KR100482225B1 - Method for continuous casting of high carbon alloy steel - Google Patents

Method for continuous casting of high carbon alloy steel Download PDF

Info

Publication number
KR100482225B1
KR100482225B1 KR10-1999-0039626A KR19990039626A KR100482225B1 KR 100482225 B1 KR100482225 B1 KR 100482225B1 KR 19990039626 A KR19990039626 A KR 19990039626A KR 100482225 B1 KR100482225 B1 KR 100482225B1
Authority
KR
South Korea
Prior art keywords
steel
high carbon
casting
mold
continuous casting
Prior art date
Application number
KR10-1999-0039626A
Other languages
Korean (ko)
Other versions
KR20010027741A (en
Inventor
양대욱
정현석
강석은
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0039626A priority Critical patent/KR100482225B1/en
Publication of KR20010027741A publication Critical patent/KR20010027741A/en
Application granted granted Critical
Publication of KR100482225B1 publication Critical patent/KR100482225B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 공구강의 소재로 사용되는 고탄소(0.70중량%이상) 합금강의 연속주조방법에 관한 것으로, 그 목적은 주편표면 및 내부 품질이 우수한 고탄소 합금강의 연속주조 방법을 제공함에 있다. The present invention relates to a continuous casting method of high carbon (0.70% by weight or more) alloy steel used as a material for tool steels, and an object thereof is to provide a continuous casting method of high carbon alloy steel having excellent cast surface and internal quality.

상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,

탄소 0.7중량% 이상의 고탄소강을 연속주조하는 방법에 있어서, In the method of continuously casting high carbon steel of 0.7% by weight or more of carbon,

N의 함량이 50ppm이하인 레이들의 용강을 턴디쉬로 주입하는 단계;Injecting molten steel with a N content of 50 ppm or less into a tundish;

턴디쉬에 수강된 용강의 과열도를 15-20℃로 관리하면서 몰드로 주입하고, 몰드내의 용강상부에는 CaO:22-33%, SiO2:22-33%, B2O3:5-7%를 포함하여 조성되는 몰드파우더를 투입하는 단계;The superheat degree of molten steel taken in tundish is injected into the mold while managing it at 15-20 ℃, and the upper portion of the molten steel in the mold is CaO: 22-33%, SiO 2 : 22-33%, B 2 O 3 : 5-7 Injecting a mold powder including%;

몰드로 부터 나오는 주편에 0.4-0.5ℓ/kg의 비수량으로 2차냉각하면서 1.0-1.2m/min의 속도로 주조하는 단계;를 포함하여 이루어지는 고탄소 합금 공구강의 연속주조 방법에 관한 것을 그 기술적요지로 한다. The method relates to the continuous casting method of high carbon alloy tool steel, including the step of casting at a rate of 1.0-1.2m / min while secondary cooling with a non-amount of 0.4-0.5ℓ / kg to the cast from the mold Make a point.

Description

고탄소 합금 공구강의 연속주조 방법{Method for continuous casting of high carbon alloy steel}Method for continuous casting of high carbon alloy steel

본 발명은 공구강의 소재로 사용되는 고탄소(0.70중량%이상) 합금강의 연속주조방법에 관한 것으로, 보다 상세하게는 주편표면 및 내부 품질이 우수한 고탄소 합금강의 연속주조 방법에 관한 것이다. The present invention relates to a continuous casting method of high carbon (0.70% by weight or more) alloy steel used as a material for tool steel, and more particularly, to a continuous casting method of high carbon alloy steel having excellent cast surface and internal quality.

일반적으로 탄소가 0.7중량% 이상 함유되는 고탄소 합금강은 열연제품상태로 줄자, 톱날, 태엽 등의 공구소재로 사용된다. 이러한 고탄소 합금강은 전로 100톤 규모의 전로 및 연주기에서 주로 생산되었으나, 최근 수요가 늘면서 대용량의 350톤 규모의 전로 및 연주기에서의 생산이 필수적으로 요구되고 있다. In general, high carbon alloy steel containing more than 0.7% by weight of carbon is used as a tool material for tape measure, saw blade, spring, etc. in hot rolled state. The high-carbon alloy steel is mainly produced in converters and players of 100 tons of converters, but as demand increases recently, production in 350 tons of converters and players of large capacity is required.

탄소가 0.70중량% 이상의 고탄소강은 과공석강으로 응고 특성은 0.70중량% 이하의 일반강 대비 응고도중 고상, 액상 공존구역의 온도가 약 100℃이상으로 응고가 쉽게 되지 않는 즉 "응고지연현상"이 있다. 응고지연이 생기면 응고쉘 두께가 약화되어 구속성 브레이크-아웃(brake-out)의 발생에 따른 설비파손 및 생산성이 떨어지게 된다. 뿐만 아니라, 응고과정중 주편의 굽힘, 폄 운동에 의해 주편에 기계적인 응력이 부가되어 주편표면 크랙이 민감하다. 이와 더불어, 많은 탄소성분으로 인해 주조조직에서 고르지 않은 성분분산 즉 편석현상이 심화되고 연속주조 응고 도중 고온에서 발생하는 내부크랙 결함발생에 민감한 특징이 있으므로, 고탄소 합금강의 연주주편은 품질확보가 매우 어려운 것으로 인정되고 있다. High carbon steel with carbon content of more than 0.70% by weight is super-vacuum steel, and the solidification characteristics are not easy to solidify because the temperature of solid and liquid coexisting zone is about 100 ° C or more during the solidification degree compared to general steel with 0.70% by weight or less have. If the coagulation delay occurs, the thickness of the coagulation shell is weakened, resulting in damage to the equipment and productivity due to the occurrence of restrictive brake-out. In addition, mechanical stress is applied to the slab by bending and bending of the slab during the solidification process. In addition, due to the high carbon content, the uneven component dispersion, or segregation, in the casting structure is intensified, and it is sensitive to the occurrence of internal crack defects occurring at high temperatures during continuous casting solidification. It is recognized as difficult.

따라서, 종래에는 가능한 고탄소 합금강의 내부품질을 안정되게 얻기 위하여 2차냉각대에서 강냉조건을 적용하였으나, 그만큼 표면품질의 열화가 뒤따랐다. Therefore, in the related art, in order to stably obtain the internal quality of the high carbon alloy steel as much as possible, the cooling conditions were applied in the secondary cooling zone, but the surface quality deteriorated accordingly.

이에 본 발명은 대상재의 N성분 및 연속주조조건의 전반을 적절히 제어하여 주편의 내부는 물론, 표면결함도 거의 없는 열연고탄소 합금강의 연속주조방법을 제공함에 있다. Accordingly, the present invention provides a continuous casting method of hot-rolled carbon alloy steel with almost no surface defects as well as the inside of the cast by appropriately controlling the overall N component and the continuous casting conditions of the target material.

상기 목적을 달성하기 위한 본 발명의 연속주조방법은, Continuous casting method of the present invention for achieving the above object,

N의 함량이 50ppm이하가 되도록 진공탈가스처리한 레이들의 용강을 턴디쉬로 주입하는 단계;Injecting molten steel of the vacuum degassing ladle so that the content of N is 50 ppm or less into a tundish;

턴디쉬에 수강된 용강의 과열도를 15-20℃로 관리하면서 몰드로 주입하고, 몰드내의 용강상부에는 중량%로(이하 간단히 %로 한다) CaO:27-33%, SiO2:22-33%, B2O3:5-7%를 포함하여 조성되는 몰드파우더를 투입하는 단계;Superheat degree of molten steel taken in tundish is injected into the mold while managing it at 15-20 ℃, and in the molten steel upper part in the mold by weight% (hereinafter simply referred to as%) CaO: 27-33%, SiO 2 : 22-33 %, B 2 O 3 : a step of introducing a mold powder comprising 5-7%;

몰드로 부터 나오는 주편에 0.4-0.5ℓ/kg의 비수량으로 2차냉각하면서 1.0-1.2m/min의 속도로 주조하는 단계;를 포함하여 이루어진다. Casting at a rate of 1.0-1.2 m / min while secondary cooling with a non-aqueous quantity of 0.4-0.5 L / kg on the cast slab from the mold.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 연주주편 품질의 열화를 최소화하기 위하여 N성분을 제어하는 한편, 2차냉각대에서 약냉조건을 제어하고, 이와 더불어, 주조속도, 몰드플럭스을 최적화하여 주편내부 및 표면품질을 개선하는데, 그 특징이 있다. 이와 같이, 본 발명에서는 (1) [N] 성분, (2) 과열도, (3) 몰드파우더, (4) 2차냉각조건, (5) 주조속도의 조건을 종합적으로 제어하 는 것으로, 이들의 조건을 분설하면 다음과 같다. The present invention is to control the N component to minimize the degradation of the cast steel quality, to control the weak cooling conditions in the secondary cooling stand, and also to improve the casting quality, mold flux to improve the inside and surface quality of the cast, There is a characteristic. As described above, in the present invention, the conditions of (1) [N] component, (2) superheat degree, (3) mold powder, (4) secondary cooling condition, and (5) casting speed are controlled collectively. If we break down the condition of:

(1) [N]성분 제어(1) [N] component control

연주주편 품질의 열화를 최소화하기 위해서는 화학성분중 [N]성분 함량을 50ppm이하로 한 용강을 연속주조 대상재로 하는 것이 바람직하다. In order to minimize the deterioration of cast steel quality, it is preferable to use molten steel having a content of [N] component of 50 ppm or less as the continuous casting material.

본 발명자들은, 도 1에서와 같이 고탄소 합금강의 응고 메카니즘에서 [N]함량에 따른 응고특성을 확인하기 위하여 고탄소강 시험편을 제작하여 900℃까지 재가열하여 고온에서 인장시험을 통한 감면율을 조사한 결과, 화학성분중 [N]함량이 많을수록 고온에서의 감면율(Reduction of area)이 감소되어 주편의 크랙 발생을 조장하는 것을 확인하였다. The present inventors, as shown in Figure 1, in order to confirm the solidification characteristics according to the [N] content in the solidification mechanism of the high carbon alloy steel, and produced a high carbon steel test specimen and reheated to 900 ℃ to investigate the reduction rate through the tensile test at high temperature, The higher the content of [N] in the chemical composition, the lower the reduction of area (Reduction of area) was found to promote the crack generation of the cast.

따라서, 본 발명에서는 강중 [N]함량을 50ppm이하로 관리하여 주편의 크랙발생을 방지한다. 이를 위해서는 RH공정에서 용강의 [N]성분을 50ppm이하로 관리하면되는데, 이는 저진공도로 15분 이상 충분히 탈가스처리하면 얻어질 수 있다. Therefore, in the present invention, the steel content [N] is managed to 50 ppm or less to prevent cracking of the cast steel. For this purpose, the [N] component of the molten steel in the RH process is controlled to 50 ppm or less, which can be obtained by sufficiently degassing at least 15 minutes with a low vacuum.

(2) 과열도(2) degree of superheat

본 발명에서는 연속주조동안 안정적으로 주조할 수 있는 온도, 즉 과열도(이론응고온도-주조온도)를 10∼20℃로 한다. In the present invention, the temperature at which casting can be stably performed during continuous casting, that is, the degree of superheat (theoretical coagulation temperature-casting temperature) is set to 10 to 20 ° C.

안정적인 주조작업완료를 위해서는 주조시간동안(통상 40-50분) 일정한 온도가 필요하나(과열도) 온도가 낮을 경우 용강이 응고되는 노즐막힘으로 주조중단이 되고 온도가 일정온도 이상의 경우 응고지연현상으로 인해 내부품질 불안 및 응고쉘 약화로 브레이크-아웃이 발생하게 된다. 고탄소강은 저속주조로 인해 주조시간이 통상재 대비 추가로 약 10분 이상 필요하게 되어 적정온도 관리가 매우 어렵다. A stable temperature is required during the casting time (typically 40-50 minutes) to complete a stable casting process (overheating) .As a low temperature, the molten steel will stop casting due to the clogging of the nozzle, and if the temperature is above a certain temperature, the solidification delay will occur. As a result, break-out occurs due to internal quality instability and weakening of the solidification shell. Due to the low-speed casting, high carbon steel requires more than 10 minutes of casting time compared to conventional materials, so proper temperature management is very difficult.

본 발명에서는 이러한 측면을 고려하여 이론응고온도 대비 10-20℃ 높은 온도(과열도)로 주조한다. 과열도가 10℃미만의 경우 장시간의 주조시간동안 온도가 하락하여 성공적인 주조가 불가능하고, 과열도가 20℃ 초과의 경우 주조동안 온도가 하락되지는 않지만 응고쉘 약화 및 주편 내부 크랙발생으로 품질이 불안하게 된다. In consideration of this aspect, the present invention casts at a temperature (superheat) of 10-20 ° C. higher than the theoretical solidification temperature. If the superheat is less than 10 ℃, the temperature drops during a long casting time and successful casting is impossible.If the superheat is over 20 ℃, the temperature does not drop during casting, but the quality is improved due to weakening of the solidification shell and cracking of the cast steel. I get nervous.

(3) 몰드파우더(3) mold powder

고탄소강은 아래 표 1에 보이는 바와 같이, 주조온도(1475∼1485℃)가 일반강 대비 매우 낮다. As shown in Table 1 below, high carbon steel has a very low casting temperature (1475 to 1485 ° C) compared to general steel.

구분division 고탄소강High carbon steel 일반탄소강General Carbon Steel 저탄소강Low carbon steel C:0.7%이상C: 0.7% or more C:0.2%C: 0.2% C:0.008%(Mn:0.3%, Si:0.34%, P:0.02%)C: 0.008% (Mn: 0.3%, Si: 0.34%, P: 0.02%) 액상선온도(℃)Liquid line temperature (℃) 14701470 15071507 15201520 고상선온도(℃)Solidus temperature (℃) 13601360 14401440 14931493 고액공존구간(℃)Solid liquid coexistence section (℃) 110110 6767 2727

따라서, 고탄소강의 경우에는 낮은 온도에서도 충분한 윤활능을 가지고 저점도이면서 몰드내에서 다소 강냉되는 효과를 나타내는 몰드 파우더를 사용하는 것이 바람직하다. 이런 측면을 고려할때, 몰드 파우더는 낮은 온도에서도 충분한 열전달 기능을 가져 응고쉘 두께 증가, 윤활능 확보를 위해 필요한 소모량을 확보할 수 있도록 플럭스 성분중 5-7% 범위 B2O3가 함유된 것을 사용한다. 이러한 몰드 파우더로는 일명 FFM1이라는 플럭스가 있다. 이 플럭스는, 중량%로 CaO:27-33%, SiO2:22-33%, B2O3:5-7%를 주성분으로 하는데, 이외에도 Al2O3:3-5%, Na2O:8-12%, K2O:3-4%, F:3-4%, Li2O: 약 0.6%이하, MgO: 약 1.4%이하가 함유된다.Therefore, in the case of high carbon steel, it is preferable to use a mold powder having sufficient lubricating ability even at a low temperature, and having a low viscosity and slightly cooling effect in the mold. Considering this aspect, mold powder has sufficient heat transfer function even at low temperature and contains 5-7% of B 2 O 3 of flux component to increase the thickness of solidification shell and to obtain the necessary consumption for lubrication performance. use. As such mold powder, there is a flux called FFM1. The flux is composed of CaO: 27-33%, SiO 2 : 22-33%, and B 2 O 3 : 5-7% by weight, in addition to Al 2 O 3 : 3-5%, Na 2 O : 8-12%, K 2 O: 3-4%, F: 3-4%, Li 2 O: about 0.6% or less, MgO: about 1.4% or less.

몰드 파우더중 CaO와 SiO2는 염기도 조정성분으로 CaO가 33% 초가 첨가되거나 SiO2가 22% 미만 첨가하는 경우 슬래그의 점도가 떨어지므로 용강내 슬래그의 유입이 과다해지고 CaO가 27%미만 첨가되거나 SiO2가 33%이상 첨가되는 경우 슬래그의 점도가 높아지게 되어 용강내 슬래그 유입이 어려워지게 되어 윤활능이 감소되어 브레이크-아웃이 발생하게 된다. 몰드 파우더 성분중 B2O3는 취약한 응고쉘 두께 확보와 소모량 증가에 의한 슬래그의 안정적 유입을 위하여 5-7%로 한다. 7%초과하면 열전달이 많아 주편 수축이 심하고 5%미만의 경우 열전달 효과가 미미하다.CaO and SiO 2 are the basicity adjusting components in the mold powder, and when the CaO is added at 33% or the SiO 2 is added at less than 22%, the viscosity of slag decreases. When 2 is added to 33% or more, the viscosity of slag becomes high, which makes it difficult to introduce slag into molten steel, thereby reducing the lubricating ability and causing break-out. B 2 O 3 in the mold powder component is 5-7% for securing the weak solidification shell thickness and stable inflow of slag due to increased consumption. If it exceeds 7%, there is a lot of heat transfer, so the shrinkage of cast steel is severe.

(4) 2차 냉각조건(4) secondary cooling conditions

연속주조되어 주형밑으로 빠져 나와 2차냉각대에 이르는 주편에 약냉 패턴의 비수량인 0.40∼0.55(ℓ/㎏)의 냉각수를 살수한다. 연속주조용 연주기내에서 휘어졌던 주편이 다시 펴지는 구역(이하, 'straightener'로 표기)에서의 온도가 가장 중요하다. 이는 대부분의 크랙이 여기에서 확장, 진전되는 영역으로 통상 2차 냉각물량으로 제어하고 있다. The castings, which are continuously cast out of the mold and reach the secondary cooling zone, are sprinkled with 0.40 to 0.55 (l / kg) of cooling water, which is a specific amount of the weak cooling pattern. The most important is the temperature in the zone where the cast piece is re-stretched in the continuous casting machine (hereafter referred to as 'straightener'). This is the area where most of the cracks are extended and advanced here, usually controlled by the amount of secondary coolant.

본 발명에서 2차냉각과의 상관성 시험을 동시에 추진한 결과 이부분을 지나는 주편온도가 850℃이상으로 유지되어야만 품질이 확보됨을 알 수 있었으며, straightener 부분의 온도를 850℃이상으로 유지하기 위해서는 2차냉각대의 비수량을 0.40∼0.55(ℓ/kg) 범위 내로 관리할때 얻어지는 것이 확인되었다. 상기 물량(비수량) 이외의 온도에서는 주조할 경우 감면율 감소정도가 미미하여 응고취성발생 저감효과가 적음에 따라 양호한 표면 및 내부품질을 얻을 수 없다. As a result of simultaneously promoting the correlation test with the secondary cooling in the present invention, it was found that the quality is ensured only when the slab temperature passing through this part is maintained at 850 ° C. or higher, and in order to maintain the temperature of the straightener portion above 850 ° C. It was confirmed that it is obtained when the specific amount of cooling stand is managed within the range of 0.40 to 0.55 (L / kg). At temperatures other than the quantity (non-aqueous quantity), when the casting is reduced, the degree of reduction in reduction rate is insignificant, so that the effect of reducing coagulation brittleness is small, so that a good surface and internal quality cannot be obtained.

(5) 주조속도(5) casting speed

주조속도는 브레이크-아웃, 주편냉각을 고려하여 폭에 상관없이 1.0∼1.2m/min조건으로 한다. 보통강(저탄)은 포정반응(0.16%[C], 1493℃) 구역을 통과하여 단일상으로 γ영역으로 경유하나, 고탄소합금강은 (0.70%이상)은 γ 또는 F.C.C 상으로 직접 응고하여 일반강 대비 고액 공존구역이 약 4배로 주조시 응고가 지연됨으로, 충분한 응고 시간이 주어지지 않으면 브레이크-아웃이 발생하여 조업사고가 발생한다. Casting speed is 1.0 ~ 1.2m / min regardless of width considering break-out and cast cooling. The ordinary steel (low coal) passes through the well reaction (0.16% [C], 1493 ℃) section and passes through the gamma region as a single phase, while high carbon alloy steels (greater than 0.70%) solidify directly into the gamma or FCC phase. When the solid coexistence zone is about 4 times higher than steel, solidification is delayed. If sufficient solidification time is not given, break-out occurs and operation accidents occur.

따라서, 주조속도는 양호한 내부품질 확보 및 조업사고를 방지하기 위해서는 주조폭에 상관없이 일반강 대비 저속주조속도인 1.0∼1.2m/min의 범위로 저속주조하여야 한다. 주조속도가 1.0m/min 미만의 경우 장시간의 주조시간(약 73분) 소요로 주조완료가 불가능하며, 주조속도가 1.2m/min초과로 빠를경우 응고쉘 악화에 의한 브레이크-아웃이 발생하여 주조가 어렵게 된다. Therefore, the casting speed should be low speed casting in the range of 1.0 ~ 1.2m / min, which is a low speed casting speed compared to the general steel in order to ensure good internal quality and prevent operation accidents. If the casting speed is less than 1.0m / min, casting is impossible due to the long casting time (about 73 minutes). If the casting speed is over 1.2m / min, the casting is broken due to the deterioration of the solidification shell. Becomes difficult.

연속주조된 고탄소 합금강은, 상온상태에서 냉각시 주조중 주편에 포함된 응력이 냉각도중 응력이 완화되어 주편깨짐 현상이 발생하게 되므로 통상 주조완료직후 열간압연을 하는 직장입압연조업(HCR)을 행하고 있다. 본 발명에서도 이러한 직장입 압연조업을 행한다. Continuously cast high-carbon alloy steel has a work-type rolling mill (HCR) that is hot rolled immediately after casting is completed because the stress contained in the cast during cooling at room temperature reduces the stress during cooling. Doing. In the present invention, such a work-induction rolling operation is also performed.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

320톤 전로내의 용강을 먼저, 2.0톤의 가탄제가 바닥에 깔린 레이들내로 출강한 다음, LF공정에서 약 0.5톤, RH에서 0.5톤 분산하여 가탄한 결과, 용강 비산 또는 용강분출 현상 미약하였으며, 조업불안, 가시분진 발생이 없었다. 상기 RH에서는 용강을 탈가스처리하여 [N]성분 함량을 50ppm이하로 제어한 경우와 제어하지 않은 용강(표 2의 A, B)에 대하여 비교 시험하여 주편품질을 확인하였다. The molten steel in the 320-ton converter was first drilled into a ladle with 2.0 tons of carburizing agent, and then dispersed by about 0.5 tons in the LF process and 0.5 tons in the RH, resulting in a weak molten steel or molten steel. There was no anxiety or visible dust. In the RH, the molten steel was degassed to control the content of the [N] component below 50 ppm, and compared to the uncontrolled molten steel (A and B in Table 2) to confirm cast quality.

구분division 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS S.AlS.Al CrCr N(ppm)N (ppm) AA 0.850.85 0.200.20 0.500.50 0.020.02 0.0050.005 0.0150.015 0.0150.015 4040 BB 0.830.83 0.200.20 0.400.40 0.020.02 0.0040.004 0.0200.020 -- 7070

또한, 상기 제강조업기준에 과열도, 몰드 파우더(표 3), 2차냉각조건을 달리하는 연속주조조건을 비교시험하여 폭 1100mm인 주편을 생산하였으며, 제조된 주편에서 시편을 채취하여 Sulfur Print, Macro Test에 의해 표면과 내부품질을 검사하여 그 결과를 표 4에 나타내었다. In addition, the steel casting manufacturing standards were tested for continuous casting conditions varying the degree of superheat, mold powder (Table 3), and secondary cooling conditions to produce casts having a width of 1100 mm. Sulfur Print, Surface and internal quality were examined by the Macro Test and the results are shown in Table 4.

구분division 몰드파우더 물성치Mold Powder Properties 염기도basicity 용융점(℃)Melting Point (℃) 점도Viscosity 응고온도Solidification temperature SGP20-04SGP20-04 1.011.01 10401040 1.201.20 11281128 FF-M1FF-M1 0.960.96 993993 1.031.03 10261026 ST-SP/Y5ST-SP / Y5 0.960.96 975975 0.670.67 10311031

구분division 강종Steel grade 주조속도(m/min)Casting speed (m / min) 비수량(ℓ/kg)Specific quantity (ℓ / kg) 교정점온도(℃)Calibration point temperature (℃) 주편냉각Cast steel cooling 몰드파우더Mold Powder 주편표면결함지수Cast Surface Defect Index 중심편석지수Central segregation index 비교예aComparative Example a AA 1.201.20 0.690.69 800800 HCR압연 HCR Rolled SGP20-04SGP20-04 0.320.32 22 발명예1Inventive Example 1 AA 1.101.10 0.470.47 880880 FF-M1FF-M1 0.010.01 00 비교예bComparative Example b BB 1.101.10 0.770.77 750750 SGP20-04SGP20-04 0.050.05 1One 발명예2Inventive Example 2 BB 1.201.20 0.470.47 880880 FF-M1FF-M1 0.40.4 00 비교예cComparative Example c AA 1.101.10 0.700.70 750750 ST-SP/Y5ST-SP / Y5 0.30.3 22 비교예dComparative example d BB 1.201.20 0.600.60 800800 FF-M1FF-M1 0.20.2 22 비교예eComparative example AA 1.301.30 0.470.47 860860 ST-SP/Y5ST-SP / Y5 0.20.2 33

표 4에 나타낸 바와 같이, 교정점 통과온도가 850℃ 이상이 되도록 주조속도 와 2차냉각을 제어한 발명예(1, 2)의 경우 표면결함이 상대적으로 감소하였으며, 내부품질도 양호하였다. 반면, 주조속도를 증가하고 2차냉각을 다소 강냉한 비교예(a-e)의 경우는 표면결함 및 내부품질도 다소 열위하였다. ST-SP/Y5는 CaO:28.7%, SiO2:30.4%, Al2O3:5%, Na2O:10.8%, F:9.5%, Li2O:1%, MgO:7.9%, B2O3:1%를 포함하여 조성되는 것이다. SGP20-04는 CaO:31.8%, SiO2:31.5%, Al2O3:4.39%, Na2O:13.2%, F:7.3%, Li2O:0.55%, MgO:1.4%를 포함하여 조성되는 것이다.As shown in Table 4, in the case of the invention examples (1, 2) in which the casting speed and the secondary cooling were controlled so that the calibration point passing temperature was 850 ° C. or more, the surface defects were relatively decreased, and the internal quality was also good. On the other hand, in the case of Comparative Example (ae) which increased the casting speed and slightly cooled the secondary cooling, surface defects and internal quality were also inferior. ST-SP / Y5 is CaO: 28.7%, SiO 2 : 30.4%, Al 2 O 3 : 5%, Na 2 O: 10.8%, F: 9.5%, Li 2 O: 1%, MgO: 7.9%, B 2 O 3 : 1% is to be included. SGP20-04 contains CaO: 31.8%, SiO 2 : 31.5%, Al 2 O 3 : 4.39%, Na 2 O: 13.2%, F: 7.3%, Li 2 O: 0.55%, MgO: 1.4% Will be.

이 실험을 통해 알 수 확인된 것은 품질뿐만 아니라, 연주작업성 확보를 위해서는 몰드 파우더가 중요하다는 것을 알 수 있었다. 표 4에서와 같은 SGP20-04, ST-SP/Y5파우더를 사용한 경우에는 부족한 열전도도 및 소모량으로 인해 표면결함이 발생하였으며, 구속성 브레이크-아웃이 계측기에 감지되어 사전조치가 필요하였다. 따라서, 본 발명강의 안정적인 주조를 위해서는 고탄소 합금강의 경우 절대적인 용강온도가 낮으므로 저점도, 저융점 파우더의 사용으로 충분한 파우더의 소모량을 확보하면서 몰드내 냉각도 다소 강냉하는 방향으로 몰드 파우더 조성을 설계 하는 것이 바람직하다. Through this experiment, it was confirmed that not only the quality but also mold powder was important for securing workability. In the case of using SGP20-04 and ST-SP / Y5 powders as shown in Table 4, surface defects occurred due to insufficient thermal conductivity and consumption, and the restraint break-out was detected by the instrument and required precautions. Therefore, in order to ensure stable casting of the present invention, in the case of high carbon alloy steel, since the absolute molten steel temperature is low, the mold powder composition is designed to cool the mold somewhat while securing sufficient powder consumption by using low viscosity and low melting point powder. It is preferable.

상술한 바와 같이, 본 발명에 따르면 고탄소강의 연주조업불안 및 품질문제를 해결할 수 있음에 따라, 내부는 물론 표면품질이 우수한 열연소재를 안정적으로 공급할 수 있는 효과가 있다. As described above, according to the present invention can solve the problem of unstable operation and quality of high-carbon steel, there is an effect that can be stably supply the hot-burned material having excellent surface quality as well as the inside.

도 1은 온도 및 질소함량에 따른 단면감소율의 변화를 나타내는 그래프1 is a graph showing the change in cross-sectional reduction rate according to temperature and nitrogen content

Claims (1)

탄소 0.7중량% 이상의 고탄소강을 연속주조하는 방법에 있어서, In the method of continuously casting high carbon steel of 0.7% by weight or more of carbon, N의 함량이 50ppm이하인 레이들의 용강을 턴디쉬로 주입하는 단계;Injecting molten steel with a N content of 50 ppm or less into a tundish; 턴디쉬에 수강된 용강의 과열도를 15-20℃로 관리하면서 몰드로 주입하고, 몰드내의 용강상부에는 중량%로 CaO:27-33%, SiO2:22-33%, B2O3:5-7%, Al2O3:3-5%, Na2O:8-12%, K2O:3-4%, F:3-4%, Li2O:0.6%이하, MgO:1.4%이하를 포함하여 조성되는 몰드파우더를 투입하는 단계;Superheat of molten steel taken in tundish is injected into the mold while managing it at 15-20 ℃, and CaO: 27-33%, SiO 2 : 22-33%, B 2 O 3 : 5-7%, Al 2 O 3 : 3-5%, Na 2 O: 8-12%, K 2 O: 3-4%, F: 3-4%, Li 2 O: 0.6% or less, MgO: Injecting a mold powder including 1.4% or less; 몰드로 부터 나오는 주편에 0.4-0.5ℓ/kg의 비수량으로 2차냉각하면서 1.0-1.2m/min의 속도로 주조하는 단계;를 포함하여 이루어지는 고탄소 합금 공구강의 연속주조 방법.Casting at a rate of 1.0-1.2 m / min while secondary cooling in a non-amount of 0.4-0.5 L / kg to the cast from the mold; continuous casting method of a high carbon alloy tool steel comprising a.
KR10-1999-0039626A 1999-09-15 1999-09-15 Method for continuous casting of high carbon alloy steel KR100482225B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0039626A KR100482225B1 (en) 1999-09-15 1999-09-15 Method for continuous casting of high carbon alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0039626A KR100482225B1 (en) 1999-09-15 1999-09-15 Method for continuous casting of high carbon alloy steel

Publications (2)

Publication Number Publication Date
KR20010027741A KR20010027741A (en) 2001-04-06
KR100482225B1 true KR100482225B1 (en) 2005-04-13

Family

ID=19611694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0039626A KR100482225B1 (en) 1999-09-15 1999-09-15 Method for continuous casting of high carbon alloy steel

Country Status (1)

Country Link
KR (1) KR100482225B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470666B1 (en) * 2000-06-29 2005-03-08 주식회사 포스코 A method for manufacturing high carbon steel having clear sheared cross section
CN104043797B (en) * 2014-02-13 2016-06-15 攀钢集团攀枝花钢铁研究院有限公司 The continuous cast method of a kind of super-low sulfur high chrome and the bloom of preparation thereof
CN110616296B (en) * 2019-10-30 2021-06-22 江阴华润制钢有限公司 Method for producing high-carbon high-alloy ledeburite steel by arc continuous casting
CN113000803B (en) * 2021-02-24 2022-11-25 建龙北满特殊钢有限责任公司 Continuous casting process method for improving internal quality of high-carbon steel bloom
CN115125351B (en) * 2022-05-18 2023-11-14 莱芜钢铁集团银山型钢有限公司 Control method for transverse cracks of ultrathin aluminum-containing special-shaped blank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229450A (en) * 1985-04-02 1986-10-13 Nippon Kokan Kk <Nkk> Continuous casting method for steel
KR950031315A (en) * 1994-05-30 1995-12-18 지오반니 코아씬 High Carbon Steel Continuous Casting Method
KR960010124A (en) * 1994-09-15 1996-04-20 김만제 Mold Flux for High Carbon Steel to Reduce Strain Breakout in Slab Slabs
JPH10183229A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Production of high carbon steel wire rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229450A (en) * 1985-04-02 1986-10-13 Nippon Kokan Kk <Nkk> Continuous casting method for steel
KR950031315A (en) * 1994-05-30 1995-12-18 지오반니 코아씬 High Carbon Steel Continuous Casting Method
KR960010124A (en) * 1994-09-15 1996-04-20 김만제 Mold Flux for High Carbon Steel to Reduce Strain Breakout in Slab Slabs
JPH10183229A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Production of high carbon steel wire rod

Also Published As

Publication number Publication date
KR20010027741A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
EP1063035A1 (en) Molding powder for continuous casting of steel and method for continuous casting of steel
CN104308104A (en) Novel casting powder and application thereof
CN112080700B (en) High-sulfur low-aluminum free-cutting steel continuous casting slab and production method thereof
KR100482225B1 (en) Method for continuous casting of high carbon alloy steel
CN112756570B (en) Continuous casting start-up slag for casting peritectic steel
CA1228235A (en) Mold additives for use in continuous casting
JP3399378B2 (en) Mold powder for continuous casting of steel and continuous casting method
CN106001473B (en) A kind of chrome-bearing steel continuous crystallizer protecting slag and its application
KR101024358B1 (en) The method of the continuous casting iron for spheroidal graphite cast iron
CN110484809B (en) Composite hammer head, preparation method thereof and composite hammer head casting model
KR100490986B1 (en) Mold flux for manufacturing electromagnetic steel sheets and method thereof
KR100490987B1 (en) Mold flux for manufacturing high carbon steel
KR100530338B1 (en) Mold Flux for manufacturing extremely low carbon cold rolled steel sheet
KR100321022B1 (en) MOLD FLUX FOR MIDDLE CARBON CONTENT AND Mn RICH STEEL
KR100642779B1 (en) Method for continuous casting of steel for cold pressing and forging
KR101015322B1 (en) Method for continuous casting of high Ti added ferrite stainless steel with excellent surface quality
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
KR101313476B1 (en) Mold flux for manufacturing high carbon steel
CN117840394B (en) High-quality casting blank and continuous casting method thereof
EP3450048A1 (en) Mold flux and casting method using same
KR100226921B1 (en) Method for manufacturing free-cutting steel of bi system
KR20010046367A (en) Method for Manufacturing Tool Steel
KR100825571B1 (en) A continuous casting process of the steel containing high Ni for LNG tanks
KR100897145B1 (en) Method for continuous casting of stainless steel containing high aluminum
KR100516461B1 (en) Tundish flux having exothermic property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120302

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee