전물을 제거함으로써 농안수중의 유화수소가 제거된다.Hydrogen emulsion is dissolved in an ionic state in an aqueous solution (20 ° C., 1 atm) as in Scheme 1 below. On the other hand, iron sulfate is dissolved in an aqueous solution and present in an ionic state as in Scheme 2. Therefore, the total dissolution and dissociation reaction of hydrogen sulfide and iron sulfate in the aqueous solution are the same as in Scheme 3. At this time, sulfur ions (S -2 ) and iron ions (Fe +2 ) react to form an insoluble precipitate of FeS, and by removing the FeS insoluble precipitate, hydrogen sulfide in the farmed water is removed.

상기 불용성 침전물은 어떠한 방법으로 제거될 수 있으며, 이로써 특히 한정하는 것은 아니라, 예를들어, 여과기로 여과하여 제거할 수 있다. 특히 원심분리 필터는 공정에 직접 적용할 수 있으며, 효과적으로 침전물은 외부로 배출하고 농안수인 여액은 공정내에 직접순환할 수 있음으로 바람직한 것이다.The insoluble precipitate can be removed in any way, which is not particularly limited, for example, can be removed by filtration with a filter. In particular, the centrifugal filter can be directly applied to the process, and the sediment can be discharged to the outside, and the concentrated filtrate can be directly circulated in the process.

상기 황화수소가 제거 처리된 농안수를 COG와 기액접촉함으로써 COG중의 황화수소는 농안수중의 암모니아성분와 NH4HS를 형성하여 제거된다.The hydrogen sulfide in the COG is removed by forming ammonia component and NH 4 HS in the coarse water by gas-liquid contacting the hydrogen sulfide-treated demineralized water with COG.

또한, COG중에 함유된 유화수소의 포집효율을 증대시키기 위해서는 COG중의 황화수소 포집(이하, 'COG 정제'라고도 한다.)에 사용되는 안수의 온도가 중요한 역할을 한다. 안수의 온도가 높으면 증기압이 높아지고 포집 반응속도가 저하되며 따라서, 황화수소 포집효율이 저하된다. 따라서, COG정제에 사용되는 안수의 온도를 25℃이하, 바람직하게는 25-15℃, 보다 바람직하게는 25℃-상온으로 관리함으로써 COG중의 유화수소를 85%이상 포집할 수 있다. 예를들어, 공정도중 열교환기를 설치하여 공정상으로는 처리된 안수의 온도를 25℃이하로 관리할 수 있다. In addition, in order to increase the collection efficiency of hydrogen sulfide contained in COG, the temperature of ordination used for hydrogen sulfide capture (hereinafter referred to as 'COG purification') in COG plays an important role. If the temperature of the ordinal water is high, the vapor pressure increases and the collection reaction rate decreases, and thus, the hydrogen sulfide collection efficiency decreases. Therefore, 85% or more of hydrogen sulfide in COG can be collected by managing the temperature of the ordination water used for COG purification at 25 degrees C or less, preferably 25-15 degreeC, more preferably 25 degreeC-room temperature. For example, by installing a heat exchanger during the process, the temperature of the treated ordinal water can be controlled below 25 ° C in the process.

상기와 같이 황화수소 제거처리된 농안수를 사용함으로써 COG가스중의 유화수소 정제효율이 증대되고 유화수소가 고도로 제거, 정제된 COG가스를 연료로 사용하는 경우 SOx 발생량이 현저하게 감소된다. By using the hydrogen sulfide-treated desulfurized water as described above, the purification efficiency of hydrogen sulfide in the COG gas is increased, and the amount of SOx generated is significantly reduced when the hydrogen sulfide is highly removed and purified COG gas is used as the fuel.

이하, COG의 정제를 위한 종래의 안수 순환공정과 본 발명에 의한 안수 순환공정을 예로들어 구체적으로 설명한다. Hereinafter, a conventional ordination circulation process for purifying COG and an ordination circulation process according to the present invention will be described in detail.

도 1은 종래의 안수 순환공정을 나타내는 공정 개략도이며, 도 2는 본 발명에 의한 안수 순환공정을 나타내는 공정 개략도이다. 1 is a process schematic diagram showing a conventional ordination circulation process, and FIG. 2 is a process schematic diagram showing an ordination circulation process according to the present invention.

종래에는 제 1도에 나타낸 바와 같이 암모니아스틸에서 안수를 증류(증류공정)하고 여기서 발생되는 암모니아가스는 디소시에이터(농축공정)에서 황화수소가 탈리되고 암모니아 농도가 증대되는데, 이때 농축공정으로 유입되는 안수중의 암모니아농도는 12-14g/l이나, 디소시에이터에서 농도가 높아져서 17-20g/l로 고농도의 농안수가 얻어진다. Conventionally, as shown in FIG. 1, the water is distilled from the ammonia steel (distillation process), and the ammonia gas generated here is desorbed from the hydrogen sulfide in the desorator (concentration process) and the concentration of ammonia is increased. The concentration of ammonia in ordination is 12-14 g / l, but the concentration is increased in the desorter to obtain high concentrations of concentrated snow water at 17-20 g / l.

이 농안수를 이용하여 COG가스에 함유된 유화수소를 포집하게되는데, 상기 농안수중에는 유화수소가 0.9-1.4g/l로 다량 함유되어 있다.The farmed water is used to collect hydrogen sulfide contained in the COG gas. The farmed water contains a large amount of hydrogen sulfide at 0.9-1.4 g / l.

따라서, 본 발명에서는 도 2에 나타낸 바와 같이, 농안수중의 유화수소를 제거하기 위한 반응조에 황산철 수용액을 투입하고 철이온과 황이온이 결합하여 형성된 불용성 황화철을 제거함으로써 농안수중의 유화수소가 제거된다. Therefore, in the present invention, as shown in FIG. 2, the aqueous solution of iron sulfate is added to a reaction tank for removing hydrogen sulfide in the farmed water and the insoluble iron sulfide formed by the combination of iron and sulfur ions is removed to remove hydrogen sulfide in the farmed water. do.

생성된 황화철 입자를 원심분리하여 제거한다. 나아가, COG중의 유화수소의 포집을 향상시키기 위해서 처리된 농안수를 열교환기에 통과시켜 농안수의 온도를 25℃이하로 관리한다. The resulting iron sulfide particles are removed by centrifugation. Further, in order to improve the collection of hydrogen sulfide in the COG, the treated farmed water is passed through a heat exchanger to control the temperature of the farmed water to 25 ° C or less.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다. Hereinafter, the present invention will be described in detail through examples.

실시예 1Example 1

본 실시예는 농안수에 첨가되는 황화철의 당량변화에 따른 황화수소 제거율을 나타내는 것이다. 농안수를 채취하여 농안수중의 화학성분을 분석하여 그 결과를 표 1에 나타내었다.This embodiment shows the hydrogen sulfide removal rate according to the change in the equivalent weight of iron sulfide added to the farming water. Rural water was collected and the chemical components in the Rural water were analyzed and the results are shown in Table 1.

[표 1]TABLE 1

화학성분Chemical composition 유리 암모니아(free Ammonia)Free Ammonia 유화수소(H2S)Hydrogen sulfide (H 2 S) 이산화탄소(CO2)Carbon Dioxide (CO 2 ) 단위(g/l)Unit (g / l) 17.52   17.52 1.32  1.32 2.99  2.99 몰농도(M)Molarity (M) 1.03    1.03 0.0388  0.0388 0.0680  0.0680

상기 표에서 알수 있듯이, 농안수 10ℓ에는 유화수소가 13.2g 존재하고 이는 0.388몰에 해당한다. 따라서, 1몰 농도의 황산철 수용액 0.388리터가 상기 농안수중 유화수소의 당량에 해당하므로 1몰 황산철 388ml을 상기 농안수에 첨가하였다. As can be seen from the above table, 10 l of Nong's water present 13.2 g of hydrogen emulsion, which corresponds to 0.388 moles. Accordingly, since 0.388 liter of an aqueous solution of iron sulfate at 1 mol concentration corresponds to the equivalent of hydrogen emulsified water in the farming water, 388 ml of 1 mol iron sulfate was added to the farming water.

또한, 농안수에 황산철을 당량의 10%, 20%, 30% 비율로 더 첨가하여 반응시켰다. 농안수의 온도는 25℃로 조절하였다. In addition, iron sulfate was added to the farming water at 10%, 20%, and 30% of the equivalents to react. The temperature of the surface water was adjusted to 25 ° C.

그 후, 각각의 경우에 대해서 형성된 황화철 침전물을 원심분리 필터를 사용하여 여과한 후, 여액을 채취하여 유화수소의 농도를 분석하고 초기값 대비 농도비를 계산하여 그 결과를 도 2에 나타내었다.Thereafter, the iron sulfide precipitate formed in each case was filtered using a centrifugal filter, and the filtrate was collected to analyze the concentration of hydrogen sulfide, and the concentration ratio to the initial value was calculated and the results are shown in FIG. 2.

도 2에 알 수 있듯이, 유화수소와 황화철을 당량반응한 경우에는 황화수소 제거율이 93%로 적정 제거율인 95%에 미치지 못하였다. 황산철을 당량대비 10%이상 과량을 투여한 경우 95%이상의 우수한 황화수소 제거율을 나타내었다. As can be seen in Figure 2, when the equivalent reaction between hydrogen sulfide and iron sulfide, the hydrogen sulfide removal rate was 93%, which did not reach the proper removal rate of 95%. When iron sulfate was administered in excess of 10% by weight, the hydrogen sulfide removal rate was over 95%.

실시예 2Example 2

본 실시예에서는 황산철을 황이온 당량대비 10% 과량으로 이용하여 안수중에 포함되어 있는 유화수소를 제거한 농안수와 COG를 기액접촉시켜 COG중에 함유되어 있는 유화수소가스를 제거하였다. 처리된 농안수의 온도변화에 따른 COG중의 유화수소가스 포집율(제거율)을 도 3에 나타내었다. 본 실시예에서 COG로는 COG중에 유화수소가 부피비로 0.03%함유되어 있는 것을 사용하였다. In this embodiment, iron sulfate was used in an excess of 10% of sulfur ions equivalent to remove the hydrogen sulfide gas contained in the COG by gas-liquid contact with the coagulated water and the COG with the hydrogen sulfide removed from the ordination. The collection rate (removal rate) of the hydrogen sulfide gas in COG according to the temperature change of the treated farmed water is shown in FIG. 3. In this embodiment, as the COG, hydrogen sulfide contained 0.03% by volume in COG.

도 3에서와 같이 농안수의 COG에 포함되어 있는 유화수소가스의 포집율은 포집액으로 사용하는 농안수의 온도에 따라 다르다. As shown in FIG. 3, the collection rate of the emulsified hydrogen gas contained in the COG of the farming water is different depending on the temperature of the farming water used as the collection liquid.

농안수의 온도가 30℃인 경우에는 COG중 유화수소가스의 포집율이 73%로 적정 포집율 85%이하를 나타내며, 농안수의 온도가 25℃이하인 경우에는 포집율이 현저히 상승되어 85%이상의 유화수소가스 포집율을 나타내었다. When the temperature of the farmed water is 30 ℃, the collection rate of hydrogenated hydrogen gas in COG is 73%, which is 85% or less, and when the temperature of the farmed water is 25 ℃ or less, the collection rate is significantly increased to be 85% or more. The hydrogen sulfide gas collection rate is shown.

실시예 3Example 3

25℃의 유화수소 제거처리하지 않은 농안수(유화수소 함량 1.32g/l, 10% 과량 당량의 황산철 수용액을 이용함)와 유화수소 제거 처리된 농안수(유화수소 함량 0.01g/l)를 이용하여 실시예 2와 같은 방법으로 COG중의 유화수소를 포집하였으며 그 결과를 표 2에 나타내었다.Non-hydrogenated non-hydrogenated nonaqueous water (hydrogen sulfide content 1.32 g / l, using 10% excess equivalents of iron sulfate aqueous solution) and hydrogenated non-hydrogenated nonaqueous water (hydrogen sulfide content 0.01g / l) By collecting the hydrogen sulfide in COG in the same manner as in Example 2 and the results are shown in Table 2.

[표 2]TABLE 2

시료명Sample Name 미처리 농안수Untreated untreated water 처리 농안수Treatment 유화수소 제거율(%)Hydrogen emulsification rate (%) 81%     81% 87%   87%

농안수중의 유화수소 함량이 적은 본 발명의 황성분 제거처리된 농안수를 이용한 경우에 보다 우수한 COG중의 유화수소 제거율을 나타내었다. The hydrogen sulfide removal rate in COG was better than that in the case of using the sulfur-free treated sulfur-free water of the present invention having a low hydrogen sulfide content.

농안수중의 황화수소가 효과적으로 제거되며, 이와 같이 황화수소가 제거되고 따라서 보다 고농도의 암모니아를 함유하는 농안수를 사용함으로써 COG중의 황화수소 제거율(포집율)이 증대된다. The hydrogen sulphide in the farmed water is effectively removed, and thus, the hydrogen sulfide is removed and thus the hydrogen sulfide removal rate (capture rate) in the COG is increased by using the farmed water containing a higher concentration of ammonia.

황화수소가 고효율로 제거된 COG를 연료로 사용함으로써 SOX의 발생량이 감소되고 환경친화적인 크린 연료의 제조가 가능하다. 또한, 대기 공해유발을 억제하는 효과가 있으며, 환경부담금이 절감된다.Hydrogen sulfide is reduced, the amount of generation of SO X by using a COG removed with high efficiency in the fuel and it is possible to manufacture of environmentally friendly clean fuel. In addition, there is an effect to suppress the air pollution, and environmental burden is reduced.

도 1a는 종래의 안수처리 공정을 나타내는 공정개략도이며,1A is a process schematic diagram showing a conventional ordination treatment process,

도 1b는 본 발명의 안수처리 공정을 나타내는 공정개략도이며, Figure 1b is a process schematic showing the ordination treatment process of the present invention,

도 2는 황산철 수용액 사용량에 따른 농안수중의 유화수소 제거율을 나타내는 그래프이며, Figure 2 is a graph showing the hydrogen sulfide removal rate in the fresh water according to the amount of iron sulfate aqueous solution used,

도 3은 농안수 온도에 따른 COG중의 유화수소 포집율을 나타내는 그래프이다. 3 is a graph showing the hydrogen sulfide collection rate in the COG according to the farming water temperature.

Claims (4)

농안수에 농안수중에 함유되어 있는 유화수소의 당량 대비 5-20% 초과 당량의 황산철을 투입하는 단계; 및Injecting more than 5-20% of the equivalent amount of iron sulfate compared to the equivalent of hydrogen emulsified hydrogen contained in the farming water; And 상기 유화수소와 황산철의 반응에 의해 형성된 황화철 침전물을 제거하는 단계;를 포함하여 구성되는 농안수처리방법.Removing the iron sulfide precipitate formed by the reaction of the hydrogen sulfide and iron sulfate. 제 1항에 있어서, 상기 황산철은 유화수소의 당량 대비 5-15%과량으로 투입됨을 특징으로 하는 방법. The method of claim 1, wherein the iron sulfate is added in an amount of 5-15% over the equivalent of hydrogen sulfide. 청구항 1항의 방법으로 처리된 25℃이하의 농안수와 코크 오븐가스를 기액첩촉시켜 코크 오븐가스중의 유화수소를 제거하는 코크 오븐 가스 정제방법.The coke oven gas purification method which removes hydrogen sulfide in coke oven gas by gas-liquid contacting the coarse water below 25 degreeC processed by the method of Claim 1, and coke oven gas. 제 3항에 있어서, 상기 농안수의 농도는 25∼15℃임을 특징으로 하는 방법. 4. The method according to claim 3, wherein the concentration of the surface water is 25 to 15 ° C.
KR10-2001-0083682A 2001-12-22 2001-12-22 A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor KR100510831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0083682A KR100510831B1 (en) 2001-12-22 2001-12-22 A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0083682A KR100510831B1 (en) 2001-12-22 2001-12-22 A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor

Publications (2)

Publication Number Publication Date
KR20030053722A KR20030053722A (en) 2003-07-02
KR100510831B1 true KR100510831B1 (en) 2005-08-30

Family

ID=32212384

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0083682A KR100510831B1 (en) 2001-12-22 2001-12-22 A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor

Country Status (1)

Country Link
KR (1) KR100510831B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085267A (en) * 2020-12-15 2022-06-22 재단법인 포항산업과학연구원 Method for removing h2s and hcn species contained in deacidified water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108698A (en) * 1995-10-19 1997-04-28 Kawasaki Steel Corp Ammoniacal liquid treatment
JP2000084589A (en) * 1998-09-09 2000-03-28 Nippon Steel Chem Co Ltd Treatment of coke plant waste water
KR20020051258A (en) * 2000-12-22 2002-06-28 이구택 Method for treating acid gas having hydrogen sulfide
KR100450224B1 (en) * 2000-08-24 2004-09-24 주식회사 포스코 Method for removing hydrogen sulfide of coke oven gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108698A (en) * 1995-10-19 1997-04-28 Kawasaki Steel Corp Ammoniacal liquid treatment
JP2000084589A (en) * 1998-09-09 2000-03-28 Nippon Steel Chem Co Ltd Treatment of coke plant waste water
KR100450224B1 (en) * 2000-08-24 2004-09-24 주식회사 포스코 Method for removing hydrogen sulfide of coke oven gas
KR20020051258A (en) * 2000-12-22 2002-06-28 이구택 Method for treating acid gas having hydrogen sulfide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085267A (en) * 2020-12-15 2022-06-22 재단법인 포항산업과학연구원 Method for removing h2s and hcn species contained in deacidified water
WO2022131778A1 (en) * 2020-12-15 2022-06-23 재단법인 포항산업과학연구원 Method for simultaneously removing hydrogen sulfide (h2s) and hydrogen cyanide (hcn) from concentrated ammonia liquor
KR102482248B1 (en) * 2020-12-15 2022-12-28 재단법인 포항산업과학연구원 Method for removing h2s and hcn species contained in deacidified water

Also Published As

Publication number Publication date
KR20030053722A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
US4044098A (en) Removal of mercury from gas streams using hydrogen sulfide and amines
KR20010031417A (en) Process for removing selenium from refinery process water and waste water streams
DE60212041T2 (en) Method and apparatus for removing mercury
EP0168453A1 (en) Process for stripping nitrogen oxides and sulphur oxides as well as optionally other noxious elements of flue gas from combustion plants
KR100313221B1 (en) Treatment of flue gas desulfurization drainage
CN110127918A (en) A kind of acidic flue gas washes Zero discharge treatment method and its device
KR20150002976A (en) Method of separation and recovery of precious metals from regenerated solution of spent petroleum catalyst with vanadium
CN106669402A (en) Gas field sulfur-containing waste gas treatment method
KR20020034205A (en) Method of treating combustion gas and treating appartus
CN105384285A (en) Treatment method of organic phosphorus pesticide wastewater
DE2528889B2 (en) Process for removing hydrogen sulfide from a gas
US20210154618A1 (en) A process for separation of heavy metals and/or sulfur species from ionic liquids
KR100510831B1 (en) A Treatment Method For Ammonia Liquor And A Purification Method of COG By Using The Treated Ammonia Liquor
AU5379100A (en) Process for removing selenium and mercury from aqueous solutions
CN1076322C (en) Method for treatment of waste water of ammonium sulfate
JP3945216B2 (en) Waste acid gypsum manufacturing method
DE69828784T2 (en) METHOD AND APPARATUS FOR SELECTIVELY ELIMINATING POLLUTION FROM GAS FLOWS
WO1985003238A2 (en) Process for stripping nitrogen oxides and sulphur oxides as well as optionally other noxious elements of flue gas from combustion plants
DE60109565T2 (en) Process for the purification of sulfur
KR101052259B1 (en) How to remove carbonate and metal ions in Hwaseong factory
KR100510830B1 (en) Elimination method of carbondioxide and sulfuric ion in ammonium liquor for refinement of coke oven gas
KR100516498B1 (en) Improved h2s scrubbing method in cokes oven gas using ammonia water and mdea
DE2408778C2 (en) Process for the degradation of pseudohalides contained in waste water
DE3444252A1 (en) Process and apparatus for removing hydrogen sulphides from gases
DE3223117C2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130801

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150805

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee