KR100509178B1 - Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP] - Google Patents

Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP] Download PDF

Info

Publication number
KR100509178B1
KR100509178B1 KR10-2003-0027195A KR20030027195A KR100509178B1 KR 100509178 B1 KR100509178 B1 KR 100509178B1 KR 20030027195 A KR20030027195 A KR 20030027195A KR 100509178 B1 KR100509178 B1 KR 100509178B1
Authority
KR
South Korea
Prior art keywords
esterase
leu
ala
bacillus megaterium
enzyme
Prior art date
Application number
KR10-2003-0027195A
Other languages
Korean (ko)
Other versions
KR20040093318A (en
Inventor
김형권
이정기
오태광
정여진
최원찬
류형석
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR10-2003-0027195A priority Critical patent/KR100509178B1/en
Publication of KR20040093318A publication Critical patent/KR20040093318A/en
Application granted granted Critical
Publication of KR100509178B1 publication Critical patent/KR100509178B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/11Bacillus megaterium

Abstract

본 발명은 신균주 바실러스 메가테리움 20-1(Bacillus megaterium 20-1), 이로부터 생산되는 신규 에스터라제 및 이의 대량 생산방법에 관한 것으로서, 더욱 상세하게는 토양으로부터 에스터라제 활성이 높은 신균주 바실러스 메가테리움 20-1을 분리하고, 상기 균주가 생산하는 에스터라제 효소를 분리하여 효소의 특성을 조사한 결과, 비이온성 계면활성제에 의해 활성이 크게 증가하는 신규 효소임을 확인하였으며, 에스터라제 유전자를 함유하는 재조합 발현벡터를 완성하고, 이 벡터를 도입하여 형질전환된 박테리아를 개발함으로써 이를 이용한 에스터라제의 대량 생산방법에 관한 것이다.The present invention relates to a bacterium Bacillus megaterium 20-1, a novel esterase produced therefrom, and a method for mass production thereof, and more specifically, a new high esterase activity from soil. The strain Bacillus megaterium 20-1 was isolated, and the esterase produced by the strain was isolated to examine the characteristics of the enzyme, and it was confirmed that it is a novel enzyme whose activity is greatly increased by a nonionic surfactant. The present invention relates to a method for mass production of an esterase using the recombinant expression vector containing the first gene and introducing the vector to develop a transformed bacterium.

Description

신균주 바실러스 메가테리움 20-1, 이로부터 생산되는 신규 에스터라제 및 이의 대량 생산방법{Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP]} Discovery of Bacillus megaterium 20-1 [KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21 (DE3) / pMLE [KCTC10434BP]}

본 발명은 신균주 바실러스 메가테리움 20-1(Bacillus megaterium 20-1), 이로부터 생산되는 신규 에스터라제 및 이의 대량 생산방법에 관한 것으로서, 더욱 상세하게는 토양으로부터 에스터라제 활성이 높은 신균주 바실러스 메가테리움 20-1을 분리하고, 상기 균주가 생산하는 에스터라제 효소를 분리하여 효소의 특성을 조사한 결과, 비이온성 계면활성제에 의해 활성이 크게 증가하는 신규 효소임을 확인하였으며, 에스터라제 유전자를 함유하는 재조합 발현벡터를 완성하고, 이 벡터를 도입하여 형질전환된 박테리아를 개발함으로써 이를 이용한 에스터라제의 대량 생산방법에 관한 것이다.The present invention relates to a bacterium Bacillus megaterium 20-1, a novel esterase produced therefrom, and a method for mass production thereof, and more specifically, a new high esterase activity from soil. The strain Bacillus megaterium 20-1 was isolated, and the esterase produced by the strain was isolated to examine the characteristics of the enzyme, and it was confirmed that it is a novel enzyme whose activity is greatly increased by a nonionic surfactant. The present invention relates to a method for mass production of an esterase using the recombinant expression vector containing the first gene and introducing the vector to develop a transformed bacterium.

에스터라제 효소는 생체내의 각종 대사반응을 촉진시키는 세포내 효소촉매로서 널리 연구되어 왔을 뿐만 아니라, 산업용 효소로서 각종 생물전환반응에서 이용되고 있다. 이와 같이 산업적으로 중요시되는 이유는 제약산업에 널리 쓰이는 키랄소재에 에스테르결합이 많이 포함되어 있기 때문이다. 비대칭 화학합성법으로 에스테르화합물을 합성하는 경우, 최고 700 psi의 고압과 250 ℃ 이상의 고온에서 반응이 진행되기 때문에 에너지가 많이 소모되며 품질에 좋지 않은 영향을 미치는 여러 가지 부반응이 일어날 뿐만 아니라, 전환율 및 광학순도가 낮아 고순도의 키랄화합물의 생산에 어려움이 있다. 반면에 에스터라제를 이용한 생물전환공정은 효소고유의 위치특이성과 입체특이성 및 다양한 기질특이성을 지니고 있어서 고순도의 키랄소재를 효율적으로 생산할 수 있다. 또한, 최근 효소를 이용한 이상계, 미수계, 비수계 및 역상계의 효소반응계가 개발됨에 따라 고부가 키랄소재의 제조에 에스터라제/리파제 효소촉매가 점차 널리 이용되고 있다.Esterase enzymes have been widely studied as intracellular enzyme catalysts for promoting various metabolic reactions in vivo, and are used in various bioconversion reactions as industrial enzymes. The reason why this is important industrially is that the chiral material widely used in the pharmaceutical industry contains a lot of ester bonds. When the ester compound is synthesized by asymmetric chemical synthesis, the reaction proceeds at a high pressure of up to 700 psi and a high temperature of 250 ° C. or higher, which consumes a lot of energy and causes various side reactions that adversely affect the quality. Low purity has difficulty in producing high purity chiral compounds. On the other hand, the biotransformation process using esterases can efficiently produce high-purity chiral materials because it has unique site-specificity, steric specificity and various substrate specificity. In addition, with the recent development of enzymatic reaction systems of ideal, non-aqueous, non-aqueous and reversed phases using enzymes, esterase / lipase enzyme catalysts are increasingly used for the preparation of high value chiral materials.

에스터라제/리파제는 다양한 동물, 식물 그리고 미생물로부터 생산되고 있는데, 이중에서도 미생물 효소가 효소생화학적으로 가장 다양하며, 많은 효소가 산업적으로 유용한 특수기능을 지니고 있다. 에스터라제는 그 생산기원에 따라서 고유의 특수기능을 갖고 있기 때문에 산업적 활용 시에 효소의 생화학적 특성을 신중히 고려해야 한다. Esterases / lipases are produced from a variety of animals, plants and microorganisms, among which microbial enzymes are the most biochemically diverse enzymes, many of which have industrially useful special functions. Esterases have their own special functions depending on their origin of production, so the biochemical properties of enzymes should be carefully considered in industrial applications.

최근 장시간의 효소 반응 공정에서 그 활성을 잃지 않으며, 저온, 고온, 알칼리, 유기용매, 계면활성제 처리 등의 열악한 반응 환경에서도 큰 활성을 보이는 에스터라제의 탐색과 개발이 활발히 진행되고 있다. 특히, 세제첨가제로 사용되거나 고온에서 불안정한 물질의 합성을 위해서는 저온성과 계면활성제 내성 등의 특성을 갖는 에스터라제가 요구된다. 그러나, 현재까지 개발된 대부분의 에스터라제의 경우, 저온에서 효소의 활성이 매우 약하며, 비이온성 계면활성제에 의해 효소의 활성이 대부분 실활된다. Recently, the search and development of esterases, which do not lose their activity in a long time enzymatic reaction process and show great activity even in poor reaction environments such as low temperature, high temperature, alkali, organic solvent, surfactant treatment, etc., are actively progressing. In particular, esterases having properties such as low temperature and surfactant resistance are required for the synthesis of materials used as detergent additives or unstable at high temperatures. However, in most esterases developed to date, the activity of the enzyme is very weak at low temperatures, and the activity of the enzyme is largely inactivated by the nonionic surfactant.

이에, 본 발명자들은 계면활성제에 의해 활성화되고, 저온에서도 효소의 활성이 우수한 신규 에스터라제 생산균주를 탐색하고자 노력한 결과, 신규 에스터라제를 생산하는 신균주 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)을 분리하고, 이 균주로부터 생산되는 에스터라제를 암호화하는 유전자를 클로닝하여 염기서열을 분석한 결과 기존에 보고된 미생물이 생산하는 에스터라제와 55.8% 이하의 상동성을 보이는 신규 유전자임을 확인하였고, 신규 에스터라제의 산업적 이용을 위해 대량생산용 플라스미드를 완성하여 이를 도입한 형질전환된 박테리아를 제작함으로써 본 발명을 완성하게 되었다.Thus, the present inventors to search for the producing strain having excellent activated by a surface active agent, the activity of the enzyme even at a low temperature novel S. atmospheres sought results, the novel esterase novel strain Bacillus MEGATHERIUM 20-1 (Bacillus megaterium to produce 20-1) was isolated, and cloned genes encoding esterases produced from this strain were analyzed for sequencing. As a result, new homology with less than 55.8% homology with esterases produced by previously reported microorganisms was observed. It was confirmed that the gene, the present invention was completed by producing a transformed bacterium to which the plasmid for mass production was introduced for industrial use of the new esterase.

따라서, 본 발명은 에스터라제를 생산하는 신균주 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)[KCTC 10435BP]을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a Bacillus megaterium 20-1 [KCTC 10435BP] producing a new esterase.

또한, 본 발명은 상기 균주로부터 생산되는 신규 에스터라제 및 이를 대량생산하는 방법을 제공하는데 또 다른 목적이 있다. It is another object of the present invention to provide a novel esterase produced from the strain and a method for mass production thereof.

본 발명은 에스터라제를 생산하는 신균주 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)[KCTC 10435BP]을 그 특징으로 한다.The present invention is characterized by Bacillus megaterium 20-1 [KCTC 10435BP], which produces an esterase.

또한, 상기 균주로부터 생산된 에스터라제 및 이를 코딩하는 유전자를 포함한다.Also included are esterases produced from the strains and genes encoding them.

또한, 상기 유전자를 함유하는 재조합 발현벡터, 이에 의해 형질전환된 박테리아 및 이를 이용한 에스터라제의 대량 생산방법을 또 다른 특징으로 한다.In addition, the recombinant expression vector containing the gene, the bacteria transformed thereby and a mass production method of the esterase using the same is another feature.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 토양으로부터 에스터라제 활성이 높은 신균주 바실러스 메가테리움 20-1을 분리하고, 상기 균주가 생산하는 에스터라제 효소를 분리하여 효소의 특성을 조사한 결과, 비이온성 계면활성제에 의해 활성이 크게 증가하는 신규 효소임을 확인하였으며, 에스터라제 유전자를 함유하는 재조합 발현벡터를 완성하고, 이 벡터를 도입하여 형질전환된 박테리아를 개발함으로써 이를 이용한 에스터라제의 대량 생산방법에 관한 것이다.The present invention isolates the bacterium Bacillus megaterium 20-1 having high esterase activity from soil, isolates the esterase enzyme produced by the strain, and examines the properties of the enzyme, which is activated by a nonionic surfactant. It was confirmed that this new enzyme is greatly increased, and a recombinant expression vector containing an esterase gene is completed, and the vector is introduced to a method for mass production of esterase using the transformed bacteria.

먼저, 토양으로부터 계면활성제에 안정하며 활성화되는 에스터라제를 생산하는 신균주 바실러스 메가테리움 20-1을 분리하였다. 이 균주로부터 생상되는 에스터라제에 트윈(Tween) 80을 처리하면, 기질에 대한 가수분해 활성이 증가하였으며, 특히 PNPC(C6) 기질에 대한 활성이 14배 가량 증가하였다. 바실러스 메가테리움 20-1로부터 에스터라제 유전자를 포함하는 약 1.6 kb의 염색체를 확보하고, 염기서열 분석결과 310개의 아미노산으로 구성된 단백질효소를 생산되는 것을 확인하였으며, 기존에 보고된 바실러스 속 에스터라제와 55.8% 이하의 상동성을 보이는 신규 효소임을 확인하였다. 또한, 이 에스터라제 유전자를 함유하는 재조합 발현벡터를 제작하고 이를 형질전환시켜 형질전환된 박테리아에서 에스터라제의 고발현 실험을 수행한 결과, 리터당 3,600 units까지 생산함을 확인하고, 이로서 형질전환된 박테리아에서 생산된 에스터라제의 효과적인 분리정제법을 확립하였다. 형질전환된 박테리아로부터 정제한 에스터라제는 비활성이 124 U/mg이였고, 대부분의 비이온성 계면활성제에 대해 안정하였으며, 오히려 이러한 계면활성제에 의해 효소의 활성이 증가됨을 확인하였다. First, the bacterium Bacillus megaterium 20-1, which produces a stable and activated esterase that is surfactant-activated, was isolated from the soil. Treatment of the esterase produced from this strain with Tween 80 increased the hydrolytic activity on the substrate, especially 14-fold increased activity on the PNPC (C6) substrate. A chromosome of about 1.6 kb containing the esterase gene was obtained from the Bacillus megaterium 20-1, and the sequencing analysis confirmed that a protease composed of 310 amino acids was produced. It was confirmed that the enzyme is a novel enzyme showing a homology of 55.8% or less. In addition, a recombinant expression vector containing the esterase gene was prepared and transformed to perform high expression experiments of the esterase in the transformed bacteria, which confirmed that it produced up to 3,600 units per liter, thereby transforming. Effective separation and purification of esterases produced in isolated bacteria has been established. The esterase purified from the transformed bacteria was 124 U / mg inactive and stable for most nonionic surfactants, rather it was confirmed that the activity of the enzyme was increased by these surfactants.

따라서, 본 발명은 상기한 바대로 유전자 조작을 통한 대량 발현시스템을 이용하여 리터당 3,600 units의 에스터라제를 생산할 수 있게 되었는데, 현재 에스테르결합과 관련된 효소촉매인 에스터라제 및 리파제의 경우, 화학촉매에 비해 가격이 높기 때문에 일부 고부가가치의 물질전환을 제외하고는 사용하기 어려운 실정을 고려하면, 이런 대량 발현시스템을 이용한 에스터라제의 고발현을 통하여 효소를 대량 생산함으로써 가격 경쟁력을 확보할 수 있을 것으로 기대된다.Therefore, the present invention was able to produce 3,600 units of esterase per liter using a mass expression system through genetic manipulation as described above, in the case of esterases and lipases, which are enzyme catalysts related to ester bonds, Considering the fact that it is difficult to use except for some high value-added substance conversion, it is possible to secure price competitiveness by mass-producing enzymes through high expression of esterase using this mass expression system. It is expected to be.

이하, 본 발명은 다음 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited thereto.

실시예 1: 미생물 분리Example 1 Microbial Separation

토양샘플 1 g을 10 ㎖의 멸균수에 완전히 현탁한 후, 106배로 희석하였다. 희석액 0.1 ㎖을 트리뷰티린-LB평판배지에 도말하고 37 ℃에 24시간동안 배양한 후, 콜로니 주변에 투명환을 형성하는 균을 선별하였다. 이 균들을 LB액체배지에서 37 ℃에 24시간동안 진탕배양하고 에스터라제 활성이 우수한 균주를 최종적으로 선별하였다.1 g of soil sample was completely suspended in 10 ml of sterile water, and then diluted 10 6 fold. 0.1 ml of the diluted solution was plated on a tributyrin-LB flat medium and incubated at 37 ° C. for 24 hours, and the bacteria forming a clear ring around colonies were selected. The bacteria were shaken for 24 hours at 37 ° C. in LB liquid medium, and finally, strains having excellent esterase activity were selected.

실시예 2: 미생물 동정Example 2: Microbial Identification

분리균주는 운동성이 있으며 그람양성 간균형태를 보였고, 미생물 동정 키트인 API 50 CHB을 사용하여 분석한 결과, 바실러스 메가테리움과 가장 유사한 것으로 나타났다[표 1]. 이 균의 16S rRNA의 염기서열을 분석한 결과[도 1], 바실러스 메가테리움과 99.4%의 상동성을 보였기 때문에 이 분리균을 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)로 명명하였다. 이 균주를 2003년 2월 27일자로 한국생명공학연구원 유전자은행에 기탁하였으며, 수탁번호는 KCTC 10435BP를 부여받았다. The isolates were motile and Gram-positive bacillus, and analyzed using API 50 CHB, a microbial identification kit, to be most similar to Bacillus megaterium [Table 1]. Analysis of the nucleotide sequence of the bacterium 16S rRNA [FIG. 1] showed 99.4% homology with Bacillus megaterium, so the isolate was named Bacillus megaterium 20-1. It was. The strain was deposited on February 27, 2003 with the Korea Biotechnology Research Institute Gene Bank, and the accession number was assigned to KCTC 10435BP.

GLYGLY ++ GLUGLU ++ MDGMDG -- SACSAC ++ LYXLYX -- ERYERY -- FRUFRU ++ NAGNAG -- TRETRE ++ TAGTAG -- DARADARA -- MNEMNE -- AMYAMY ++ INUINU -- DFUCDFUC -- LARALARA ++ SBESBE -- ARBARB ++ MLZMLZ -- LFUCLFUC -- RIBRIB ++ RHARHA -- ESCESC ++ RAFRAF ++ DARLDARL -- DXYLDXYL ++ DULDUL -- SALSAL -- AMDAMD -- LARLLARL -- LXYLLXYL -- INOINO -- CELCEL ++ GLYGGLYG ++ GNTGNT -- ADOADO -- MANMAN ++ MALMAL ++ XLTXLT -- 2KG2KG -- MDXMDX -- SORSOR -- LACLAC -- GENGEN -- 5KG5KG -- GALGAL -- MDMMDM -- MELMEL ++ TURTUR ++

실시예 3: 에스터라제 유전자의 클로닝 및 아미노산 서열결정Example 3: Cloning and Amino Acid Sequencing of Esterase Genes

바실러스 메가테리움 20-1균의 염색체 DNA를 제한효소 HindIII을 이용하여 완전히 자른 후, 동일한 제한효소로 자른 플라스미드 pUC19와 연결(ligation)하여 대장균 XL1 블루의 형질전환을 수행한 결과, 에스터라제 기질인 트리뷰티린이 함유된 배지에서 활성을 보이는 1개의 콜로니를 얻었다. 이 콜로니로부터 플라스미드를 분리한 결과, 2.7 kb의 벡터 DNA에 1.6 kb의 외래 DNA가 삽입되어 있는 것으로 나타났다. 이 1.6 kb의 외래 DNA를 갖는 재조합 플라스미드를 pL20-1이라 명명하였다[도 2]. The chromosome DNA of Bacillus megaterium 20-1 was completely cut using the restriction enzyme HindIII, and then transformed into E. coli XL1 blue by ligation with the plasmid pUC19 cut with the same restriction enzyme. One colony showing activity in a medium containing intributyrin was obtained. When the plasmid was isolated from this colony, 1.6 kb of foreign DNA was inserted into the 2.7 kb vector DNA. The recombinant plasmid having this 1.6 kb of foreign DNA was named pL20-1 [FIG. 2].

에스터라제 DNA 단편을 삽입한 재조합 플라스미드 pL20-1의 염기서열을 분석하고 'DNAstar'의 'ORF search' 프로그램을 통하여 933 bp의 ORF(서열번호 2)를 확인하였다[도 3]. 이 ORF는 310개의 아미노산(서열번호 3)으로 이루어져 있으며 분자량이 약 34,638로 계산되는 에스터라제를 암호화하고 있는 것으로 나타났다. 'NCBI'의 'BLAST'프로그램을 이용해서 'Swissprot' 데이터 베이스에 있는 기존 단백질과 아미노산 서열을 비교해 본 결과, 에스터라제 20-1은 알리사이클로바실러스 에시도칼다리어스(Alicyclobacillus acidocaldarius)[서열번호 4]와 아르캐오글로버스 풀기더스(Archaeoglobus fulgidus) 및 바실러스 할로두란스(Bacillus halodurans)가 생산하는 에스터라제와 56%, 38%, 34%의 유사성을 가지는 것으로부터 신규효소로 판정되었다[도 4].The nucleotide sequence of the recombinant plasmid pL20-1 into which the esterase DNA fragment was inserted was analyzed, and an ORF of 933 bp was identified through the 'ORF search' program of 'DNAstar' (Fig. 3). The ORF consists of 310 amino acids (SEQ ID NO: 3) and encodes an esterase with a molecular weight of about 34,638. Comparing amino acid sequences with existing proteins in the 'Swissprot' database using NCBI's 'BLAST' program, Esterase 20-1 was Alicyclobacillus acidocaldarius [SEQ ID NO: 4] and new enzymes were found to have 56%, 38%, 34% similarity with esterases produced by Archaeoglobus fulgidus and Bacillus halodurans . 4].

실시예 4 : 에스터라제 대량생산을 위한 재조합 발현벡터 제작 및 대장균에서 에스터라제의 고발현Example 4 Preparation of Recombinant Expression Vector for Esterase Mass Production and High Expression of Esterase in E. Coli

에스터라제 20-1은 비이온성 계면활성제에 의해서 효소의 활성이 크게 증가하고 20 ∼ 40 ℃의 넓은 온도범위에서 최적활성을 보이기 때문에 다양한 반응 조건에서 생물전환반응을 수행할 수 있는 장점을 가진다. 또한, 공정 과정 동안 효소가 계면활성제에 의해서 불활성화 되지 않기 때문에 매우 유리하다. 그러나 형질전환된 대장균 XL1 블루/pL20-1에서 발현된 효소의 생산량이 낮아, 이 효소를 대량 생산하기 위해, 강력한 T7 프로모터를 갖는 pET22-b를 사용하여 대장균BL21(DE3)에서 고발현 실험을 수행하였다.Esterase 20-1 has the advantage of performing bioconversion reaction under various reaction conditions because the activity of the enzyme is greatly increased by the nonionic surfactant and shows the optimum activity in a wide temperature range of 20 ~ 40 ℃. It is also very advantageous because the enzyme is not inactivated by the surfactant during the process. However, the yield of the enzyme expressed in the transformed Escherichia coli XL1 blue / pL20-1 is low, so that a high expression experiment was performed in Escherichia coli BL21 (DE3) using pET22-b with a strong T7 promoter to mass produce the enzyme. It was.

1) 고발현 발현벡터 제작1) Production of high expression vector

에스터라제 유전자의 증폭을 위해 도 2에 나타난 DNA 염기 배열로부터 2개의 프라이머를 제작한 후, PCR을 수행하여 0.9 kb의 에스터라제 유전자를 증폭하였다. 증폭된 유전자의 양 말단을 NcoI과 BamHI제한효소로 각각 절단하고 동일한 제한효소로 절단된 pET22-b 발현벡터에 T4DNA 리가아제로 삽입시킴으로써 재조합 발현벡터를 제작하였으며 이를 pMLE로 명명하였다. pET22-b는 T7 프로모터를 함유하고 있으며, Novagen사로부터 구입하여 사용하였다. Two primers were prepared from the DNA nucleotide sequence shown in FIG. 2 for amplification of the esterase gene, followed by PCR to amplify the 0.9 kb esterase gene. Recombinant expression vectors were constructed by cleaving both ends of the amplified genes with NcoI and BamHI restriction enzymes and inserting them with T4DNA ligase into the pET22-b expression vector digested with the same restriction enzymes and named pMLE. pET22-b contains a T7 promoter and was purchased from Novagen.

5'-프라이머: 5'-T TCC ATG GCT ATG CCG TTA GAT CCG CAT-3' (서열번호 5)5'-primer: 5'-T TCC ATG GCT ATG CCG TTA GAT CCG CAT-3 '(SEQ ID NO: 5)

3'-프라이머: 5'-T TGG ATC CGG AAT AGA ATC AAA TAC TTG-3' (서열번호 6)3'-primer: 5'-T TGG ATC CGG AAT AGA ATC AAA TAC TTG-3 '(SEQ ID NO: 6)

2) T7 프로모터를 이용한 에스터라제의 고발현2) High expression of esterase using T7 promoter

숙주세포로 T7 RNA 중합효소를 갖고 있는 대장균 BL21(DE3)을 이용하여 앞서 제조한 발현벡터 pMLE를 도입시켰다. 형질전환된 대장균을 100 ㎍/㎖의 암피실린(ampicillin)을 함유한 LB배지를 사용하여 37 ℃에서 배양하고, OD600nm에서 흡광도가 0.5에 도달하였을 때, IPTG을 최종 농도 1 mM 되도록 첨가하여 에스터라제 발현을 유도하고 4시간 배양한 후, 균체를 원심 분리하였다. 균체를 초음파로 분쇄하여 원심분리한 후 수용성 단백질을 12% SDS-PAGE을 행한 결과, 전체 단백질 중 에스터라제의 함량이 약 20%로 측정되었다[도 5]. 형질전환된 대장균 BL21(DE3)/pMLE의 경우 4시간 이후 에스터라제의 활성이 3,600 U/L로 최대 활성을 보였다. 형질전환된 대장균 BL21(DE3)/pMLE를 2003년 2월 27일자로 한국생명공학연구원 유전자은행에 기탁하였으며, 수탁번호는 10434BP를 부여받았다.As the host cell, the expression vector pMLE prepared above was introduced using E. coli BL21 (DE3) having a T7 RNA polymerase. The transformed Escherichia coli was cultured at 37 ° C. using an LB medium containing 100 μg / ml of ampicillin, and when the absorbance reached 0.5 at OD 600 nm , IPTG was added to a final concentration of 1 mM. After inducing the first expression and incubating for 4 hours, the cells were centrifuged. Cells were pulverized by ultrasonication and centrifuged, followed by 12% SDS-PAGE of water-soluble proteins. As a result, the esterase content in the total protein was measured to be about 20% [FIG. 5]. The transformed E. coli BL21 (DE3) / pMLE showed a maximum activity of 3,600 U / L of esterase activity after 4 hours. The transformed Escherichia coli BL21 (DE3) / pMLE was deposited with the Korea Biotechnology Research Institute Gene Bank on February 27, 2003. The accession number was assigned 10434BP.

실시예 5: 형질전환된 대장균 BL21(DE3)/pMLE에서 에스터라제 단백질 분리Example 5: Esterase Protein Isolation from Transformed Escherichia Coli BL21 (DE3) / pMLE

형질전환된 대장균 BL21(DE3)/pMLE이 생산하는 에스터라제는 C말단에 His-tag을 갖고 있기 때문에 다음과 같이 간단한 방법으로 순수 분리하였다. 1 mM IPTG 처리 후 4시간 동안 배양해서 얻은 균체를 초음파 분쇄법으로 파쇄한 후에 원심분리를 통해 상층액을 얻고, 이를 20 mM 이미다졸, 300 mM NaCl, 50 mM 인산완충액(pH 7.0)으로 투석하였다. Ni-NTA 칼럼의 상단에 단백질 용액을 가한 후, 동일한 완충액으로 칼럼을 깨끗이 씻었다. 완충액의 이미다졸 농도를 200 mM로 높여서 결합되어 있는 단백질을 용출함으로써 에스터라제 20-1을 순수하게 분리하였다[도 5].Esterase produced by the transformed E. coli BL21 (DE3) / pMLE has a His-tag at the C-terminal, it was purely isolated as follows. The cells obtained by incubation for 4 hours after 1 mM IPTG treatment were crushed by ultrasonic grinding, and the supernatant was obtained by centrifugation, and dialyzed with 20 mM imidazole, 300 mM NaCl, and 50 mM phosphate buffer (pH 7.0). . After the protein solution was added to the top of the Ni-NTA column, the column was washed with the same buffer. Esterase 20-1 was isolated purely by eluting the bound protein by raising the imidazole concentration of the buffer to 200 mM [Fig. 5].

실시예 6: 신규 에스터라제 20-1의 온도와 pH 특성실험 Example 6: Temperature and pH Characterization of Novel Esterase 20-1

순수하게 분리된 에스터라제 20-1 효소에 대해서 PNP 카프로에이트(p-nitrophenyl caproate) 기질에 대한 가수분해 활성을 조사하였다. 10 mM PNP 카프로에이트기질 10 ㎕, 에탄올 40 ㎕, 50 mM Tris-HCl 완충액 940 ㎕, 효소액 10 ㎕를 섞고 5분간 반응시키면서 405 nm에서의 흡광도 증가율을 측정하였다. 효소의 pH 및 온도에 대한 안정성을 측정하는 경우에는 각 조건에서 30분간 방치한 후에 잔존활성을 측정하였다. The purely isolated esterase 20-1 enzyme was examined for hydrolytic activity on the PNP nitrophenyl caproate substrate. 10 μl of 10 mM PNP caproate substrate, 40 μl of ethanol, 940 μl of 50 mM Tris-HCl buffer, and 10 μl of enzyme solution were mixed and reacted for 5 minutes, and the absorbance increase at 405 nm was measured. In the case of measuring the stability of pH and temperature of the enzyme, after remaining for 30 minutes under each condition, the residual activity was measured.

이상의 방법으로 에스터라제 활성에 대한 pH의 영향을 조사한 결과, pH 8.0에서 최대의 활성을 나타내었고, 효소의 pH 안정성을 조사한 결과 pH 6 ∼ 9 범위에서 안정한 효소 활성을 보였다. 효소 활성에 미치는 온도의 영향을 조사한 결과, 20 ∼ 40 ℃의 넓은 범위에서 최적활성을 보였고, 45 ℃까지의 온도범위에서 안정한 것으로 나타났다[도 6].As a result of investigating the effect of pH on the esterase activity by the above method, it showed the maximum activity at pH 8.0, and when the pH stability of the enzyme was examined, it showed stable enzyme activity in the pH 6-9 range. As a result of investigating the effect of temperature on the enzyme activity, the optimum activity was shown in a wide range of 20-40 ℃, it was found to be stable in the temperature range up to 45 ℃ [Fig. 6].

실시예 7: 에스터라제 20-1의 계면활성제에 대한 영향 Example 7: Effect of Esterase 20-1 on Surfactants

효소 활성에 대한 계면활성제의 영향을 검토하기 위하여 각종 계면활성제를 1%(v/v, w/v)이 되도록 효소액에 첨가하여 상온에서 30분간 방치하여 효소의 활성을 측정하였다. 계면활성제에 의한 영향을 살펴본 결과 비이온성 계면활성제에 의해 에스터라제 20-1의 활성이 2 ∼ 4배 정도 증가했으며, SDS와 같은 음이온성 계면활성제는 효소의 활성을 감소시켰다. 그리고 담즙산인 디옥시콜레이트(deoxycholate)와 타우로콜레이트(taurocholate)는 에스터라제의 활성에 영향을 주지 않았다[도 7].In order to examine the effect of the surfactant on the enzyme activity, various surfactants were added to the enzyme solution so as to be 1% (v / v, w / v) and left at room temperature for 30 minutes to measure the activity of the enzyme. As a result of examining the effect of the surfactant, the activity of the esterase 20-1 was increased by 2 to 4 times by the nonionic surfactant, and anionic surfactant such as SDS decreased the activity of the enzyme. And bile acids deoxycholate (deoxycholate) and taurocholate (taurocholate) did not affect the activity of the esterase (Fig. 7).

실시예 8: 트윈80 처리에 의한 에스터라제 20-1의 동력학 매개변수(kinetic parameter) 변환연구Example 8 Kinetic Parameter Conversion Study of Esterase 20-1 by Tween 80 Treatment

트윈80을 농도를 달리해서 에스터라제 단백질에 처리해 본 결과, 트윈80 농도가 증가함에 따라서 효소활성이 증가하였으며, 0.05% (v/v) 이상의 농도에서는 효소활성이 일정한 수준으로 증가하였다. 또한, 0.1% 트윈80을 에스터라제 단백질에 처리하고 시간별로 효소활성을 측정함으로써, 효소활성의 증가가 트윈80 처리와 거의 동시에 이루어짐을 확인할 수 있었다[도 7].As a result of treatment of Esterase protein with different concentrations of Tween 80, the enzyme activity increased as the Tween 80 concentration increased, and the enzyme activity increased to a constant level at the concentration of 0.05% (v / v) or more. In addition, by treating 0.1% Tween 80 to the esterase protein and measuring the enzyme activity by time, it was confirmed that the increase in the enzyme activity was made almost simultaneously with the Tween 80 treatment [FIG. 7].

PNP 에스테르에 대한 효소의 동력학 매개변수를 측정한 결과, 지방산의 길이가 길수록 kcat/Km값이 커지며, PNP 카프로에이트에 대해서 최고 활성을 보였다[표 2]. 트윈80 처리된 효소의 경우, 무처리 효소에 비해서 kcat/Km값이 14배까지 증가하였다. 이것은 기질에 대한 효소의 친화도가 증가되었기 때문이다.As a result of measuring the kinetic parameters of the enzyme for the PNP ester, the longer the length of fatty acids, the higher the kcat / Km value, and showed the highest activity against PNP caproate [Table 2]. In the case of Tween 80 treated enzymes, the kcat / Km value increased by 14 times compared to untreated enzymes. This is due to the increased affinity of the enzyme for the substrate.

기질temperament 동력학 매개변수Dynamics parameters 20-1 효소20-1 enzyme 트윈80 처리된 20-1 효소Tween80 Treated 20-1 Enzyme PNPacetatePNPacetate K m (mM) K m (mM) 1.431.43 1.151.15 k cat (s-1) k cat (s -1 ) 108108 89.789.7 k cat/K m k cat / K m 75.575.5 78.078.0 PNP propionatePNP propionate K m (mM) K m (mM) 1.571.57 1.391.39 k cat (s-1) k cat (s -1 ) 322322 529529 k cat/K m k cat / K m 205205 381381 PNPbutyratePNPbutyrate K m (mM) K m (mM) 0.140.14 0.450.45 k cat (s-1) k cat (s -1 ) 46.746.7 255255 k cat/K m k cat / K m 334334 567567 PNP caproatePNP caproate K m (mM) K m (mM) 0.670.67 0.0370.037 k cat (s-1) k cat (s -1 ) 352352 274274 k cat/K m k cat / K m 525525 74107410

실시예 9 : CD 스펙트럼을 통한 효소의 2차 구조 분석 Example 9 Secondary Structure Analysis of Enzymes via CD Spectrum

순수하게 분리된 에스터라제 20-1의 단백질의 농도를 0.2 mg/㎖로 맞춘 후, Jasco CD 스펙트로미터를 이용하여 효소의 2차구조를 분석하였다. 250에서 200 nm까지의 편광을 조사하면서 편광의 회전각도를 측정하여 도 8과 같은 스펙트럼을 얻었다. After the concentration of the purely isolated esterase 20-1 protein was adjusted to 0.2 mg / ml, the secondary structure of the enzyme was analyzed using a Jasco CD spectrometer. The spectrum as shown in FIG. 8 was obtained by measuring the rotation angle of polarized light while irradiating polarized light from 250 to 200 nm.

CD 스펙트럼을 분석한 결과, 에스터라제 20-1 단백질에 0.1% 트윈80을 처리하여도 단백질의 2차 구조에 큰 변화가 일어나지 않음을 확인하였다. As a result of analyzing the CD spectrum, it was confirmed that even when 0.1% Tween 80 was treated with the esterase 20-1 protein, no significant change in the secondary structure of the protein occurred.

이상에서 상술한 바와 같이, 본 발명은 신규 계면활성제에 활성화되는 에스터라제를 생산하는 신균주 바실러스 메가테리움 20-1와 에스터라제를 암호화하는 유전자 및 대장균에서 고발현된 에스터라제의 응용에 관한 것으로, 신규 에스터라제는 비이온성 계면활성제에 의해 효소의 활성이 14배 증가하며, 20 ∼ 40 ℃의 넓은 온도범위에서 효소의 활성이 우수한 것으로 밝혀져 고온에서 불안정한 화합물 및 불포화 지방산이 함유된 천연유지를 가수분해하여 고가의 불포화 지방산을 생산하거나 에스테르 및 펩티드를 합성하는 생물공정 등에 유용하게 사용될 수 있다.As described above, the present invention provides a novel bacterium Bacillus megaterium 20-1 producing esterase that is activated to a new surfactant, a gene encoding an esterase, and the application of a highly expressed esterase in Escherichia coli. The new esterase is found to increase the activity of the enzyme 14 times by a nonionic surfactant and has been found to be excellent in the activity of the enzyme in a wide temperature range of 20 to 40 ℃ containing unstable compounds and unsaturated fatty acids at high temperatures It may be usefully used in bioprocesses for producing expensive unsaturated fatty acids by hydrolyzing natural fats or synthesizing esters and peptides.

도 1은 바실러스 메가테리움 20-1의 16S rRNA의 염기서열을 나타내고, 바실러스 메가테리움(CON)과의 상동성을 비교한 것이다.Figure 1 shows the nucleotide sequence of 16S rRNA of Bacillus megaterium 20-1, and compares homology with Bacillus megaterium (CON).

도 2는 에스터라제 20-1의 유전자 클로닝과 대량발현 벡터인 pMLE의 제조과정을 나타낸 것이다. Figure 2 shows the cloning of the esterase 20-1 and the preparation of pMLE, a mass expression vector.

도 3은 에스터라제 20-1 유전자의 핵산 서열과 아미노산 서열을 나타낸 것이다.Figure 3 shows the nucleic acid sequence and amino acid sequence of the esterase 20-1 gene.

도 4는 에스터라제 20-1과 알리사이클로바실러스 에시도칼다리어스(Alicyclobacillus acidocaldarius) 유래 에스터라제(EST2)의 아미노산 서열을 비교한 결과를 나타낸 것이다.Figure 4 shows the result of comparing the amino acid sequence of esterase 20-1 and esterase derived from Alicyclobacillus acidocaldarius (EST2).

도 5는 pMLE로 형질전환된 대장균으로부터 에스터라제가 대량 발현되는 것과 Ni-NTA칼럼을 통해 순수하게 분리된 것을 나타낸 것이다. Figure 5 shows that the mass expression of the esterase from E. coli transformed with pMLE and purely separated through the Ni-NTA column.

도 6은 에스터라제의 활성과 안정성에 대한 온도와 pH의 영향을 나타낸 것이다. Figure 6 shows the effect of temperature and pH on the activity and stability of esterases.

도 7은 각종 계면활성제에 의해 에스터라제의 활성이 증가되는 것과 에스터라제의 활성이 트윈80의 농도와 처리시간에 따라 변화하는 것을 나타낸 것이다. 7 shows that the activity of the esterase is increased by various surfactants and that the activity of the esterase is changed depending on the concentration of Tween 80 and the treatment time.

도 8은 트윈80 처리 전후의 에스터라제 단백질의 CD 스펙트럼을 나타낸 것이다. 8 shows CD spectra of esterase proteins before and after Tween80 treatment.

<110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP] <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 1533 <212> DNA <213> Bacillus megaterium 20-1 <400> 1 tggctcagga tgaacgctgg cggcgtgcct aatacatgca agtcgagcga actgattaga 60 agcttgcttc tatgacgtta gcggcggacg ggtgagtaac acgtgggcga cctgcctgta 120 agactgggat aacttcggga aaccgaagct aataccggat aggatcttct ccttcatggg 180 agatgattga aagatggttt cggctatcac ttacagatgg gcccgcggtg cattagctag 240 ttggtgaggt aacggctcac caaggcaacg atgcatagcc gacctgagag ggtgatcggc 300 cacactggga ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg 360 caatggacga aagtctgacg gagcaacgcc gcgtgagtga tgaaggcttt cgggtcgtaa 420 aactctgttg ttagggagga acaagtacaa gagtaactgc ttgtaccttg acggtaccta 480 accagaaagc cacggctaac tacgtgccag cagccgcggt aatacgtagg tggcaagcgt 540 tatccggaat tattgggcgt aaagcgcgcg caggcggttt cttaagtctg atgtgaaagc 600 ccacggctca accgtggagg gtcattggaa actggggaac ttgagtgcag aagagaaaag 660 cggaattcca cgtgtagcgg tgaaatgcgt agagatgtgg aggaacacca gtggcgaagg 720 cggctttttg gtctgtaact gacgctgagg cgcgaaagcg tggggagcaa acaggattag 780 ataccctggt agtccacgcc gtaaacgatg agtgctaagt gttagagggt ttccgccctt 840 tagtgctgca gctaacgcat taagcactcc gcctggggag tacggtcgca agactgaaac 900 tcaaaggaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac 960 gcgaagaacc ttaccaggtc ttgacatcct ctgacaactc tagagataga gcgttcccct 1020 tcgggggaca gagtgacagg tggtgcatgg ttgtcgtcag ctcgtgtcgt gagatgttgg 1080 gttaagtccc gcaacgagcg caacccttga tcttagttgc cagcatttag ttgggcactc 1140 taaggtgact gccggtgaca aaccggagga aggtggggat gacgtcaaat catcatgccc 1200 cttatgacct gggctacaca cgtgctacaa tggatggtac aaagggctgc aagaccgcga 1260 ggtcaagcca atcccataaa accattctca gttcggattg taggctgcaa ctcgcctaca 1320 tgaagctgga atcgctagta atcgcggatc agcatgccgc ggtgaatacg ttcccgggcc 1380 ttgtacacac cgcccgtcac accacgagag tttgtaacac ccgaagtcgg tggagtaccg 1440 taaggagcta gccgcctaag gtgggacaga tgattggggt gaagtcgtaa caaggtagcc 1500 gtatcggaag gtgcggctgg atcactcctt tct 1533 <210> 2 <211> 933 <212> DNA <213> Bacillus megaterium 20-1 <400> 2 atgccgttag atccgcatat tcaaatattt ctaaatcaat ataatgaaat gccccgtcct 60 tctttagagg acgttacacc cccacagctg agggaaatgg aaaagatgtc cttaactcct 120 tctaaagaag cagttaaaaa agtatataat gaagaaattg aattaaatga acgtacgctc 180 actctacgag tgtatgaacc tgaaggaaca gggccatttc ccgctcttgt ttattatcac 240 ggaggaggat gggtattagg cagcctggat actcatgact ccatatgcag gtcgtatgca 300 aatgaaacaa actgtattgt agtgtctgtt gattaccgtc ttgctcctga gagtaaattt 360 cccgctgcag taaacgatgc ctatgacgcc ttggattgga tttcagctca tgcgtctcaa 420 ttaaatatcg attcaaacaa aattgccgtc ggtggcgaca gtgccggtgg taaccttgct 480 gcggttgtaa gcattttagc aaaacaaaga caaggtccat ccattgttca tcagctgctt 540 atttatccgt ctgtaggatt taaaaatcaa caccctgcct ctatgaaaga aaacgccgaa 600 ggatatcttc tttcaaaaga tctcatggat tggtttcgcc ttcagtactt aaataataaa 660 gaagaagaac agcaccccta taacgctcca gtattactag aagatttatc gagtctaccg 720 agcgctacca ttattacagc acaatatgat cctttaagag atagcggaaa agactacgcg 780 gacgcattaa aaaatcacgg tgtccccgtc acctatgaaa attatgaaac aatgattcac 840 gggtttttag ggtttcatga attcgtccca ctcgctcagc aggcgatcaa taaaagcgca 900 gctcaactgc gtcaagtatt tgattctatt taa 933 <210> 3 <211> 310 <212> PRT <213> Bacillus megaterium 20-1 <400> 3 Met Pro Leu Asp Pro His Ile Gln Ile Phe Leu Asn Gln Tyr Asn Glu 1 5 10 15 Met Pro Arg Pro Ser Leu Glu Asp Val Thr Pro Pro Gln Leu Arg Glu 20 25 30 Met Glu Lys Met Ser Leu Thr Pro Ser Lys Glu Ala Val Lys Lys Val 35 40 45 Tyr Asn Glu Glu Ile Glu Leu Asn Glu Arg Thr Leu Thr Leu Arg Val 50 55 60 Tyr Glu Pro Glu Gly Thr Gly Pro Phe Pro Ala Leu Val Tyr Tyr His 65 70 75 80 Gly Gly Gly Trp Val Leu Gly Ser Leu Asp Thr His Asp Ser Ile Cys 85 90 95 Arg Ser Tyr Ala Asn Glu Thr Asn Cys Ile Val Val Ser Val Asp Tyr 100 105 110 Arg Leu Ala Pro Glu Ser Lys Phe Pro Ala Ala Val Asn Asp Ala Tyr 115 120 125 Asp Ala Leu Asp Trp Ile Ser Ala His Ala Ser Gln Leu Asn Ile Asp 130 135 140 Ser Asn Lys Ile Ala Val Gly Gly Asp Ser Ala Gly Gly Asn Leu Ala 145 150 155 160 Ala Val Val Ser Ile Leu Ala Lys Gln Arg Gln Gly Pro Ser Ile Val 165 170 175 His Gln Leu Leu Ile Tyr Pro Ser Val Gly Phe Lys Asn Gln His Pro 180 185 190 Ala Ser Met Lys Glu Asn Ala Glu Gly Tyr Leu Leu Ser Lys Asp Leu 195 200 205 Met Asp Trp Phe Arg Leu Gln Tyr Leu Asn Asn Lys Glu Glu Glu Gln 210 215 220 His Pro Tyr Asn Ala Pro Val Leu Leu Glu Asp Leu Ser Ser Leu Pro 225 230 235 240 Ser Ala Thr Ile Ile Thr Ala Gln Tyr Asp Pro Leu Arg Asp Ser Gly 245 250 255 Lys Asp Tyr Ala Asp Ala Leu Lys Asn His Gly Val Pro Val Thr Tyr 260 265 270 Glu Asn Tyr Glu Thr Met Ile His Gly Phe Leu Gly Phe His Glu Phe 275 280 285 Val Pro Leu Ala Gln Gln Ala Ile Asn Lys Ser Ala Ala Gln Leu Arg 290 295 300 Gln Val Phe Asp Ser Ile 305 310 <210> 4 <211> 310 <212> PRT <213> Alicyclobacillus acidocaldarius <400> 4 Met Pro Leu Asp Pro Val Ile Gln Gln Val Leu Asp Gln Leu Asn Arg 1 5 10 15 Met Pro Ala Pro Asp Tyr Lys His Leu Ser Ala Gln Gln Phe Arg Ser 20 25 30 Gln Gln Ser Leu Phe Pro Pro Val Lys Lys Glu Pro Val Ala Glu Val 35 40 45 Arg Glu Phe Asp Met Asp Leu Pro Gly Arg Thr Leu Lys Val Arg Met 50 55 60 Tyr Arg Pro Glu Gly Val Glu Pro Pro Tyr Pro Ala Leu Val Tyr Tyr 65 70 75 80 His Gly Gly Gly Trp Val Val Gly Asp Leu Glu Thr His Asp Pro Val 85 90 95 Cys Arg Val Leu Ala Lys Asp Gly Arg Ala Val Val Phe Ser Val Asp 100 105 110 Tyr Arg Leu Ala Pro Glu His Lys Phe Pro Ala Ala Val Glu Asp Ala 115 120 125 Tyr Asp Ala Leu Gln Trp Ile Ala Glu Arg Ala Ala Asp Phe His Leu 130 135 140 Asp Pro Ala Arg Ile Ala Val Gly Gly Asp Ser Ala Gly Gly Asn Leu 145 150 155 160 Ala Ala Val Thr Ser Ile Leu Ala Lys Glu Arg Gly Gly Pro Ala Leu 165 170 175 Ala Phe Gln Leu Leu Ile Tyr Pro Ser Thr Gly Tyr Asp Pro Ala His 180 185 190 Pro Pro Ala Ser Ile Glu Glu Asn Ala Glu Gly Tyr Leu Leu Thr Gly 195 200 205 Gly Met Met Leu Trp Phe Arg Asp Gln Tyr Leu Asn Ser Leu Glu Glu 210 215 220 Leu Thr His Pro Trp Phe Ser Pro Val Leu Tyr Pro Asp Leu Ser Gly 225 230 235 240 Leu Pro Pro Ala Tyr Ile Ala Thr Ala Gln Tyr Asp Pro Leu Arg Asp 245 250 255 Val Gly Lys Leu Tyr Ala Glu Ala Leu Asn Lys Ala Gly Val Lys Val 260 265 270 Glu Ile Glu Asn Phe Glu Asp Leu Ile His Gly Phe Ala Gln Phe Tyr 275 280 285 Ser Leu Ser Pro Gly Ala Thr Lys Ala Leu Val Arg Ile Ala Glu Lys 290 295 300 Leu Arg Asp Ala Leu Ala 305 310 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 5'-PRIMER <400> 5 ttccatggct atgccgttag atccgcat 28 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 3'-PRIMER <400> 6 ttggatccgg aatagaatca aatacttg 28<110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> Discovery of Bacillus megaterium 20-1 [KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21 (DE3) / pMLE [KCTC10434BP] <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 1533 <212> DNA <213> Bacillus megaterium 20-1 <400> 1 tggctcagga tgaacgctgg cggcgtgcct aatacatgca agtcgagcga actgattaga 60 agcttgcttc tatgacgtta gcggcggacg ggtgagtaac acgtgggcga cctgcctgta 120 agactgggat aacttcggga aaccgaagct aataccggat aggatcttct ccttcatggg 180 agatgattga aagatggttt cggctatcac ttacagatgg gcccgcggtg cattagctag 240 ttggtgaggt aacggctcac caaggcaacg atgcatagcc gacctgagag ggtgatcggc 300 cacactggga ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg 360 caatggacga aagtctgacg gagcaacgcc gcgtgagtga tgaaggcttt cgggtcgtaa 420 aactctgttg ttagggagga acaagtacaa gagtaactgc ttgtaccttg acggtaccta 480 accagaaagc cacggctaac tacgtgccag cagccgcggt aatacgtagg tggcaagcgt 540 tatccggaat tattgggcgt aaagcgcgcg caggcggttt cttaagtctg atgtgaaagc 600 ccacggctca accgtggagg gtcattggaa actggggaac ttgagtgcag aagagaaaag 660 cggaattcca cgtgtagcgg tgaaatgcgt agagatgtgg aggaacacca gtggcgaagg 720 cggctttttg gtctgtaact gacgctgagg cgcgaaagcg tggggagcaa acaggattag 780 ataccctggt agtccacgcc gtaaacgatg agtgctaagt gttagagggt ttccgccctt 840 tagtgctgca gctaacgcat taagcactcc gcctggggag tacggtcgca agactgaaac 900 tcaaaggaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac 960 gcgaagaacc ttaccaggtc ttgacatcct ctgacaactc tagagataga gcgttcccct 1020 tcgggggaca gagtgacagg tggtgcatgg ttgtcgtcag ctcgtgtcgt gagatgttgg 1080 gttaagtccc gcaacgagcg caacccttga tcttagttgc cagcatttag ttgggcactc 1140 taaggtgact gccggtgaca aaccggagga aggtggggat gacgtcaaat catcatgccc 1200 cttatgacct gggctacaca cgtgctacaa tggatggtac aaagggctgc aagaccgcga 1260 ggtcaagcca atcccataaa accattctca gttcggattg taggctgcaa ctcgcctaca 1320 tgaagctgga atcgctagta atcgcggatc agcatgccgc ggtgaatacg ttcccgggcc 1380 ttgtacacac cgcccgtcac accacgagag tttgtaacac ccgaagtcgg tggagtaccg 1440 taaggagcta gccgcctaag gtgggacaga tgattggggt gaagtcgtaa caaggtagcc 1500 gtatcggaag gtgcggctgg atcactcctt tct 1533 <210> 2 <211> 933 <212> DNA <213> Bacillus megaterium 20-1 <400> 2 atgccgttag atccgcatat tcaaatattt ctaaatcaat ataatgaaat gccccgtcct 60 tctttagagg acgttacacc cccacagctg agggaaatgg aaaagatgtc cttaactcct 120 tctaaagaag cagttaaaaa agtatataat gaagaaattg aattaaatga acgtacgctc 180 actctacgag tgtatgaacc tgaaggaaca gggccatttc ccgctcttgt ttattatcac 240 ggaggaggat gggtattagg cagcctggat actcatgact ccatatgcag gtcgtatgca 300 aatgaaacaa actgtattgt agtgtctgtt gattaccgtc ttgctcctga gagtaaattt 360 cccgctgcag taaacgatgc ctatgacgcc ttggattgga tttcagctca tgcgtctcaa 420 ttaaatatcg attcaaacaa aattgccgtc ggtggcgaca gtgccggtgg taaccttgct 480 gcggttgtaa gcattttagc aaaacaaaga caaggtccat ccattgttca tcagctgctt 540 atttatccgt ctgtaggatt taaaaatcaa caccctgcct ctatgaaaga aaacgccgaa 600 ggatatcttc tttcaaaaga tctcatggat tggtttcgcc ttcagtactt aaataataaa 660 gaagaagaac agcaccccta taacgctcca gtattactag aagatttatc gagtctaccg 720 agcgctacca ttattacagc acaatatgat cctttaagag atagcggaaa agactacgcg 780 gacgcattaa aaaatcacgg tgtccccgtc acctatgaaa attatgaaac aatgattcac 840 gggtttttag ggtttcatga attcgtccca ctcgctcagc aggcgatcaa taaaagcgca 900 gctcaactgc gtcaagtatt tgattctatt taa 933 <210> 3 <211> 310 <212> PRT <213> Bacillus megaterium 20-1 <400> 3 Met Pro Leu Asp Pro His Ile Gln Ile Phe Leu Asn Gln Tyr Asn Glu 1 5 10 15 Met Pro Arg Pro Ser Leu Glu Asp Val Thr Pro Pro Gln Leu Arg Glu 20 25 30 Met Glu Lys Met Ser Leu Thr Pro Ser Lys Glu Ala Val Lys Lys Val 35 40 45 Tyr Asn Glu Glu Ile Glu Leu Asn Glu Arg Thr Leu Thr Leu Arg Val 50 55 60 Tyr Glu Pro Glu Gly Thr Gly Pro Phe Pro Ala Leu Val Tyr Tyr His 65 70 75 80 Gly Gly Gly Trp Val Leu Gly Ser Leu Asp Thr His Asp Ser Ile Cys 85 90 95 Arg Ser Tyr Ala Asn Glu Thr Asn Cys Ile Val Val Ser Val Asp Tyr 100 105 110 Arg Leu Ala Pro Glu Ser Lys Phe Pro Ala Ala Val Asn Asp Ala Tyr 115 120 125 Asp Ala Leu Asp Trp Ile Ser Ala His Ala Ser Gln Leu Asn Ile Asp 130 135 140 Ser Asn Lys Ile Ala Val Gly Gly Asp Ser Ala Gly Gly Asn Leu Ala 145 150 155 160 Ala Val Val Ser Ile Leu Ala Lys Gln Arg Gln Gly Pro Ser Ile Val 165 170 175 His Gln Leu Leu Ile Tyr Pro Ser Val Gly Phe Lys Asn Gln His Pro 180 185 190 Ala Ser Met Lys Glu Asn Ala Glu Gly Tyr Leu Leu Ser Lys Asp Leu 195 200 205 Met Asp Trp Phe Arg Leu Gln Tyr Leu Asn Asn Lys Glu Glu Glu Gln 210 215 220 His Pro Tyr Asn Ala Pro Val Leu Leu Glu Asp Leu Ser Ser Leu Pro 225 230 235 240 Ser Ala Thr Ile Ile Thr Ala Gln Tyr Asp Pro Leu Arg Asp Ser Gly 245 250 255 Lys Asp Tyr Ala Asp Ala Leu Lys Asn His Gly Val Pro Val Thr Tyr 260 265 270 Glu Asn Tyr Glu Thr Met Ile His Gly Phe Leu Gly Phe His Glu Phe 275 280 285 Val Pro Leu Ala Gln Gln Ala Ile Asn Lys Ser Ala Ala Gln Leu Arg 290 295 300 Gln Val Phe Asp Ser Ile 305 310 <210> 4 <211> 310 <212> PRT <213> Alicyclobacillus acidocaldarius <400> 4 Met Pro Leu Asp Pro Val Ile Gln Gln Val Leu Asp Gln Leu Asn Arg 1 5 10 15 Met Pro Ala Pro Asp Tyr Lys His Leu Ser Ala Gln Gln Phe Arg Ser 20 25 30 Gln Gln Ser Leu Phe Pro Pro Val Lys Lys Glu Pro Val Ala Glu Val 35 40 45 Arg Glu Phe Asp Met Asp Leu Pro Gly Arg Thr Leu Lys Val Arg Met 50 55 60 Tyr Arg Pro Glu Gly Val Glu Pro Pro Tyr Pro Ala Leu Val Tyr Tyr 65 70 75 80 His Gly Gly Gly Trp Val Val Gly Asp Leu Glu Thr His Asp Pro Val 85 90 95 Cys Arg Val Leu Ala Lys Asp Gly Arg Ala Val Val Phe Ser Val Asp 100 105 110 Tyr Arg Leu Ala Pro Glu His Lys Phe Pro Ala Ala Val Glu Asp Ala 115 120 125 Tyr Asp Ala Leu Gln Trp Ile Ala Glu Arg Ala Ala Asp Phe His Leu 130 135 140 Asp Pro Ala Arg Ile Ala Val Gly Gly Asp Ser Ala Gly Gly Asn Leu 145 150 155 160 Ala Ala Val Thr Ser Ile Leu Ala Lys Glu Arg Gly Gly Pro Ala Leu 165 170 175 Ala Phe Gln Leu Leu Ile Tyr Pro Ser Thr Gly Tyr Asp Pro Ala His 180 185 190 Pro Pro Ala Ser Ile Glu Glu Asn Ala Glu Gly Tyr Leu Leu Thr Gly 195 200 205 Gly Met Met Leu Trp Phe Arg Asp Gln Tyr Leu Asn Ser Leu Glu Glu 210 215 220 Leu Thr His Pro Trp Phe Ser Pro Val Leu Tyr Pro Asp Leu Ser Gly 225 230 235 240 Leu Pro Pro Ala Tyr Ile Ala Thr Ala Gln Tyr Asp Pro Leu Arg Asp 245 250 255 Val Gly Lys Leu Tyr Ala Glu Ala Leu Asn Lys Ala Gly Val Lys Val 260 265 270 Glu Ile Glu Asn Phe Glu Asp Leu Ile His Gly Phe Ala Gln Phe Tyr 275 280 285 Ser Leu Ser Pro Gly Ala Thr Lys Ala Leu Val Arg Ile Ala Glu Lys 290 295 300 Leu Arg Asp Ala Leu Ala 305 310 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 5'-PRIMER <400> 5 ttccatggct atgccgttag atccgcat 28 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 3'-PRIMER <400> 6 ttggatccgg aatagaatca aatacttg 28

Claims (9)

에스터라제를 생산하는 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)[KCTC 10435BP]. Bacillus megaterium 20-1 [KCTC 10435BP] to produce esterases. 서열번호 2의 염기서열로 표시되며, 비이온성 계면활성에 의해 가수분해활성이 증가하는 에스터라제를 코팅하는 유전자.A gene which is represented by the nucleotide sequence of SEQ ID NO: 2 and which coats an esterase whose hydrolytic activity increases by nonionic surfactant. 제 2 항에 있어서, 상기 유전자는 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)[KCTC 10435BP] 유래인 것을 특징으로 하는 유전자.3. The gene of claim 2, wherein the gene is derived from Bacillus megaterium 20-1 [KCTC 10435BP]. 서열번호 3의 아미노산 서열로 표시되며, 비이온성 계면활성에 의해 가수분해활성이 증가하는 에스터라제.Esterase represented by the amino acid sequence of SEQ ID NO: 3, the hydrolytic activity is increased by the nonionic surfactant. 제 4 항에 있어서, 상기 에스터라제는 바실러스 메가테리움 20-1(Bacillus megaterium 20-1)[KCTC 10435BP] 유래인 것을 특징으로 하는 에스터라제.The esterase according to claim 4, wherein the esterase is derived from Bacillus megaterium 20-1 [KCTC 10435BP]. 청구항 2 또는 청구항 3의 유전자를 함유하는 것을 특징으로 하는 재조합 발현벡터.A recombinant expression vector comprising the gene of claim 2 or 3. 청구항 6의 발현벡터에 의해 형질전환된 박테리아.Bacteria transformed with the expression vector of claim 6. 제 7 항에 있어서, 상기 형질전환체는 대장균인 것을 특징으로 하는 형질전환된 박테리아.8. The transformed bacterium of claim 7, wherein the transformant is Escherichia coli. 청구항 7 또는 청구항 8의 형질전환된 박테리아를 이용하는 것을 특징으로 하는 에스터라제의 대량 생산방법.Method for mass production of esterases, characterized in that using the transformed bacteria of claim 7 or 8.
KR10-2003-0027195A 2003-04-29 2003-04-29 Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP] KR100509178B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0027195A KR100509178B1 (en) 2003-04-29 2003-04-29 Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP]

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0027195A KR100509178B1 (en) 2003-04-29 2003-04-29 Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP]

Publications (2)

Publication Number Publication Date
KR20040093318A KR20040093318A (en) 2004-11-05
KR100509178B1 true KR100509178B1 (en) 2005-08-22

Family

ID=37373422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0027195A KR100509178B1 (en) 2003-04-29 2003-04-29 Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP]

Country Status (1)

Country Link
KR (1) KR100509178B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280759A (en) * 2020-11-04 2021-01-29 上海绅道生物科技有限公司 Method for producing esterase by fermentation in escherichia coli

Also Published As

Publication number Publication date
KR20040093318A (en) 2004-11-05

Similar Documents

Publication Publication Date Title
KR20010084883A (en) Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
JP3073037B2 (en) Recombinant plasmid having halohydrin epoxidase gene and microorganism transformed with the plasmid
CN113122527B (en) Aspartase mutant with improved enzyme activity and changed optimal pH
CN111057695B (en) Nitrilase and preparation method and application thereof
Genereux et al. Mutational analysis of the catalytic centre of the Citrobacter freundii AmpD N-acetylmuramyl-L-alanine amidase
KR100509178B1 (en) Discovery of Bacillus megaterium 20-1[KCTC 10435BP] producing a novle esterase and development of its efficient production method using Escherichia coli BL21(DE3)/pMLE[KCTC10434BP]
JP4839231B2 (en) Sesaminol glycoside glucoside bond degrading enzyme and microorganism producing said enzyme
CN106399174B (en) One plant of PA ase and its encoding gene, producing strains and application
EP0268452A2 (en) Novel hydrolase and method of production
Hasegawa et al. Cloning and expression of the N, N-dimethylformamidase gene from Alcaligenes sp. strain KUFA-1
KR20020056894A (en) Novel carbonyl reductase, gene thereof and method of using the same
JP3478410B2 (en) Hyperthermostable proteasome
KR100330359B1 (en) Novel esterase derived from Pseudomonas aeruginosa, its gene and process for production of optically active carboxylic acids using them
Fukuta et al. High yield synthesis of 12-aminolauric acid by “Enzymatic transcrystallization” of ω-laurolactam using ω-laurolactam hydrolase from Acidovorax sp. T31
KR0184755B1 (en) Thermostable tyrosine phenol-lyase and the preparation process of l-dopa using it
US20050260737A1 (en) Novel lipase gene from Bacillus sphaericus 205y.
KR100449316B1 (en) Novel esterase, and Bacillus niacini EM001 for producing the esterase
KR20140018850A (en) Compositions and methods of producing enterokinase in yeast
KR102097720B1 (en) Lipase from Marinobacter lipolyticus
KR100665798B1 (en) - A novel gene of -glucosidase
KR100808307B1 (en) Novelr-2-hydroxy-3-phenylpropionated-phenyllactate dehydrogenase and gene encoding the same
KR100270508B1 (en) Novel cephalosporin deacetylase gene and preparation method of protein using the same
KR100575211B1 (en) M37 lipase, Photobacterium sp. M37 strain producing the same, and mass-produnction thereof
KR0180570B1 (en) Novel plasmid pkle and mass production method of lipase by using the same
KR100310932B1 (en) Discovery of Staphylococcus haemolyticus L62(KCTC 8957P) producing a novel lipase and development of its efficient production method using Escherichia coli BL21(DE3)/pSHML(KCTC 8956P)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110825

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee