KR100494813B1 - Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism - Google Patents

Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism Download PDF

Info

Publication number
KR100494813B1
KR100494813B1 KR10-2003-0026495A KR20030026495A KR100494813B1 KR 100494813 B1 KR100494813 B1 KR 100494813B1 KR 20030026495 A KR20030026495 A KR 20030026495A KR 100494813 B1 KR100494813 B1 KR 100494813B1
Authority
KR
South Korea
Prior art keywords
thr
asn
asp
dextran
gln
Prior art date
Application number
KR10-2003-0026495A
Other languages
Korean (ko)
Other versions
KR20040092250A (en
Inventor
김도만
강희경
서은성
조갑수
Original Assignee
김도만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김도만 filed Critical 김도만
Priority to KR10-2003-0026495A priority Critical patent/KR100494813B1/en
Publication of KR20040092250A publication Critical patent/KR20040092250A/en
Application granted granted Critical
Publication of KR100494813B1 publication Critical patent/KR100494813B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01005Dextransucrase (2.4.1.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 변형된 덱스트란수크라아제 유전자, 그 유전자를 포함하는 재조합벡터, 이러한 재조합벡터로 형질전환된 미생물, 및 이러한 미생물로부터 생산된 아미노산 서열을 포함하는 변형된 덱스트란수크라아제에 관한 것으로, The present invention relates to a modified dextran sucrase gene comprising a modified dextran sucrase gene, a recombinant vector comprising the gene, a microorganism transformed with the recombinant vector, and an amino acid sequence produced from the microorganism. ,

서열번호 1의 DNA 서열로 이루어지며, 고 비율의 가지결합을 갖는 덱스트란을 합성하는 변형된 덱스트란수크라아제 유전자, 상기 변형된 덱스트란수크라아제 유전자를 포함하는 재조합벡터, 상기 재조합벡터로 형질전환 된 고 비율의 가지결합을 갖는 덱스트란을 생산하는 미생물(DSRB742CK, 기탁번호:KACC 95013), 및 상기 형질전환된 미생물로부터 생산되고, 서열번호 2의 아미노산 서열로 이루어지며, 고 비율의 가지결합을 갖는 덱스트란을 합성할 수 있는 변형된 덱스트란수크라아제가 제공된다.A modified dextran sucrase gene consisting of the DNA sequence of SEQ ID NO: 1 and synthesizing dextran having a high ratio of branched bonds, a recombinant vector comprising the modified dextran sucrase gene, and the recombinant vector. Microorganisms producing dextran having a high proportion of transformed branches (DSRB742CK, Accession No .: KACC 95013), and produced from the transformed microorganism, consisting of the amino acid sequence of SEQ ID NO: 2, Modified dextran sucrase is provided that can synthesize dextran having a bond.

본 발명의 돌연변이 균주는 증가된 덱스트란 생성능을 나타내며, 특히 가지 결합을 많이 갖는 덱스트란을 합성하는 특성을 가져, 주로 의약용, 식품, 화장품 등에 유용한 재료로 사용될 수 있는 덱스트란을 합성하는데 매우 유용하다.The mutant strains of the present invention exhibit increased dextran production ability, and in particular, have the property of synthesizing dextran having many branch bonds, and are very useful for synthesizing dextran, which can be mainly used as a material useful for medicine, food, cosmetics, etc. Do.

Description

변형된 덱스트란수크라아제 유전자, 그 유전자를 포함하는 재조합벡터, 이러한 재조합벡터로 형질전환된 미생물, 및 이러한 미생물로부터 생산된 덱스트란수크라아제{Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism}Modified dextran sucrase gene, recombinant vector containing the gene, microorganisms transformed with the recombinant vector, and dextran sucrase produced from such microorganisms (Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism}

본 발명은 고 비율의 가지결합을 갖는 덱스트란을 합성하는 변형된 덱스트란수크라아제 유전자, 그 유전자를 포함하는 재조합벡터, 이러한 재조합벡터로 형질전환된 미생물, 및 이러한 미생물로부터 생산된 아미노산 서열을 포함하는 변형된 덱스트란수크라아제에 관한 것이다. 특히 본 발명의 변형된 덱스트란수크라아제 유전자는 특정 파장의 범위를 갖는 방사광을 유전자에 직접 조사하여 얻어진 것이다.The present invention provides a modified dextran sucrase gene for synthesizing dextran having a high ratio of branched bonds, a recombinant vector comprising the gene, a microorganism transformed with the recombinant vector, and an amino acid sequence produced from the microorganism. It relates to a modified dextran sucrase comprising. In particular, the modified dextran sucrase gene of the present invention is obtained by directly irradiating the gene with radiation having a specific wavelength range.

생물체에 존재하는 수 천 종의 효소는 생명체의 기능을 유지하기 위해 필요한 복잡하고 다양한 반응을 매우 효율적으로 진행시키도록 진화되어왔다. 따라서 이러한 효소를 실제 산업적으로 활용하기 위해서는 반응의 목적에 맞게 효소의 기능을 개량하여야 한다.Thousands of enzymes in living organisms have evolved to process very efficiently the complex and varied reactions necessary to maintain their functions. Therefore, in order to actually use the enzyme industrially, it is necessary to improve the function of the enzyme in accordance with the purpose of the reaction.

효소의 특성을 개량하기 위해서는 효소의 구조 등 관련 정보를 기반으로 하는 전통적인 단백질 공학 기술(Protein Engineering)과 효소에 관련된 구체적인 정보가 없이 원하는 방향으로 효소의 기능을 개량하는 방향적 진화(Directed evolution) 방법이 활용 될 수 있다. 특히 단백질의 구조나 기능에 대한 정확한 정보가 없는 효소의 경우 방향적 진화 방법은 원하는 방향으로 효소의 기능을 개량하는데 매우 효율적이다. 변이 유전자를 생성시키는 방법이 이용될 수 있으며, 이러한 변이 유전자를 생성시키는 방법으로는 화학적 돌연변이 (Chemical mutagenesis), 에러 유발성 PCR 돌연변이 기술(Error-prone PCR (mutagenic PCR)), 카세트 돌연변이(Cassette mutagenesis), DNA 셔플링(DNA shuffling), 상동성 재배열(Homologous recombination) 등이 주로 개발되어 사용되고 있다. To improve the properties of enzymes, traditional protein engineering based on relevant information such as the structure of the enzyme and directed evolution method to improve the function of the enzyme in the desired direction without specific information about the enzyme This can be utilized. Especially for enzymes that do not have accurate information about the structure or function of the protein, directional evolution is very efficient in improving the enzyme's function in the desired direction. Methods for generating mutant genes can be used, and methods for generating such mutant genes include chemical mutagenesis, error-prone PCR (mutagenic PCR), and cassette mutagenesis. ), DNA shuffling, homologous recombination, etc. are mainly developed and used.

현재 국외에서 개발되어 사용되는 유전자를 이용하는 방향적 진화 방법은 효소의 어느 부분에서 어떠한 특성이 일어나는 지에 대한 정보가 없을 때 유전자 부분을 돌연변이 시키는데 사용하는 분자 유전학적인 무작위 돌연변이(random mutation) 방법이다. 방사선을 이용한 무작위 돌연변이는 오래 전부터 산업적으로 미생물 자체의 돌연변이 유도에 이용되어 왔다. 그러나 전통적인 방사선을 이용한 돌연변이 유도 방법은 대상이 미생물 자체이며, 유전자를 분리하여 직접 조사하는 연구는 발표된 바 없다. The directional evolution method using genes developed and used abroad is a molecular genetic random mutation method used to mutate a gene part when there is no information on which part of an enzyme occurs. Random mutations using radiation have long been used industrially to induce mutations in microorganisms themselves. However, in conventional methods of mutation induction using radiation, the subject is the microorganism itself, and no direct research has been conducted to isolate the gene.

생물체에 대한 방사선의 영향 연구는 의학, 식품관련 생화학, 분자유전학 분야에서 많이 있었으나 이들은 대부분 수 전자볼트의 에너지를 가지는 자외선 영역의 빛을 사용하여 미생물에 직접 조사하고 유전 물질에 대한 영향을 확인하거나 미생물 돌연변이를 유도하는 것이었다. 보다 높은 에너지를 갖는 빛의 유전 물질에 대한 영향성은 방사선 가속기의 개발 이후 주로 수행되고 있다. 최근 방사선 가속기에서 생성된 방사선을 이용하여 DNA의 염기 서열에 대한 영향 실험들이 수행되고있다. There have been many studies on the effects of radiation on living organisms in medicine, food-related biochemistry, and molecular genetics, but most of them use the ultraviolet light of several electron volts to directly irradiate the microorganisms, check the effects on genetic material, It was to induce mutations. The impact of higher energy light on dielectric materials has been largely performed since the development of radiation accelerators. Recently, experiments on the effect of DNA on the nucleotide sequence using radiation generated from a radiation accelerator have been performed.

Hieda등은 2.1 keV 부근의 5가지의 광자 에너지를 이용하여 플라스미드 DNA를 조사하여 코벨런트 클로즈드 환형(covalent closed circular form)의 DNA가 오픈 환형과 선형의 DNA 형태로 변화함을 확인함으로써 DNA의 구성 원소인 인의 K껍질에 의한 광자의 흡수, 그리고 부차적인 어거 이벤트(Auger event)에 의한 DNA 절단 가능성을 발표한 바 있다[Hieda, K. DNA damage induced by vacuum and soft X-ray photons from synchrotron radiation. Int. J. Radiat. Biol. 66(1994), 561 - 567]. 그리고 바실러스 서브틸리스(Bacillus subtilis)의 포자를 이용하여 50 - 300 nm 영역의 방사선 조사 후 DNA 염기 서열의 변화를 분석, 미생물에 대한 고에너지 방사선이 K 껍질 부근에서 흡수되는 정도를 측정함으로써 빛의 세포에 대한 영향을 확인한 연구도 수행된 바 있다[Wehner, J. and Horneck, G. Effects of vacuum UV and UVC radiation on dry Escherichia coli plasmid pUC 19. J. Photochem. Photobiol. 30(1995) 171 - 177].Hieda et al. Investigated the plasmid DNA using five photon energies near 2.1 keV and confirmed that the covalent closed circular form of DNA changed into open and linear DNA forms. Phosphorus has been shown to absorb photons by the K-shell of phosphorus and the possibility of DNA cleavage by auger events [Hieda, K. DNA damage induced by vacuum and soft X-ray photons from synchrotron radiation. Int. J. Radiat. Biol. 66 (1994), 561-567. The spores of Bacillus subtilis were used to analyze changes in DNA sequence after irradiation in the 50-300 nm region, and the degree of absorption of high-energy radiation to microorganisms was measured near the K shell. Research has also been conducted to identify the effect on cells [Wehner, J. and Horneck, G. Effects of vacuum UV and UVC radiation on dry Escherichia coli plasmid pUC 19. J. Photochem. Photobiol. 30 (1995) 171-177.

한편, 그람 양성군인 루코노스톡 메센테로이데스(Leuconostoc mesenteroides)는 글루코오스가 주로 α-1→6으로 연결되어 있는 다당류인 덱스트란을 생합성하는 효소(덱스크란수크라제 ; dextransucrase)를 생산하며, 이 효소가 설탕을 이용하여 덱스트란을 생합성하는 기작은 다음과 같다.Meanwhile, the Gram-positive group, Leuconostoc mesenteroides , produces an enzyme (dextranuckrase; dextransucrase) that biosynthesizes dextran, a polysaccharide in which glucose is mainly linked to α-1 → 6. The mechanism by which enzymes biosynthesize dextran using sugar is as follows.

n 수크로오스 → n sucrose →

(글루코오스)n-m-w +(n-m) 프락토오스 + m 루크로즈 + w 글루코오스(Glucose) nmw + (nm) fructose + m lucrose + w glucose

(n 〉〉 m 또는 w)(n 〉〉 m or w)

이 반응은 비가역 반응으로 가장 주된 산물은 고분자량(1X107 ~ 1X108 Da)의 덱스트란과 프락토오스이고, 미량의 루크로즈(5-0-α-D-glucopyranosyl-D-fructopyranose)와 글루코오스가 생산된다. 각기 다른 루코노스톡 메센테로이드는 다른 종류의 덱스트란수크라제를 생산하며 이 효소들에 의해서 합성되는 덱스트란들은 모두 가지결합을 가지는데, 그 결합 형태나 정도는 효소에 따라 각기 다르다. 지금껏 밝혀진 가지결합 중 가장 주된 결합은 α1→3이며 α1→2와 α1→4 구조도 보고된다. 지금까지 알려진 루코노스톡균들은 모두 설탕을 효소 생산 기질에 넣어 주어야만 덱스트란수크라제를 생산할 수 있었다. 하지만 최근에 김과 Robyt은 여러가지 종의 루코노스톡 메센테로이드 균들(예 : NRRL B-5l2F, B-1142, B-1355, B-742, B-1299)로부터 설탕을 기질에 넣지 않아도 독특한 덱스트란수크라제를 생산하는 구성적 돌연변이균주들을 개발하였다(Kim, D, Robyt, J.F.(1995b) Enz. Microb. Technol. 17, 689). 즉 설탕이 아닌 글루코오스과 프락토오스 등을 탄소원으로 사용하여도 생장시 덱스트란수크라제를 생산함으로써, 설탕을 포함하는 LM 배지에서 생산하는 경우 글루칸수크라제가 생산된 덱스트란과 결합된 상태로 얻어지는 것에 비해, 덱스트란에 오염되지 않은 단백질만의 효소를 얻을 수 있게 되었다. 한 돌연변이 균인 B-512FMC 균은 상업적으로 많은 분야에서 이용되고 있는 B-512(F) 덱스트란생산 균으로부터 개발된 것으로, 이 효소에 의해 합성된 덱스트란은 모균주의 효소와 같이 95%의 α1→6과 5%의 α1→3 결합이 가지결합을 형성하는 물질을 합성한다. 글루코오스가 α1→3과 α1→6 결합구조로 번갈아가면서 연결된 다당류인 알테난(alternan)은 점도가 낮고 물에 대한 용해성이 우수하며, α1→6 결합분해 효소에 분해되지 않아 식품 첨가제, 증량제 등의 많은 이용 가능성을 가지고 있는 물질이다. 3가지의 B-742 돌연변이 균들(B-742C, B-742CA, 5-742CB)의 글루칸수크라제 중 B-742CA는 α1→4 가지 구조를 갖는 덱스트란을 합성하고 B-742CB는 50% 가량의 높은 구성 비율의 α1→3 가지 구조를 가지는 물질을 합성하는 글루칸수크라제를 생산한다. B-1299CB 돌연변이 글루칸수크라제는 35%의 α1→2가지 구조를 가지는 덱스트란물질을 합성한다.This reaction is an irreversible reaction, and the main products are high molecular weight (1X10 7 ~ 1X10 8 Da) of dextran and fructose, and trace amounts of rucrose (5-0-α-D-glucopyranosyl-D-fructopyranose) and glucose Produced. Different luconosestock mesentroids produce different types of dextran sucrase, and all of the dextrans synthesized by these enzymes have branched bonds. Of the branch bonds discovered so far, the main bonds are α1 → 3 and α1 → 2 and α1 → 4 structures are also reported. Until now, all of the known Lukonostok bacteria had to add sugar to the enzyme-producing substrate to produce dextran sucrose. Recently, however, Kim and Robyt have found unique dextran without the addition of sugar to the substrate from various species of Luconosestock mesenteroids (eg NRRL B-5l2F, B-1142, B-1355, B-742, B-1299). Constitutive mutant strains producing sucrase were developed (Kim, D, Robyt, JF (1995b) Enz. Microb. Technol. 17, 689). That is, even when glucose and fructose, but not sugar, are used as a carbon source, dextran sucrase is produced during growth, and when it is produced in LM medium containing sugar, the glucan sucrase is obtained in the state of being combined with the produced dextran. In comparison, it is possible to obtain an enzyme only of a protein that is not contaminated with dextran. One mutant bacterium, B-512FMC, was developed from B-512 (F) dextran-producing bacteria, which are commercially used in many fields. The dextran synthesized by this enzyme is 95% α1 like the enzyme of the parent strain. → 6 and 5% of the α1 → 3 bonds synthesize a branching bond. Altenan, a polysaccharide linked by alternating glucose with α1 → 3 and α1 → 6 linkages, has low viscosity and excellent solubility in water, and is not decomposed by α1 → 6 synthase, resulting in food additives and extenders. It is a substance that has many uses. Of the glucans sucrases of three B-742 mutants (B-742C, B-742CA, and 5-742CB), B-742CA synthesizes dextran having α1 → 4 structures and about 50% of B-742CB. It produces glucan sucrase which synthesizes a material having a high structure ratio of α 1 → 3 structures. B-1299CB mutant glucan sucrase synthesizes a dextran substance having 35% α1 → 2 structure.

하지만, 여전히 이러한 덱스트란과 같이 유용한 산업 효소의 유전자를 개선하고 새로운 특성을 갖는 미생물 균주의 개발이 요구되어지며 특히, 유전자에 방사광으로 직접 조사하여 고 비율의 가지결합을 갖는 덱스트란을 합성하는 변형된 덱스트란수크라아제 유전자를 생성하는 연구는 수행되거나 발표된 바 없다.However, there is still a need for the development of microbial strains that improve the genes of useful industrial enzymes such as dextran and have new properties, and in particular, the modification of synthesizing dextran having a high ratio of branch bonds by direct irradiation of the gene with radiation. No studies have been carried out or published to produce dextransukraase genes.

이에 본 발명의 목적은 특정 방사광을 유전자에 직접 조사함으로써 얻어진, 고 비율의 가지결합을 갖는 덱스트란을 합성하는 변형된 덱스트란수크라아제 유전자를 제공하는 것이다.It is therefore an object of the present invention to provide a modified dextran sucrase gene that synthesizes a high proportion of dextran having branched bonds, which is obtained by directly irradiating a gene with specific radiation.

본 발명의 다른 목적은 상기 변형된 덱스트란수크라아제 유전자를 포함하는 재조합벡터를 제공하는 것이다.Another object of the present invention is to provide a recombinant vector comprising the modified dextran sucrase gene.

본 발명의 또 다른 목적은 상기 재조합벡터로 형질 전환된 미생물을 제공하는 것이다.Still another object of the present invention is to provide a microorganism transformed with the recombinant vector.

본 발명의 또 다른 목적은 상기 형질 전환된 미생물로부터 생산되는 변형된 덱스트란수크라아제 효소를 제공하고자 한다. Another object of the present invention is to provide a modified dextran sucrase enzyme produced from the transformed microorganism.

본 발명의 제 1견지에 의하면, 서열번호 1의 DNA 서열로 이루어지며, 고 비율의 가지결합을 갖는 덱스트란을 합성하는 변형된 덱스트란수크라아제 유전자가 제공된다.According to the first aspect of the present invention, there is provided a modified dextran sucrase gene, which consists of the DNA sequence of SEQ ID NO: 1 and synthesizes dextran having a high proportion of branched bonds.

본 발명의 제 2견지에 의하면, 상기 변형된 덱스트란수크라아제 유전자를 포함하는 재조합벡터(pdsrB742CK)가 제공된다.According to a second aspect of the present invention, there is provided a recombinant vector ( pdsrB742CK ) comprising the modified dextran sucrase gene.

본 발명의 제 3견지에 의하면, 상기 재조합벡터로 형질 전환된 고 비율의 가지결합을 갖는 덱스트란을 생산하는 미생물(KACC 95013)이 제공된다.According to a third aspect of the present invention, there is provided a microorganism (KACC 95013) producing dextran having a high ratio of branched bonds transformed with the recombinant vector.

본 발명의 제 4견지에 의하면, 상기 형질 전환된 미생물(KACC 95013)로 부터 생산되고, 서열번호 2의 아미노산 서열로 이루어지며, 고 비율의 가지결합을 갖는 덱스트란을 합성할 수 있는 변형된 덱스트란수크라아제가 제공된다.According to the fourth aspect of the present invention, a modified dex produced from the transformed microorganism (KACC 95013), consisting of the amino acid sequence of SEQ ID NO: 2, and capable of synthesizing dextran having a high ratio of branched bonds Transucrase is provided.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 덱스트란수크라아제 유전자(dsrB742: GeneBank Accession No. AF294469)에 특정 파장의 범위를 갖는 방사광을 직접 조사하여 변형된 덱스트란수크라아제 유전자를 얻었으며, 또한 그 변형된 덱스트란수크라아제 유전자를 에스케리차 콜라이(Escherichia coli strain DH5 )에 형질 전환시켜 가지 결합을 많이 갖는 덱스트란을 합성하는 특성을 갖는 새로운 미생물 균주를 선별하여 얻었으며 이 균주를 'DSRB742CK'라 명명하고 이를 농용미생물보존센터에 기탁하였다(기탁번호:KACC 95013).The present inventors directly irradiated the dextran sucrase gene ( dsrB742 : GeneBank Accession No. AF294469) with radiation having a specific wavelength range to obtain a modified dextran sucrase gene, and also the modified dextran sucrase. By transforming the Aze gene into Escherichia coli strain DH5, a new microbial strain was obtained, which was characterized by synthesizing dextran having a large number of branch bonds. The strain was named 'DSRB742CK' and was used as an agricultural microorganism. It was deposited in a preservation center (accession number: KACC 95013).

본 발명의 변형된 덱스트란수크라아제 유전자를 생성하는데 사용될 수 있는 방사광은 일반적으로 쉽게 얻어 사용하기 쉬운 UVA, UVB, UVC, X-선, VUV(진공자외선) 및 울트라소프트 X-선을 들 수 있으며, 이중에서 VUV 및 낮은 에너지의 울트라소프트 X-선은 UV와 X-선 사이에 있는 전자기파로 에너지 범위는 10eV-5.0keV인 것이 본 발명에 유용하며, 특히 VUV가 바람직하다. Radiated light that can be used to generate the modified dextran sucralase genes of the present invention generally include UVA, UVB, UVC, X-rays, VUV (vacuum ultraviolet) and ultrasoft X-rays that are easily obtained and easy to use. Among them, VUV and low energy ultra-soft X-rays are electromagnetic waves between UV and X-rays, and the energy range is 10 eV-5.0 keV, which is useful in the present invention, and VUV is particularly preferable.

UV를 사용하면 분자의 결합이 UV의 에너지에 의해 끊어지면서 떨어져 나오는 전자가 주위의 다른 분자들에 영향을 주지 않을 정도의 낮은 에너지를 지녀 UV가 조사된 부위에만 직접적인 영향을 주는데 비해, 예를 들어, UV보다 에너지가 10-100 배가량 높은 VUV를 조사하는 경우 떨어져 나오는 전자는 주위 분자들의 결합에도 영향을 줄 정도의 에너지를 가지게 되어, 조사 부위의 결합에도 영향을 줄 수 있다. 또한 VUV는 충돌단면적(또는 광자가 물질에 흡수되는 정도)이 다른 파장들에 비해 최대가 되는 파장의 빛이다. 이러한 특성상 UV보다 돌연변이를 일으킬 확률이 높아지게 된다.With UV, for example, the binding of a molecule is broken by the energy of the UV, and the electrons that fall off have a low energy level that does not affect other molecules around it, so that it affects only the UV-irradiated area directly. For example, when irradiating VUV 10-100 times higher than UV, the electrons that are released have enough energy to affect the binding of surrounding molecules, which may affect the binding of the irradiation site. VUV is also light whose wavelength of impact (or how much photons are absorbed by the material) is maximal compared to other wavelengths. These characteristics make the mutation more likely than UV.

방사광을 조사하기위한 덱스트란수크라아제 유전자는 방사광을 조사하기 전에 분리된 형태로 미리 준비된다. 이때 상기 유전자의 분리는 이 기술 분야에 알려진 통상적인 방법에 의해 예를 들어 루코노스톡 메센테로이데스(Leuconostoc mesenteroides)에서 분리될 수 있으며, 또한 상기 유전자는 클로닝되어 벡터내에 삽입된 DNA 형태로 준비될 수 있다.The dextran sucrase gene for irradiating radiation is prepared in advance in isolated form prior to irradiation with radiation. Isolation of the gene may then be isolated from, for example, Leuconostoc mesenteroides by conventional methods known in the art, and the gene may be cloned and prepared in the form of DNA inserted into the vector. Can be.

방사광 조사는 일반적으로 알려진 방법에 의해 행해질 수 있으며, 일예로, 방사광을 알루미늄 표적에 입사하여 10eV-5.0KeV의 에너지를 갖는 산란광을 발생시킨 다음, 이를 헬륨으로 가득 채운 상자 안에서 유전자에 조사하는 것으로 행하여진다.Radiation light irradiation can be carried out by a generally known method, for example, by radiating light to an aluminum target to generate scattered light having an energy of 10 eV-5.0 KeV, and then irradiating the gene in a box filled with helium. Lose.

이러한 방법에 의해 방사선의 조사로부터 얻을 수 있는 유전자의 변이된 부분들은 다양할 것이며, 이는 유전자가 형질 전환된 후에 호스트로 사용되는 미생물에 형질 전환된 후 수복 과정을 통하여 손상이 복구될 수도 있고 또한 손상된 정도에 따라 수복 과정에서 재 돌연변이가 일어 날 수 있어, 결과적으로 얻을 수 있는 유전자의 돌연변이 균주는 종류가 다양하고 많을 수 있다. By this method, the mutated parts of the gene that can be obtained from irradiation will vary, which may be repaired or repaired through the repair process after the gene has been transformed into a microorganism used as a host. Depending on the degree of re-mutation may occur during the repair process, the resulting mutant strains of the gene can be a variety and variety.

본 발명에서는 루코노스톡 메센트로이데스(Leconostoc mesenteroides) B-742 덱스트란수크라아제 유전자(dsrB742)를 벡터내에 삽입된 플라스미드 DNA 형태로 이용하여 방사광 조사를 통해 변이시킨 후, 염기서열분석을 통해 유전자 변이가 일어남을 확인하였으며, 그 변이된 유전자로 형질 전환된 미생물 균주는 덱스트란수크라아제의 생산성이 증가되고, 상기 효소는 구성적(constitutive)으로 발현되며 특히 가지 결합을 많이 갖는 덱스트란을 합성하는 특성을 나타내었다.In the present invention, using the Leconostoc mesenteroides B-742 dextran sucrase gene ( dsrB742 ) in the form of a plasmid DNA inserted into the vector through mutation, and then sequencing the gene It was confirmed that the mutation occurs, the microbial strain transformed with the mutated gene increases the productivity of dextran sucrase, the enzyme is expressed constitutive (particularly synthesized dextran having a lot of branch bonds) It showed the characteristic.

이하 실시 예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예 1(유전자 준비)Example 1 Gene Preparation

본 실시 예에서 변이시키고자하는 유전자로 루코노스톡 메센트로이데스(Leuconostoc mesenteroides) B-742CB 덱스트란수크라아제 유전자(dsrB742: GeneBank Accession No. AF294469)가 사용되었다. 이 유전자는 6.1kb의 DNA 단편으로 4,536bp의 염기로 구성되어진 하나의 오픈 리딩 프래임(ORF)를 가지고 있으며, 추정된 아미노산 서열은 698번째 염기위치의 개시 코돈(ATG)으로부터 5,223번째 위치의 정지 코돈(TAA)까지 위치한 구조이다. 구조 유전자의 아미노산은 1,508개로 구성되어 있고, 분자량은 계산에 의하면 168.6kDa이다. 이 유전자는 pGEM 3Zf(-)(Promega, USA)에 클로닝된 플라스미드 DNA 상태로 이용되었다. 도 2에 상기 유전자가 삽입된 벡터의 제한효소지도를 나타내었다. 즉, 전체 덱스트란수크라아제 유전자가 포함된 6.193 kb의 인서트가 pGEM-3Zf(-)의 Pst I 제한효소 사이트에 클로닝되었다.As a gene to be mutated in the present embodiment, Leuconostoc mesenteroides B-742CB dextran sucrase gene ( dsrB742 : GeneBank Accession No. AF294469) was used. This gene is a 6.1 kb DNA fragment with an open reading frame (ORF) consisting of 4,536 bp bases. The estimated amino acid sequence is the stop codon at position 5,223 from the start codon (ATG) at base 698. It is a structure located up to (TAA). The amino acid of the structural gene consists of 1,508, and the molecular weight is 168.6 kDa by calculation. This gene was used as plasmid DNA cloned in pGEM 3Zf (-) (Promega, USA). 2 shows a restriction map of the vector into which the gene is inserted. That is, a 6.193 kb insert containing the entire dextran sucrase gene was cloned into the Pst I restriction site of pGEM-3Zf (−).

실시예 2(방사광 조사)Example 2 (radiation light irradiation)

방사광가속기(경북 포항시 남구 효자동 산 31번지 포항가속기연구소)의 LIGA white beam (9C1)의 X-선을 알루미늄 타겟에 입사하여 1.47keV의 에너지를 갖는 산란광을 발생시키고, 이를 헬륨으로 가득 채운 상자 안에서 상기 실시 예 1에서 얻은 루코노스톡 메센트로이데스(Leuconostoc mesenteroides) B-742CB 덱스트란수크라아제 DNA(dsrB742)에 5초부터 30분까지 다양한 시간동안 조사하였다.X-rays of LIGA white beam (9C1) of the radiation accelerator (31, Pohang Accelerator Research Institute, Nam-gu, Pohang-si, Gyeongsangbuk-do) were incident on an aluminum target to generate scattered light with an energy of 1.47 keV, and in a box filled with helium Leuconostoc mesenteroides B-742CB dextransukraase DNA ( dsrB742 ) obtained in Example 1 was irradiated for various times from 5 seconds to 30 minutes.

실시예 3(덱스트란수크라아제의 생산성이 증가된 돌연변이 생성확인)Example 3 (mutation production with increased productivity of dextran sucrase)

1)돌연변이 선별 및 염기서열 확인1) Mutation screening and sequencing

조사된 DNA를 전기영동 상에서 방사광 조사되지 않은 DNA와 비교하여 구조적 변화를 확인하였으며, 또한 조사된 유전자는 에스케리차 콜라이(Escherichia coli ) DH5 스트레인에 형질전환을 실시하였다. 이것을 2%(w/v) 설탕이 첨가된 LB [0.5% (w/v) NaCl, 0.5% (w/v) yeast extract, 1% (w/v) trypton] 고체 배지에 도말하고 37℃에서 8시간 배양 후, 28℃로 옮겨 하룻밤 동안 배양하였다. 형질전환 후 생성된 콜로니를 설탕이 첨가된 LB 고체 배지에서 대조군보다 점성이 강한 콜로니를 1차 선별한 후, 이번에는 액체배양을 통해 얻은 상등 액을 설탕과 반응시켜 설탕분해 및 덱스트란 생성이 대조군보다 강한 돌연변이를 최종 선별하였다. 이 때 대조군으로 DSRB742 클론(기탁번호-KACC 95014)을 이용하여 비교하였다. 또한 돌연변이는 플라스미드 DNA를 분리한 후, 염기서열분석을 통해 변화된 부분을 확인하였다.Compare the irradiated DNA with non radiation irradiation on DNA electrophoresis was identified structural changes, and the irradiation was carried out for gene transfection in Escherichia coli car (Escherichia coli) DH5 strain. This was plated in LB [0.5% (w / v) NaCl, 0.5% (w / v) yeast extract, 1% (w / v) trypton] solid medium to which 2% (w / v) sugar was added and at 37 ° C. After incubation for 8 hours, it was transferred to 28 ℃ and incubated overnight. The colonies produced after transformation were first screened with colonies with more viscous viscosity than the control in sugar-added LB solid medium, and this time, the supernatant obtained through liquid culture was reacted with sugar to produce sugar decomposition and dextran. Stronger mutations were finally screened. At this time, the control group was compared using the DSRB742 clone (Accession No.-KACC 95014). In addition, the mutant was separated from the plasmid DNA, and confirmed the changed part through sequencing.

방사광 조사에 의해 얻어진 유전자 변이체의 염기서열분석 결과를 서열번호 1에 그리고 추정되는 아미노산 서열을 서열번호 2에 나타내었으며, 또한 도 1a-1d에 염기서열 및 추정된 아미노산 서열을 함께 나타내었다.The results of sequencing of the genetic variants obtained by irradiation with light were shown in SEQ ID NO: 1 and the putative amino acid sequence in SEQ ID NO: 2, and also shown in Figures 1A-1D together with the base sequence and the putative amino acid sequence.

DNA 염기서열분석 결과 구조유전자 부분에 구조유전자 (ORF) 시작부분에서 3개의 염기가 결여되면서 개시 코돈이 30개의 아미노산이 빠진 31번째 아미노산에 해당하는 곳에서 시작을 하게 되었다. 즉 N-말단에서 30개의 아미노산이 결여되었다. 이 부분을 제외하고는 구조유전자의 염기는 변하지 않았고, 구조유전자 앞부분인 프로모터 부분에서 3개의 염기가 변함을 알 수 있었다.DNA sequencing results in the lack of three bases at the beginning of the structural gene (ORF) in the structural gene region, where the start codon starts at the 31st amino acid missing 30 amino acids. That is, it lacks 30 amino acids at the N-terminus. Except for this part, the base of the structural gene was not changed, and it was found that three bases were changed in the promoter part which is the front part of the structural gene.

2) 돌연변이가 생성하는 효소의 특성 분석2) Characterization of enzymes produced by mutations

① 다당 회수 및 특성 조사 : 선별된 E. coli 콜로니를 설탕이 첨가된 LB 액체배지에서 배양한 후, 원심분리 (8000 rpm)하여 상등 액에서 효소를 분리하였다. 얻은 효소 액은 200 mM 설탕 (pH 5.2)과 1 : 1 로 반응시켜 설탕이 전부 분해 되었음을 확인한 후, 에탄올 침전을 통하여 다당을 회수하였다. 남아있는 잔당을 제거하기 위하여 증류수로 3번 세척한 후, 재침전하여 회수하였다. 재조합 E. coli에 의해 생산된 다당의 단위성분을 확인하기 위하여 1 M HCl로 산가수분해반응을 실시한 후 TLC로 확인하였다.① Polysaccharide recovery and characterization: Selected E. coli colonies were cultured in LB liquid medium to which sugar was added, followed by centrifugation (8000 rpm) to separate enzymes from supernatant. The obtained enzyme solution was reacted with 200 mM sugar (pH 5.2) and 1: 1 to confirm that the sugar was completely decomposed, and then polysaccharide was recovered through ethanol precipitation. After washing three times with distilled water to remove the residual residue, it was recovered by reprecipitation. In order to identify the unit components of the polysaccharide produced by the recombinant E. coli , an acid hydrolysis reaction was performed with 1 M HCl, followed by TLC.

또한, 덱스트란을 1% 농도로 준비하여 페니실리움(Penicillium) 덱스트란나아제(Sigma, USA) 60 U/ml를 37℃, 16시간 반응하여 반응산물을 확인하였다. 덱스트란나아제는 덱스트란을 분해하여 D-글루코오스, isomaltose, isomaltotriose 그리고, 고분지 올리고당(33-isomaltosyl isomaltotetraose와 33-D-glucopyranosyl-isomaltopentaose)을 생성함을 알 수 있다. 이때 덱스트란나아제에 의한 덱스트란의 분해산물은 TLC로 확인을 하였다. 이때 전개용매는 니트로메탄:1-프로판올:물을 2: 5: 1.5 (v/v/v) 비율로 이용하였다.In addition, dextran was prepared at a concentration of 1% and penicillium ( Penicillium) dextranase (Sigma, USA) 60 U / ml of 37 ℃, 16 hours of reaction was confirmed the reaction product. Dextranase decomposes dextran to produce D-glucose, isomaltose, isomaltotriose and high-branched oligosaccharides (3 3 -isomaltosyl isomaltotetraose and 3 3 -D-glucopyranosyl-isomaltopentaose). At this time, the degradation product of dextran by dextranase was confirmed by TLC. The developing solvent was nitromethane: 1-propanol: water in a ratio of 2: 5: 1.5 (v / v / v).

② 선별된 클론을 포도당 또는 설탕이 첨가된 LB 배지에서 배양한 후 얻은 상등액에서 효소를 분리하고, 설탕과 반응을 시켜 얻은 다당을 회수한 후, 구조를 확인하기 위하여 NMR (13C Nuclear Magnetic Resonance) 분석을 실시하였다. 이때 다당의 NMR 스펙트라는 Bruker AMX-500을 이용하여 13C (125 MHz)과 proton (500 MHz)를 측정하였다.② After culturing the selected clone in glucose or sugar-added LB medium, the enzyme is separated from the supernatant obtained, and the polysaccharide obtained by the reaction with sugar is recovered. Then, NMR ( 13 C Nuclear Magnetic Resonance) is confirmed to confirm the structure. Analysis was performed. Polysaccharide NMR spectra were measured at 13 C (125 MHz) and proton (500 MHz) using a Bruker AMX-500.

이러한 분석측정 결과를 도 3-5에 나타내었다. 이러한 분석을 통하여 포도당 배지에서 배양한 효소상등액을 설탕과 반응을 실시하였을 경우에도 다당인 덱스트란이 형성되는 돌연변이체를 얻었는데, 이를 DSRB742CK라 명명하였다. These analytical measurement results are shown in FIGS. 3-5. Through this analysis, when the enzyme supernatant cultured in glucose medium was reacted with sugar, a mutant in which polysaccharide dextran was formed was obtained, which was named DSRB742CK.

도 3에 나타낸 바와 같이, 본래 및 변형된 유전자에서 얻어진 효소를 이용하여 덱스트란을 산가수분해한 후 그 성분을 살펴보면 주로 포도당이 검출되어, 본래 유전자와 변형된 유전자에 의해서 생산된 효소가 설탕으로부터 만드는 다당인 덱스트란이 포도당으로 합성되어있는 물질임을 알 수 있다.As shown in FIG. 3, after acid hydrolysis of dextran using enzymes obtained from the original and modified genes, glucose is mainly detected, and the enzyme produced by the original and modified genes is derived from sugar. Dextran, the polysaccharide to make, is a substance synthesized with glucose.

도 4에 나타낸 바와 같이, 덱스트라나아제의 분해에 대한 저항성이 돌연변이체의 경우 본래의 균보다 2.2 배가량 증가되어, 즉 새로이 만들어진 유전자는 가지 결합을 많이 갖는 덱스트란을 합성하는 것으로 보인다.As shown in Fig. 4, the resistance to degradation of dextranase is increased by 2.2 times that of the original bacteria in the mutant, that is, the newly produced gene seems to synthesize dextran having many branch bonds.

도 5에 나타낸 바와 같이, 돌연변이체 DSRB742CK를 설탕이 첨가된 배지에서 배양한 후 얻은 효소 상등액을 다시 설탕과 반응하여 회수한 다당을 13C-NMR 분석한 결과, DSRB742CK에서 회수된 다당의 케미컬 쉬프트는 본래 균주의 덱스트란에서는 없었던 시그날이 형성되었고, 이는 α(1→3)임을 나타낸다. 따라서 설탕을 이용하여 돌연변이체 DSRB742CK가 생산하는 덱스트란의 경우 본래 균주의 덱스트란보다 가지결합이 많음을 알 수 있다.As shown in FIG. 5, 13 C-NMR analysis of the polysaccharide recovered from the enzyme supernatant obtained by culturing the mutant DSRB742CK in a medium to which sugar was added again with sugar, showed that the chemical shift of the polysaccharide recovered from DSRB742CK was A signal was formed that was not present in the dextran of the original strain, indicating α (1 → 3). Therefore, it can be seen that the dextran produced by the mutant DSRB742CK using sugar has more branched bonds than the dextran of the original strain.

본 발명의 돌연변이 균주는 기존의 루코노스톡 메센트로이드(Leconostoc mesentroides) B-742CB 균주보다 증가된 덱스트란 생성능을 나타내며, 상기 효소는 구성적(constitutive)으로 발현되며 특히 가지 결합을 많이 갖는 덱스트란을 합성하는 특성을 갖는다. 이에 따라 이러한 돌연변이 균주가 생산하는 덱스트란은 의약용, 식품, 화장품 등에 유용한 재료로 사용될 수 있다.Mutant strain of the present invention shows an increased dextran production capacity than the existing L econostoc mesentroides B-742CB strain, the enzyme is expressed constitutive (especially dextran having a lot of branch bonds) It has the property to synthesize. Accordingly, dextran produced by these mutant strains can be used as a useful material for medicine, food, cosmetics, and the like.

도 1a-1d - 본 발명의 방법으로 얻어진 유전자 변이체(DSRB742CK)의 염기서열 및 추정된 아미노산 서열Figure 1a-1d-nucleotide sequence and estimated amino acid sequence of the gene variant (DSRB742CK) obtained by the method of the present invention

(좌측의 숫자는 뉴클레오타이드와 아미노산 숫자를 나타내며, 이탤릭 체로된 굵은 글자체는 추정되는 설탕 결합부위를 그리고 밑줄 친 굵은 글자체는 글루코실기 전달 부위를 나타내었다.)(The numbers on the left represent the nucleotide and amino acid numbers, the bold font in italics indicates the estimated sugar binding site, and the underlined bold font indicates the glucosyl group transfer site.)

도 2 - 본 발명의 방법으로 얻어진 유전자 변이체를 포함하는 재조합벡터(pdsrB742CK)Figure 2-Recombinant vector ( pdsrB742CK ) comprising a gene variant obtained by the method of the present invention

도 3 - 본 발명의 방법으로 얻어진 유전자 변이체(DSRB742CK)가 생산한 덱스트란의 산가수분해반응 후 TLC 분석결과사진Figure 3-TLC analysis photos after acid hydrolysis of dextran produced by the genetic variant (DSRB742CK) obtained by the method of the present invention

Mn, 말토덱스트린 시리즈; IMn, 이소말토덱스트린 시리즈; F, 과당; 레인 1 및 2, DSRB742 덱스트란의 산가수분해반응 전과 후, 레인 3 및 4, DSRB742CK 덱스트란의 산가수분해반응 전과 후Mn, maltodextrin series; IMn, isomaltodextrin series; F, fructose; Lanes 1 and 2, before and after acid hydrolysis of DSRB742 dextran, before and after acid hydrolysis of DSRB742CK dextran

G1: 포도당, G2: 맥아당, G3: 말토트리오즈, G4: 말토테트라오즈, G5: 말토펜타오즈, G6: 말토헥사오즈, G7: 말토헵타오즈, G8: 말토옥타오즈, IM2: 이소말토즈, IM3: 이소말토트리오즈, IM4: 이소말토테트라오즈, IM5: 이소말토펜타오즈G1: glucose, G2: maltose, G3: maltotriose, G4: maltotetraose, G5: maltopentaose, G6: maltohexaoz, G7: maltoheptaose, G8: maltooctase, IM2: isomaltose, IM3: isomaltotriose, IM4: isomaltotetraose, IM5: isomaltopentaose

도 4 - 본 발명의 방법으로 얻어진 유전자 변이체(DSRB742CK)가 생산한 덱스트란의 덱스트란나아제 가수분해반응 후 TLC 분석결과사진Figure 4-TLC analysis result after dextranase hydrolysis of dextran produced by the gene variant (DSRB742CK) obtained by the method of the present invention

Mn: 말토덱스트린 시리즈, IMn: 이소말토덱스트린 시리즈, D: 페니실리움 덱스트란나아제, 레인 1 및 2: 본래 균주(DSRB742)에서 얻은 덱스트란의 덱스트란나아제 처리 전과 후, 레인 3 및 4: 유전자 변이체(DSRB742CK)에서 얻은 덱스트란의 덱스트란나아제 처리 전과 후Mn: maltodextrin series, IMn: isomaltoxtrin series, D: penicillium dextranase, lanes 1 and 2: before and after dextranase treatment of dextran from native strain (DSRB742), lanes 3 and 4 : Before and after dextranase treatment of dextran from gene variant (DSRB742CK)

G1: 포도당, G2: 맥아당, G3: 말토트리오즈, G4: 말토테트라오즈, G5: 말토펜토즈, G6: 말토헥사오즈, G7: 말토헵타오즈, G8: 말토옥타오즈, IM2: 이소말토즈, IM3: 이소말토트리오즈, IM4: 이소말토테트라오즈G1: glucose, G2: maltose, G3: maltotriose, G4: maltotetraose, G5: maltopentose, G6: maltohexaoz, G7: maltoheptaose, G8: maltooctase, IM2: isomaltose, IM3: isomaltotriose, IM4: isomaltotetraose

BOS1 및 BOS2: 가지결합을 갖는(분지된) 올리고당BOS1 and BOS2: oligosaccharides with branched bonds (branched)

HMW: 고분자량 올리고당HMW: high molecular weight oligosaccharide

도 5 - 본래 균주(DSRB742) 및 유전자 변이체(DSRB742CK)에서 생산된 덱스트란의 13C-NMR분석결과사진Figure 5 - the original strain (DSRB742) and genetic variants 13 C-NMR analysis of the photo-dextran produced in (DSRB742CK)

(A) 설탕배지에서 생성된 본래 균주의 덱스트란수크라아제에 의해 생산된 DSRB742 덱스트란(A) DSRB742 dextran produced by dextran sucrase of the original strain produced in sugar medium

(B) 설탕배지에서 생성된 유전자 변이체의 덱스트란수크라아제에 의해 생산된 DSRB742CK 덱스트란(B) DSRB742CK dextran produced by dextran sucrase of gene variants produced in sugar medium

<110> KIM, doman <120> Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 6193 <212> DNA <213> Artificial Sequence <220> <223> Mutant of Leuconostoc mesentroides B-742CB dextransucrase gene (dsrB742CK) <400> 1 ctgcagctaa actcacttta actattgctg gttttttgag aaaactaatc aaccacgtcg 60 caccataatt taaaaaacca ctagcaaaca ctaataaagg tatatcgata ggtaatggtt 120 tttgaagtat catgtccaaa tacagtatga tgacaatagg tgttaaaaca aaatacagac 180 gaccaatggc cggactgata taataaaaca ccaaaatagc gagtaaataa tataaataga 240 tattaccaaa tactaattta gagacagata ataagctata tattgatggc aaaaacacca 300 caaccgtaat caattgccaa accaacgtat taggtttctc cagaaaattt aaaattgtca 360 atactttgat gcctaagcca ataaccattg tcgataatat caaggtacta attattaccg 420 tccacatagg tcctcccaaa atccacacat tgcagtaaaa aacgacacta acactacaca 480 ttttatcata taaattacat aaaacatatt aagaagaatc ccgtgatata gcgctcttat 540 caactaaaaa agcgagcggc ccattatttt atcactttat aaatattgtt tattttatat 600 ggtaaagaat tggtaatcgt ttgtgaaatg atataagttc gtaattttat agcttataat 660 tcatttgttt caaagaataa tcaccaatgg aggagagaat gtttgattaa gagagaaatg 720 tacgaaaaaa gctctacaag tctggtaaga gttgggttat tgggggactc attttatcga 780 caattatgct gtctatgacc gctacttcac aaaatgttaa tgcagatagc acaaacacag 840 tgacggataa gtcagttact gtctccaata attcgaatac aaccaatcaa cacgatactg 900 tcgttgacaa acaaacgata cctgtcaaaa atgaccaaac aacacaacaa atcgccgcaa 960 atgccaccca agcagaaaaa gtaaaagcat cagacacaac gactgatacg caaaagcaag 1020 ctgaaacggc aaacaacact aacaaggatt cgatagataa tctcaccaag cagttgccgg 1080 ctgttacacc aacagctaat caaaaaactg gttatctgga aaaagatggt aaatggtact 1140 atgtaaccag tgataacaca cttgctaagg ggttgactac tgttgacaac cacaagcagt 1200 attttgacaa caatggcgtg caggcaaaag gccaattcgt taccgataac agtaaaacat 1260 actatctcga tcctaactcc ggtaacgcag taaccgggat acaacaaatt ggctcacaaa 1320 cattagcctt caatgacaac ggtgaacaag tttttgctga tttctataca gcgccagatg 1380 gcaaaactta ttattttgac gataaaggac aagcaactat tggtctaaag gccattaatg 1440 ggcacaatta ttacttcgat agtttgggac aactaaaaaa aggatttacc ggtgtcattg 1500 acggtcaagt acgctatttt gatcaagaat caggacaaga ggtatcaaca accgactcac 1560 aaatcaaaga aggtttaact tctcagacaa cagactatac agcacataat gccgttcaca 1620 gcaccgatag cgctgatttc gacaatttta atggttattt gaccgcttct tcatggtatc 1680 gccctaaaga tgttttaaga aatggtcaac actgggaagc aacaacagct aatgacttcc 1740 ggcccattgt gtcagtttgg tggcctagca agcaaacaca agtaaattac ctaaactaca 1800 tgtctcaaat gggactcatt gacaatcgtc agatgttctc gctaaaagac aatcaagcca 1860 tgttgaatat tgcttgcaca acagtccaac aagcaattga aacaaaaatc ggtgtggcta 1920 atagtacagc atggcttaaa acagccattg atgatttcat tcgtacacag ccacaatgga 1980 acatgtcgag tgaagatccc aaaaatgatc atttacaaaa cggcgctttg actttcgtca 2040 acagtccatt gacaccagat actaactcta atttcagact attaaatcgc acaccaacaa 2100 accagacagg tgtgccaaaa tatacaattg atcaatctaa gggtggtttt gaactcttac 2160 tcgctaatga tgtagacaac tctaatcctg ttgtgcaagc tgagcagtta aattggttac 2220 actatttgat gaattttggt agcattacag caaacgattc tgctgctaat tttgatggga 2280 tacgtgtcga tgctgtcgat aatgttgacg ctgatttact ccagattgca gcagattatt 2340 tcaaagctgc ttatggtgtt gataaaaatg acgcaacagc aaatcaacat ctttcaattc 2400 ttgaagattg gagccataac gaccctgaat acgtgaagga ttttggtaat aatcaactca 2460 caatggatga ttacatgcat acccagttaa tctggtcctt gactaaagat atgcgtatgc 2520 gtggtaccat gcaacgcttc atggactatt acctcgtcaa tcgcaatcac gatagtaccg 2580 aaaacactgc cattccaaat tacagctttg ttcgcgcaca cgatagtgaa gtacaaacag 2640 tcattgctca aattatttct gagttacatc ccgacgtaaa aaatagtttg gcaccaacag 2700 cagaccagct agccgaagcc tttaaaattt ataataacga tgaaaaacag gcggataaga 2760 aatatacaca atacaacatg cctagcgcct atgcgatgct gttaactaat aaagatacag 2820 taccgcgcgt ttattatggt gatttataca ccgatgatgg tcaatatatg gcaaataagt 2880 ccccttattt tgatgccatc aacggcttgc taaagtcacg tatcaaatat gttgctggtg 2940 gtcagtcaat ggctgttgat caaaacgata tcctgacaaa tgttcgttat ggtaaaggtg 3000 ccatgagtgt gacagatagc ggtaatgcag acacacgaac acaaggtatt ggtgtgattg 3060 tcagtaataa agaaaatctg gccttaaaat caggcgacac ggtgacatta cacatgggtg 3120 ccgctcacaa aaatcaagca ttcagattat tattagggac aactgctgac aatttgtctt 3180 attatgataa tgacaacgcc ccagtaaagt acaccaatga tcagggcgat ttaatttttg 3240 ataatactga aatctatggt gtccgtaacc cgcaagtctc tggcttctta gctgtttggg 3300 tgcctgttgg ggctgacagc catcaagacg cgcgtacttt gtctgacgac acagcccatc 3360 atgatggcaa aaccttccac tcaaatgctg ctttagattc tcaggttatt tacgaaggtt 3420 tttcaaattt ccaagctttt gccacaaaca ctgaagacta tacaaatgct gtcattgcaa 3480 aaaatggtca gttattcaaa gattggggta tcacaagttt ccagttggca ccacaatatc 3540 gttcaagcac cgataccagt ttcttagatt caattatcca aaatggttat gcctttacag 3600 atcgttatga tttaggctac ggtacaccaa caaaatatgg cacagttgac cagttacgcg 3660 atgccatcaa ggctctgcac gcaaatggca tccaagcaat cgctgactgg gtacccgacc 3720 aaatttataa tttaccgggt caagaattag cgaccgtcac ccgaacaaac tcttatggtg 3780 ataaagacac taactcagat attgatcagt cactatatgt catacaaagt cgtggtggtg 3840 gtaaatacca agcacagtat ggcggtgcct tcttatccga tatccagaaa aaatatccag 3900 cacttttcga aacaaaacaa atttctacag ggctacctat ggatcctagt cagaaaataa 3960 cagaatggtc tggtaaatac tttaatggct caaatattca aggcaaaggg gctggctatg 4020 tcttgaaaga cagtggtacc gatcaatact ataaggttac atcaaacaat aataatcgtg 4080 acttcttgcc aaaacaatta acagatgact tatctgaaac cggatttgtc cgcgataaca 4140 ttggtatggt ctattacaca ctgagtggct atctagctcg aaacaccttt atacaagatg 4200 ataatggcaa ttattattac tttgatagca ccggccatct cgttactggc ttccagaata 4260 ttaataacca tcactatttc ttcctaccaa acggtattga actcgttcaa tctttcttac 4320 agaatgctga cggttcaacg atttattttg accaaaaagg gcgtcaagta tttaatcaat 4380 acattactga ccaaaccggg accgcctatt acttccagaa tgatggcaca atggtcactt 4440 ctggcttcac tgaaatcgat ggtcataagc aatacttcta caagaacggc acacaagtca 4500 aagggcaatt tgtatcagac actgatggtc acgttttcta cttagaagct ggtaacggca 4560 acgtggcgac acaaagattt gcacaaaata gtcaaggtca gtggttctat ttgggtaatg 4620 atggcattgc cttgactggt ttgcaaacaa tcaatggtgt tcaaaattat ttctacgccg 4680 atggtcatca aagtaagggt gattttatta cgatacaaaa tcacgtatta tatactaacc 4740 cactaactgg cgctataacg acaggtatgc aacaaattgg tgacaagatt tttgtctttg 4800 acaatacggg caacatgttg accaatcaat actatcaaac actagatggc caatggttac 4860 atttaagcac tcaaggtcca gcagacactg gtttggtaaa cattaatggt aatttgaaat 4920 atttccaagc taatggtcgg caagtgaaag gtcaatttgt gactgatcct atcacgaacg 4980 tgagttatta tatgaatgcc actgatggtt cggcagtatt taatgactac tttacctatc 5040 aaggccaatg gtatttaacg gatagtaatt atcaactcgt caaaggattt aaagttgtta 5100 ataataagct acaacatttt gatgaaataa caggcgtaca aactaaatca gctcatatca 5160 tcgttaataa tcgaacatac attttcgatg accaaggtta ctttgtctca gtcgcttaac 5220 taaaaaaagc ctactcaatt aagagtgggc ttttttaatt taagaagtat aaggcaatta 5280 aagcaaccaa cgccggtaat ccttgtacca caagaatttt ccgagctgat gttatgctgc 5340 catatatcgc tgcaattaag atatagagca tttcaaattg taacatcagc acttgttgcg 5400 gaccatgaat gaaaaacatg gtcaccaata tgagtactcc gaataaaccg ttgtatattc 5460 cctgattagc taataacacc ttcacttctg gcatttttaa aacagggggt tctaattcaa 5520 aggacttagc ttgctgtgca actgagccca accatttcta tcatcatgat aatgattgct 5580 tcaatagcaa ctaacccggg taataatttg tgcgatcatt ttatacggtc tctttcttta 5640 tttctaccac aatcttacca cgcgcatgat gtgtttcgct acgctgatga gctgcacgca 5700 taccttctgt tgttagcgga taaatactat cgaccacaat ttgtaattga ttttttgtaa 5760 tataatcagc gagtgtggtt aaatctttac cattagtatc caaccaaccg ggttgtaatt 5820 gttttgttag gtgtctgctg ttgttgagcc gttaactgcg cagaaattgt caccaaatgg 5880 ccgccatctt ttaaaatatg aataccatta tcgatgtccc caaccatatc aaatacagca 5940 tcgtaatcag acaaaacatc ctgtatttgg tatgcgtggt aatcaatcac ttgatctgcc 6000 cccagtgacg caacaaaatc gtgattaact tgactcgctg ttgttgctac ataagtcccc 6060 attaacttgg cgagttgaat ggcataaata ccaacgccac cagcgccagc ttgtattaac 6120 accttgtgcc ctgctttaac ttgtagtttt tccaacattt gtagcgctgt tagggctgct 6180 aatggtactg cag 6193 <210> 2 <211> 1477 <212> PRT <213> Artificial Sequence <220> <223> Mutant of Leuconostoc mesentroides B-742CB dextransucrase(dsrB742CK) <400> 2 Met Leu Ser Met Thr Ala Thr Ser Gln Asn Val Asn Ala Asp Ser Thr 1 5 10 15 Asn Thr Val Thr Asp Lys Ser Val Thr Val Ser Asn Asn Ser Asn Thr 20 25 30 Thr Asn Gln His Asp Thr Val Val Asp Lys Gln Thr Ile Pro Val Lys 35 40 45 Asn Asp Gln Thr Thr Gln Gln Ile Ala Ala Asn Ala Thr Gln Ala Glu 50 55 60 Lys Val Lys Ala Ser Asp Thr Thr Thr Asp Thr Gln Lys Gln Ala Glu 65 70 75 80 Thr Ala Asn Asn Thr Asn Lys Asp Ser Ile Asp Asn Leu Thr Lys Gln 85 90 95 Leu Pro Ala Val Thr Pro Thr Ala Asn Gln Lys Thr Gly Tyr Leu Glu 100 105 110 Lys Asp Gly Lys Trp Tyr Tyr Val Thr Ser Asp Asn Thr Leu Ala Lys 115 120 125 Gly Leu Thr Thr Val Asp Asn His Lys Gln Tyr Phe Asp Asn Asn Gly 130 135 140 Val Gln Ala Lys Gly Gln Phe Val Thr Asp Asn Ser Lys Thr Tyr Tyr 145 150 155 160 Leu Asp Pro Asn Ser Gly Asn Ala Val Thr Gly Ile Gln Gln Ile Gly 165 170 175 Ser Gln Thr Leu Ala Phe Asn Asp Asn Gly Glu Gln Val Phe Ala Asp 180 185 190 Phe Tyr Thr Ala Pro Asp Gly Lys Thr Tyr Tyr Phe Asp Asp Lys Gly 195 200 205 Gln Ala Thr Ile Gly Leu Lys Ala Ile Asn Gly His Asn Tyr Tyr Phe 210 215 220 Asp Ser Leu Gly Gln Leu Lys Lys Gly Phe Thr Gly Val Ile Asp Gly 225 230 235 240 Gln Val Arg Tyr Phe Asp Gln Glu Ser Gly Gln Glu Val Ser Thr Thr 245 250 255 Asp Ser Gln Ile Lys Glu Gly Leu Thr Ser Gln Thr Thr Asp Tyr Thr 260 265 270 Ala His Asn Ala Val His Ser Thr Asp Ser Ala Asp Phe Asp Asn Phe 275 280 285 Asn Gly Tyr Leu Thr Ala Ser Ser Trp Tyr Arg Pro Lys Asp Val Leu 290 295 300 Arg Asn Gly Gln His Trp Glu Ala Thr Thr Ala Asn Asp Phe Arg Pro 305 310 315 320 Ile Val Ser Val Trp Trp Pro Ser Lys Gln Thr Gln Val Asn Tyr Leu 325 330 335 Asn Tyr Met Ser Gln Met Gly Leu Ile Asp Asn Arg Gln Met Phe Ser 340 345 350 Leu Lys Asp Asn Gln Ala Met Leu Asn Ile Ala Cys Thr Thr Val Gln 355 360 365 Gln Ala Ile Glu Thr Lys Ile Gly Val Ala Asn Ser Thr Ala Trp Leu 370 375 380 Lys Thr Ala Ile Asp Asp Phe Ile Arg Thr Gln Pro Gln Trp Asn Met 385 390 395 400 Ser Ser Glu Asp Pro Lys Asn Asp His Leu Gln Asn Gly Ala Leu Thr 405 410 415 Phe Val Asn Ser Pro Leu Thr Pro Asp Thr Asn Ser Asn Phe Arg Leu 420 425 430 Leu Asn Arg Thr Pro Thr Asn Gln Thr Gly Val Pro Lys Tyr Thr Ile 435 440 445 Asp Gln Ser Lys Gly Gly Phe Glu Leu Leu Leu Ala Asn Asp Val Asp 450 455 460 Asn Ser Asn Pro Val Val Gln Ala Glu Gln Leu Asn Trp Leu His Tyr 465 470 475 480 Leu Met Asn Phe Gly Ser Ile Thr Ala Asn Asp Ser Ala Ala Asn Phe 485 490 495 Asp Gly Ile Arg Val Asp Ala Val Asp Asn Val Asp Ala Asp Leu Leu 500 505 510 Gln Ile Ala Ala Asp Tyr Phe Lys Ala Ala Tyr Gly Val Asp Lys Asn 515 520 525 Asp Ala Thr Ala Asn Gln His Leu Ser Ile Leu Glu Asp Trp Ser His 530 535 540 Asn Asp Pro Glu Tyr Val Lys Asp Phe Gly Asn Asn Gln Leu Thr Met 545 550 555 560 Asp Asp Tyr Met His Thr Gln Leu Ile Trp Ser Leu Thr Lys Asp Met 565 570 575 Arg Met Arg Gly Thr Met Gln Arg Phe Met Asp Tyr Tyr Leu Val Asn 580 585 590 Arg Asn His Asp Ser Thr Glu Asn Thr Ala Ile Pro Asn Tyr Ser Phe 595 600 605 Val Arg Ala His Asp Ser Glu Val Gln Thr Val Ile Ala Gln Ile Ile 610 615 620 Ser Glu Leu His Pro Asp Val Lys Asn Ser Leu Ala Pro Thr Ala Asp 625 630 635 640 Gln Leu Ala Glu Ala Phe Lys Ile Tyr Asn Asn Asp Glu Lys Gln Ala 645 650 655 Asp Lys Lys Tyr Thr Gln Tyr Asn Met Pro Ser Ala Tyr Ala Met Leu 660 665 670 Leu Thr Asn Lys Asp Thr Val Pro Arg Val Tyr Tyr Gly Asp Leu Tyr 675 680 685 Thr Asp Asp Gly Gln Tyr Met Ala Asn Lys Ser Pro Tyr Phe Asp Ala 690 695 700 Ile Asn Gly Leu Leu Lys Ser Arg Ile Lys Tyr Val Ala Gly Gly Gln 705 710 715 720 Ser Met Ala Val Asp Gln Asn Asp Ile Leu Thr Asn Val Arg Tyr Gly 725 730 735 Lys Gly Ala Met Ser Val Thr Asp Ser Gly Asn Ala Asp Thr Arg Thr 740 745 750 Gln Gly Ile Gly Val Ile Val Ser Asn Lys Glu Asn Leu Ala Leu Lys 755 760 765 Ser Gly Asp Thr Val Thr Leu His Met Gly Ala Ala His Lys Asn Gln 770 775 780 Ala Phe Arg Leu Leu Leu Gly Thr Thr Ala Asp Asn Leu Ser Tyr Tyr 785 790 795 800 Asp Asn Asp Asn Ala Pro Val Lys Tyr Thr Asn Asp Gln Gly Asp Leu 805 810 815 Ile Phe Asp Asn Thr Glu Ile Tyr Gly Val Arg Asn Pro Gln Val Ser 820 825 830 Gly Phe Leu Ala Val Trp Val Pro Val Gly Ala Asp Ser His Gln Asp 835 840 845 Ala Arg Thr Leu Ser Asp Asp Thr Ala His His Asp Gly Lys Thr Phe 850 855 860 His Ser Asn Ala Ala Leu Asp Ser Gln Val Ile Tyr Glu Gly Phe Ser 865 870 875 880 Asn Phe Gln Ala Phe Ala Thr Asn Thr Glu Asp Tyr Thr Asn Ala Val 885 890 895 Ile Ala Lys Asn Gly Gln Leu Phe Lys Asp Trp Gly Ile Thr Ser Phe 900 905 910 Gln Leu Ala Pro Gln Tyr Arg Ser Ser Thr Asp Thr Ser Phe Leu Asp 915 920 925 Ser Ile Ile Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp Leu Gly 930 935 940 Tyr Gly Thr Pro Thr Lys Tyr Gly Thr Val Asp Gln Leu Arg Asp Ala 945 950 955 960 Ile Lys Ala Leu His Ala Asn Gly Ile Gln Ala Ile Ala Asp Trp Val 965 970 975 Pro Asp Gln Ile Tyr Asn Leu Pro Gly Gln Glu Leu Ala Thr Val Thr 980 985 990 Arg Thr Asn Ser Tyr Gly Asp Lys Asp Thr Asn Ser Asp Ile Asp Gln 995 1000 1005 Ser Leu Tyr Val Ile Gln Ser Arg Gly Gly Gly Lys Tyr Gln Ala Gln 1010 1015 1020 Tyr Gly Gly Ala Phe Leu Ser Asp Ile Gln Lys Lys Tyr Pro Ala Leu 1025 1030 1035 1040 Phe Glu Thr Lys Gln Ile Ser Thr Gly Leu Pro Met Asp Pro Ser Gln 1045 1050 1055 Lys Ile Thr Glu Trp Ser Gly Lys Tyr Phe Asn Gly Ser Asn Ile Gln 1060 1065 1070 Gly Lys Gly Ala Gly Tyr Val Leu Lys Asp Ser Gly Thr Asp Gln Tyr 1075 1080 1085 Tyr Lys Val Thr Ser Asn Asn Asn Asn Arg Asp Phe Leu Pro Lys Gln 1090 1095 1100 Leu Thr Asp Asp Leu Ser Glu Thr Gly Phe Val Arg Asp Asn Ile Gly 1105 1110 1115 1120 Met Val Tyr Tyr Thr Leu Ser Gly Tyr Leu Ala Arg Asn Thr Phe Ile 1125 1130 1135 Gln Asp Asp Asn Gly Asn Tyr Tyr Tyr Phe Asp Ser Thr Gly His Leu 1140 1145 1150 Val Thr Gly Phe Gln Asn Ile Asn Asn His His Tyr Phe Phe Leu Pro 1155 1160 1165 Asn Gly Ile Glu Leu Val Gln Ser Phe Leu Gln Asn Ala Asp Gly Ser 1170 1175 1180 Thr Ile Tyr Phe Asp Gln Lys Gly Arg Gln Val Phe Asn Gln Tyr Ile 1185 1190 1195 1200 Thr Asp Gln Thr Gly Thr Ala Tyr Tyr Phe Gln Asn Asp Gly Thr Met 1205 1210 1215 Val Thr Ser Gly Phe Thr Glu Ile Asp Gly His Lys Gln Tyr Phe Tyr 1220 1225 1230 Lys Asn Gly Thr Gln Val Lys Gly Gln Phe Val Ser Asp Thr Asp Gly 1235 1240 1245 His Val Phe Tyr Leu Glu Ala Gly Asn Gly Asn Val Ala Thr Gln Arg 1250 1255 1260 Phe Ala Gln Asn Ser Gln Gly Gln Trp Phe Tyr Leu Gly Asn Asp Gly 1265 1270 1275 1280 Ile Ala Leu Thr Gly Leu Gln Thr Ile Asn Gly Val Gln Asn Tyr Phe 1285 1290 1295 Tyr Ala Asp Gly His Gln Ser Lys Gly Asp Phe Ile Thr Ile Gln Asn 1300 1305 1310 His Val Leu Tyr Thr Asn Pro Leu Thr Gly Ala Ile Thr Thr Gly Met 1315 1320 1325 Gln Gln Ile Gly Asp Lys Ile Phe Val Phe Asp Asn Thr Gly Asn Met 1330 1335 1340 Leu Thr Asn Gln Tyr Tyr Gln Thr Leu Asp Gly Gln Trp Leu His Leu 1345 1350 1355 1360 Ser Thr Gln Gly Pro Ala Asp Thr Gly Leu Val Asn Ile Asn Gly Asn 1365 1370 1375 Leu Lys Tyr Phe Gln Ala Asn Gly Arg Gln Val Lys Gly Gln Phe Val 1380 1385 1390 Thr Asp Pro Ile Thr Asn Val Ser Tyr Tyr Met Asn Ala Thr Asp Gly 1395 1400 1405 Ser Ala Val Phe Asn Asp Tyr Phe Thr Tyr Gln Gly Gln Trp Tyr Leu 1410 1415 1420 Thr Asp Ser Asn Tyr Gln Leu Val Lys Gly Phe Lys Val Val Asn Asn 1425 1430 1435 1440 Lys Leu Gln His Phe Asp Glu Ile Thr Gly Val Gln Thr Lys Ser Ala 1445 1450 1455 His Ile Ile Val Asn Asn Arg Thr Tyr Ile Phe Asp Asp Gln Gly Tyr 1460 1465 1470 Phe Val Ser Val Ala 1475<110> KIM, doman <120> Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 6193 <212> DNA <213> Artificial Sequence <220> <223> Mutant of Leuconostoc mesentroides B-742CB dextransucrase gene (dsrB742CK) <400> 1 ctgcagctaa actcacttta actattgctg gttttttgag aaaactaatc aaccacgtcg 60 caccataatt taaaaaacca ctagcaaaca ctaataaagg tatatcgata ggtaatggtt 120 tttgaagtat catgtccaaa tacagtatga tgacaatagg tgttaaaaca aaatacagac 180 gaccaatggc cggactgata taataaaaca ccaaaatagc gagtaaataa tataaataga 240 tattaccaaa tactaattta gagacagata ataagctata tattgatggc aaaaacacca 300 caaccgtaat caattgccaa accaacgtat taggtttctc cagaaaattt aaaattgtca 360 atactttgat gcctaagcca ataaccattg tcgataatat caaggtacta attattaccg 420 tccacatagg tcctcccaaa atccacacat tgcagtaaaa aacgacacta acactacaca 480 ttttatcata taaattacat aaaacatatt aagaagaatc ccgtgatata gcgctcttat 540 caactaaaaa agcgagcggc ccattatttt atcactttat aaatattgtt tattttatat 600 ggtaaagaat tggtaatcgt ttgtgaaatg atataagttc gtaattttat agcttataat 660 tcatttgttt caaagaataa tcaccaatgg aggagagaat gtttgattaa gagagaaatg 720 tacgaaaaaa gctctacaag tctggtaaga gttgggttat tgggggactc attttatcga 780 caattatgct gtctatgacc gctacttcac aaaatgttaa tgcagatagc acaaacacag 840 tgacggataa gtcagttact gtctccaata attcgaatac aaccaatcaa cacgatactg 900 tcgttgacaa acaaacgata cctgtcaaaa atgaccaaac aacacaacaa atcgccgcaa 960 atgccaccca agcagaaaaa gtaaaagcat cagacacaac gactgatacg caaaagcaag 1020 ctgaaacggc aaacaacact aacaaggatt cgatagataa tctcaccaag cagttgccgg 1080 ctgttacacc aacagctaat caaaaaactg gttatctgga aaaagatggt aaatggtact 1140 atgtaaccag tgataacaca cttgctaagg ggttgactac tgttgacaac cacaagcagt 1200 attttgacaa caatggcgtg caggcaaaag gccaattcgt taccgataac agtaaaacat 1260 actatctcga tcctaactcc ggtaacgcag taaccgggat acaacaaatt ggctcacaaa 1320 cattagcctt caatgacaac ggtgaacaag tttttgctga tttctataca gcgccagatg 1380 gcaaaactta ttattttgac gataaaggac aagcaactat tggtctaaag gccattaatg 1440 ggcacaatta ttacttcgat agtttgggac aactaaaaaa aggatttacc ggtgtcattg 1500 acggtcaagt acgctatttt gatcaagaat caggacaaga ggtatcaaca accgactcac 1560 aaatcaaaga aggtttaact tctcagacaa cagactatac agcacataat gccgttcaca 1620 gcaccgatag cgctgatttc gacaatttta atggttattt gaccgcttct tcatggtatc 1680 gccctaaaga tgttttaaga aatggtcaac actgggaagc aacaacagct aatgacttcc 1740 ggcccattgt gtcagtttgg tggcctagca agcaaacaca agtaaattac ctaaactaca 1800 tgtctcaaat gggactcatt gacaatcgtc agatgttctc gctaaaagac aatcaagcca 1860 tgttgaatat tgcttgcaca acagtccaac aagcaattga aacaaaaatc ggtgtggcta 1920 atagtacagc atggcttaaa acagccattg atgatttcat tcgtacacag ccacaatgga 1980 acatgtcgag tgaagatccc aaaaatgatc atttacaaaa cggcgctttg actttcgtca 2040 acagtccatt gacaccagat actaactcta atttcagact attaaatcgc acaccaacaa 2100 accagacagg tgtgccaaaa tatacaattg atcaatctaa gggtggtttt gaactcttac 2160 tcgctaatga tgtagacaac tctaatcctg ttgtgcaagc tgagcagtta aattggttac 2220 actatttgat gaattttggt agcattacag caaacgattc tgctgctaat tttgatggga 2280 tacgtgtcga tgctgtcgat aatgttgacg ctgatttact ccagattgca gcagattatt 2340 tcaaagctgc ttatggtgtt gataaaaatg acgcaacagc aaatcaacat ctttcaattc 2400 ttgaagattg gagccataac gaccctgaat acgtgaagga ttttggtaat aatcaactca 2460 caatggatga ttacatgcat acccagttaa tctggtcctt gactaaagat atgcgtatgc 2520 gtggtaccat gcaacgcttc atggactatt acctcgtcaa tcgcaatcac gatagtaccg 2580 aaaacactgc cattccaaat tacagctttg ttcgcgcaca cgatagtgaa gtacaaacag 2640 tcattgctca aattatttct gagttacatc ccgacgtaaa aaatagtttg gcaccaacag 2700 cagaccagct agccgaagcc tttaaaattt ataataacga tgaaaaacag gcggataaga 2760 aatatacaca atacaacatg cctagcgcct atgcgatgct gttaactaat aaagatacag 2820 taccgcgcgt ttattatggt gatttataca ccgatgatgg tcaatatatg gcaaataagt 2880 ccccttattt tgatgccatc aacggcttgc taaagtcacg tatcaaatat gttgctggtg 2940 gtcagtcaat ggctgttgat caaaacgata tcctgacaaa tgttcgttat ggtaaaggtg 3000 ccatgagtgt gacagatagc ggtaatgcag acacacgaac acaaggtatt ggtgtgattg 3060 tcagtaataa agaaaatctg gccttaaaat caggcgacac ggtgacatta cacatgggtg 3120 ccgctcacaa aaatcaagca ttcagattat tattagggac aactgctgac aatttgtctt 3180 attatgataa tgacaacgcc ccagtaaagt acaccaatga tcagggcgat ttaatttttg 3240 ataatactga aatctatggt gtccgtaacc cgcaagtctc tggcttctta gctgtttggg 3300 tgcctgttgg ggctgacagc catcaagacg cgcgtacttt gtctgacgac acagcccatc 3360 atgatggcaa aaccttccac tcaaatgctg ctttagattc tcaggttatt tacgaaggtt 3420 tttcaaattt ccaagctttt gccacaaaca ctgaagacta tacaaatgct gtcattgcaa 3480 aaaatggtca gttattcaaa gattggggta tcacaagttt ccagttggca ccacaatatc 3540 gttcaagcac cgataccagt ttcttagatt caattatcca aaatggttat gcctttacag 3600 atcgttatga tttaggctac ggtacaccaa caaaatatgg cacagttgac cagttacgcg 3660 atgccatcaa ggctctgcac gcaaatggca tccaagcaat cgctgactgg gtacccgacc 3720 aaatttataa tttaccgggt caagaattag cgaccgtcac ccgaacaaac tcttatggtg 3780 ataaagacac taactcagat attgatcagt cactatatgt catacaaagt cgtggtggtg 3840 gtaaatacca agcacagtat ggcggtgcct tcttatccga tatccagaaa aaatatccag 3900 cacttttcga aacaaaacaa atttctacag ggctacctat ggatcctagt cagaaaataa 3960 cagaatggtc tggtaaatac tttaatggct caaatattca aggcaaaggg gctggctatg 4020 tcttgaaaga cagtggtacc gatcaatact ataaggttac atcaaacaat aataatcgtg 4080 acttcttgcc aaaacaatta acagatgact tatctgaaac cggatttgtc cgcgataaca 4140 ttggtatggt ctattacaca ctgagtggct atctagctcg aaacaccttt atacaagatg 4200 ataatggcaa ttattattac tttgatagca ccggccatct cgttactggc ttccagaata 4260 ttaataacca tcactatttc ttcctaccaa acggtattga actcgttcaa tctttcttac 4320 agaatgctga cggttcaacg atttattttg accaaaaagg gcgtcaagta tttaatcaat 4380 acattactga ccaaaccggg accgcctatt acttccagaa tgatggcaca atggtcactt 4440 ctggcttcac tgaaatcgat ggtcataagc aatacttcta caagaacggc acacaagtca 4500 aagggcaatt tgtatcagac actgatggtc acgttttcta cttagaagct ggtaacggca 4560 acgtggcgac acaaagattt gcacaaaata gtcaaggtca gtggttctat ttgggtaatg 4620 atggcattgc cttgactggt ttgcaaacaa tcaatggtgt tcaaaattat ttctacgccg 4680 atggtcatca aagtaagggt gattttatta cgatacaaaa tcacgtatta tatactaacc 4740 cactaactgg cgctataacg acaggtatgc aacaaattgg tgacaagatt tttgtctttg 4800 acaatacggg caacatgttg accaatcaat actatcaaac actagatggc caatggttac 4860 atttaagcac tcaaggtcca gcagacactg gtttggtaaa cattaatggt aatttgaaat 4920 atttccaagc taatggtcgg caagtgaaag gtcaatttgt gactgatcct atcacgaacg 4980 tgagttatta tatgaatgcc actgatggtt cggcagtatt taatgactac tttacctatc 5040 aaggccaatg gtatttaacg gatagtaatt atcaactcgt caaaggattt aaagttgtta 5100 ataataagct acaacatttt gatgaaataa caggcgtaca aactaaatca gctcatatca 5160 tcgttaataa tcgaacatac attttcgatg accaaggtta ctttgtctca gtcgcttaac 5220 taaaaaaagc ctactcaatt aagagtgggc ttttttaatt taagaagtat aaggcaatta 5280 aagcaaccaa cgccggtaat ccttgtacca caagaatttt ccgagctgat gttatgctgc 5340 catatatcgc tgcaattaag atatagagca tttcaaattg taacatcagc acttgttgcg 5400 gaccatgaat gaaaaacatg gtcaccaata tgagtactcc gaataaaccg ttgtatattc 5460 cctgattagc taataacacc ttcacttctg gcatttttaa aacagggggt tctaattcaa 5520 aggacttagc ttgctgtgca actgagccca accatttcta tcatcatgat aatgattgct 5580 tcaatagcaa ctaacccggg taataatttg tgcgatcatt ttatacggtc tctttcttta 5640 tttctaccac aatcttacca cgcgcatgat gtgtttcgct acgctgatga gctgcacgca 5700 taccttctgt tgttagcgga taaatactat cgaccacaat ttgtaattga ttttttgtaa 5760 tataatcagc gagtgtggtt aaatctttac cattagtatc caaccaaccg ggttgtaatt 5820 gttttgttag gtgtctgctg ttgttgagcc gttaactgcg cagaaattgt caccaaatgg 5880 ccgccatctt ttaaaatatg aataccatta tcgatgtccc caaccatatc aaatacagca 5940 tcgtaatcag acaaaacatc ctgtatttgg tatgcgtggt aatcaatcac ttgatctgcc 6000 cccagtgacg caacaaaatc gtgattaact tgactcgctg ttgttgctac ataagtcccc 6060 attaacttgg cgagttgaat ggcataaata ccaacgccac cagcgccagc ttgtattaac 6120 accttgtgcc ctgctttaac ttgtagtttt tccaacattt gtagcgctgt tagggctgct 6180 aatggtactg cag 6193 <210> 2 <211> 1477 <212> PRT <213> Artificial Sequence <220> <223> Mutant of Leuconostoc mesentroides B-742CB dextransucrase (dsrB742CK) <400> 2 Met Leu Ser Met Thr Ala Thr Ser Gln Asn Val Asn Ala Asp Ser Thr 1 5 10 15 Asn Thr Val Thr Asp Lys Ser Val Thr Val Ser Asn Asn Ser Asn Thr 20 25 30 Thr Asn Gln His Asp Thr Val Val Asp Lys Gln Thr Ile Pro Val Lys 35 40 45 Asn Asp Gln Thr Thr Gln Gln Ile Ala Ala Asn Ala Thr Gln Ala Glu 50 55 60 Lys Val Lys Ala Ser Asp Thr Thr Thr Asp Thr Gln Lys Gln Ala Glu 65 70 75 80 Thr Ala Asn Asn Thr Asn Lys Asp Ser Ile Asp Asn Leu Thr Lys Gln 85 90 95 Leu Pro Ala Val Thr Pro Thr Ala Asn Gln Lys Thr Gly Tyr Leu Glu 100 105 110 Lys Asp Gly Lys Trp Tyr Tyr Val Thr Ser Asp Asn Thr Leu Ala Lys 115 120 125 Gly Leu Thr Thr Val Asp Asn His Lys Gln Tyr Phe Asp Asn Asn Gly 130 135 140 Val Gln Ala Lys Gly Gln Phe Val Thr Asp Asn Ser Lys Thr Tyr Tyr 145 150 155 160 Leu Asp Pro Asn Ser Gly Asn Ala Val Thr Gly Ile Gln Gln Ile Gly 165 170 175 Ser Gln Thr Leu Ala Phe Asn Asp Asn Gly Glu Gln Val Phe Ala Asp 180 185 190 Phe Tyr Thr Ala Pro Asp Gly Lys Thr Tyr Tyr Phe Asp Asp Lys Gly 195 200 205 Gln Ala Thr Ile Gly Leu Lys Ala Ile Asn Gly His Asn Tyr Tyr Phe 210 215 220 Asp Ser Leu Gly Gln Leu Lys Lys Gly Phe Thr Gly Val Ile Asp Gly 225 230 235 240 Gln Val Arg Tyr Phe Asp Gln Glu Ser Gly Gln Glu Val Ser Thr Thr 245 250 255 Asp Ser Gln Ile Lys Glu Gly Leu Thr Ser Gln Thr Thr Asp Tyr Thr 260 265 270 Ala His Asn Ala Val His Ser Thr Asp Ser Ala Asp Phe Asp Asn Phe 275 280 285 Asn Gly Tyr Leu Thr Ala Ser Ser Trp Tyr Arg Pro Lys Asp Val Leu 290 295 300 Arg Asn Gly Gln His Trp Glu Ala Thr Thr Ala Asn Asp Phe Arg Pro 305 310 315 320 Ile Val Ser Val Trp Trp Pro Ser Lys Gln Thr Gln Val Asn Tyr Leu 325 330 335 Asn Tyr Met Ser Gln Met Gly Leu Ile Asp Asn Arg Gln Met Phe Ser 340 345 350 Leu Lys Asp Asn Gln Ala Met Leu Asn Ile Ala Cys Thr Thr Val Gln 355 360 365 Gln Ala Ile Glu Thr Lys Ile Gly Val Ala Asn Ser Thr Ala Trp Leu 370 375 380 Lys Thr Ala Ile Asp Asp Phe Ile Arg Thr Gln Pro Gln Trp Asn Met 385 390 395 400 Ser Ser Glu Asp Pro Lys Asn Asp His Leu Gln Asn Gly Ala Leu Thr 405 410 415 Phe Val Asn Ser Pro Leu Thr Pro Asp Thr Asn Ser Asn Phe Arg Leu 420 425 430 Leu Asn Arg Thr Pro Thr Asn Gln Thr Gly Val Pro Lys Tyr Thr Ile 435 440 445 Asp Gln Ser Lys Gly Gly Phe Glu Leu Leu Leu Ala Asn Asp Val Asp 450 455 460 Asn Ser Asn Pro Val Val Gln Ala Glu Gln Leu Asn Trp Leu His Tyr 465 470 475 480 Leu Met Asn Phe Gly Ser Ile Thr Ala Asn Asp Ser Ala Ala Asn Phe 485 490 495 Asp Gly Ile Arg Val Asp Ala Val Asp Asn Val Asp Ala Asp Leu Leu 500 505 510 Gln Ile Ala Ala Asp Tyr Phe Lys Ala Ala Tyr Gly Val Asp Lys Asn 515 520 525 Asp Ala Thr Ala Asn Gln His Leu Ser Ile Leu Glu Asp Trp Ser His 530 535 540 Asn Asp Pro Glu Tyr Val Lys Asp Phe Gly Asn Asn Gln Leu Thr Met 545 550 555 560 Asp Asp Tyr Met His Thr Gln Leu Ile Trp Ser Leu Thr Lys Asp Met 565 570 575 Arg Met Arg Gly Thr Met Gln Arg Phe Met Asp Tyr Tyr Leu Val Asn 580 585 590 Arg Asn His Asp Ser Thr Glu Asn Thr Ala Ile Pro Asn Tyr Ser Phe 595 600 605 Val Arg Ala His Asp Ser Glu Val Gln Thr Val Ile Ala Gln Ile Ile 610 615 620 Ser Glu Leu His Pro Asp Val Lys Asn Ser Leu Ala Pro Thr Ala Asp 625 630 635 640 Gln Leu Ala Glu Ala Phe Lys Ile Tyr Asn Asn Asp Glu Lys Gln Ala 645 650 655 Asp Lys Lys Tyr Thr Gln Tyr Asn Met Pro Ser Ala Tyr Ala Met Leu 660 665 670 Leu Thr Asn Lys Asp Thr Val Pro Arg Val Tyr Tyr Gly Asp Leu Tyr 675 680 685 Thr Asp Asp Gly Gln Tyr Met Ala Asn Lys Ser Pro Tyr Phe Asp Ala 690 695 700 Ile Asn Gly Leu Leu Lys Ser Arg Ile Lys Tyr Val Ala Gly Gly Gln 705 710 715 720 Ser Met Ala Val Asp Gln Asn Asp Ile Leu Thr Asn Val Arg Tyr Gly 725 730 735 Lys Gly Ala Met Ser Val Thr Asp Ser Gly Asn Ala Asp Thr Arg Thr 740 745 750 Gln Gly Ile Gly Val Ile Val Ser Asn Lys Glu Asn Leu Ala Leu Lys 755 760 765 Ser Gly Asp Thr Val Thr Leu His Met Gly Ala Ala His Lys Asn Gln 770 775 780 Ala Phe Arg Leu Leu Leu Gly Thr Thr Ala Asp Asn Leu Ser Tyr Tyr 785 790 795 800 Asp Asn Asp Asn Ala Pro Val Lys Tyr Thr Asn Asp Gln Gly Asp Leu 805 810 815 Ile Phe Asp Asn Thr Glu Ile Tyr Gly Val Arg Asn Pro Gln Val Ser 820 825 830 Gly Phe Leu Ala Val Trp Val Pro Val Gly Ala Asp Ser His Gln Asp 835 840 845 Ala Arg Thr Leu Ser Asp Asp Thr Ala His His Asp Gly Lys Thr Phe 850 855 860 His Ser Asn Ala Ala Leu Asp Ser Gln Val Ile Tyr Glu Gly Phe Ser 865 870 875 880 Asn Phe Gln Ala Phe Ala Thr Asn Thr Glu Asp Tyr Thr Asn Ala Val 885 890 895 Ile Ala Lys Asn Gly Gln Leu Phe Lys Asp Trp Gly Ile Thr Ser Phe 900 905 910 Gln Leu Ala Pro Gln Tyr Arg Ser Ser Thr Asp Thr Ser Phe Leu Asp 915 920 925 Ser Ile Ile Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp Leu Gly 930 935 940 Tyr Gly Thr Pro Thr Lys Tyr Gly Thr Val Asp Gln Leu Arg Asp Ala 945 950 955 960 Ile Lys Ala Leu His Ala Asn Gly Ile Gln Ala Ile Ala Asp Trp Val 965 970 975 Pro Asp Gln Ile Tyr Asn Leu Pro Gly Gln Glu Leu Ala Thr Val Thr 980 985 990 Arg Thr Asn Ser Tyr Gly Asp Lys Asp Thr Asn Ser Asp Ile Asp Gln 995 1000 1005 Ser Leu Tyr Val Ile Gln Ser Arg Gly Gly Gly Lys Tyr Gln Ala Gln 1010 1015 1020 Tyr Gly Gly Ala Phe Leu Ser Asp Ile Gln Lys Lys Tyr Pro Ala Leu 1025 1030 1035 1040 Phe Glu Thr Lys Gln Ile Ser Thr Gly Leu Pro Met Asp Pro Ser Gln 1045 1050 1055 Lys Ile Thr Glu Trp Ser Gly Lys Tyr Phe Asn Gly Ser Asn Ile Gln 1060 1065 1070 Gly Lys Gly Ala Gly Tyr Val Leu Lys Asp Ser Gly Thr Asp Gln Tyr 1075 1080 1085 Tyr Lys Val Thr Ser Asn Asn Asn Asn Arg Asp Phe Leu Pro Lys Gln 1090 1095 1100 Leu Thr Asp Asp Leu Ser Glu Thr Gly Phe Val Arg Asp Asn Ile Gly 1105 1110 1115 1120 Met Val Tyr Tyr Thr Leu Ser Gly Tyr Leu Ala Arg Asn Thr Phe Ile 1125 1130 1135 Gln Asp Asp Asn Gly Asn Tyr Tyr Tyr Phe Asp Ser Thr Gly His Leu 1140 1145 1150 Val Thr Gly Phe Gln Asn Ile Asn Asn His His Tyr Phe Phe Leu Pro 1155 1160 1165 Asn Gly Ile Glu Leu Val Gln Ser Phe Leu Gln Asn Ala Asp Gly Ser 1170 1175 1180 Thr Ile Tyr Phe Asp Gln Lys Gly Arg Gln Val Phe Asn Gln Tyr Ile 1185 1190 1195 1200 Thr Asp Gln Thr Gly Thr Ala Tyr Tyr Phe Gln Asn Asp Gly Thr Met 1205 1210 1215 Val Thr Ser Gly Phe Thr Glu Ile Asp Gly His Lys Gln Tyr Phe Tyr 1220 1225 1230 Lys Asn Gly Thr Gln Val Lys Gly Gln Phe Val Ser Asp Thr Asp Gly 1235 1240 1245 His Val Phe Tyr Leu Glu Ala Gly Asn Gly Asn Val Ala Thr Gln Arg 1250 1255 1260 Phe Ala Gln Asn Ser Gln Gly Gln Trp Phe Tyr Leu Gly Asn Asp Gly 1265 1270 1275 1280 Ile Ala Leu Thr Gly Leu Gln Thr Ile Asn Gly Val Gln Asn Tyr Phe 1285 1290 1295 Tyr Ala Asp Gly His Gln Ser Lys Gly Asp Phe Ile Thr Ile Gln Asn 1300 1305 1310 His Val Leu Tyr Thr Asn Pro Leu Thr Gly Ala Ile Thr Thr Gly Met 1315 1320 1325 Gln Gln Ile Gly Asp Lys Ile Phe Val Phe Asp Asn Thr Gly Asn Met 1330 1335 1340 Leu Thr Asn Gln Tyr Tyr Gln Thr Leu Asp Gly Gln Trp Leu His Leu 1345 1350 1355 1360 Ser Thr Gln Gly Pro Ala Asp Thr Gly Leu Val Asn Ile Asn Gly Asn 1365 1370 1375 Leu Lys Tyr Phe Gln Ala Asn Gly Arg Gln Val Lys Gly Gln Phe Val 1380 1385 1390 Thr Asp Pro Ile Thr Asn Val Ser Tyr Tyr Met Asn Ala Thr Asp Gly 1395 1400 1405 Ser Ala Val Phe Asn Asp Tyr Phe Thr Tyr Gln Gly Gln Trp Tyr Leu 1410 1415 1420 Thr Asp Ser Asn Tyr Gln Leu Val Lys Gly Phe Lys Val Val Asn Asn 1425 1430 1435 1440 Lys Leu Gln His Phe Asp Glu Ile Thr Gly Val Gln Thr Lys Ser Ala 1445 1450 1455 His Ile Ile Val Asn Asn Arg Thr Tyr Ile Phe Asp Asp Gln Gly Tyr 1460 1465 1470 Phe Val Ser Val Ala 1475

Claims (5)

서열번호 1의 DNA 서열로 이루어지며, α(1→3)이 11-20%인 가지결합을 갖는 덱스트란을 합성하는 변형된 덱스트란수크라아제 유전자.A modified dextran sucrase gene consisting of a DNA sequence of SEQ ID NO: 1, which synthesizes dextran having branched bonds having an alpha (1 → 3) of 11-20%. 삭제delete 제 1항의 변형된 덱스트란수크라아제 유전자를 포함하는 재조합벡터.Recombinant vector comprising the modified dextran sucrase gene of claim 1. 제 3항의 재조합벡터로 형질 전환된 α(1→3)이 11-20%인 가지결합을 갖는 덱스트란을 생산하는 미생물(DSRB742CK, 기탁번호:KACC 95013).A microorganism (DSRB742CK, Accession No .: KACC 95013) which produces dextran having branched bonds having 11-20% of α (1 → 3) transformed with the recombinant vector of claim 3. 제 4항의 형질 전환된 미생물로부터 생산되고, 서열번호 2의 아미노산 서열로 이루어지며, α(1→3)이 11-20%인 가지결합을 갖는 덱스트란을 합성할 수 있는 변형된 덱스트란수크라아제.A modified dextran sucra which can synthesize dextran produced from the transformed microorganism of claim 4, consisting of the amino acid sequence of SEQ ID NO: 2, and having branched bonds having an alpha (1 → 3) of 11-20%. Aze.
KR10-2003-0026495A 2003-04-25 2003-04-25 Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism KR100494813B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0026495A KR100494813B1 (en) 2003-04-25 2003-04-25 Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0026495A KR100494813B1 (en) 2003-04-25 2003-04-25 Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism

Publications (2)

Publication Number Publication Date
KR20040092250A KR20040092250A (en) 2004-11-03
KR100494813B1 true KR100494813B1 (en) 2005-06-13

Family

ID=37372754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0026495A KR100494813B1 (en) 2003-04-25 2003-04-25 Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism

Country Status (1)

Country Link
KR (1) KR100494813B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714912B1 (en) 2006-04-28 2007-05-04 전남대학교산학협력단 Hybrid genes and enzymes of glucanase and dextransucrase and processes for preparing isomalto-oligosaccharides or dextran using the same
KR101375627B1 (en) * 2007-01-12 2014-03-19 전남대학교산학협력단 Dextransucrase having modified transglycosylating property, Mutant Gene of the Dextransucrase, Recombinant Vector comprising the Mutant Gene, and Microorganism Transformed by the Recombinant Vector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220267745A1 (en) * 2019-07-09 2022-08-25 Nutrition & Biosciences USA 4, Inc. Engineered alpha-1,3 branching enzymes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714912B1 (en) 2006-04-28 2007-05-04 전남대학교산학협력단 Hybrid genes and enzymes of glucanase and dextransucrase and processes for preparing isomalto-oligosaccharides or dextran using the same
WO2007126278A1 (en) * 2006-04-28 2007-11-08 Industry Foundation Of Chonnam National University Hybrid genes and enzymes of glucanase and dextransucrase, and processes for preparing isomalto-oligosaccharides or dextran using the same
KR101375627B1 (en) * 2007-01-12 2014-03-19 전남대학교산학협력단 Dextransucrase having modified transglycosylating property, Mutant Gene of the Dextransucrase, Recombinant Vector comprising the Mutant Gene, and Microorganism Transformed by the Recombinant Vector

Also Published As

Publication number Publication date
KR20040092250A (en) 2004-11-03

Similar Documents

Publication Publication Date Title
CA2684883C (en) Chondroitin-producing bacterium and method of producing chondroitin
Monchois et al. Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 synthesizing only a α (1–6) glucan
CN112342179B (en) Bacillus subtilis genetic engineering bacteria for producing tagatose and method for preparing tagatose
CN110452845B (en) Escherichia coli for producing sucrose phosphorylase
Zhao et al. Purification and characterization of inulin fructotransferase (DFA III-forming) from Arthrobacter aurescens SK 8.001
CN112941052B (en) Chitosanase OUC-T613 and application thereof
Chellapandian et al. Production and properties of a dextransucrase from Leuconostoc mesenteroides IBT-PQ isolated from ‘pulque’, a traditional Aztec alcoholic beverage
CN110684751B (en) Starch branching enzyme mutant with improved catalytic capability
DE60035801T2 (en) BACTERIAL STRAINS OF GENUS KLEBSIELLA AND ITS GENERATING ENCODES FOR ISOMALTULOSE SYNTHASE
KR100494813B1 (en) Mutant Gene of Dextransucrase, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism
Saranraj et al. Production, optimization and spectroscopic studies of hyaluronic acid extracted from Streptococcus pyogenes
KR960013463B1 (en) R-cgtase
Ruffing et al. Metabolic engineering of Agrobacterium sp. strain ATCC 31749 for production of an α-Gal epitope
KR100518181B1 (en) Mutant Gene of Dextransucrase Producing only Oligosaccharide, Recombinant Vector comprising the Mutant Gene, Microorganism Transformed by the Recombinant Vector, and the Dextransucrase produced from the Microorganism
KR100500993B1 (en) Method for Preparing a Gene Mutant by Radiation
JP3658323B2 (en) Trehalose synthase protein, gene, plasmid, microorganism, and method for producing trehalose
KR102409435B1 (en) Method of producing saccharide comprising malto oligosaccharides
JPH06253836A (en) Modified carbohydrate hydrolase, mutant gene of the enzyme and production of oligosaccharide using the enzyme
KR940003652B1 (en) Method of preparing of polypeptide possessing cyclomaltodextrin glucano transferase activity
KR100233988B1 (en) Method for development of microorganism using vacuum ultraviolet
CN114686412B (en) Bacillus subtilis mutant strain and application thereof in production of alginic acid lyase
KR100367154B1 (en) Amylase with Acabose Resolution, Genes That Encode It, Microorganisms That Produce It, and Its Uses
KR20070059485A (en) Superoxide-generating enzyme in rhodobacter sphaeroides
CN116676323A (en) Biosynthesis gene of MAAs precursor substance 4-deoxygadusol, recombinant plasmid and application thereof
KR20110128168A (en) An alpha-xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130425

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150522

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180531

Year of fee payment: 14