KR100502884B1 - METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING - Google Patents

METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING Download PDF

Info

Publication number
KR100502884B1
KR100502884B1 KR10-2001-0088867A KR20010088867A KR100502884B1 KR 100502884 B1 KR100502884 B1 KR 100502884B1 KR 20010088867 A KR20010088867 A KR 20010088867A KR 100502884 B1 KR100502884 B1 KR 100502884B1
Authority
KR
South Korea
Prior art keywords
quantum dot
ingaas
gaas quantum
energy bandgap
quantum dots
Prior art date
Application number
KR10-2001-0088867A
Other languages
Korean (ko)
Other versions
KR20030058418A (en
Inventor
최원준
한일기
박용주
조운조
김은규
이정일
이정호
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2001-0088867A priority Critical patent/KR100502884B1/en
Publication of KR20030058418A publication Critical patent/KR20030058418A/en
Application granted granted Critical
Publication of KR100502884B1 publication Critical patent/KR100502884B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/962Quantum dots and lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

본 발명은 InGaAs/GaAs 양자점 에너지 밴드갭을 조정하는 방법에 관한 것으로서, InGaAs/GaAs 양자점 기판을 성장하는 단계와, InGaAs/GaAs 양자점 기판에 2중 유전체 덮개층을 성장하는 단계와, 2중 유전체 덮개층이 성장된 InGaAs/GaAs 양자점 기판을 열처리하는 단계를 포함하는 InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법을 제공한다. InGaAs/GaAs 양자점 기판에 유전체 덮개층으로 SiNx와 SiO2를 성장하고, 700℃에서 1 내지 4분간 열처리한 결과, InGaAs/GaAs 양자점 기판에 국부적으로 다른 에너지 밴드갭이 형성되었고 공정 조건에 의존하여 에너지 밴드갭의 이동량이 변화하는 것을 관찰하며, 이와 함께 반치폭 값의 감소 현상과 스펙트럼 강도의 증가 현상을 관찰한다.The present invention relates to a method of adjusting an InGaAs / GaAs quantum dot energy bandgap, the method comprising: growing an InGaAs / GaAs quantum dot substrate, growing a double dielectric covering layer on the InGaAs / GaAs quantum dot substrate, and a double dielectric covering Provided is an InGaAs / GaAs quantum dot energy bandgap adjusting method including heat-treating a layer grown InGaAs / GaAs quantum dot substrate. SiN x and SiO 2 were grown on the InGaAs / GaAs quantum dot substrate as a dielectric covering layer and heat-treated at 700 ° C. for 1 to 4 minutes to form locally different energy bandgaps on the InGaAs / GaAs quantum dot substrate, depending on the process conditions. Observe that the shift of energy bandgap changes, along with the decrease of half width and increase of spectral intensity.

Description

양자점 무질서화 기술에서 유전체 덮개층 조합에 의한 InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법{METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING}METHOD OF CONTROLLING InGaAs / GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING}

본 발명은 양자점 에너지 밴드갭을 조정하는 방법에 관한 것으로서, 특히 유전체 덮개층으로 SiNX 및 SiO2 박막을 사용하고 이들의 국부적 조합을 통하여 양자점 무질서도를 국부적으로 상이하게 조정하여 양자점 에너지 밴드갭을 조정하는 방법에 관한 것이다.The present invention relates to a method for adjusting the quantum dot energy bandgap, and in particular, using a SiN X and SiO 2 thin film as the dielectric covering layer and locally adjusting the quantum dot disorder by locally combining them to adjust the quantum dot energy bandgap. It is about how to adjust.

양자점 무질서화 기술은 도 1에 도시한 바와 같이, 양자점을 이루는 우물층과 장벽층을 이루는 원자들의 상호섞임을 이용하여 양자점의 에너지 밴드갭을 양자점 구조 성장 후에 조절하는 기술이다. 이 기술을 사용하는 경우, MOCVD(Metal-Organic Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy), CBE(Chemical Beam Epitaxy) 등 여러 가지 반도체 박막성장 공정에 의해 구현되는 양자점 구조가 국부적으로 상이한 밴드갭을 갖게 만들 수 있다.As shown in FIG. 1, the quantum dot disordering technique is a technique for controlling the energy band gap of a quantum dot after growth of a quantum dot structure by using intermixing of atoms forming a well layer and a barrier layer forming a quantum dot. Using this technique, band gaps of locally different quantum dot structures implemented by various semiconductor thin film growth processes such as metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and chemical beam epitaxy (CBE) can be obtained. I can make it.

InGaAs/GaAs 양자점 구조의 경우, 기존의 유전체 덮개층을 이용한 양자점 무질서화 방법으로는 [Journal of Appl. Phys. Lett. Vol. 88, pp. 4619-4622, 2000]에서 공개된 것으로, 공개된 기술은 양자점 상층부의 유전체 덮개층으로 스퍼터링법과 플라즈마 화학기상 증착(PECVD ; Plasma Enhanced Chemical Vapor Deposition)법으로 증착된 SiO2를 이용하였고, 이들을 이용한 양자점 무질서화 공정 결과, 동일한 SiO2 유전체 덮개층이라도 증착법에 의존하여 무질서도가 달라진다는 점을 설명하고 있다. 이 방법을 잘 활용하면 국부적으로 다른 에너지 밴드갭을 갖는 양자점 구조 기판을 만들 수 있음은 분명하다. 그러나 이 방법은 스퍼터링 장치와 플라즈마 화학기상 증착법이 동시에 요구되고 또한 SiO2의 스퍼터링시 기판의 표면에 손상을 가져올 가능성이 많다는 문제점이 있었다.In the case of the InGaAs / GaAs quantum dot structure, the quantum dot disorder method using a conventional dielectric covering layer is described in [Journal of Appl. Phys. Lett. Vol. 88, pp. 4619-4622, 2000, the disclosed technique uses SiO 2 deposited by sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) as the dielectric covering layer on the quantum dot layer. As a result of the disordering process, it is explained that even the same SiO 2 dielectric covering layer varies in disorder depending on the deposition method. It is clear that this method can be used to make quantum dot structured substrates with locally different energy bandgap. However, this method requires a sputtering apparatus and a plasma chemical vapor deposition method simultaneously, and there is a problem that sputtering of SiO 2 is likely to cause damage to the surface of the substrate.

따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로서, 플라즈마 화학기상 증착법만으로도 양자점 구조에서 국부적으로 에너지 밴드갭 조절이 가능한 방법을 제공한다. 플라즈마 화학기상 증착법에 의한 유전체 덮개층의 종류를 적절히 선택하고 소정 온도로 열처리하면 양자점 구조의 에너지 밴드갭이 국부적으로 상이하게 조정되고 열처리 조건에 따라 양자점 에너지 밴드갭의 이동량을 조절하는 것이 가능하다. 또한, 플라즈마 화학기상 증착법만을 사용하기 때문에 기판 표면이 손상될 가능성이 없다.Accordingly, the present invention is to solve the above-described problems, and provides a method capable of locally adjusting the energy bandgap in the quantum dot structure only by plasma chemical vapor deposition. By appropriately selecting the type of dielectric cover layer by plasma chemical vapor deposition and performing heat treatment at a predetermined temperature, the energy bandgap of the quantum dot structure is locally differently adjusted, and the amount of shift of the quantum dot energy bandgap can be adjusted according to the heat treatment conditions. In addition, since only the plasma chemical vapor deposition method is used, there is no possibility of damaging the substrate surface.

본 발명의 특징에 따르면, InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법에 있어서, InGaAs/GaAs 양자점 기판을 성장하는 단계와, InGaAs/GaAs 양자점 기판에 2중 유전체 덮개층을 성장하는 단계와, 2중 유전체 덮개층이 성장된 InGaAs/GaAs 양자점 기판을 열처리하는 단계를 포함하는 InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법이 제공된다.According to an aspect of the present invention, there is provided a method of adjusting an InGaAs / GaAs quantum dot energy bandgap, comprising: growing an InGaAs / GaAs quantum dot substrate, growing a double dielectric covering layer on the InGaAs / GaAs quantum dot substrate, and a double dielectric An InGaAs / GaAs quantum dot energy bandgap adjusting method including heat-treating an InGaAs / GaAs quantum dot substrate having a cover layer grown thereon is provided.

이하, 본 발명의 실시예를 도 2 내지 도 7을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 2 to 7.

도 2는 본 발명의 일 실시예에 사용된 유기금속 화학기상 증착법으로 성장된 InGaAs/GaAs 양자점 구조 기판을 나타낸 도면이다. 양자점은 GaAs 장벽층 사이에 끼워진 InGaAs 양자점으로 되어 있다. 성장된 양자점 구조 시료들의 극저온에서의 형광 스펙트럼은 1162㎚에서 최고값을 나타내었다. 양자점 무질서화 공정을 위한 유전체 덮개층으로는 플라즈마 화학기상 증착법으로 성장된 SiO2 및 SiNX 박막이 사용되었다.2 is a view showing an InGaAs / GaAs quantum dot structure substrate grown by an organometallic chemical vapor deposition method used in one embodiment of the present invention. The quantum dots consist of InGaAs quantum dots sandwiched between GaAs barrier layers. The fluorescence spectrum at cryogenic temperature of the grown quantum dot structure samples showed the highest value at 1162 nm. SiO 2 and SiN X thin films grown by plasma chemical vapor deposition were used as dielectric cover layers for the quantum dot disordered process.

도 3은 본 발명의 일 실시예에 대한 공정 순서를 나타낸다. 본 발명에서 설명하는 유전체 덮개층 조합으로 InGaAs/GaAs 양자점 에너지 밴드갭을 조정하기 위해서는, 유기금속 화학기상 증착법으로 InGaAs/GaAs 양자점 기판을 성장하고, 플라즈마 화학기상 증착법으로 양자점 기판상에 유전체 박막(SiO2,SiNX)을 성장하며, 전기로를 이용하여 700℃에서 1 내지 4분간 열처리한다.3 shows a process sequence for one embodiment of the present invention. In order to adjust the InGaAs / GaAs quantum dot energy bandgap with the dielectric cover layer combination described in the present invention, an InGaAs / GaAs quantum dot substrate is grown by an organometallic chemical vapor deposition method, and a dielectric thin film (SiO) is deposited on the quantum dot substrate by a plasma chemical vapor deposition method. 2 , SiN X ) is grown and heat treated at 700 ° C. for 1 to 4 minutes using an electric furnace.

이러한 방법으로 SiO2만을 유전체 덮개층으로 사용한 시료와 SiNx/Si02 2중 박막을 유전체 덮개층으로 사용한 시료를 준비하였다. 제작된 시료들은 700℃로 고정된 전기로를 이용하여 1 내지 4분간 열처리하였다. 이와 같이 양자점 무질서화 공정이 수행된 시료들의 특성은 극저온 형광 스펙트럼 측정을 통하여 조사되었고, 원시료의 형광 스펙트럼과 비교하여 양자점의 에너지 밴드갭 편이 정도 및 스펙트럼 강도 변화를 정량적으로 조사하였다.In this way, a sample using only SiO 2 as the dielectric covering layer and a sample using SiN x / Si0 2 double thin film as the dielectric covering layer were prepared. The prepared samples were heat treated for 1 to 4 minutes using an electric furnace fixed at 700 ° C. The characteristics of the samples subjected to the quantum dot disordered process were investigated by cryogenic fluorescence spectrum measurement, and quantitatively investigated the energy band gap shift and spectral intensity change of the quantum dots compared to the fluorescence spectrum of the raw material.

도 4는 SiO2 유전체 덮개층과 SiO2/SiNx 2중 유전체 덮개층으로 700℃에서 열처리한 양자점 시료들의 열처리 시간에 따른 청색 편이량를 나타내는 도면이다. 열처리 시간이 증가할수록 청색 편이량이 증가하며 SiO2/SiNx 2중 유전체 덮개층이 SiO2 유전체 덮개층보다 양자점 무질서화 정도를 증가시켜 양자점 에너지 밴드갭의 청색편이를 크게 일으킴을 알 수 있다. 따라서 양자점으로 구성된 기판을 국부적으로 서로 다른 에너지 밴드갭을 갖도록 인위적으로 조정하려는 경우, 유전체 덮개층의 종류를 적절히 선택하고 적절한 열처리 시간을 정함으로써 그 정도를 조절할 수 있다.FIG. 4 is a diagram illustrating a blue shift amount according to annealing time of quantum dot samples heat-treated at 700 ° C. with a SiO 2 dielectric cover layer and a SiO 2 / SiN x double dielectric cover layer. As the heat treatment time increases, the amount of blue shift increases, and the SiO 2 / SiN x double dielectric cover layer increases the degree of disorder of the quantum dots than the SiO 2 dielectric cover layer, thereby increasing the blue shift of the quantum dot energy band gap. Therefore, when artificially adjusting a substrate composed of quantum dots to have different energy band gaps, the degree can be controlled by appropriately selecting the type of dielectric covering layer and determining an appropriate heat treatment time.

도 5와 도 6은 각각 도 4와 동일한 시료들의 열처리 시간에 따른 반치폭의 변화와 스펙트럼 강도 변화를 나타내는 도면이다. 스펙트럼의 반치폭은 열처리 시간이 길어질수록 감소하는 현상이 일어나지만 유전체 덮개층의 종류에는 큰 변화가 없음을 알 수 있다. 스펙트럼 강도는 주어진 열처리 시간 내에서 증가하다가 감소하는 현상이 나타났고, 특히 SiO2를 유전체 덮개층으로 이용하는 것보다는 SiO2/SiNx 2중 유전체 덮개층을 이용하는 경우에 더 큰 스펙트럼 강도의 증가가 있다.5 and 6 are graphs showing the change in half width and the spectral intensity according to the heat treatment time of the same samples as in FIG. 4, respectively. The half width of the spectrum decreases as the heat treatment time increases, but it can be seen that there is no significant change in the type of dielectric covering layer. The spectral intensity increases and decreases within a given heat treatment time, and there is a greater increase in spectral intensity especially when using SiO 2 / SiN x double dielectric cover layer rather than using SiO 2 as the dielectric cover layer. .

도 4, 5 및 6의 경우를 종합하면 단순히 SiO2를 유전체 덮개층으로 이용하는 것보다는 SiO2/SiNx 2중 유전체 덮개층을 이용하는 것이 더 많은 양자점 에너지 밴드갭 청색 편이를 만들고 형광 스펙트럼 강도를 증가시킨다는 결론을 얻을 수 있다. 특히, 도 4에 나타난 특성은 SiO2 유전체 덮개층과 SiO2/SiNx 2중 유전체 덮개층이 동일한 양자점 구조 기판 상에 있다면 국부적으로 다른 양자점 에너지 밴드갭을 만들 수 있음을 설명한다.4, 5, and 6, the use of SiO 2 / SiN x double dielectric sheathing layer creates more quantum dot energy bandgap blue shift and increases fluorescence spectral intensity than simply using SiO 2 as the dielectric sheathing layer. It can be concluded. In particular, the properties shown in FIG. 4 illustrate that if the SiO 2 dielectric cover layer and the SiO 2 / SiN x double dielectric cover layer are on the same quantum dot structure substrate, locally different quantum dot energy bandgaps can be created.

도 7은 이와 같은 개념에서 만들어진 유전체 덮개층의 조합을 나타낸 도면이다. 덮개층 구조는 일반적으로 잘 알려진 반도체 공정을 통하여 쉽게 제조될 수 있고, 도 4를 근거로 이해되는 바와 같이, Si02/SiNX 2중 유전체 덮개층 하부의 양자점 에너지 밴드갭의 청색 편이량은 SiO2 유전체 덮개층 하부의 양자점 에너지 밴드갭의 청색 편이량 보다 크게 될 것임은 명백하다.7 is a view showing a combination of a dielectric covering layer made in such a concept. The cover layer structure can be easily manufactured through a generally known semiconductor process, and as understood based on FIG. 4, the blue shift amount of the quantum dot energy band gap under the SiO 2 / SiN X double dielectric cover layer is SiO It is obvious that the amount of blue shift of the quantum dot energy band gap under the dielectric cover layer will be larger than that of the second dielectric covering layer.

본 발명은 예시적인 실시 예를 참조하여 설명하였으나, 이러한 설명들은 제한적 의미로 해석되어서는 아니 될 것이다. 본 발명이 관련된 기술 분야에서 통상의 지식을 가진 자라면, 본 발명의 상세한 발명을 참고로 하여 예시적인 실시 예를 다양하게 변경 또는 조합하거나 다르게 실시할 수 있다.Although the present invention has been described with reference to exemplary embodiments, these descriptions should not be construed in a limiting sense. Those skilled in the art to which the present invention pertains may variously change, combine, or practice various exemplary embodiments with reference to the detailed invention of the present invention.

본 발명에 따르면, GaAs 기판상에 성장된 InGaAs 양자점 구조의 에너지 밴드갭은 양자점 기판상에 유전체 덮개층을 도포하고 열처리함으로써 청색변이가 가능한데, 양자점 기판상에 도포된 유전체 덮개층의 종류와 열처리 시간으로 에너지 밴드갭 이동량을 조정할 수 있다. 따라서 리소그라피, 식각 및 유전체 도포 등의 일반적인 반도체 공정을 이용하여 양자점 기판상에 서로 다른 유전체 덮개층 조합을 갖는 영역을 만들고 열처리함으로써 서로 다른 밴드갭을 갖는 영역들을 동일한 InGaAs/GaAs 양자점 기판상에 만들 수 있다.According to the present invention, the energy bandgap of an InGaAs quantum dot structure grown on a GaAs substrate can be changed blue by applying and heat-treating a dielectric covering layer on the quantum dot substrate. The amount of energy band gap shift can be adjusted. Therefore, using common semiconductor processes such as lithography, etching, and dielectric coating, regions with different dielectric covering layer combinations can be formed on the quantum dot substrate and heat treated to create regions with different bandgaps on the same InGaAs / GaAs quantum dot substrate. have.

도 1은 양자점 무질서화 공정 전ㆍ후의 양자점의 밴드갭을 설명하기 위한 도면.BRIEF DESCRIPTION OF THE DRAWINGS The figure for demonstrating the band gap of a quantum dot before and after a quantum dot disordering process.

도 2는 유기금속 화학기상 증착(MOCVD ; Metal-Organic Chemical Vapor Deposition)법으로 성장된 양자점 기판 구조를 설명하기 위한 도면.2 is a view for explaining the structure of the quantum dot substrate grown by metal-organic chemical vapor deposition (MOCVD) method.

도 3은 본 발명의 일 실시예에 따른 공정 순서를 설명하기 위한 도면.3 is a view for explaining a process sequence according to an embodiment of the present invention.

도 4는 SiO2 덮개층과 SiO2/SiNx 2중 덮개층으로 700oC에서 열처리한 양자점 시료들의 열처리 시간에 대한 밴드갭의 청색편이를 나타내는 도면.4 is a diagram showing a blue shift of the band gap with respect to the heat treatment time of the quantum dot samples heat-treated at 700 ° C with a SiO 2 cover layer and a SiO 2 / SiN x double cover layer.

도 5는 도 4와 동일한 양자점 시료들의 열처리 시간에 따른 반치폭 변화를 나타내는 도면.5 is a view showing a half width change with the heat treatment time of the same quantum dot samples of FIG.

도 6은 도 4와 동일한 양자점 시료들의 열처리 시간에 따른 스펙트럼 강도 변화를 나타내는 도면.FIG. 6 is a view illustrating a change in spectral intensity according to the heat treatment time of the same quantum dot samples as in FIG. 4. FIG.

도 7은 SiO2 와 SiNx의 국부적 조합을 이용하여 양자점 기판상에 국부적 에너지 밴드갭 차이를 얻기 위한 유전체 덮개층의 조합 예를 나타내는 도면.FIG. 7 shows a combination example of a dielectric covering layer for obtaining a local energy bandgap difference on a quantum dot substrate using a local combination of SiO 2 and SiN x .

Claims (3)

InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법에 있어서,InInGaAs / GaAs quantum dot energy bandgap adjustment method, InGaAs/GaAs 양자점 기판을 성장하는 단계와,Growing an InGaAs / GaAs quantum dot substrate, 상기 InGaAs/GaAs 양자점 기판에 2중 유전체 덮개층을 성장하는 단계와,Growing a double dielectric cover layer on the InGaAs / GaAs quantum dot substrate; 상기 2중 유전체 덮개층이 성장된 InGaAs/GaAs 양자점 기판을 열처리하는 단계Heat-treating the InGaAs / GaAs quantum dot substrate on which the double dielectric cover layer is grown; 를 포함하는 InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법.InGaAs / GaAs quantum dot energy bandgap adjustment method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 열처리 단계는 상기 2중 유전체 덮개층이 성장된 InGaAs/GaAs 양자점 기판을 사전설정된 온도에서 1 내지 4분간 열처리하는 InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법.The heat treatment step is a method of adjusting the InGaAs / GaAs quantum dot energy bandgap to heat-treat the InGaAs / GaAs quantum dot substrate is grown for 1 to 4 minutes at a predetermined temperature. 제 1 항에 있어서,The method of claim 1, 상기 2중 유전체 덮개층은 SiNx와 SiO2의 국부적인 조합으로 성장되는 InGaAs/GaAs 양자점 에너지 밴드갭 조정 방법.The double dielectric covering layer is grown in a local combination of SiN x and SiO 2 InGaAs / GaAs quantum dot energy bandgap adjustment method.
KR10-2001-0088867A 2001-12-31 2001-12-31 METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING KR100502884B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0088867A KR100502884B1 (en) 2001-12-31 2001-12-31 METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0088867A KR100502884B1 (en) 2001-12-31 2001-12-31 METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING

Publications (2)

Publication Number Publication Date
KR20030058418A KR20030058418A (en) 2003-07-07
KR100502884B1 true KR100502884B1 (en) 2005-07-25

Family

ID=32216324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0088867A KR100502884B1 (en) 2001-12-31 2001-12-31 METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING

Country Status (1)

Country Link
KR (1) KR100502884B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948770B2 (en) 2015-10-23 2021-03-16 Samsung Electronics Co., Ltd. Light source, back light unit, and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990061768A (en) * 1997-12-31 1999-07-26 이계철 Waveguides with Heterogeneous Energy Bandgap Quantum Well Layers and Manufacturing Method Thereof
JP2001111094A (en) * 1999-10-13 2001-04-20 Yokogawa Electric Corp Infrared light receiving element and method of manufacturing the same
KR20010036949A (en) * 1999-10-12 2001-05-07 박호군 Control methodology of InGaAs/InGaAsP quantum well bandgap by the combination of dielectric-semiconductor capping layer in quantum well intermixing
KR20010077666A (en) * 2000-02-07 2001-08-20 박호군 Methed of controlling bandgap of semiconductor optical devices having quantum well structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990061768A (en) * 1997-12-31 1999-07-26 이계철 Waveguides with Heterogeneous Energy Bandgap Quantum Well Layers and Manufacturing Method Thereof
KR20010036949A (en) * 1999-10-12 2001-05-07 박호군 Control methodology of InGaAs/InGaAsP quantum well bandgap by the combination of dielectric-semiconductor capping layer in quantum well intermixing
JP2001111094A (en) * 1999-10-13 2001-04-20 Yokogawa Electric Corp Infrared light receiving element and method of manufacturing the same
KR20010077666A (en) * 2000-02-07 2001-08-20 박호군 Methed of controlling bandgap of semiconductor optical devices having quantum well structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948770B2 (en) 2015-10-23 2021-03-16 Samsung Electronics Co., Ltd. Light source, back light unit, and display device

Also Published As

Publication number Publication date
KR20030058418A (en) 2003-07-07

Similar Documents

Publication Publication Date Title
Sasaki et al. Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures
Yoshizawa et al. Self-organization of GaN/Al0. 18Ga0. 82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks
JP4907256B2 (en) Semiconductor heterostructure and method for forming a semiconductor heterostructure
KR101209151B1 (en) Method for fabricating quantum dot and semiconductor structure containing quantum dot
Adhikari et al. Optical properties of ZnO deposited by atomic layer deposition on sapphire: a comparison of thin and thick films
KR100502884B1 (en) METHOD OF CONTROLLING InGaAs/GaAs QUANTUM DOTS ENERGY BANDGAP BY THE COMBINATION OF DIELECTRIC CAPPING LAYER IN QUANTUM DOTS INTERMIXING
EP1425832B1 (en) Method of manufacturing optical devices and related improvements
US7902046B2 (en) Thin buffer layers for SiGe growth on mismatched substrates
KR102079715B1 (en) Thin film, method of forming thin film, semiconductor device including thin film and method of manufacturing semiconductor device
US20070091954A1 (en) Method of selective post-growth tuning of an optical bandgap of a semi-conductor heterostructure and products produced thereof
KR100326773B1 (en) Control methodology of InGaAs/InGaAsP quantum well bandgap by the combination of dielectric-semiconductor capping layer in quantum well intermixing
KR100368791B1 (en) Methed of controlling bandgap of semiconductor optical devices having quantum well structure
Deenapanray et al. Impurity-free intermixing of GaAs/AlGaAs quantum wells using SiO x capping: Effect of nitrous oxide flow rate
Tassis et al. Optical and electrical characterization of high quality β-FeSi2 thin films grown by solid phase epitaxy
Photopoulos et al. Photoluminescence from SiO2/Si/SiO2 structures
KR100875929B1 (en) Mask pattern for selective region growth of semiconductor film and method for selective region growth of semiconductor film using same
KR102098209B1 (en) Epitaxial wafer and method for fabricating the same
US20040152312A1 (en) Method for depositing a material on a substrate wafer
JP4360490B2 (en) Crystalline thin film forming method and thin film structure using the method
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
Nagy et al. Growth of InGaAs/InP structures by gas source molecular beam epitaxy on SiO2-patterned substrates for optoelectronic applications
JPH07240380A (en) Method of manufacturing quantum fine wire structure
JPH0526760B2 (en)
JPH0289306A (en) Formation of semiconductor thin film
US7226849B2 (en) Method of producing integrated semiconductor components on a semiconductor substrate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140624

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee