KR100496994B1 - Underground Cable real time determining System and method thereof - Google Patents
Underground Cable real time determining System and method thereof Download PDFInfo
- Publication number
- KR100496994B1 KR100496994B1 KR10-2003-0021321A KR20030021321A KR100496994B1 KR 100496994 B1 KR100496994 B1 KR 100496994B1 KR 20030021321 A KR20030021321 A KR 20030021321A KR 100496994 B1 KR100496994 B1 KR 100496994B1
- Authority
- KR
- South Korea
- Prior art keywords
- cable
- temperature
- current
- sheath
- calculated
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/22—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
- H02H7/228—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for covered wires or cables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/58—Testing of lines, cables or conductors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/02—Monitoring continuously signalling or alarm systems
- G08B29/06—Monitoring of the line circuits, e.g. signalling of line faults
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00016—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
- H02J13/00017—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00036—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
- H02J13/0004—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/124—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
- Electric Cable Installation (AREA)
Abstract
본 발명은, 전력 수송 설비들 중 지중 케이블의 평가장치에 관한 것으로, 지중 전력 케이블의 도체 온도와 허용 전류를 실시간으로 평가하기 위하여, 케이블과 쉬스의 전류를 취득하는 수단과, 케이블과 케이블 외부의 온도를 취득하는 수단과, 상기 전류취득수단들과 온도취득수단들이 메인 컴퓨터와 연결하도록 통신선으로 연결된 통신장치 및 상기 통신장치와 연결되어 상기 전류취득수단과 온도 취득수단들로부터 입수된 데이터를 통해 실시간으로 도체의 온도를 계산하여 예상 송전용량을 산정하고 그 결과를 선로 운전자에게 통보하며 케이블 송전에 이상이 발생할 경우 선로 운전자에게 경보하는 메인컴퓨터로 구성하므로 실시간으로 지중 전력 케이블의 전송용량을 산정할 수 있는 매우 유용하고 효과적인 발명에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating underground cables among power transport facilities. The present invention relates to means for acquiring electric currents of cables and sheaths for evaluating conductor temperature and allowable current of underground power cables in real time. Means for acquiring a temperature, a communication device connected by a communication line so that the current acquiring means and the temperature acquiring means are connected to a main computer, and data obtained from the current acquiring means and the temperature acquiring means connected to the communication device in real time. Calculate the transmission capacity by calculating the temperature of the conductor, and inform the track driver of the result, and configure the main computer that alerts the track driver when a cable transmission error occurs. That relates to a very useful and effective invention.
Description
본 발명은 전력 수송 설비들 중 지중 케이블의 평가장치에 관한 것으로, 특히 지중 전력 케이블의 도체 온도와 허용 전류를 실시간으로 평가하여 송전용량을 효율적으로 제어할 수 있는 지중 전력 케이블의 실시간 평가장치 및 그 방법에 관한 것이다. The present invention relates to an evaluation apparatus for underground cables among power transport facilities, and in particular, a real-time evaluation apparatus for underground power cables capable of efficiently controlling transmission capacity by evaluating conductor temperature and allowable current of underground power cables in real time, and its It is about a method.
일반적으로, 전력 케이블의 송전용량은 전력 케이블을 감싸고 있는 절연체의 절연성능이 유지될 수 있는 온도 범위 내에서 송전 용량을 결정하게 된다. In general, the power transmission capacity of the power cable determines the power transmission capacity within a temperature range in which the insulation performance of the insulator surrounding the power cable can be maintained.
전력 케이블 중 XLPE 케이블(XLPE : Cross - Linked Polyethylene)의 경우, 케이블 도체 온도를 90℃로 한정하고 있으며, OF 케이블(OF : Oil Filled)케이블의 경우, 케이블 도체 온도를 85℃로 한정하고 있다. 케이블 도체 온도의 측정은 케이블 도체에 고전압이 인가되어 있는 상태이므로 상당히 까다로운 것이 현실이다. In the case of XLPE cable (XLPE: Cross-Linked Polyethylene), the cable conductor temperature is limited to 90 ℃, and in the case of OF cable (OF: Oil Filled) cable, the cable conductor temperature is limited to 85 ℃. The measurement of the cable conductor temperature is quite difficult because high voltage is applied to the cable conductor.
케이블 도체 온도를 결정하는 데 있어서 중요한 열원은 케이블 도체를 흐르는 통전 전류에 따른 줄손실, 케이블 도체의 고전압으로 인한 절연손실, 케이블 쉬스의 와전류와 쉬스 순환전류에 의한 줄손실, 케이블 외부 열적 상태 등이 고려된다. Important heat sources in determining the cable conductor temperature include joule losses due to conduction current flowing through the cable conductors, insulation losses due to the high voltage of the cable conductors, joule losses due to the eddy current and sheath circulating current of the cable sheath, and the external thermal state of the cable. Is considered.
따라서, 이와 같은 지중 전력 케이블의 송전용량을 산정하기 위해서 도체 온도 및 허용전류를 국제규격에서 정해진 방법인 IEC 287과 JCS 168 등을 사용하여 평가하여 결정하고 있다. Therefore, in order to calculate the transmission capacity of the underground power cable, the conductor temperature and the allowable current are evaluated and determined using IEC 287, JCS 168, etc., which are defined by international standards.
IEC 287은 국제 전기표준 협회(IEC : International Electro-technical Commission)에 의해 제정된 국제 규격 중 하나로, 이 IEC 규격에는 선박용, 전기설비, 전력 케이블 고주파 케이블, 권선 등의 규격이 포함되어 있으며, JCS 168은 전선제품의 표준화를 위해 일본 전선공업협회(JCS)가 제정한 규격 중 하나이다. IEC 287 is one of the international standards established by the International Electro-technical Commission (IEC), which includes ships, electrical equipment, power cables, high-frequency cables, and windings. JCS 168 Is one of the standards established by the Japan Cable Industry Association (JCS) for the standardization of cable products.
이와 같은 국제 규격들을 이용한 기존의 방법은 케이블 도체 및 내부의 온도 변화를 실제적으로 고려하지 못하고, 케이블 내부의 물질의 열전도도 만을 고려한 정적 열전달 방식으로 케이블 송전 전류가 변화하면 케이블 내부 온도 변화가 시간차 없이 즉시 발생한다는 가정을 갖고 정적상태로 모델링하여 송전용량을 계산하고 있다. Existing methods using these international standards do not consider the temperature change of the cable conductor and the inside, but the static heat transfer method considering only the thermal conductivity of the material inside the cable. The capacity is calculated by modeling the static state with the assumption that it occurs immediately.
하지만, 실제로는 케이블 내부 물질의 비열의 영향으로 온도 변화에는 상당한 시간이 소요되므로, 단시간(약 100시간까지)에는 일반적으로 기존의 방법으로 산정한 송전용량보다 더욱 많은 송전용량을 전력 케이블을 통하여 보낼 수 있다.In practice, however, the temperature change takes considerable time due to the specific heat of the material inside the cable, so in a short time (up to about 100 hours) it is generally possible to send more transmission capacity through the power cable than the conventionally calculated transmission capacity. Can be.
또한, 기존의 송전용량 결정 방식은 최악의 온도 조건을 설정하여 안정성을 많이 확보하는 것을 목표로 하고 있어서 케이블 주변 환경의 변화에 따른 현장의 실제적인 온도 변화를 고려하지 못하고, 최악의 최고 온도조건을 가정하고 계산하므로 정적 송전용량 및 비상운전 조건을 제한하여 지나치게 안전하게 계산하고 있다. In addition, the existing transmission capacity determination method aims to secure a lot of stability by setting the worst temperature conditions, so it is not possible to consider the actual temperature change of the site according to the change of the cable surrounding environment, Since the assumptions and calculations are made, the calculations are made too safely by limiting static transmission capacity and emergency operation conditions.
따라서 실제 허용 가능한 송전용량 보다 상당히 작은 값의 송전용량을 제시하게 된다. 즉, 국내의 중추적 지중송전망은 대부분 전력구 형태로 포설되어 있는데, 이때의 전력구의 온도를 단순히 40℃로 규정하고 있지만, 실 측정 결과는 온도가 가장 높은 하절기에도 전력구의 온도는 대부분 30~35℃ 이다. Therefore, a transmission capacity of a value significantly smaller than the actual allowable transmission capacity is suggested. In other words, most of the central underground transmission networks in Korea are installed in the form of power spheres. At this time, the temperature of the power spheres is simply defined as 40 ℃, but the actual measurement results show that the temperature of the power spheres is mostly 30 ~ 35 ℃ even in the summer with the highest temperature. to be.
따라서, 이러한 열적 상태를 직접 측정하면 전력 케이블의 송전 용량의 증대를 꾀할 수 있음에도 이를 적용하지 못하고 있는 문제가 있었다. Therefore, there is a problem that can not be applied even if the direct measurement of such a thermal state can increase the transmission capacity of the power cable.
또한, 사고 등으로 인한 비상운전이 필요한 경우에도, 종래의 기술은 국제 규격에 정해진 시간동안 만의 허용전류로 계산되므로, 비상운전 시간이 국제규격에서 정한 시간보다 짧을 경우, 더 많은 송전용량을 갖고 있음에도 불구하고, 상기 시간동안만의 송전용량을 송전하도록 하므로 비효율적으로 운용하게 하며, 상기 시간보다 긴 시간동안에는 단지 정적 송전용량만을 송전하게 하는 불합리성을 갖고 있다. In addition, even when emergency operation is necessary due to an accident, the conventional technology calculates the allowable current only for the time specified in the international standard, so that even if the emergency operation time is shorter than the time specified in the international standard, it has more transmission capacity. Nevertheless, it is possible to operate the transmission capacity only during the above time, which makes the operation inefficient, and has an irrationality that only the static transmission capacity is transmitted for a longer time than the above time.
또한, 기존의 송전용량 산정의 방법은 기포설된 전력 케이블 주변에 스팀 파이프 등과 같은 새로운 열원이 공사상의 잘못으로 추가적으로 매설되었을 경우, 케이블 주변의 온도는 규격에서 계산에 이용하는 온도보다 상당히 큰 온도가 될 수 있으며, 이 경우 기존에 계산한 송전용량으로 송전하게 되면 위험한 상황에 직면할 수도 있음에도 불구하고 이를 대처하지 못하여 케이블 사고로까지 이어질 수 있는 단점이 있다. In addition, the conventional method of calculating the transmission capacity is that when a new heat source such as a steam pipe is additionally buried around a buried power cable due to a construction error, the temperature around the cable may be considerably larger than the temperature used for calculation in the specification. In this case, even if the power transmission with the previously calculated power transmission capacity may face a dangerous situation, there is a disadvantage that can not lead to the cable accident.
또한, 전력 케이블의 접지 공사 잘못 등으로 인하여 접지 저항이 증가하는 경우, 전력 케이블에 과도한 쉬스 순환전류가 흐름으로 발생하는 줄손실을 고려하지 못하고, 케이블 내부 온도를 급격히 상승시키는 문제점이 발생할 수 있으나 기존 송전용량의 산정 방법에는 이를 확인할 수도 없고 이 문제를 고려하여 대처할 수 있는 방법이 없다. In addition, when the grounding resistance increases due to a faulty grounding work of the power cable, the loss of Joule loss caused by excessive sheath circulating current flows in the power cable may not be taken into account, and a problem may occur in which the internal temperature of the cable is raised rapidly. This cannot be confirmed in the transmission capacity estimation method and there is no way to deal with this problem.
즉, 쉬스 순환전류를 고려하는 기존의 방법은 케이블의 접지형태에 따라, 실측정 없이 케이블 도체 전류의 일정 비율만을 단순히 계산한다. That is, the conventional method of considering the sheath circulating current simply calculates only a certain ratio of the cable conductor current without the actual measurement, depending on the grounding of the cable.
그 예로 국내의 지중송전케이블에 많이 적용되는 알루미늄 쉬스의 크로스본딩 차폐의 경우, 쉬스 순환전류를 JCS 168의 규격에 따라 도체 전류의 2% 혹은 5%를 적용하고 있다. 하지만, 크로스 본딩의 경우, 크로스 본딩 지점 사이의 거리 불평형 및 접지 저항등의 영향으로 10%정도까지 흐르는 경우도 종종 있어, 케이블 내부 온도 계산에 오차를 발생하게 하여 최악의 경우, 2%를 기초로 계산된 송전용량을 실제로 운전할 경우, 대단히 위험할 수 있는 문제점이 있다. For example, in the case of cross-bonding shielding of aluminum sheath, which is widely applied to underground transmission cables in Korea, 2% or 5% of the conductor current is applied to the sheath circulating current according to the standard of JCS 168. However, in the case of cross bonding, it sometimes flows up to 10% due to the unbalance of the distance between the cross bonding points and the ground resistance, which causes errors in the calculation of the cable internal temperature, and in the worst case, based on 2% There is a problem that can be extremely dangerous when actually operating the calculated power capacity.
본 발명은 상술한 종래의 문제점을 극복하기 위한 것으로서, 본 발명의 목적은 일반 송전시를 비롯한 케이블 사고 발생 또는 하절기 피크 부하시와 같은 비상 송전시에도 송전용량 산정에 기초가 되는 도체 온도, 케이블 쉬스 순환전류 및 케이블 주변 온도를 실시간으로 측정하여 송전용량의 계산에 정확한 정보를 제공하며, 외부의 열적 변화도 실시간으로 반영하여 대처할 수 있도록 하여 현재 선로의 허용가능 송전용량을 실시간으로 정확히 계산하여 송전할 수 있는 지중 전력케이블의 실시간 평가장치 및 그 방법을 제공하는데 있다. The present invention is to overcome the above-mentioned conventional problems, the object of the present invention is the conductor temperature, cable sheath that is based on the transmission capacity calculation even during emergency power transmission, such as cable accident occurrence or summer peak load, such as during general power transmission By measuring the circulating current and the cable ambient temperature in real time, it provides accurate information in calculating the transmission capacity, and it is possible to reflect the external thermal changes in real time to cope with it, and to accurately calculate and transmit the allowable transmission capacity of the current line in real time. The present invention provides an apparatus and method for real-time evaluation of underground power cables.
상기 본 발명의 목적을 달성하기 위하여, 지중 전력케이블에 설치되는 지중 전력케이블 평가장치를 케이블 도체에 흐르는 전류를 측정하기 위하여 케이블 외부를 감싸는 형태로 각각의 케이블에 설치되는 케이블 전류 취득수단과; 쉬스(sheath)에 순환하는 전류를 측정하기 위하여 선로의 접지된 구간마다 설치하는 쉬스 전류 취득수단과; 케이블 쉬스 또는 자켓의 온도를 측정하기 위하여 케이블의 자켓 또는 쉬스층에 설치하는 케이블 온도 취득수단과; 케이블 외부의 온도를 측정하기 위하여 케이블의 외부에 설치하는 케이블 외부온도 취득수단과; 상기 전류취득수단들과 온도취득수단들이 메인 컴퓨터와 연결도록 통신선으로 연결된 통신장치와; 상기 통신장치와 연결되어 상기 전류취득수단과 온도 취득수단들로부터 입수된 데이터를 통해 실시간으로 도체의 온도를 계산하여 예상 송전용량을 산정하고, 그 결과를 선로 운전자에게 통보하며, 케이블 송전에 이상이 발생할 경우 선로 운전자에게 경보하는 메인컴퓨터로 구성하여 실시간으로 지중 전력 케이블의 전송용량을 산정할 수 있는 것을 특징으로 하는 지중 전력 케이블의 실시간 평가장치를 제공한다. In order to achieve the object of the present invention, the cable current acquisition means is installed in each cable in a form surrounding the outside of the cable to measure the current flowing through the cable conductor in the underground power cable evaluation device installed in the underground power cable; Sheath current acquiring means provided for each grounded section of the line for measuring a current circulating through the sheath; Cable temperature acquiring means provided on the jacket or sheath layer of the cable to measure the temperature of the cable sheath or the jacket; Cable external temperature acquiring means installed outside the cable to measure the temperature outside the cable; A communication device connected by a communication line so that the current acquisition means and the temperature acquisition means connect with a main computer; Connected to the communication device, the temperature of the conductor is calculated in real time based on the data obtained from the current acquisition means and the temperature acquisition means to calculate the estimated power transmission capacity, and notify the line driver of the result, and the cable transmission error It provides a real-time evaluation device for underground power cable, characterized in that the transmission capacity of the underground power cable can be calculated in real time by configuring the main computer to alert the line driver when it occurs.
또한, 상기 본 발명의 목적을 달성하기 위하여, 지중 전력케이블의 전송용량을 계산하여 평가하는 방법에 있어서, 통전이 개시되면 케이블 포설의 거리 불평형 및 포설형태를 입력하여 포설조건을 입력하는 단계와; 케이블 내외부 재료의 열전도도 및 비열과 구조를 포함하여 입력된 포설조건을 통해 열정수를 계산하는 단계와; 측정된 도체 전류에 의하여 케이블 도체의 전기적, 열적 특성들과 결합하여 도체에서 발생하는 줄열을 계산하고, 케이블 도체에 인가되는 전압 및 케이블 절연체의 특성으로부터 계산되는 절연손실과 입력된 포설조건 및 쉬스순환전류에 의한 쉬스 줄열을 계산하는 열원 계산단계와: 상기 열정수 계산단계와 열원계산 단계에서 계산된 정보들로 케이블의 내외부 각 부분의 온도를 실시간으로 계산하는 단계와; 측정된 각 부분의 온도와 계산된 온도를 비교하는 단계와; 상기 측정된 각 부분의 온도와 계산된 온도를 비교하는 단계에서 일정오차 이내이면 계산된 온도와 측정된 온도를 사용자에게 알리는 단계와; 상기 측정된 각 부분의 온도와 계산된 온도를 비교하는 단계에서 일정오차 이상이면 열정수 및 열원의 보정계수를 조정한 후 케이블 내외부의 온도들을 다시 계산하여 측정된 온도와 비교하는 단계와; 재 계산에 의하여도 일정오차 이상이면 이상온도 발생을 선로 관리자에게 통보하는 이상온도 발생 경보단계로 이루어지는 것을 특징으로 하는 지중 전력케이블의 실시간 평가방법을 제공한다. In addition, in order to achieve the object of the present invention, a method for calculating and evaluating the transmission capacity of the underground power cable, comprising: inputting the installation conditions by inputting the distance unbalance and the installation form of the cable installation when the electricity is started; Calculating the number of passions through input installation conditions including thermal conductivity and specific heat and structure of the material inside and outside the cable; The Joule heat generated in the conductor is calculated by combining the electrical and thermal characteristics of the cable conductor by the measured conductor current, the insulation loss calculated from the voltage applied to the cable conductor and the characteristics of the cable insulator and the sheath circulation A heat source calculation step of calculating the sheath joule heat based on the current, and calculating the temperature of each part of the cable in and out of the cable in real time using the information calculated in the passion water calculation step and the heat source calculation step; Comparing the measured temperature of each part with the calculated temperature; Informing the user of the calculated temperature and the measured temperature if the measured temperature is within a predetermined error in the step of comparing the measured temperature with the calculated temperature; Comparing the measured temperature of each part with a calculated temperature and adjusting the correction coefficients of the passion water and the heat source if it is equal to or greater than a predetermined error, and then recalculating the temperatures inside and outside the cable to compare the measured temperature with the measured temperature; Also by recalculation provides a real-time evaluation method of underground power cable, characterized in that it consists of an abnormal temperature generation alarm step to notify the line manager of the occurrence of abnormal temperature if a certain error or more.
또한, 상기 측정된 각 부분의 온도와 계산된 온도를 비교하는 단계에서 일정오차 이내이면 계산된 온도와 측정된 온도를 사용자에게 통보한 후, 송전 가능한 용량을 산정하여 선로 관리자에게 통보하는 단계를 더 포함한다.In addition, the step of comparing the measured temperature and the calculated temperature within the predetermined error in the step of notifying the calculated temperature and the measured temperature to the user, and then calculating the capacity that can be transmitted to notify the line manager further Include.
이하, 첨부한 도면에 의거하여 본 발명의 구성에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated in detail based on an accompanying drawing.
도 1은 본 발명에 따른 지중 전력케이블의 실시간 평가장치의 구성을 도시한 도면이고, 도 2는 본 발명에 따른 지중 전력케이블의 실시간 평가방법을 설명하기 위한 플로차트이다. 1 is a view showing the configuration of a real-time evaluation device of the underground power cable according to the present invention, Figure 2 is a flowchart for explaining a real-time evaluation method of the underground power cable according to the present invention.
도 1은 전력구(1)에 설치된 전력 케이블(2)을 예로 설명한 것으로 지중 전력케이블 평가장치는 케이블(2) 도체에 흐르는 전류를 측정하기 위한 케이블 전류 취득수단(3)과, 쉬스(sheath)에 순환하는 전류를 측정하기 위한 쉬스 전류 취득수단(4)과, 케이블(2) 쉬스 또는 자켓의 온도를 측정하기 위한 케이블 온도 취득수단(5)과, 케이블(2) 외부의 온도를 측정하기 위한 케이블 외부온도 취득수단(6)과, 상기 전류취득수단(3)(4)과 온도취득수단(5)(6)들을 메인 컴퓨터(9)와 연결되도록 통신선(8)을 통해 통신장치(7)와, 상기 통신장치(7)와 연결되어 입력된 데이터로 입수된 데이터를 통해 실시간으로 도체의 온도를 계산하여 예상 송전용량을 산정하고, 그 결과를 선로 운전자에게 통보하며, 케이블 송전에 이상이 발생할 경우 선로 운전자에게 경보하는 메인 컴퓨터(9)로 구성한다. 1 illustrates an example of a power cable 2 installed in an electric power outlet 1. The underground power cable evaluating apparatus includes a cable current obtaining means 3 for measuring a current flowing in a conductor of the cable 2, and a sheath. Sheath current acquiring means 4 for measuring the current circulating in the cable, cable temperature acquiring means 5 for measuring the temperature of the sheath or jacket of the cable 2, and for measuring the temperature outside the cable 2 A communication device 7 via a communication line 8 so as to connect a cable external temperature acquisition means 6 and the current acquisition means 3, 4 and temperature acquisition means 5, 6 to the main computer 9. And calculate the temperature of the conductor in real time through the data obtained through the input data connected to the communication device 7 to calculate the estimated power transmission capacity, notify the track driver of the result, and cause abnormality in the cable transmission. Main computer (9) to alert rail drivers in case Constructs.
상기 케이블 전류 취득 수단(3)은 케이블(2) 도체에 흐르는 전류를 측정하기 위하여 케이블(2) 외부를 감싸는 형태로 설치한다. The cable current acquiring means 3 is installed in the form of surrounding the outside of the cable 2 in order to measure the current flowing through the cable 2 conductor.
이 케이블 전류 취득수단(3)은 전류측정 센서로 전류변환기(CT : Current Transformer)를 사용하고, 0∼2000A 정도의 측정범위를 갖는 것이면 충분하다. It is sufficient that the cable current obtaining means 3 uses a current transformer (CT) as a current measuring sensor and has a measuring range of about 0 to 2000A.
또한, 각각의 선로는 동일한 전류가 흐르는 상태이기 때문에 전류 취득수단(3)은 각 선로에 1개씩만 설치한다. In addition, since each line is in the same current flow state, only one current acquisition means 3 is provided in each line.
쉬스(sheath)에 순환하는 전류를 측정하기 위하여는 선로의 접지된 구간마다 쉬스 전류 취득수단(4)을 설치하는데 이 쉬스 전류 취득수단(4)도 전류측정 센서로 전류변환기(CT)를 사용하며, 0∼500A 정도의 측정범위를 갖는 것이면 충분하다. In order to measure the current circulating in the sheath, a sheath current acquiring means 4 is provided for each grounded section of the line. The sheath current acquiring means 4 also uses a current transformer CT as a current measuring sensor. , It is sufficient to have a measurement range of about 0 to 500A.
또한, 케이블(2) 쉬스 또는 자켓의 온도를 측정하기 위하여 케이블의 자켓 또는 쉬스층에 케이블 온도취득수단(5)을 설치한다. Further, in order to measure the temperature of the sheath or jacket of the cable 2, a cable temperature acquisition means 5 is provided in the jacket or sheath layer of the cable.
이 케이블 온도취득수단(5)은 점 온도 센서인 RTD(측온저항체(測溫底抗體) : Resistance Temperature Detector) 또는 TC(열전대 :Thermo Couples)를 사용할 경우 케이블(2) 길이 방향으로 1∼50m 간격으로 설치하되 경제성과 케이블의 특성을 고려하여 10m 간격으로 설치하는 것이 바람직하다. The cable temperature acquiring means 5 is a distance of 1 to 50 m in the length direction of the cable 2 when using RTD (Resistance Temperature Detector) or TC (Thermo Couples), which are point temperature sensors. It should be installed at 10m intervals considering economics and cable characteristics.
또 점 센서 이외에는 길이 방향의 온도 데이터를 측정할 수 있는 광분포 온도측정기를 사용할 수 도 있다. In addition to the point sensor, a light distribution temperature measuring device capable of measuring temperature data in the longitudinal direction may be used.
광섬유 분포 온도 측정기(Fiber Optic Distributed Temperature Sensor System)는 한가닥의 광섬유 자체를 센서 매체로 사용하는 것으로 경량화 및 소형화시킬 수 있으며, 전자기적인 잡음에 전혀 영향을 받지 않고 용이하게 설치될 대상물 전체의 온도를 측정할 수 있다.The Fiber Optic Distributed Temperature Sensor System uses a single fiber as the sensor medium to reduce the weight and size, and to measure the temperature of the entire object to be easily installed without being affected by electromagnetic noise. can do.
상기 케이블 외부온도 취득수단(6)은 케이블(2) 외부에 설치하는데 케이블의 설치형태에 따라서, 전력구(1)에 포설된 전력 케이블에 대해서는 전력구(1) 내에 케이블 외부온도 취득수단(6)을 설치하고, 관로에 포설된 전력 케이블에 대해서는 관로 벽면과, 관로 밖 토양에 설치하는 것이 바람직하다. 또한, 직매 방식으로 포설된 전력 케이블의 경우에는 케이블(2)에서 일정거리 떨어진 토양에 케이블 외부 온도 취득수단(5)을 설치한다. The cable external temperature acquiring means 6 is installed outside the cable 2, and according to the installation form of the cable, the cable external temperature acquiring means 6 in the power outlet 1 for the power cable installed in the electric power outlet 1. ), And it is desirable to install the power cable installed in the pipeline on the wall of the pipeline and on the soil outside the pipeline. In addition, in the case of a power cable installed in a direct sale method, the cable external temperature acquiring means 5 is installed in the soil away from the cable 2 by a predetermined distance.
즉, 도1에서는 본발명의 실시예 중 하나로 전력구(1)에 지중 케이블(2)이 설치된 것을 도시한 것이나, 다른 실시예로 케이블의 설치 형태에 따라 관로에 설치되는 형태나 직접 매립된 형태의 경우에도 케이블 외부온도 취득수단(6)을 적절히 설치하면 어떤 형태로 포설된 지중 전력 케이블에 대해서도 동일하게 적용할 수 있다. That is, Figure 1 shows that the underground cable (2) is installed in the power outlet (1) as one embodiment of the present invention, in another embodiment is installed in the pipeline or directly buried form according to the installation form of the cable Also in this case, if the cable external temperature acquisition means 6 is properly installed, the same can be applied to underground power cables laid in any form.
한편, 상기 전류취득수단(3)(4)과 온도취득수단(5)(6)들은 메인 컴퓨터(9)와 연결되도록 통신선(8)을 통해 통신장치(7)와 연결되어 있다. On the other hand, the current acquisition means (3) and the temperature acquisition means (5) and (6) are connected to the communication device (7) via a communication line (8) so as to be connected to the main computer (9).
상기 통신장치(7)는 PLC(Programmable Logic Controller : 프로그램 제어가 가능한 범용 제어장치)를 사용하는 것이 바람직하다. 특히 PLC로 설치한 상기 통신장치(7)는 광통신 송수신 장비를 사용하고 통신선(8)도 광케이블로 사용하면 데이터가 고압의 전력 케이블의 영향을 받지 않고 전송된다. The communication device 7 preferably uses a programmable logic controller (PLC). In particular, when the communication device 7 installed as a PLC uses an optical communication transmission and reception device and the communication line 8 also uses an optical cable, data is transmitted without being influenced by a high voltage power cable.
상기 통신장치(7)와 연결된 메인컴퓨터(9)는 상기 전류취득수단(3)(4)과 온도 취득수단(5)(6)들로부터 입수된 데이터를 통해 실시간으로 송전용량을 산정하고, 그 결과를 선로 운전자에게 통보하며, 케이블 송전에 이상이 발생할 경우 선로 운전자에게 경보하도록 하여 실시간으로 지중 전력 케이블의 전송용량을 산정하여 지중 전력 케이블의 전송용량을 적절히 제어할 수 있게 된다. The main computer 9 connected to the communication device 7 calculates the power transmission capacity in real time based on the data obtained from the current acquisition means 3, 4 and the temperature acquisition means 5, 6. The result is notified to the line driver, and when a cable transmission error occurs, the line driver is alerted so that the transmission capacity of the underground power cable can be calculated in real time, so that the transmission capacity of the underground power cable can be properly controlled.
한편, 지중 전력케이블의 전송용량을 계산하여 평가하는 방법에 있어서는 통전이 개시되면 케이블 포설 거리 불평형 및 포설형태를 입력하여 포설조건을 입력하는 단계(110)와; On the other hand, the method for calculating and evaluating the transmission capacity of the underground power cable comprises the steps of: (110) inputting the installation conditions by inputting the cable installation distance unbalance and the installation form when the energization is started;
케이블 내외부 재료의 열전도도 및 비열과 구조를 포함하여 입력된 포설조건을 통해 열정수를 계산하는 단계(120)와; Calculating the number of passions through the input installation conditions including the thermal conductivity and specific heat and structure of the material inside and outside the cable (120);
전류값을 측정하여 케이블 도체의 전기적, 열적 특성들과 결합하여 도체에서 발생하는 줄열을 계산하고, 케이블 도체에 인가되는 전압 및 케이블 절연체의 특성으로부터 산정되는 절연손실과 입력된 포설조건 및 쉬스순환전류에 의한 쉬스 줄열을 산정하는 열원 계산단계(130)와; The current value is calculated and combined with the electrical and thermal characteristics of the cable conductor to calculate the Joule heat generated in the conductor, the insulation loss calculated from the voltage applied to the cable conductor and the characteristics of the cable insulator, the input laying condition and the sheath circulating current. A heat source calculation step 130 for calculating the sheath joule heat;
상기 열정수 산정단계와 열원계산 단계에서 계산된 정보들로 케이블의 각 부분의 온도를 실시간으로 계산하는 단계(140)와; Calculating (140) the temperature of each part of the cable in real time using the information calculated in the passion water calculation step and the heat source calculation step;
케이블 각부분의 온도를 측정하는 단계(150)와: Measuring the temperature of each part of the cable (150):
측정된 각 부분의 온도와 계산된 온도가 일정오차 이내인가를 비교하여 판단하는 단계(160)와;Determining by comparing whether the measured temperature of each part and the calculated temperature are within a certain error (160);
일정오차 이내이면 계산된 온도와 측정된 온도를 사용자에게 알리는 단계(170)와; Notifying the user of the calculated temperature and the measured temperature if it is within a certain error (170);
계산된 온도와 측정된 온도를 사용자에게 통보한 후, 송전 가능한 용량을 산정하여 선로 관리자에게 통보하는 단계(180)와; Notifying the calculated temperature and the measured temperature to the user, and then calculating a transmission capacity and notifying the line manager 180;
상기 측정된 각 부분의 온도와 계산된 온도를 비교하는 단계에서 일정오차 이상이면 열정수 및 열원의 보정계수를 조정하여, 케이블 내외부의 온도들을 다시 계산하는 단계(210)와;Recomputing (210) the temperatures inside and outside the cable by adjusting the correction coefficients of the passion water and the heat source if the measured temperature is equal to or greater than a predetermined error in the step of comparing the measured temperatures;
열정수 및 열원의 보정계수를 조정하여 재계산한 계산된 온도를 측정된 온도와 비교하는 단계(220)와; Adjusting the correction coefficients of the passion water and the heat source to compare the calculated temperature with the measured temperature (220);
재 계산에 의하여도 일정오차 이상이면 이상온도 발생을 선로 관리자에게 통보하는 이상온도 발생 경보단계(230)로 이루어진다. Even if the recalculation is more than a predetermined error is made to the abnormal temperature generation alarm step 230 to notify the line manager of the occurrence of the abnormal temperature.
이와 같이 지중 전력 케이블을 실시간으로 전류와 온도를 측정하여 실측값과 계산값을 비교하여 이상을 경보할 수 있으며, 실측된 값에 의하여 현재 송전가능한 용량을 정확히 산정할 수 있게 되고, 선로관리자가 원하는 1개 이상의 시간동안 송전 가능한 용량을 산정하여 출력할 수 있다. 일반적으로 향후 2시간동안 가능한 송전용량, 4시간, 6시간, 12시간, 24시간, 100시간 등을 계산하여 통보하므로 선로관리자가 송전용량을 효율적으로 관리할 수 있게 된다. In this way, by measuring the current and temperature of the underground power cable in real time, it is possible to alarm the abnormality by comparing the measured value and the calculated value, and it is possible to accurately calculate the current transmission capacity by the measured value, The capacity that can be transmitted for one or more times can be calculated and output. In general, the transmission capacity, 4 hours, 6 hours, 12 hours, 24 hours, 100 hours, etc. are calculated and notified for the next two hours, so that the line manager can efficiently manage the transmission capacity.
또한, 사고로 인한 비상운전 동안에도 복구시간의 길고 짧음에 상관없이 현재의 허용 가능한 송전용량을 실시간으로 평가하여 산정할 수 있다. In addition, even during an emergency operation due to an accident, it is possible to evaluate and estimate in real time the current allowable transmission capacity regardless of the long and short recovery time.
즉, 케이블 쉬스 순환전류도 단순히 도체 전류에 대한 비율로 계산하지 않고 실시간으로 측정하여 송전용량 계산에 제공하므로 포설조건의 거리 불평형이나, 접지 공사 등의 잘못으로 인한 쉬스 순환 전류에 대한 줄손실의 정확한 평가가 이루어진다. In other words, the cable sheath circulating current is also measured in real time instead of simply calculated as a ratio of the conductor current, so it is accurately calculated for the loss of the sheath circulating current due to the faulty distance of the installation condition or the fault of grounding. Is done.
따라서, 상기한 바와 같이, 본 발명에 따른 지중 전력 케이블의 실시간 평가장치 및 방법은 지중 전력 케이블의 온도와 전류를 실시간으로 측정하여 송전용량을 산정하게 되므로 일정오차 이내로 계산 및 검증가능하게 되고, 조건 변화에 따른 이상온도 발생을 신속하게 감지하고 대응할 수 있으며, 쉬스전환 전류 증가도 신속하게 감지하여 대응할 수 있고, 열전도도 및 비열을 모두 고려하여 실제 온도 변화를 모두 예측가능하며, 주변환경의 영향도 고려하여 실시간으로 감시하고 있으므로 안전한 송전 관리가 가능하게 되고, 사용자가 원하는 시간 동안 송전 가능한 송전용량을 실시간으로 산정하여 전력송전을 효율적으로 운영할 수 있게 되는 유용하고 효과적인 발명이다. Therefore, as described above, the real-time evaluation device and method of the underground power cable according to the present invention can be calculated and verified within a certain error because it calculates the transmission capacity by measuring the temperature and current of the underground power cable in real time, It can quickly detect and respond to abnormal temperature occurrences according to changes, and can also quickly detect and respond to increased sheath switching current, and can predict all actual temperature changes in consideration of both thermal conductivity and specific heat, and influence of surrounding environment. It is a useful and effective invention that enables safe transmission management, and calculates power transmission capacity for a user's desired time in real time, so that power transmission can be operated efficiently.
도 1은 본 발명에 따른 지중 전력케이블의 실시간 평가장치의 구성을 도시한 도면이다.1 is a view showing the configuration of a real-time evaluation device of the underground power cable according to the present invention.
도 2는 본 발명에 따른 지중 전력케이블의 실시간 평가방법을 설명하기 위한 플로차트이다. 2 is a flowchart illustrating a real-time evaluation method of the underground power cable according to the present invention.
-도면의 주요부분에 대한 부호의 설명-Explanation of symbols on the main parts of the drawing
1 : 전력구 2 : 케이블 1: power bulb 2: cable
3 : 케이블 전류 취득수단 4 : 쉬스 전류 취득수단3: cable current acquisition means 4: sheath current acquisition means
5 : 케이블 온도 취득수단 6 : 케이블 외부온도 취득수단5: cable temperature acquisition means 6: cable external temperature acquisition means
7 : 통신장치 8 : 통신선7: communication device 8: communication line
9 : 메인 컴퓨터9: main computer
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0021321A KR100496994B1 (en) | 2003-04-04 | 2003-04-04 | Underground Cable real time determining System and method thereof |
CNB038211149A CN100397090C (en) | 2003-04-04 | 2003-07-31 | Apparatus and method for evaluating underground electric power cables |
AU2003257711A AU2003257711B2 (en) | 2003-04-04 | 2003-07-31 | Apparatus and method for evaluating underground electric power cables |
NZ538181A NZ538181A (en) | 2003-04-04 | 2003-07-31 | Apparatus and method for evaluating underground electric power cables |
PCT/KR2003/001545 WO2004088338A1 (en) | 2003-04-04 | 2003-07-31 | Apparatus and method for evaluating underground electric power cables |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0021321A KR100496994B1 (en) | 2003-04-04 | 2003-04-04 | Underground Cable real time determining System and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040087077A KR20040087077A (en) | 2004-10-13 |
KR100496994B1 true KR100496994B1 (en) | 2005-06-23 |
Family
ID=33128952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0021321A KR100496994B1 (en) | 2003-04-04 | 2003-04-04 | Underground Cable real time determining System and method thereof |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR100496994B1 (en) |
CN (1) | CN100397090C (en) |
AU (1) | AU2003257711B2 (en) |
NZ (1) | NZ538181A (en) |
WO (1) | WO2004088338A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100691728B1 (en) * | 2004-09-30 | 2007-03-12 | 이관우 | The Measuring Method of the Unperfected Circuiting Current of Underground Cable |
US7023217B1 (en) | 2004-12-16 | 2006-04-04 | Honeywell International Inc. | Method and apparatus for determining wear of resistive and conductive elements |
KR101386414B1 (en) * | 2007-12-21 | 2014-04-21 | 재단법인 포항산업과학연구원 | Method for predicting maximum tolerance current using load current and the temperature of power facility |
CN101672880B (en) * | 2009-09-21 | 2012-09-05 | 广东电网公司广州供电局 | Identification method of cable current-carrying capacity and identification device |
US20120299603A1 (en) * | 2011-05-25 | 2012-11-29 | Electric Power Research Institute, Inc. | On-line monitoring system of insulation losses for underground power cables |
CN102494793A (en) * | 2011-12-01 | 2012-06-13 | 国网电力科学研究院 | Temperature thermocouple for high-voltage and ultrahigh-voltage power cable |
CN102590594B (en) * | 2012-03-07 | 2014-05-28 | 广东电网公司佛山供电局 | Transient state thermal circuit model-based method and device for determining permissible current of overhead conductor |
CN102680135B (en) * | 2012-05-23 | 2014-07-23 | 重庆大学 | Method and system for monitoring cable tunnel environment based on cable temperature measurement |
DE102012012401A1 (en) | 2012-06-25 | 2014-01-02 | Rwe Innogy Gmbh | METHOD FOR CURRENT CONTROL |
CN102830314B (en) * | 2012-08-30 | 2015-04-22 | 广东电网公司佛山供电局 | Detection method for current-carrying capacity of overhead conductor |
DE102012218067A1 (en) * | 2012-10-02 | 2014-04-03 | Wobben Properties Gmbh | Method for monitoring a plurality of electrical power lines of a wiring harness |
CN103439609A (en) * | 2013-08-29 | 2013-12-11 | 华南理工大学 | Method for calculating power cable real-time emergency carrying capacity |
KR102055414B1 (en) | 2013-09-25 | 2019-12-12 | 한국전력공사 | Apparatus for calculating driving capacity of distribution line |
CN103823138A (en) * | 2014-02-25 | 2014-05-28 | 胡兴耀 | Circuit for monitoring power supply line electric parameters with auxiliary line |
CN103995190A (en) * | 2014-04-10 | 2014-08-20 | 李�禾 | Current carrying capacity test method for overhead conductor |
CN104330659B (en) * | 2014-10-21 | 2017-02-15 | 国网上海市电力公司 | Quasi dynamic compatibilization method based on cable heat transmission model |
CN104459380A (en) * | 2014-11-20 | 2015-03-25 | 广州供电局有限公司 | Method and system for measuring cable load carrying capacity |
KR20160074987A (en) | 2014-12-19 | 2016-06-29 | 주식회사 포스코 | Live line cable insulation monitoring apparatus |
CN105932607B (en) * | 2016-07-22 | 2018-06-22 | 南京电力工程设计有限公司 | Cable laying experimental method and device based on cable support system eddy-current loss |
CN108736569A (en) * | 2017-04-21 | 2018-11-02 | 福特全球技术公司 | Method and system for the temperature for monitoring power distribution circuit |
US11422203B1 (en) * | 2019-02-15 | 2022-08-23 | Maxim Integrated Products, Inc. | Current sensing line fault detector |
KR102027826B1 (en) * | 2019-04-17 | 2019-11-08 | 주연이엔에스 주식회사 | Automatic tracking system failure in distribution lines |
CN110160481B (en) * | 2019-04-26 | 2021-03-02 | 云南电网有限责任公司电力科学研究院 | Method and device for measuring insulation damage area of cable |
KR102421261B1 (en) * | 2020-09-17 | 2022-07-15 | 엘아이지넥스원 주식회사 | Apparatus and method for instpecting cable |
CN113111484B (en) * | 2021-03-04 | 2022-05-17 | 国网浙江省电力有限公司嘉兴供电公司 | Dynamic assessment method for capacity increase of power transmission and transformation line |
CN114046903A (en) * | 2021-11-05 | 2022-02-15 | 上海海能信息科技股份有限公司 | Real-time temperature prediction method and system for high-voltage cable core |
CN116698134B (en) * | 2023-08-09 | 2023-12-29 | 国网安徽省电力有限公司合肥供电公司 | Safety monitoring system for operation of underground limited space of power grid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10142077A (en) * | 1996-11-08 | 1998-05-29 | Fujikura Ltd | Highly viscous oil immersion-insulation cable and temperature change measurement system |
KR20010079444A (en) * | 2001-07-19 | 2001-08-22 | 권문구 | Real-time rating and forecast system using optical fiber sensor |
JP2003061264A (en) * | 2001-08-07 | 2003-02-28 | Korea Electric Power Data Network Co Ltd | Load monitoring system of transformer on utility pole using wireless internet |
KR20030045864A (en) * | 2001-12-01 | 2003-06-12 | 엘지전선 주식회사 | Temperature dector for underground power cables |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4855671A (en) * | 1983-04-13 | 1989-08-08 | Fernandes Roosevelt A | Electrical power line and substation monitoring apparatus |
CN1025076C (en) * | 1990-07-11 | 1994-06-15 | 藤仓电线株式会社 | Optical fiber laying structure for electric power cable line trouble occurrence location detecting system |
FR2727762A1 (en) * | 1994-12-05 | 1996-06-07 | Excem | DEVICE FOR LOCATING DEFECTS ON SUBMARINE TELECOMMUNICATIONS BONDS |
US5600248A (en) * | 1995-06-21 | 1997-02-04 | Dipl.-Ing H. Horstmann Gmbh | Fault distance locator for underground cable circuits |
PT862258E (en) * | 1997-02-26 | 2008-02-22 | Prysmian Cavi Sistemi Energia | Method and system for transporting electric power in a link |
US6167525A (en) * | 1997-02-26 | 2000-12-26 | Pirelli Cavi E Sistemi S.P.A. | Method and system for analysis of electric power transmission link status |
US7277822B2 (en) * | 2000-09-28 | 2007-10-02 | Blemel Kenneth G | Embedded system for diagnostics and prognostics of conduits |
-
2003
- 2003-04-04 KR KR10-2003-0021321A patent/KR100496994B1/en not_active IP Right Cessation
- 2003-07-31 NZ NZ538181A patent/NZ538181A/en not_active IP Right Cessation
- 2003-07-31 AU AU2003257711A patent/AU2003257711B2/en not_active Ceased
- 2003-07-31 WO PCT/KR2003/001545 patent/WO2004088338A1/en active IP Right Grant
- 2003-07-31 CN CNB038211149A patent/CN100397090C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10142077A (en) * | 1996-11-08 | 1998-05-29 | Fujikura Ltd | Highly viscous oil immersion-insulation cable and temperature change measurement system |
KR20010079444A (en) * | 2001-07-19 | 2001-08-22 | 권문구 | Real-time rating and forecast system using optical fiber sensor |
JP2003061264A (en) * | 2001-08-07 | 2003-02-28 | Korea Electric Power Data Network Co Ltd | Load monitoring system of transformer on utility pole using wireless internet |
KR20030045864A (en) * | 2001-12-01 | 2003-06-12 | 엘지전선 주식회사 | Temperature dector for underground power cables |
Also Published As
Publication number | Publication date |
---|---|
WO2004088338A1 (en) | 2004-10-14 |
AU2003257711A1 (en) | 2004-10-25 |
CN1678916A (en) | 2005-10-05 |
KR20040087077A (en) | 2004-10-13 |
NZ538181A (en) | 2007-08-31 |
CN100397090C (en) | 2008-06-25 |
AU2003257711B2 (en) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100496994B1 (en) | Underground Cable real time determining System and method thereof | |
CN108008245B (en) | Submarine cable insulation fault monitoring method based on photoelectric composite submarine cable temperature field | |
KR20130036125A (en) | Heating cable having smart function and maufacturing method of said it | |
US20130066600A1 (en) | Method and apparatus for real-time line rating of a transmission line | |
CN104198068A (en) | Temperature monitoring device and temperature monitoring method for winding of oil immersed transformer | |
CN112595357A (en) | Three-phase coaxial high-temperature superconducting cable thermal balance monitoring device and thermal balance optimization method | |
Pilgrim et al. | Offshore wind farm export cable current rating optimisation | |
Nakamura et al. | Conductor temperature monitoring system in underground power transmission XLPE cable joints | |
Parise et al. | A life loss tool for an optimal management in the operation of insulated LV power cables | |
Anders et al. | Real Time Monitoring of Power Cables by Fibre Optic Technologies. Tests, Applications and Outlook | |
WO2002091002A1 (en) | Overhead line rating monitor | |
AU2002303619A1 (en) | Overhead line rating monitor | |
Jones et al. | Condition monitoring system for TransGrid 330 kV power cable | |
JPH1127183A (en) | Method and system for transmitting power in link | |
CN115950550A (en) | Cable insulation operation temperature and circulation on-line monitoring method | |
KR100691728B1 (en) | The Measuring Method of the Unperfected Circuiting Current of Underground Cable | |
JP2001165781A (en) | Method for estimating conductor temperature of power cable | |
US4553092A (en) | Apparatus and method for temperature estimation of overhead conductors | |
JPH08242533A (en) | Method for monitoring temperature of electric line | |
Goehlich et al. | Monitoring of HV cables offers improved reliability and economy by means of'power sensors' | |
CN112467692B (en) | Cable protection system and method based on temperature change waveform along cable | |
Grotenhuis et al. | Increasing the capacity of cable systems using cable asset management based on thermal and mechanical properties | |
CN112485557B (en) | Current-carrying capacity and temperature monitoring device and method for three-phase coaxial high-temperature superconducting cable system | |
JP2010200463A (en) | Power transmission system using superconductive cable | |
JP2008164473A (en) | Device for measuring conductor temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120611 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |