KR100480843B1 - Transgenic organism expressing fungal MRP-like ABC transporters - Google Patents

Transgenic organism expressing fungal MRP-like ABC transporters Download PDF

Info

Publication number
KR100480843B1
KR100480843B1 KR10-2002-0062984A KR20020062984A KR100480843B1 KR 100480843 B1 KR100480843 B1 KR 100480843B1 KR 20020062984 A KR20020062984 A KR 20020062984A KR 100480843 B1 KR100480843 B1 KR 100480843B1
Authority
KR
South Korea
Prior art keywords
leu
ycf1
ile
protein
ser
Prior art date
Application number
KR10-2002-0062984A
Other languages
Korean (ko)
Other versions
KR20030031867A (en
Inventor
송원용
양영열
이영숙
황인환
노은운
최영임
정은희
엔리코마르티노이아
Original Assignee
주식회사 포스코
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 학교법인 포항공과대학교 filed Critical 주식회사 포스코
Priority to PCT/KR2002/001934 priority Critical patent/WO2003033705A1/en
Priority to US10/492,880 priority patent/US7358417B2/en
Priority to DE60233424T priority patent/DE60233424D1/en
Priority to JP2003536430A priority patent/JP2005505302A/en
Priority to CNB028248538A priority patent/CN100494378C/en
Priority to EP02781949A priority patent/EP1446486B1/en
Priority to AT02781949T priority patent/ATE440140T1/en
Publication of KR20030031867A publication Critical patent/KR20030031867A/en
Application granted granted Critical
Publication of KR100480843B1 publication Critical patent/KR100480843B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

PURPOSE: A transgenic organism capable of expressing fungal MRP-like ABC transporter proteins is provided, thereby improving accumulation of and resistance against toxic material such as heavy metals and herbicides. CONSTITUTION: The gene encoding a fungal MRP-like ABC transporter protein and having resistance against and accumulation of lead is provided, wherein the transporter protein is selected from the group consisting of YCF1, YHL035C, BPT1, YBT1, and YOR1; the YCF1 has the amino acid sequence of SEQ ID NO: 2; the gene encoding the YCF1 has the nucleotide sequence of SEQ ID NO: 1; the YCF1 has resistance against and accumulation of toxic material selected from cadmium, arsenic and herbicides, wherein the herbicide is chloro-dinitrobenzene; the YHL035C has the amino acid sequence of SEQ ID NO: 4; and the gene encoding the YHL035C has the nucleotide sequence of SEQ ID NO: 3. The expression vectors, pESC-YCF1, ENpCambia-YCF1, PBI121-YCF1, pESC-YHL035C and pBI121-YHL035C, are provided. The transgenic organism capable of expressing fungal MRP-like ABC transporter proteins is produced by transformation with the expression vectors.

Description

곰팡이의 MRP-계통 ABC 수송 단백질을 발현하는 형질전환 생물 {Transgenic organism expressing fungal MRP-like ABC transporters} Transgenic organism expressing fungal MRP-like ABC transporters expressing fungal MRP-based ABC transport proteins

[기술 분야][Technical Field]

본 발명은 곰팡이의 MRP-계통 ABC 수송 유전자, 및 상기 유전자로 형질전환된 형질전환 생물에 관한 것으로서, 더욱 상세하게는 YCF1이나 YHL035C를 비롯한 곰팡이의 MRP-계통 ABC 수송 유전자를 발현시켜 납, 카드뮴, 비소, 및 제초제 등 유해물질에 대한 내성 및 축적성을 향상시킨 형질전환 생물에 관한 것이다. The present invention relates to an MRP-based ABC transport gene of a fungus, and to a transgenic organism transformed with the gene. More specifically, the present invention expresses MRP-based ABC transport genes of fungi, including YCF1 or YHL035C, to lead, cadmium, The present invention relates to a transgenic organism having improved resistance to and accumulation of harmful substances such as arsenic and herbicides.

[종래 기술][Prior art]

납, 카드뮴, 수은, 등의 중금속은 자연계의 먹이사슬을 통해 사람들의 체내에 축적되어, 뇌, 신경, 뼈, 등에 만성적인 피해를 주고, 오염된 환경과 그 피해는 세대를 물려 지속된다. 중금속 독성의 대표적인 예로 일본에서 발생한 미나마따병과 이따이이따이병이 있다. 납은 중금속 중에서 가장 피해를 많이 주고 있는 오염물질로서(Salt, D.E., Smith, R.D., and Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643-668 (1998)), 납을 환경으로부터 제거하는 것은 매우 중요한 일이며, 미국 정부에서는 어린이들이 생장하는 환경으로부터 납을 제거하기 위해 매년 약 500 백만 달러를 지출하고 있다(Lanphear, B. P. The paradox of lead poisoning prevention. Science. 281;1617-1618 (1998)). 비소는 식수에 오염되어 피부병과 암을 일으키므로 큰 문제가 되고 있다.Heavy metals such as lead, cadmium, and mercury accumulate in people's bodies through natural food chains, causing chronic damage to the brain, nerves, bones, and the like, and the polluted environment and its damage persist for generations. Representative examples of the toxicity of heavy metals include Minamata and Itaitai diseases in Japan. Lead is the most damaging pollutant among heavy metals (Salt, DE, Smith, RD, and Raskin, I. Phytoremediation.Annu . Rev. Plant Physiol. Plant Mol. Biol . 49, 643-668 (1998)) , and it is very important to remove lead from the environment, the US government in order to eliminate lead from the environment in which children grow and spend about 500 million dollars a year (Lanphear, BP the paradox of lead poisoning prevention. Science. 281 1617-1618 (1998). Arsenic is a major problem because it contaminates drinking water, causing skin diseases and cancer.

종래에 알려진 중금속, 및 농약 등 독성물질에 대한 내성이나 축적성에 관련된 유전자로는, 박테리아의 세포막에서 납을 세포 밖으로 배출하는 기능을 하는 박테리아의 P형 ATP에이즈 (P-type ATPase)가 있고(Rensing, C., Sun, Y., Mitra, B., and Rosen, B.P. Pb(ll)-translocating P-type ATPases. J. Biol. Chem. 273: 32614-32617 (1998)), 카드뮴 내성에 관련된 유전자로는 효모의 YCF1유전자, 비소에 대한 내성에 관련된 유전자로서 효모의 YCF1 유전자와 ACR 유전자들, 박테리아의 ArsAB 등이 있다.Genes related to resistance and accumulation of toxic substances such as heavy metals and pesticides known in the art include bacterial P-type ATPase, which functions to release lead from the cell membrane of cells (Rensing) , C., Sun, Y., Mitra, B., and Rosen, BP Pb (ll) -translocating P-type ATPases.J. Biol. Chem . 273: 32614-32617 (1998)), genes involved in cadmium resistance Examples include yeast YCF1 gene, genes related to arsenic resistance, yeast YCF1 gene and ACR genes, and bacteria ArsAB.

한편, 생물은 체내에 들어온 유해물질을 결합하는 생체물질이나 수송 단백질을 이용하여 유해물질의 독성을 완화시키는 기작을 가지고 있다. 이러한 생명체의 유해물질 내성에 기여하는 유전자들을 이용하면 현재 널리 사용되고 있는 물리, 화학, 공학적인 환경정화방법에 비해 훨씬 경제적이고 환경친화적으로, 유해물질로 오염된 환경을 정화할 수 있다 (Mejare and Bulow, Trends in Biotechnology;2001, Raskin I. and Ensley B. D. Phytoremediaton of Toxic Metals., John Wily & Sons, New York;2000). 특히 식물은 외래유전자들을 잘 발현하여 새로운 형질들을 나타내며, 관리가 경제적이고, 미관상 좋은 등 여러 장점이 있어서, 식물에 좋은 유전자를 넣어 개량하여 환경정화에 이용하고자 하는 연구가 활발히 진행되고 있으며, 이것은 식물이용환경정화(Phytoremediation)라고 한다.On the other hand, organisms have a mechanism to mitigate the toxicity of harmful substances by using biological materials or transport proteins that bind harmful substances introduced into the body. Genes that contribute to the resistance of harmful substances in living organisms can be used to purify the environment contaminated with harmful substances much more economically and environmentally compared to the physical, chemical, and engineering environmental purification methods currently used (Mejare and Bulow). , Trends in Biotechnology; 2001, Raskin I. and Ensley BD Phytoremediaton of Toxic Metals., John Wily & Sons, New York; 2000). In particular, plants express new traits by expressing foreign genes well, and are economically manageable and have good aesthetics.Therefore, researches are actively underway to improve the environment by putting good genes into plants. It is called Phytoremediation.

납, 카드뮴, 비소, 농약 등의 독성물질에 의한 토양 등의 환경오염이 심각한 상황에서 이들 독성물질에 대한 내성 및/또는 축적성을 나타내는 유전자를 이용한 형질전환 생물이 절실히 필요한 실정이다.   In a situation where environmental pollution such as soil, such as lead, cadmium, arsenic, and pesticides is severe, there is an urgent need for transgenic organisms using genes that exhibit resistance and / or accumulation to these toxic substances.

카드뮴을 환경으로부터 제거하는데 이용할 수 있는 형질전환 식물들은 여러 가지가 논문으로 보고되었으나(Zhu et al., (1999) Plant Physiol. 119: 73-79, Hirschi et al., (2000) Plant Physiol. 124:125-33, Dominguez-Solis et al., (2001) J. Biol. Chem. 276: 9297-9302), 납이나 비소를 제거할 수 있는 식물은 보고된 바 없다. 또한, YCF1을 이용하여 납뿐만 아니라, 카드뮴, 비소, 제초제에 내성이 향상된 생물체들을 개발하여 유해물질의 정화에 이용한 경우는 아직 보고된 바가 없었다.Several transgenic plants that can be used to remove cadmium from the environment have been reported in the literature (Zhu et al., (1999) Plant Physiol. 119: 73-79, Hirschi et al., (2000) Plant Physiol . 124 : 125-33, Dominguez-Solis et al., (2001) J. Biol. Chem . 276: 9297-9302), no plants have been reported that can remove lead or arsenic. In addition, the use of YCF1 to develop not only lead, but also to improve the resistance to cadmium, arsenic, herbicides and has been used for the purification of harmful substances has not been reported yet.

본 발명은 납에 대한 내성 및 축적성을 나타내며, 곰팡이의 MRP-계통 ABC 수송 단백질(multidrug resistance-associated protein-like ATP-binding casette transporter protein, MRP-계통 ABC 수송 단백질)을 코딩하는 DNA 분자를 제공하는 것을 목적으로 한다. The present invention provides DNA molecules encoding resistance and accumulating resistance to lead and encoding Md-based ATP-binding casette transporter protein (MRP-based ABC transport protein) of fungi. It aims to do it.

본 발명의 또다른 목적은 상기 MRP-계통 ABC 수송 유전자를 포함하는 재조합 벡터를 제공하는 것이다. Another object of the present invention is to provide a recombinant vector comprising the MRP-based ABC transport gene.

본 발명의 또다른 목적은 상기 MRP-계통 ABC 수송 유전자로 형질전환되어 유해물질에 대한 내성 및/또는 축적성이 향상된 형질전환체를 제공하는 것이다.Still another object of the present invention is to provide a transformant that is transformed with the MRP-based ABC transport gene and has improved resistance and / or accumulation to harmful substances.

상기 기술적 과제를 달성하기 위하여, 본 발명은 납에 대한 내성 및 축적성을 나타내며, 곰팡이의 MRP-계통 ATP 결합 카세트 수송 단백질(multidrug resistance-associated protein-like ATP-binding casette transporter protein, MRP-계통 ABC 수송 단백질)을 코딩하는 DNA 분자에 관한 것이다. In order to achieve the above technical problem, the present invention exhibits resistance and accumulation to lead, MRP-associated protein-like ATP-binding casette transporter protein, MRP-based ABC of mold Transport protein).

또한 본 발명은 상기 곰팡이의 MRP-계통 ABC 수송 유전자를 포함하는 재조합 벡터에 관한 것이다. The present invention also relates to a recombinant vector comprising the MRP-based ABC transport gene of the fungus.

또한 본 발명은 상기 곰팡이의 MRP-계통 ABC 수송 단백질을 코딩하는 DNA 분자로 형질전환된 형질전환 생물에 관한 것이다. The present invention also relates to a transgenic organism transformed with a DNA molecule encoding the MRP-based ABC transport protein of the fungus.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 유해물질 내성 및/또는 유해물질 축적성을 나타내는 유전자, 이를 포함하는 벡터, 형질전환 세포, 및 형질전환 생물에 관한 것이다. The present invention relates to genes exhibiting toxin resistance and / or toxin accumulation, vectors comprising the same, transformed cells, and transformed organisms.

본 발명에서 유해물질 내성 및/또는 축적성을 나타내는 유전자로는 곰팡이의 다종약품 저항성 관련 단백질(Multidrug resistance associated protein, MRP)-계통 ATP-결합 카세트 수송 단백질(이하, MRP-계통 ABC 수송 단백질)을 암호화하는 유전자이다. In the present invention, genes that exhibit noxious substance resistance and / or accumulation include a fungal multidrug resistance associated protein (MRP) -based ATP-binding cassette transport protein (hereinafter referred to as MRP-based ABC transport protein). It is a gene that encodes.

상기 곰팡이의 MRP-계통 ABC 수송 단백질은 ABC 수송 단백질의 일종으로서, 세포질에 있는 여러 가지 유기물질을 세포질 밖으로 수송하는 역할을 한다. ABC 수송 단백질은 원핵생물로부터 사람의 간세포에 이르기까지 여러 가지 생명체에 존재하며, 매우 다양한 물질을 수송한다. ABC 수송 단백질이 수송하는 유기물질에는 글루타티오닌에 결합된 중금속이나 담즙산 등이 포함된다. 곰팡이의 MRP-계통 ATP-결합 카세트 수송 단백질에 속하는 YCF1은 카드뮴, 비소, 농약을 액포에 집어넣어 이들 유해물질에 내성을 부여한다는 것이 알려져 있다 (Li et al., (1997) Proc. Natl. Acad. Sci. USA 94: 42-47, Ghosh et al., (1999) Proc. Natl. Acad. Sci. USA 96 : 5001-5006). 그러나 YCF1을 이용하여 카드뮴, 비소, 농약에 공통적으로 내성이 향상된 생물체들을 개발하여 유해물질의 정화에 이용한 경우는 아직 보고된 바가 없다. 더욱이 YCF1이 납 저항성에 기여하는지는 아직 알려져 있지 않으며, YHL035C 단백질의 기능 및 이를 발현하는 형질전환체에 대해서 보고된 바 없다.The MRP-type ABC transport protein of the fungus is a kind of ABC transport protein, and serves to transport various organic substances in the cytoplasm out of the cytoplasm. ABC transport proteins are present in many organisms, from prokaryotes to human liver cells, and transport a wide variety of substances. Organic materials transported by the ABC transport protein include heavy metals and bile acids bound to glutathionine. It is known that YCF1, which belongs to the MRP-type ATP-binding cassette transport protein of the fungus, imparts resistance to these harmful substances by inserting cadmium, arsenic, and pesticides into vacuoles (Li et al ., (1997) Proc. Natl. Acad Sci. USA 94: 42-47, Ghosh et al ., (1999) Proc. Natl. Acad. Sci. USA 96: 5001-5006). However, there have been no reports of using YCF1 to develop organisms with improved resistance to cadmium, arsenic, and pesticides and to use them to purify harmful substances. Moreover, it is not yet known whether YCF1 contributes to lead resistance, and there have been no reports on the function of YHL035C protein and the transformants expressing it.

상기 곰팡이의 MRP-계통 ABC 수송 유전자의 예로는 YCF1(Yeast cadmium factor1) 및 YHL035C 유전자, 그리고 YCF1 단백질 및 YHL035C 단백질의 아미노산 서열과 서열 상동성이 28% 이상인 MRP-계통 ABC 수송 유전자를 포함한다. 상기 YCF1과 YHL035C 유전자 또는 이들 단백질은 28% 서열 동질성을 지닌다. 또한, YCF1 이나 YHL035C 단백질의 아미노산 서열과 28% 이상의 서열 상동성, 바람직하게는 40% 이상의 상동성, 더욱 바람직하게는 50% 이상의 상동성을 가지며 곰팡이의 MRP계통 ABC 수송 단백질을 암호화하는 DNA 분자를 포함하는 의도이다. 그 예로는 GenBank의 아미노산 서열 자료를 CLUSTRALW 프로그램을 이용하여 비교하였을 때, YCF1 이나 YHL035C 단백질과 아미노산 서열상 28% 이상의 상동성을 가지는 BPT1유전자, YBT1 유전자, 및 YOR1 유전자를 포함할 수 있다. 상기 BPT1 단백질은 YCF1와 아미노산 서열에서 40%의 상동성을 가지며, YBT1 단백질은 YHL035C와 아미노산 서열에서 51%의 상동성을 가지며, YOR1 단백질은 YCF1와 아미노산 서열에서 28%의 상동성을 가진다. 상기 YBT1과 BPT1은 곰팡이의 MRP-계통 ABC 수송 단백질로서, 담즙산을 수송할 수 있는 것으로 알려져 있고 (Ortiz et al., (1997) Journal of Biological Chemistry 272: 15358-15365, Petrovic et al., (2000) Yeast 16: 561-571), 상기 YOR1 단백질은 곰팡이의 MRP-계통 ABC 수송 단백질로서, 여러 가지 약물을 수송할 수 있는 것으로 알려져 있다 (Decottignies et al., (1998) Journal of Biological Chemistry 273: 12612-12622).Examples of the MRP-based ABC transport gene of the fungus include YCF1 (Yeast cadmium factor1) and YHL035C genes, and MRP-based ABC transport genes having a sequence homology of 28% or more with amino acid sequences of YCF1 protein and YHL035C protein. The YCF1 and YHL035C genes or these proteins have 28% sequence identity. Further, a DNA molecule encoding at least 28% sequence homology, preferably at least 40% homology, more preferably at least 50% homology with the amino acid sequence of the YCF1 or YHL035C protein and encoding the fungal MRP system ABC transport protein It is intended to be included. For example, when comparing the amino acid sequence data of GenBank using the CLUSTRALW program, YCF 1 With YHL035C protein And BPT1 gene, YBT1 gene, and YOR1 gene having at least 28% homology on amino acid sequence. The BPT1 protein has 40% homology with YCF1 in amino acid sequence, the YBT1 protein has 51% homology with YHL035C in amino acid sequence, and the YOR1 protein has 28% homology with YCF1 in amino acid sequence. YBT1 and BPT1 are fungal MRP-based ABC transport proteins, which are known to be able to transport bile acids (Ortiz et al., (1997) Journal of Biological Chemistry 272: 15358-15365, Petrovic et al., (2000) Yeast 16: 561-571), the YOR1 protein is a fungal MRP-based ABC transport protein, which is known to be able to transport various drugs (Decottignies et al., (1998) Journal of Biological Chemistry 273: 12612). -12622 ) .

본 발명에 따른 MRP-계통 ABC 수송 단백질은 공통의 도메인 구조를 가지는 것으로 알려져 있으며, 이는 N-말단에 상당히 긴 도메인인 N-말단 연장 도메인(N-terminal extension domain), 6개의 막관통 도메인(transmembrane domain)으로 이루어진 "첫번째 막관통 도메인(first transmembrane spanning domain)", 세포질 도메인인(cytoplasmic domain) "첫번째 뉴클레오타이드 결합 도메인(first nucleotide binding fold domain), 6개의 막관통 도메인으로 이루어진 "두 번째 막관통 도메인(second transmembrane spanning domain)", 및 c-말단에 위치한 세포질 도메인인 "두 번째 뉴클레오타이드 결합 도메인(second nucleotide binding fold domain)"으로 이루어진다. The MRP-based ABC transport protein according to the present invention is known to have a common domain structure, which is a N-terminal extension domain (N-terminal extension domain), six transmembrane domains that are fairly long at the N-terminus "first transmembrane spanning domain" consisting of domains, cytoplasmic domain "first nucleotide binding fold domain," second transmembrane domain consisting of six transmembrane domains (second transmembrane spanning domain) "and the" second nucleotide binding fold domain ", a cytoplasmic domain located at the c-terminus.

본 발명의 바람직한 일례에서, 상기 곰팡이의 MRP-계통 ABC 수송 단백질은 서열번호 2의 YCF1 단백질 또는 서열번호 4의 YHL035C 단백질의 아미노산 서열과 28% 이상, 바람직하게는 40% 이상, 더욱 바람직하게는 50% 이상의 서열 상동성을 가지며, 상기 YCF1 단백질 또는 YHL035C 단백질은 각각 N-말단 연장 도메인(N-terminal extension domain), 첫번째 막관통 도메인(first transmembrane spanning domain), 첫번째 뉴클레오타이드 결합 도메인(first nucleotide binding fold domain), 두번째 막관통 도메인(second transmembrane spanning domain), 및 두번째 뉴클레오타이드 결합 도메인(second nucleotide binding fold domain)의 도메인으로 이루어지고, 상기 곰팡이의 MRP-계통 ABC 수송 단백질의 각 도메인은 서열번호 2의 YCF1 단백질 또는 서열번호 4의 YHL035C 단백질에 대응하는 각 도메인의 아미노산 서열과 28% 이상의 서열 상동성을 갖는 것일 수 있다. In a preferred embodiment of the invention, the MRP-based ABC transport protein of the fungus is at least 28%, preferably at least 40%, more preferably at least 50% with the amino acid sequence of the YCF1 protein of SEQ ID NO: 2 or the YHL035C protein of SEQ ID NO: 4 It has a sequence homology of more than%, the YCF1 protein or YHL035C protein is N-terminal extension domain (N-terminal extension domain), the first transmembrane spanning domain, the first nucleotide binding domain (first nucleotide binding fold domain) ), A second transmembrane spanning domain, and a domain of a second nucleotide binding fold domain, wherein each domain of the fungal MRP-based ABC transport protein is a YCF1 protein of SEQ ID NO: 2. Or at least 28% of the amino acid sequence of each domain corresponding to YHL035C protein of SEQ ID NO: 4 It may be one having a heat homology.

본 발명은 유해물질에 대한 내성 및 축적성을 동시에 부여하는 유전자로는 YCF1 단백질의 폴리펩티드를 코드하는 서열을 포함하는 YCF1 유전자이며, 이의 예로는 유해물질 내성 및 유해물질 축적성을 나타내는 서열번호 2의 폴리펩티드를 코드하는 염기서열, 바람직하게는, 납에 대한 내성 및 축적성이외에, 카드뮴, 비소 및 제초제로 이루어진 군에서 1종 이상 선택된 유해물질에 대한 내성이나 축적성을 나타내며, 서열번호 2의 YCF1 폴리펩티드를 코드하는 염기서열을 포함하는 YCF1 유전자이며, 더욱 바람직하게는 서열번호 1의 염기서열을 갖는 YCF1 유전자이다. YCF1 유전자는 효모(Saccharomyces cerevisiae)의 6번 염색체에 존재한다. YCF1 유전자는 단백질로 발현되었을 때 기능을 가지므로, YCF1단백질의 아미노산 서열과 28% 이상 상동성, 바람직하게는 40% 이상의 상동성, 더욱 바람직하게는 50% 이상의 상동성을 가지며, 유해물질에 대한 내성 및 축적성에 기여하는 단백질 및 이를 암호화하는 DNA 분자를 모두 포함하는 의도이다.The present invention is a YCF1 gene comprising a sequence encoding a polypeptide of the YCF1 protein as a gene that simultaneously confers resistance and accumulation to harmful substances, examples thereof include SEQ ID NO. YCF1 polypeptide of SEQ ID NO: 2, in addition to the base sequence encoding the polypeptide, preferably, resistance to lead and accumulation, and resistance to or accumulation of at least one harmful substance selected from the group consisting of cadmium, arsenic, and herbicides. It is a YCF 1 gene containing a nucleotide sequence encoding the, more preferably is a YCF 1 gene having a nucleotide sequence of SEQ ID NO: 1. YCF1 gene is present on chromosome 6 of Saccharomyces cerevisiae . Since the YCF1 gene has a function when expressed as a protein, it has at least 28% homology, preferably at least 40% homology, more preferably at least 50% homology with the amino acid sequence of the YCF1 protein, and It is intended to include both proteins that contribute to resistance and accumulation and DNA molecules encoding them.

YCF1 단백질은 ABC 수송 단백질의 하나로서 효모의 액포막에 존재하며, 세포질내의 글루타티오닌(glutathione)과 결합된 카드뮴을 MgATP의 에너지를 사용하여 액포내부로 이동시켜 카드뮴의 독성을 완화하는 것으로 알려져 있다 (Li, Z.S. et al. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc. Natl. Acad. Sci. USA 94, 42-47 (1997)).YCF1 protein is one of the ABC transport proteins in the vacuole membrane of yeast and is known to mitigate the toxicity of cadmium by transferring cadmium bound to glutathione in the cytoplasm into the vacuole using the energy of MgATP. (Li, ZS et al . A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae : YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc. Natl. Acad. Sci. USA 94, 42-47 (1997).

또다른 유해물질에 내성 및/또는 축적성을 나타내는 유전자의 예로는 YHL035C 유전자를 들 수 있으며, 이의 바람직한 예로는 납에 대한 내성을 나타내며 서열번호 4의 폴리펩티드를 코드하는 염기서열, 더욱 바람직하게는 서열번호 3의 염기서열을 포함하는 YHL035C 유전자를 제공한다. YHL035C 유전자는 효모(Saccharomyces cerevisiae)의 8번 염색체에 존재하며, YHL035C 단백질은 MRP-계통 ABC 수송 단백질의 하나이다. YHL035C 유전자는 단백질로 발현되었을 때 기능을 가지므로, YHL035C 단백질의 아미노산 서열과 28% 이상 상동성, 바람직하게는 40% 이상의 상동성, 더욱 바람직하게는 50% 이상의 상동성을 가지며, 유해물질에 대한 내성 및 축적성에 기여하는 단백질 및 이를 암호화하는 DNA 분자를 모두 포함하는 의도이다.Examples of genes that are resistant and / or accumulator to another harmful substance include the YHL035C gene, and a preferred example thereof is a nucleotide sequence that shows resistance to lead and encodes a polypeptide of SEQ ID NO: 4, more preferably, a sequence. Provided is a YHL035C gene comprising the nucleotide sequence of No. 3. YHL035C gene is present on chromosome 8 of Saccharomyces cerevisiae , and YHL035C protein is one of the MRP-based ABC transport proteins. Since the YHL035C gene has a function when expressed as a protein, it has at least 28% homology, preferably at least 40% homology, more preferably at least 50% homology with the amino acid sequence of the YHL035C protein, and It is intended to include both proteins that contribute to resistance and accumulation and DNA molecules encoding them.

본 발명은 또한 본 발명은 또한 상기 유전자를 포함하는 재조합 벡터를 제공하며, 바람직하게는 상기 YCF1 유전자 또는 YHL035C 유전자를 포함하는 재조합 벡터를 제공한다. 상기 재조합 벡터의 구체적인 예로는 pESC-YCF1, ENpCambia-YCF1, 또는 PBI121-YCF1 재조합 벡터, 또는 pESC-YHL035C 재조합 벡터, 및 pPBI121-YHL035C를 포함한다. 상기 재조합 벡터의 제조는 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 알려진 제조방법에 따라 수행될 수 있다.The present invention also provides a recombinant vector comprising the gene, and preferably provides a recombinant vector comprising the YCF 1 gene or YHL035C gene. Specific examples of such recombinant vectors include pESC- YCF1, ENpCambia-YCF1, or PBI121- YCF1 recombinant vector, or pESC- YHL035C recombinant vector, and pPBI121-YHL035C. Preparation of the recombinant vector may be carried out according to a production method known to those skilled in the art.

본 발명에서 유해물질은 납, 카드뮴, 비소 등을 포함하는 중금속, 또는 농약, 및 제초제 등을 포함할 수 있다. 상기 제초제는 일반적으로 저분자량의 친지성 화합물로서 식물 세포벽을 용이하게 통과하여, 식물 특이적 공정, 예컨대 광합성 전자 수송이나 필수 아미노산의 생합성 대사등을 저해하는 것으로 알려져 있으며, 그 예로는 클로로술푸론, 액시도플루오르펜, 노르플루라존, 클로로-디니트로벤젠(chloro-dinitrobenzene, CDNB)을 들 수 있다. In the present invention, the harmful substances may include heavy metals including lead, cadmium, arsenic, or the like, pesticides, and herbicides. The herbicides are generally known as low molecular weight lipophilic compounds that easily pass through the plant cell wall and inhibit plant-specific processes such as photosynthetic electron transport or biosynthetic metabolism of essential amino acids. For example, chlorosulfuron, Axidofluorfen, norflurazone, and chloro-dinitrobenzene (CDNB) can be mentioned.

따라서, 본 발명의 YCF1 단백질과 YHL035C 단백질의 폴리펩티드를 암호화하는 염기서열을 포함하는 DNA분자들이나 이와 상동성이 28%이상인 DNA분자들을 사용하여 유해물질에 내성을 나타내면서 유해물질을 축적할 수 있는 형질전환 생물을 제조할 수 있고, 제조된 형질전환 생물을 이용하여 유해물질 오염지를 경제적이고 간편하게 정화할 수 있다. Therefore, using a DNA molecule containing a nucleotide sequence encoding the polypeptides of the YCF1 protein and YHL035C protein of the present invention or DNA molecules with a homology of 28% or more, a transformation capable of accumulating harmful substances while exhibiting resistance to harmful substances The organisms can be prepared, and the produced transgenic organisms can be used to economically and conveniently purify the pollutant site.

본 발명은 또한, 상기 곰팡이의 MRP-계통 ATP 결합 카세트 수송 단백질을 코딩하는 DNA 분자로 형질전환된 형질전환 생물에 관한 것이다. 본 발명은 또한, 상기 곰팡이의 MRP-계통 ATP 결합 카세트 수송 단백질을 코딩하는 DNA 분자로 형질전환된 형질전환 세포, 바람직하게는 식물세포에 관한 것이다. 상기 ABC 유전자는 전술한 유전자를 모두 포함하며, 바람직한 예로는 YCF1 유전자,YHL035C 유전자를 들 수 있다.The invention also relates to a transgenic organism transformed with a DNA molecule encoding the fungal MRP-based ATP binding cassette transport protein. The invention also relates to transformed cells, preferably plant cells, transformed with a DNA molecule encoding the fungal MRP-based ATP binding cassette transport protein. The ABC gene includes all of the above-described genes, preferred examples are YCF 1 Genes , and the YHL035C gene.

상기 형질전환 생물은 원핵생물 또는 진핵생물이 바람직하며, 그 예로는 식물, 동물, 효모, 대장균, 및 곰팡이 등을 들 수 있다. 형질전환 식물은 유전공학적인 방법으로 이종 DNA 서열을 포함하며, 식물세포, 식물조직 또는 식물체에서 발현가능하도록 제작되어 이종 DNA 서열을 발현한다. 식물 형질전환체는 공지된 기술로 제조할 수 있으며, 아그로박테리움 튜메팩신스-매개 DNA 전이(Agrobacterium tumefaciens-mediated DNA transfer)가 대표적이다. 더욱 바람직하게는 전기충격(electroporation), 미세 입자 주입 방법(micro-particle injection) 또는 유전자 총(gene gun)으로 이루어진 군으로부터 선택된 방법으로 제조된 재조합 아그로박테리움을 침지방법으로 식물에 도입하는 것이다. 본 발명의 구체적 예에서, 형질전환식물의 제조방법은 전사 및 번역이 가능하도록 연결된 MRP-계통 ABC 수송 단백질을 암호하는 서열을 포함하는 발현카세트를 제조하고, 상기 발현카세트를 포함하는 재조합 벡터를 제조하고, 상기 재조합 벡터를 식물세포 또는 식물조직에 도입하여 형질전환 식물을 제조할 수 있다. The transgenic organism is preferably a prokaryote or eukaryote, and examples thereof include plants, animals, yeast, Escherichia coli, and fungi. Transgenic plants contain heterologous DNA sequences by genetic engineering methods and are designed to be expressed in plant cells, plant tissues or plants to express heterologous DNA sequences. Plant transformants can be prepared by known techniques, with Agrobacterium tumefaciens-mediated DNA transfer being representative. More preferably, the recombinant Agrobacterium prepared by a method selected from the group consisting of electroporation, micro-particle injection or gene gun is introduced into plants by dipping. In a specific example of the present invention, a method for producing a transformed plant produces an expression cassette comprising a sequence encoding an MRP-based ABC transport protein linked to be transcribed and translated, and preparing a recombinant vector comprising the expression cassette. In addition, the recombinant vector may be introduced into a plant cell or plant tissue to prepare a transformed plant.

상기 식물로는 애기장대, 유채, 갓, 담배, 양파, 당근, 오이, 유채, 올리브, 고구마, 감자, 배추, 무, 상추, 담배, 브로콜리, 페튜니아, 해바라기, 갓, 잔디, 애기장대 등의 초본 식물, 그리고, 버드나무, 자작나무, 포플러 및 박달나무를 포함하는 목본식물을 포함하며, 바람직하게는 포플러 및 애기장대이다. The plants include herbaceous rapeseed, rapeseed, lampshade, tobacco, onion, carrot, cucumber, rapeseed, olive, sweet potato, potato, cabbage, radish, lettuce, tobacco, broccoli, petunia, sunflower, lampshade, grass, rapeseed Plants, and woody plants, including willow, birch, poplar and birch, preferably poplar and cephalopods.

본 발명의 바람직한 예에서, 상기 형질전환 생물은 YCF1 애기장대(기탁 번호 KCTC10064BP), YCF1 포플러, 또는 YHL035C 포플러일 수 있다. 본 발명의 YCF1 애기장대 식물은 대한민국 대전광역시 유성구 어은동 52번지에 소재한 생명공학연구소 유전자은행에 2001년 9월 5일자로 기탁하여 기탁번호 KCTC10064BP를 부여받았다. 상기 YCF1 애기장대 식물은 조직배양으로 무성번식할 수 있으며, 통상적인 식물세포 배양방법 및 분화방법으로 식물로 성장시킬 수 있다. 상기 YCF1 애기장대 식물은 야생형에 비하여 중금속 및 다른 유해물질에 대한 내성(도 6,7,8) 및 축적성(도 9)이 우수하고, 특히 납, 카드뮴, 비소 및 농약에 대하여 내성 및 축적성을 나타낸다.In a preferred embodiment of the invention, the transgenic organism may be YCF1 Arabidopsis (Accession No. KCTC10064BP), YCF1 Poplar, or YHL035C Poplar. The YCF1 Arabidopsis plant of the present invention was deposited on September 5, 2001 by the Biotechnology Research Institute Gene Bank of Yueun -gu, Yuseong-gu, Daejeon, Korea, on September 5, 2001, and was given the accession number KCTC10064BP. The YCF1 Arabidopsis plants can be asexually propagated by tissue culture, and can be grown into plants by conventional plant cell culture methods and differentiation methods. The YCF1 Arabidopsis plants are more resistant to heavy metals and other harmful substances (Fig. 6, 7, 8) and accumulating (Fig. 9) than wild type, and particularly resistant and accumulator to lead, cadmium, arsenic and pesticides Indicates.

본 발명의 YCF1 포플러와 YHL035C 포플러 식물은 조직배양으로 무성번식할 수 있으며, 통상적인 식물세포 배양방법 및 분화방법으로 식물로 성장시킬 수 있다. 상기 YCF1 포플러와 YHL035C 포플러 식물은 야생형에 비하여 납에 대한 내성(도 10, 도 11)이 우수하다. YCF1 poplar and YHL035C poplar plants of the present invention can be asexually propagated by tissue culture, and can be grown into plants by conventional plant cell culture methods and differentiation methods. The YCF1 poplar and YHL035C poplar plants have better resistance to lead (FIG. 10, 11) than wild type.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 1: YCF1 돌연변이 효모의 납 및 카드뮴에 대한 민감성 Example 1 Sensitivity to Lead and Cadmium of YCF1 Mutant Yeast

천연형 효모(DTY 165)와 ycf1 돌연변이 효모(DTY 167, MATa ura3 leu2 his3 trp3 lys2 suc2 ycf::hisG)를 YPD 액체 배지(1 % 효모 추출물, 2 % 펩톤, 2 % 덱스트로즈)에 OD600이 1-2로 도달할 때까지 30 ℃에서 배양한 후, 같은 수의 효모 세포 (1 x 102, 1 x 103, 1 x 104 or 1 x 105)를 3 mM 납이 첨가된 1/2로 희석된 YPD 고체 배지에서 3일 동안 30 ℃에서 배양하였다. 또한 0.1 mM의 카드뮴이 첨가된 1/2로 희석된 YPD 고체배지에서 동일하게 배양하였다. 상기 실험결과를 도 1에 나타냈다.The wild-type yeast (DTY 165) and ycf1 mutant yeast (DTY 167, MATa ura3 leu2 his3 lys2 trp3 ycf suc2 :: hisG) to YPD liquid medium (1% yeast extract, 2% peptone, 2% dextrose) OD 600 After incubation at 30 ° C. until reaching 1-2, the same number of yeast cells (1 × 102, 1 × 103, 1 × 104 or 1 × 105) were diluted to 1/2 with 3 mM lead Cultured at 30 ° C. in YPD solid medium for 3 days. In addition, the same culture was carried out in a YPD solid medium diluted to 1/2 with 0.1 mM cadmium. The experimental results are shown in FIG. 1.

도 1에 나타난 바와 같이, ycf1 돌연변이 효모는 천연형 효모에 비해 3 mM의 납을 포함하는 배지에서 성장이 감소되었고, 0.1 mM의 카드뮴을 포함하는 배지에서는 ycf1 돌연변이 효모가 거의 성장하지 않았다. 따라서, YCF1 이 납 또는 카드뮴에 내성 갖게 하는 유전자임을 확인할 수 있었다.As shown in FIG. 1, the ycf1 mutant yeast showed a decrease in growth in a medium containing 3 mM of lead compared to the native yeast, and the ycf1 mutant yeast was hardly grown in a medium containing 0.1 mM of cadmium. Thus, it was confirmed that YCF1 is a gene that makes it resistant to lead or cadmium.

실시예 2: 클로닝 벡터의 제조Example 2: Preparation of Cloning Vectors

2-1: 클로닝 벡터(PESC-YCF1)2-1: Cloning Vector (PESC-YCF1)

YCF1 유전자 분리를 위해서, 천연형 효모를 3 ml YPD 액체배지, 30 ℃에서 12시간 키운 다음, 원심분리(12,000 rpm, 20-60 초)하였다. 펠렛은 400 ㎕의 효모 용해 완충액 (yeast lysis buffer: 1 M sobitol, 0.l M EDTA, 50 mM DTT (pH 7.5))에 현탁하고, 자이몰레이즈(zymolase, 5 mg/1 ml, 0.9 M sobitol) 40 ㎕를 첨가한 다음 37 ℃ 에서 15-30분 동안 두었다. 여기에 유레아 완충액(7 M 유레아, 0.3125 M NaCl, 0.05 M Tris-HCl(pH 8.0), 0.02 M EDTA(pH 8.0), 1 % Sarcosine) 400 ㎖을 혼합하고, 페놀/클로로포름을 혼합한 다음 상등액을 분리하였다. 상등액에 1 ml의 100 % 에탄올을 혼합하고, 원심분리하여 (12,000 rpm, 10분) 침전된 DNA를 TE 완충액(10 mM Tris-HCl, 1 mM EDTA pH 8.0)에 용해시켰다. 상기 분리한 DNA를 주형으로 하고, YCFa 프라이머(서열번호 3), YCFb 프라이머(서열번호 4), 및 LA taq 중합효소 키트(LA taq polymerase kit, Takara)로 PCR을 실시하여 YCF1 유전자를 분리하였다. For YCF1 gene isolation, native yeast was grown for 3 hours at 3 ml YPD liquid medium at 30 ° C., followed by centrifugation (12,000 rpm, 20-60 seconds). The pellet is suspended in 400 μl of yeast lysis buffer (1 M sobitol, 0.1 M EDTA, 50 mM DTT, pH 7.5) and zymolase (5 mg / 1 ml, 0.9 M sobitol). ) 40 μl was added and left at 37 ° C. for 15-30 minutes. To this was mixed 400 ml of urea buffer (7 M urea, 0.3125 M NaCl, 0.05 M Tris-HCl (pH 8.0), 0.02 M EDTA (pH 8.0), 1% Sarcosine), a mixture of phenol / chloroform and the supernatant Separated. 1 ml of 100% ethanol was mixed in the supernatant and centrifuged (12,000 rpm, 10 minutes) to precipitate the precipitated DNA in TE buffer (10 mM Tris-HCl, 1 mM EDTA pH 8.0). By carrying out PCR with the the isolated DNA as a template, YCFa primer (SEQ ID NO: 3), YCFb primer (SEQ ID NO: 4), and LA taq polymerase kit (LA taq polymerase kit, Takara) was isolated YCF1 gene.

효모에서 YCF1 유전자가 납에 대한 저항성에 관여하는 것을 입증하기 위해, 상기 (1)에서 분리한 YCF1 유전자를 pESC-URA(yeast shuttle 벡터, stratagene) 벡터에 클로닝하였다. 즉, YCF1 PCR 산물을 XhoI과 ScaI 제한효소로 절단하여 YCF1(Xho I/ Sca I)를 준비했고, pESC-URA 벡터는 Hind III로 자른 다음, 클레나우(Klenow fragment)와 dNTPs를 처리하여 벡터 끝을 블런트로 만들고, Xho I 제한효소로 절단하였다. 상기 YCF1 (Xho I/ Sca I)와 잘린 pESC-URA 벡터(Xho I/ blunt-end)를 T4 DNA 라이게이즈로 연결하여 재조합 벡터 pESC-YCF1를 제조하였다.In order to demonstrate that YCF1 gene in yeast is involved in the resistance to the lead, the above-mentioned (1) a gene YCF1 the pESC-URA separated in (yeast shuttle vector, stratagene) it was cloned into the vector. In other words, the YCF1 PCR product was digested with XhoI and ScaI restriction enzymes to prepare YCF1 (Xho I / Sca I), and the pESC-URA vector was cut with Hind III, and then treated with Klenow fragment and dNTPs. Were blunted and digested with Xho I restriction enzymes. The recombinant vector pESC-YCF1 was prepared by linking the YCF1 (Xho I / Sca I) and the cut pESC-URA vector (Xho I / blunt-end) with a T4 DNA ligase.

2-2: 클로닝 벡터(PESC-YHL035C)2-2: Cloning Vector (PESC-YHL035C)

효모에서 실시예 2-1에서 사용한 효모의 게놈 DNA를 주형으로 하고, YHL035Ca 프라이머(서열번호 9), YHL035Cb 프라이머(서열번호 10), 및 LA taq 중합합효소 키트(LA taq polymerase kit, Takara)로 PCR을 실시하여 YHL035C 유전자를 분리한 것을 제외하고는 상기 실시예 2-1과 실질적으로 동일하게 수행하였다.Yeast genomic DNA used in Example 2-1 as a template was used as a template, Y HL035Ca primer (SEQ ID NO: 9), Y HL035Cb primer (SEQ ID NO: 10), and LA taq polymerase kit (LA taq polymerase kit, Takara) ) Was carried out in substantially the same manner as in Example 2-1 except that Y HL035C gene was isolated by PCR.

YHL035Ca: 5'-cgacgcggccgcatgggaacggatccccttattatc-3' YHL035Ca: 5'-cgacgcggccgcatgggaacggatccccttattatc-3 '

YHL035Cb: 5'-cgacgcggccgccatcatcttacttgattgcttgg-3'YHL035Cb: 5'-cgacgcggccgccatcatcttacttgattgcttgg-3 '

효모에서 YHL035C 유전자를 발현시키기 위해 YHL035C 유전자를 pESC-URA(yeast shuttle 벡터, stratagene) 벡터에 클로닝하였다. YHL035C PCR 산물을 Notl으로 절단하여 pESC-URA 벡터에 T4 DNA 라이게이즈로 연결하여 재조합 벡터 pESC-YHL035C를 제조하였다.In order to express a gene in yeast Y HL035C the YHL035C gene pESC-URA (yeast shuttle vector, stratagene) was cloned into the vector. YHL035C The PCR product was cleaved with Notl and linked to the pESC-URA vector by T4 DNA ligase to prepare recombinant vector pESC- YHL035C .

실시예 3: YCF1 재조합 효모의 납 및 카드뮴 내성 Example 3: Lead and Cadmium Resistance of YCF1 Recombinant Yeast

ycf1 돌연변이 효모에 빈 벡터를 도입한 재조합 효모(ycf1-pESC 효모), 천연형 효모에 빈 벡터를 도입한 재조합 효모(wt-pESC 효모), 및 ycf1 돌연변이 효모에 YCF1을 과발현시킨 재조합 효모(ycf1-YCF1 효모)를 각각 제조하고, 납 또는 카드뮴 내성을 실험하였다. ycf1 mutant recombinant yeast introducing the empty vector in yeast (yeast ycf1 -pESC), in which the recombinant yeast overexpressing the native YCF1 the introduction of the empty vector in yeast, recombinant yeast (wt-pESC Yeast), and mutant yeast ycf1 (ycf1 - YCF1 yeast) were prepared respectively and tested for lead or cadmium resistance.

3-1: YCF1 재조합 효모의 제조3-1: Preparation of YCF1 Recombinant Yeast

3 ml 액체 YPD 배지에 효모를 접종한 후 30 ℃에서 12시간 배양한 다음, 10 ml 액체 YPD 배지에 0.5 ml의 배양액을 넣고, 30 ℃에서 OD600 0.5-0.8이 될 때까지 6-8시간 배양하였다. 상기 배양액을 원심분리하여(1,500 rpm, 5분) 효모를 수득하고, 효모를 5 ml의 완충액 (0.1 M LiOAc, TE, pH 7.5)로 현탁한 후 원심분리하였다. 원심분리한 효모를 완충액(0.1 M LiOAc, TE(pH 7.5))으로 현탁하여 30 ℃ 교반배양기에서 1시간 배양하였고, pESC, pESC-YCF1 또는 pESC-YCF1 플라스미드와 연어 DNA(salmon tested DNA)를 첨가하여 30 ℃에서 30분간 배양하였다. 배양한 효모에 0.7 ml의 완충액(40 % PEG 3300, 0.1 M LiOAc, TE (pH 7.5))을 혼합하고, 30 ℃에서 1시간 동안 진탕하였다. 이후 상기 혼합물은 42-45 ℃에 5분간 두어 열충격을 가한 다음, 원심분리(2500 rpm, 5분)하여 효모를 수득하였다. 1 ml의 TE 완충액(pH 7.5)으로 효모를 세척하고, 0.2 ml의 물 또는 TE 완충액(pH 7.5)으로 현탁한 다음 선별배지(CM Ura-)에서 2-3일 동안 배양하여 형질전환 효모들(ycf1-pESC 효모, wt-pESC 효모, ycf1-YCF1 효모)을 선별하였다.Inoculate yeast into 3 ml liquid YPD medium and incubate at 30 ° C. for 12 hours, then add 0.5 ml of culture solution to 10 ml liquid YPD medium, and incubate for 6-8 hours at 30 ° C. until OD 600 0.5-0.8. It was. The culture was centrifuged (1,500 rpm, 5 minutes) to obtain yeast, and the yeast was suspended in 5 ml of buffer (0.1 M LiOAc, TE, pH 7.5) and then centrifuged. Centrifuged yeast was suspended in buffer (0.1 M LiOAc, TE (pH 7.5)) and incubated for 1 hour in a stirred incubator at 30 ° C., and pESC, pESC-YCF1 or pESC-YCF1 plasmid and salmon DNA (salmon tested DNA) were added. Incubated at 30 ° C. for 30 minutes. 0.7 ml of buffer (40% PEG 3300, 0.1 M LiOAc, TE (pH 7.5)) was mixed with the cultured yeast and shaken at 30 ° C. for 1 hour. The mixture was then placed at 42-45 ° C. for 5 minutes, subjected to thermal shock, and then centrifuged (2500 rpm, 5 minutes) to obtain yeast. Wash yeast with 1 ml of TE buffer (pH 7.5), suspend with 0.2 ml of water or TE buffer (pH 7.5) and incubate for 2-3 days in selection medium (CM Ura ) to transform the yeast ( ycf1 -pESC yeast, wt-pESC yeast, ycf1 - YCF1 yeast).

3-2: 재조합 효모의 납 및 카드뮴에 대한 내성3-2: Resistance of Lead and Cadmium to Recombinant Yeast

상기에서 제조된 ycf1-pESC 효모, wt-pESC 효모, 및 ycf1-YCF1효모를 각각 납이 1.8 mM이 첨가된 갈락토스 배지(2 % galactose, 1 % 0.17 %의 YNB, 0.13 % dropout powder, 0.5 % amonium sulfate), 또는 50 uM의 카드뮴이 첨가된 갈락토스 배지에서 5일 배양하였다. 대조군(Control)은 중금속이 첨가되지 않은 갈락토스 배지를 사용하여 배양하였다. 납 또는 카드뮴이 첨가된 배지에서 각 재조합 ycf1-pESC 효모, wt-pESC 효모, ycf1-YCF1효모의 성장정도는 도 2에 사진으로 나타내었다.The ycf1- pESC yeast, wt-pESC yeast, and ycf1 - YCF1 yeast prepared above were galactose medium containing 1.8 mM of lead (2% galactose, 1% 0.17% YNB, 0.13% dropout powder, 0.5% amonium). sulfate) or 50 uM of cadmium added galactose medium. Control was incubated with galactose medium without heavy metals. Growth of each recombinant ycf1- pESC yeast, wt-pESC yeast, and ycf1 - YCF1 yeast in lead or cadmium-added medium is shown in the photo in FIG.

도 2에서 ycf1 돌연변이 효모에 YCF1을 과발현시킨 ycf1-YCF1 효모는 카드뮴 뿐만 아니라 납을 함유한 배지에서 ycf1-pESC 효모 또는 wt-pESC 효모보다 잘 성장하는 것으로 나타나, YCF1 유전자가 카드뮴 내성에 중요한 역할을 한다는 이전의 결과를 확인하였고, 또한 이 유전자가 납 내성에도 중요하다는 것을 새로이 확인하였다.FIG ycf1 was overexpressed in the YCF1 ycf1 mutant yeast at 2 - YCF1 yeast play an important role in ycf1 -pESC yeast or wt-pESC shown to better growth than yeast, YCF1 gene cadmium resistance in medium containing lead, as well as Cd We also confirmed previous results, and also newly confirmed that this gene is important for lead resistance.

3-3: 재조합 효모의 3-3: of recombinant yeast YCF1YCF1 발현 Expression

실시예 3에서 제조한 ycf1-pESC 효모, wt-pESC 효모, 및 ycf1-YCF1 효모에서 YCF1의 발현을 확인하기 위한 노던블롯을 실시하였다.The Northern blot to confirm expression of YCF1 was performed in yeast YCF1-one exemplary ycf1 -pESC yeast, yeast pESC-wt, and ycf1 prepared in Example 3.

각각의 재조합 효모들은 액체질소를 넣어 분쇄하였고, 전체 RNA 추출 완충액(0.25 M Tris HCl pH 9.0, 0.25 M NaCl, 0.05 M EDTA, 0.345 M p-Aminosalicylic acid, 0.027 M triisopropyl naphthalene sulfonic acid, 0.02 % β-mercaptoethanol, 0.024 % phenol)과 페놀/클로로포름을 동량으로 혼합하였다. 12,000 rpm에서 10분 동안 원심분리하여 상층액을 새로운 튜브에 옮기고, 이소프로판올 400 ㎕를 첨가하였다. 다시 1,2000 rpm에서 10분 동안 원심분리하여 RNA를 침전시킨 다음 DEPC로 처리된 물에 녹여 냉동실에 보관하였다. Recombinant yeasts were pulverized with liquid nitrogen and total RNA extraction buffer (0.25 M Tris HCl pH 9.0, 0.25 M NaCl, 0.05 M EDTA, 0.345 M p-Aminosalicylic acid, 0.027 M triisopropyl naphthalene sulfonic acid, 0.02% β- mercaptoethanol, 0.024% phenol) and phenol / chloroform were mixed in the same amount. The supernatant was transferred to a new tube by centrifugation at 12,000 rpm for 10 minutes and 400 μl of isopropanol was added. The RNA was precipitated by centrifugation at 1,2000 rpm for 10 minutes and then dissolved in DEPC-treated water and stored in a freezer.

노던블롯을 실시하기 위하여, 30 ㎍의 RNA를 RNA용 아가로즈 젤에 전기영동하고, 나일론 막에 RNA를 전이시켰다. 나일론 막은 혼성화 반응액 (6×SSPE, 0.5 % SDS, 10 % PEG, 1 % nonfat milk, 50 % formamide)상에서 42 ℃, 2시간 교반하여 반응시켰다. 그리고 32P dCTP로 표지된 YCF1를 넣고 42 ℃, 12 시간 반응시켰다. 혼성화 반응이 끝난 나일론 막은 완충액(2×SSPE 및 0.5 % SDS)으로 2회 세척하고, 완충액(0.2×SSPE, 0.5 % SDS)으로 세척 후 건조시킨 다음 X-레이 필름에 감광하였다. 상기 실험결과를 도 2의 B에 나타냈다.To perform Northern blot, 30 μg of RNA was electrophoresed on agarose gel for RNA and RNA was transferred to nylon membrane. The nylon membrane was reacted by stirring at 42 ° C. for 2 hours on a hybridization reaction solution (6 × SSPE, 0.5% SDS, 10% PEG, 1% nonfat milk, 50% formamide). Then YCF1 labeled with 32 P dCTP was added and reacted at 42 ° C. for 12 hours. After completion of the hybridization, the nylon membrane was washed twice with buffer (2 × SSPE and 0.5% SDS), washed with buffer (0.2 × SSPE, 0.5% SDS), dried, and then exposed to X-ray film. The experimental results are shown in B of FIG. 2.

도 2의 B는 3종의 재조합 효모들의 노던블롯사진으로, ycf1-YCF1 효모가 YCF1 mRNA를 과다 발현하고 있음을 확인할 수 있다. 즉, 실시예 3-2에서 나타난, ycf1-YCF1 효모의 납 및 카드뮴 내성은 YCF1의 과발현에 의한 것임을 입증하였다.2B is a northern blot photograph of three recombinant yeasts, and it can be seen that ycf1 - YCF1 yeast overexpresses YCF1 mRNA. That is, the lead and cadmium resistance of the ycf1 - YCF1 yeast shown in Example 3-2 proved to be due to overexpression of YCF1 .

3-4: 납 및 카드뮴 내성 기작3-4: Lead and Cadmium Resistant Mechanisms

YCF1 유전자에 의한 납 및 카드뮴 내성이 중금속의 세포내 축적에 의한 것인지 세포외 배출에 의한 것이지를 확인하기 위한 실험을 실시하였다. Experiments were conducted to determine whether lead and cadmium resistance by the YCF1 gene was due to intracellular accumulation of heavy metals or by extracellular excretion.

1.5 mM 납 또는 15 uM 카드뮴이 첨가된 1/2 갈락토스 고체 배지에 3종의 효모들(ycf1-pESC 효모, wt-pESC 효모, 및 ycf1-YCF1 효모)을 각각 하루동안 배양하고, 배양된 효모를 긁어 수득하였다. 수득한 효모는 농질산 1 ml에 넣고 200 ℃에서 약 6시간 동안 녹인 다음, 0.5 N 질산 10 ml로 희석하고, 원자흡광분석기(atomic absorption spectrometer: AAS)로 효모가 포함하는 중금속량을 측정하였다. ycf1-pESC 효모, wt-pESC 효모, 및 ycf1-YCF1 효모에 대한 측정결과는 도 3에 그래프로 나타내었다.Three yeasts ( ycf1- pESC yeast, wt-pESC yeast, and ycf1 - YCF1 yeast) were incubated for one day in a half galactose solid medium supplemented with 1.5 mM lead or 15 uM cadmium, and the cultured yeast Obtained by scraping. The obtained yeast was dissolved in 1 ml of concentrated nitric acid and dissolved at 200 ° C. for about 6 hours, diluted with 10 ml of 0.5 N nitric acid, and the amount of heavy metals contained in the yeast was measured by an atomic absorption spectrometer (AAS). Measurement results for ycf1 -pESC yeast, wt-pESC yeast, and ycf1 - YCF1 yeast are shown graphically in FIG.

그 결과, wt-pESC 효모와 ycf1-YCF1 효모는 ycf1-pESC 효모에 비하여 납 및 카드뮴의 축적정도가 높았으며, 특히 wt-pESC 효모와 ycf1-YCF1 효모가 ycf1-pESC 효모보다 약 2배 가량 높은 납 축적성을 나타내었다. 따라서, YCF1 유전자에 의한 납 및 카드뮴 내성은 상기 중금속의 세포내 축적에 의한 것임을 확인할 수 있었다.As a result, wt-pESC yeast and ycf1 - YCF1 yeast had higher accumulation of lead and cadmium than ycf1 -pESC yeast, and in particular, wt-pESC yeast and ycf1 - YCF1 yeast were about 2 times higher than ycf1 -pESC yeast. Lead accumulation was shown. Therefore, the lead and cadmium resistance by the YCF1 gene was confirmed to be due to the intracellular accumulation of the heavy metal.

실시예 4: YLH035C 재조합 효모의 납 내성Example 4: Lead Resistance of YLH035C Recombinant Yeast

4-1: 재조합 효모의 제조4-1: Preparation of Recombinant Yeast

상기 실시예 3-1과 실질적으로 동일한 방법으로 상기 실시예 2에서 제조한 pESC-YHL035C를 이용하여, yhl035c 돌연변이 효모에 빈 벡터를 도입한 재조합 효모(yhl035c-v 효모), 천연형 효모에 빈 벡터를 도입한 재조합 효모(wt-v 효모), 그리고 yhl035c 돌연변이 효모에 YHL035C를 과발현시킨 재조합 효모(YHL035C효모)를 각각 제조하고, 형질전환 효모들(wt-v 효모, yhl035c-v 효모, YHL035C 효모)을 선별하였다. 상기 재조합 효모를 이용하여 납 대한 내성 실험을 수행하였다.By using pESC-YHL035C prepared in Example 2 in substantially the same manner as in Example 3-1, recombinant yeast (yhl035c-v yeast) in which an empty vector was introduced into yhl035c mutant yeast, and a blank vector in natural yeast The recombinant yeast (wt-v yeast) and the recombinant yeast (YHL035C yeast) which overexpressed YHL035C in y hl035c mutant yeast were prepared, respectively, and the transformed yeasts (wt-v yeast, yhl035c-v yeast, and YHL035C yeast). ) Was selected. The resistance to lead was performed using the recombinant yeast.

4-2: 재조합 효모의 납 내성 실험4-2: Lead Resistance Test of Recombinant Yeast

상기 실시예 3-2과 실질적으로 동일한 방법으로 wt-v 효모, yhl035c-v 효모 및 YHL035C 효모에 대해 납 내성실험을 수행하였다. 납이 첨가된 배지에서 각 재조합 wt-v 효모, yhl035c-v 효모 및 YHL035C 효모의 성장정도는 도 4에 사진으로 나타내었다. Lead resistance tests were performed on wt-v yeast, yhl035c-v yeast and YHL035C yeast in substantially the same manner as in Example 3-2. The growth of each of the recombinant wt-v yeast, yhl035c-v yeast and YHL035C yeast in lead-added medium is shown in the photo in FIG.

도 4에서 나타낸 바와 같이, yhl035c 돌연변이 효모인 yhl035c- v는 1.8 mM 납을 함유된 배지에서 wt-v 효모보다 민감했다. 그러나 yhl035c 돌연변이 효모에 YHL035C를 발현시킨 YHL035C 효모는 다시 납에 대한 내성을 회복해서, 1.8 mM 납을 함유된 배지에서 wt-v 효모와 비슷한 생장을 보였다. 따라서 YHL035C 유전자는 납 내성에 중요한 역할을 한다는 것을 새로이 알 수 있었다.As shown in Figure 4, yhl035c mutant yeast yhl035c-v was more sensitive than wt-v yeast in a medium containing 1.8 mM lead. However, YHL035C yeast, which expressed YHL035C in yhl035c mutant yeast, regained resistance to lead, showing growth similar to that of wt-v yeast in a medium containing 1.8 mM lead. Thus, the new YHL035C gene plays an important role in lead resistance.

실시예 5: 형질전환 식물의 제조Example 5: Preparation of Transgenic Plants

5-1: 식물형질전환용 YCF1 벡터 및 YHL035C 벡터의 제조5-1: Preparation of YCF1 Vector and YHL035C Vector for Plant Transformation

식물에 YCF1 유전자를 도입하기 위해서, pESC-YCF1 플라스미드의 BamH I/SnaB I 단편인 4.6 kb의 YCF1을 PBI121(BamH I/Sma I)에 삽입하여 PBI121-YCF1 벡터를 제조하였다. 식물에서 YCF1 유전자의 발현을 향상시키기 위해 EnPCAMBIA1302-YCF1 벡터를 만들었다. PCAMBIA1302 벡터를 Sal I제한효소로 자른 뒤 클레나우(Klenow fragment)와 dNTPs를 처리하여 벡터 끝을 블런트로 만들고 BamH I으로 잘린 벡터에 35S enhancer (BamH I/blunt-end)를 삽입해서 EnPCAMBIA1302 벡터를 제조했다. EnPCAMBIA1302-YCF1 벡터는 EnPCAMBIA1302 벡터의 BglII/PmlI 자리에 YCF1 유전자 (BamHI/ blunt-end)를 삽입해서 만들었다.In order to introduce a gene into a plant, YCF1, by inserting a BamH I / SnaB I fragment of 4.6 kb of the YCF1 pESC-YCF1 plasmid (BamH I / Sma I) was prepared in PBI121-YCF1 PBI121 vector. EnPCAMBIA1302-YCF1 vectors were made to enhance the expression of the YCF1 gene in plants. The PCAMBIA1302 vector was cut with Sal I restriction enzyme and treated with Klenow fragment and dNTPs to blunt the end of the vector and insert a 35S enhancer (BamH I / blunt-end) into the vector cut with BamH I to prepare an EnPCAMBIA1302 vector. did. The EnPCAMBIA1302-YCF1 vector was made by inserting the YCF1 gene (BamHI / blunt-end) into the BglII / PmlI site of the EnPCAMBIA1302 vector.

PBI121-YCF1 벡터 및 EnPCAMBIA1302-YCF1는 대장균에 일렉트로포레이터(electroporator, BIO-RAD)로 도입하고, LB 고체배지에 배양하였다. 단일 콜로니는 3 ㎖ LB(Amp) 액체배지에서 접종하고, 12-16시간 배양한 다음 원심분리하여 형질전환된 대장균을 수득하였다. 대장균에 100 ul의 용액I(50 mM glucose, 25 mM Tris-HCl (pH 8.0), 10 mM EDTA)을 첨가하여 현탁시키고, 여기에 200 ul의 용액II(1 % SDS, 0.2 N NaOH)을 첨가하여 가볍게 혼합하고, 얼음물 속에 넣어 5분간 반응시켰다. 상기 혼합물에 150 ul의 용액III (5 M Potassium acetate)을 첨가하여 3-5회 천천히 혼합하고, 원심분리 (12,000 rpm, 10분)하여 상층액을 수득하였다. 상층액에 100 % 에탄올을 혼합하여 DNA를 침전시키고, 분리, 건조시켰다. 수득된 PBI121-YCF1 플라스미드 DNA를 TE 완충액에 용해시키고, BamHI과 EcoRI 제한 효소로 잘라 YCF1 유전자가 방향이 맞게 삽입되었음을 확인하였다.The PBI121-YCF1 vector and EnPCAMBIA1302-YCF1 were introduced into E. coli as an electroporator (BIO-RAD) and incubated in LB solid medium. Single colonies were inoculated in 3 ml LB (Amp) liquid medium, incubated for 12-16 hours and then centrifuged to obtain transformed E. coli. E. coli was suspended by adding 100 ul of solution I (50 mM glucose, 25 mM Tris-HCl (pH 8.0), 10 mM EDTA) and 200 ul of solution II (1% SDS, 0.2 N NaOH) was added thereto. The mixture was mixed lightly and put in iced water for 5 minutes. 150 ul of solution III (5 M Potassium acetate) was added to the mixture, mixed slowly 3-5 times, and centrifuged (12,000 rpm, 10 minutes) to obtain a supernatant. 100% ethanol was mixed in the supernatant to precipitate DNA, separated and dried. The obtained PBI121-YCF1 plasmid DNA was dissolved in TE buffer and digested with BamHI and EcoRI restriction enzymes to yield the YCF1 gene. It was confirmed that the orientation was inserted correctly.

식물에 YHL035C 유전자를 도입하기 위해서 상기 식물형질전환용 YCF1 벡터와 실질적으로 동일한 방법으로 pBI121-YHL035C 벡터를 제조하였으나, 다만 실시예 2에서 제조한 pESC-YHL035C 벡터로부터 YHL035C 유전자를 잘라내어, 양 끝에 SacI과 EcoICR1 제한효소 자리를 만들고, 이것을 SacI과 SmaI 제한효소로 자른 pBI121 벡터에 넣어 pBI121-YHL035C 벡터를 제조하였다. In order to introduce the YHL035C gene into the plant, pBI121-YHL035C vector was prepared by substantially the same method as the YCF1 vector for plant transformation, except that the YHL035C gene was cut out from the pESC-YHL035C vector prepared in Example 2, An EcoICR1 restriction enzyme site was made, and the pBI121-YHL035C vector was prepared by inserting it into a pBI121 vector cut with SacI and SmaI restriction enzymes.

5-2: 형질전환 애기장대 식물 제조5-2: Transformation Arabidopsis Plant Preparation

상기 실시예 5-1에서 제조한 PBI121-YCF1 및 EnPCAMBIA1302-YCF1 벡터를 일렉트로포레이터(BIO-RAD)로 아그로박테리움 (Agrobacterium LBA4404)에 도입하였다. 형질전환된 아그로박테리움은 가나마이신이 함유된 MS(Murashige-Skoog) 배지에서 선별하였고, 침지(dipping method; Clough, S.J., and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 (1988))로 애기장대식물(Arabidopsis thaliana)의 꽃에 감염시켜 YCF1 유전자를 식물에 도입하였다. 그리고 4-5주 후 애기장대의 씨를 수확하여 PBI121-YCF1 벡터로 형질전환된 식물은 가나마이신으로, EnPCAMBIA1302-YCF1 벡터로 형질전환된 식물은 하이그로마이신으로 YCF1 애기장대 식물을 선별하였다.The PBI121-YCF1 and EnPCAMBIA1302-YCF1 vectors prepared in Example 5-1 were introduced into Agrobacterium LBA4404 as an electroporator (BIO-RAD). Transformed Agrobacterium was screened in Murashige-Skoog (MS) medium containing kanamycin and dipping method; Clough, SJ, and Bent, AF, Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana.Plant J. 16, 735-743 (1988)) infected the flowers of Arabidopsis thaliana and introduced the YCF1 gene into the plant. After 4-5 weeks, the Arabidopsis seeds were harvested, and the plants transformed with the PBI121-YCF1 vector were kanamycin, and the plants transformed with the EnPCAMBIA1302-YCF1 vector were selected as YCF1 Arabidopsis plants with hygromycin.

총 5종의 YCF1 애기장대식물을 수득하였고, YCF1 mRNA의 발현정도와 발현된 mRNA의 길이가 천연형의 700 bp인지 확인하기 위한 실험을 수행하였다. 먼저, 5종의 YCF1 애기장대식물에서 mRNA를 추출하여 서열번호 5/서열번호 6의 프라이머로 RT-PCR하였으며, RT-PCR 결과를 도 5의 A에 나타냈다. 도 5의 A에 나타낸 바와 같이, 1, 3, 4 및 5번 식물에서 700 bp의 YCF1의 발현을 확인했으며, 특히 4번과 5번의 식물에서 YCF1의 발현이 높게 나타났다.A total of five YCF1 Arabidopsis plants were obtained, and experiments were performed to determine whether the expression level of YCF1 mRNA and the length of the expressed mRNA were 700 bp of the natural type. First, mRNA was extracted from five YCF1 Arabidopsis plants, and RT-PCR was used as a primer of SEQ ID NO: 5 / SEQ ID NO: 6. The RT-PCR results are shown in FIG. 5A. As shown in FIG. 5A, the expression of 700 bp of YCF1 was confirmed in plants 1, 3, 4, and 5, and in particular, the expression of YCF1 was high in plants 4 and 5.

상기 RT-PCR 산물에 대해 서든블롯을 실시하였으며 그 결과를 도 5의 B에 나타냈다. 도 5의 B에서 나타난 바와 같이, 도 5의 A의 결과와 동일하게 1, 3, 4, 및 5번 식물에서 YCF1가 발현되고 있으며, 천연형의 YCF1 mRNA가 완전히 전사되고 있음을 확인할 수 있었다. 상기 YCF1 발현이 높은 YCF1 애기장대식물은 대한민국 대전광역시 유성구 어은동 52번지에 소재한 생명공학연구소 유전자은행에 2001년 9월 5일자로 기탁하여 기탁번호 KCTC10064BP를 부여받았다.Sudden blot was performed on the RT-PCR product and the results are shown in B of FIG. 5. As shown in B of FIG. 5, as in the result of A of FIG. 5, YCF1 was expressed in plants 1, 3, 4, and 5, and it was confirmed that native YCF1 mRNA was completely transcribed. The YCF1 Aeggijang plants with high YCF1 expression were deposited on September 5, 2001 with the Biotechnology Research Institute Gene Bank, 52, Eeun -dong, Yuseong-gu, Daejeon, Korea, and received the accession number KCTC10064BP.

5-3: 형질전환 포플러의 제조5-3: Preparation of Transgenic Poplars

형질전환용 식물로는 야외에서 선발한 개화가 되지 않는 돌연변이 현사시 (Populus alba x P. glandulosa) 클론인 봉화1을 증식하여 사용하였다. 포플러의 기내 무균재료 확보를 위해 임목육종연구소 구내포지에 보존중인 채수포에서 줄기를 절단 70% ethanol (5분), 2% NaCl (20분)로 표면살균 후 MS 배지에서 4주 배양으로 발생된 줄기를 형질전환 시료로 이용하였다.As a transgenic plant, Bonghua 1, a populus alba x P. glandulosa clone, which was not selected in the open air, was propagated. In order to secure sterile materials in the inflight of the poplars, stems were cut from the brine preserved at the cultivation site of the Forest Breeding Laboratory, and then sterilized with 70% ethanol (5 minutes) and 2% NaCl (20 minutes). Stem was used as a transformation sample.

목적 유전자가 포함된 아그로박테리움을 이용하여 형질전환과 캘러스 유도, 줄기유도 등의 과정은 Noh 등의 방법(포플러의 유전공학(2002), 노은운 등 지음, ISBN #89-8176-098-5 93520)을 이용하였다. 상기 실시예 5-2에서 제조한 PBI121-YCF1 및 EnPCAMBIA1302-YCF1 벡터가 도입된 Agrobacterium tumefaciens를 LB 배지에 접종한 후 30 ℃에서 하룻밤 배양하고, 1,000g에서 10분간 원심분리한 후 배지를 쏟아버리고 펠렛을 0.85% NaCl 용액에 현탁시켰다. 이 현탁액을 페트리 디쉬에 부은 후, 기내 배양된 포플러의 절간 조직을 20분간 침지시켰다. 그 다음 소독된 흡습여과지 2장 사이에 넣고 가볍게 눌러주어 과도한 아그로박테리아를 제거하고, 항생제가 첨가되지 않은 캘러스 유도배지(MS+2.4-D 1.0㎎/L, BA 0.1mg/L, NAA 0.01㎎/L)(Murashige and Skoog. 1962)에서 2일간 공조배양한 다음. 50㎎/L kanamycin과 500㎎/L cefotaxime이 첨가된 선발 배지를 사용하여 형질전환 세포를 선발하였다.The process of transformation, callus induction, and stem induction using Agrobacterium containing the target gene was carried out by Noh et al. (Poplar's genetic engineering (2002), by Noeun Woon, ISBN # 89-8176-098-5 93520). Agrobacterium tumefaciens containing the PBI121-YCF1 and EnPCAMBIA1302-YCF1 vectors prepared in Example 5-2 were inoculated in LB medium and incubated overnight at 30 ° C., centrifuged at 1,000 g for 10 minutes, and then the medium was poured out and pellets Was suspended in 0.85% NaCl solution. After the suspension was poured into a petri dish, the interstitial tissues of in-flight cultured poplars were dipped for 20 minutes. Then, put it between two sterilized hygroscopic filter papers and press lightly to remove excess agrobacteria, callus induction medium without antibiotics (MS + 2.4-D 1.0mg / L, BA 0.1mg / L, NAA 0.01mg / L) (Murashige and Skoog. 1962) followed by two days of incubation. Transformed cells were selected using selection medium containing 50 mg / L kanamycin and 500 mg / L cefotaxime.

형성된 캘러스는 줄기유도배지(WPM+zeatin 1.0㎎/L, BA 0.1㎎/L, NAA 0.01㎎/L)(Lloyd and McCown, 1981) 에 50㎎/L 가나마이신을 첨가하여 줄기를 유도하였다. 일단 줄기가 유도되면 50㎎/L 가나마이신을 첨가한 MS 기본배지에 계대배양하여 줄기를 신장시켰으며, 뿌리는 같은 배지에 IBA 0.2 ㎎/L을 첨가하여 식물체를 유도하였다.Callus formed was induced by adding 50 mg / L kanamycin to stem induction medium (WPM + zeatin 1.0 mg / L, BA 0.1 mg / L, NAA 0.01 mg / L) (Lloyd and McCown, 1981). Once the stem was induced, the stem was elongated by passage in MS basal medium to which 50 mg / L kanamycin was added, and the root was induced by adding 0.2 mg / L of IBA to the same medium.

실시예 6: 유해물질 존재하에서 형질전환 애기장대 식물의 성장Example 6 Growth of Transgenic Arabidopsis Plants in the Presence of Hazardous Substances

실시예 5의 YCF1 애기장대식물을 납(0.9,1, 1.1 mM), 카드뮴 (50, 60,70 μM), 제초제인 클로로-디니트로벤젠(chloro-dinitrobenzene, CDNB) (60 μM), 오가 비소 (50 μM)가 들어있는 1/2 MS 배지에서 배양하여 성장정도를 확인하였다. 또한 애기장대 식물에 빈 벡터를 형질전환시킨 식물 (PBI) 및 야생형 (wt)를 대조군으로 하여 비교하였다. 상기 실험결과를 도 6 내지 도 8에 나타냈다.Example 5 YCF1 Arabidopsis plants lead (0.9,1, 1.1 mM), cadmium (50, 60,70 μM), herbicide chloro-dinitrobenzene (CDNB) (60 μM), arsenic arsenic (50 μM) was cultured in 1/2 MS medium containing the growth was confirmed. In addition, Arabidopsis plants were compared with the plants transformed with the empty vector (PBI) and wild type (wt) as a control. The experimental results are shown in FIGS. 6 to 8.

도 6는 YCF1 형질전환 애기장대 식물의 성장정도를 나타낸 사진과 그래프이다. 도 6에 나타낸 바와 같이, YCF1 애기장대와 대조구 식물을 납이 함유된 배지에서 3주 동안 키웠을 때, YCF1 애기장대 (1,3,4,5)의 잎과 뿌리는 PBI 빈 벡터 형질전환 식물 및 야생형 (wt)보다 황백화현상도 적었고, 뿌리 생장도 좋았다 (A,B,D). 그리고, 다양한 농도의 카드뮴배지에서 YCF1 과 야생형 (wt) 애기장대 식물을 키웠을 때, 야생형 (wt) 애기장대 식물은 YCF1 형질전환체보다 잎이 황백화었고, 뿌리는 잘 자라지 못하고 짧았다(C,E).Figure 6 is a photograph and graph showing the growth of YCF1 transgenic Arabidopsis plants. As shown in FIG. 6, when the YCF1 Arabidopsis and control plants were grown for three weeks in a medium containing lead, the leaves and roots of the YCF1 Arabidopsis ( 1,3,4,5 ) were PBI empty vector transgenic plants. And less whitening than wild type (wt), and root growth was good (A, B, D). In addition, when YCF1 and wild type (wt) Arabidopsis plants were grown in various concentrations of cadmium medium, wild type (wt) Arabidopsis plants were bleached with yellow leaves and shorter than roots (C, E).

도 7은 비소에 대한 YCF1 형질전환 애기장대 식물의 내성을 나타낸 사진이다. 60 μM 5가 비소가 들어있는 배지에서 3주동안 자란 야생형 애기장대(wt)는 거의 생장을 못했으나, YCF1 형질전환체(1,2,3,4)는 야생형보다 생육이 매우 좋았다.Figure 7 is a photograph showing the resistance of YCF1 transgenic Arabidopsis plants to arsenic. Wild type Arabidopsis (wt) grown for 3 weeks in medium containing 60 μM 5 arsenic showed little growth, but YCF1 transformants (1, 2, 3, 4) were better than wild type.

도 8은 CDNB에 대한 YCF1 형질전환 애기장대 식물의 내성을 나타낸 사진이다. YCF1 애기장대와 대조구 식물을 CDNB 60 μM이 들어 있는 배지에서 2달 동안 키웠을 때,야생형 식물은 발아도 잘되지 않고 거의 죽었으나, YCF1 애기장대 식물은 거의 정상 식물처럼 잘 자랐다.8 is a photograph showing the resistance of YCF1 transgenic Arabidopsis plants to CDNB . When the YCF1 Arabidopsis and control plants were grown for two months in a medium containing 60 μM of CDNB, the wild type plants did not germinate well and almost died, but the YCF1 Arabidopsis plants grew almost as well as normal plants.

따라서, 실시예 5의 YCF1 형질전환 애기장대 식물은 납 및 카드뮴, 비소, 제초제에 대한 내성이 있음이 확인되었다.Thus, the YCF1 transgenic Arabidopsis plants of Example 5 were found to be resistant to lead, cadmium, arsenic, and herbicides.

실시예 7: 형질전환 애기장대 식물의 중금속 축적성Example 7 Heavy Metal Accumulation of Transgenic Arabidopsis Plants

상기 실시예 5에서 얻어진 YCF1 애기장대 식물과 천연형 애기장대인 PBI를 납(0.75 mM)과 카드뮴(70 μM)이 함유된 1/2 MS 배지에서 3주간 배양하여 중금속 축적성을 확인하였다. 납 또는 카드뮴의 축적양은 상기 실시예 6과 실질적으로 동일한 실험방법으로 확인하였고, 그 결과는 도 9에 나타내었으며, 도 9의 A는 납의 축적량을 나타낸 것이고 B는 납 및 카드뮴의 축적량을 나타낸 것이다.The YCF1 Arabidopsis plant obtained in Example 5 and PBI, a native Arabidopsis plant, were cultured in 1/2 MS medium containing lead (0.75 mM) and cadmium (70 μM) for 3 weeks to confirm heavy metal accumulation. Accumulated amount of lead or cadmium was confirmed by the same experimental method as in Example 6, the results are shown in Figure 9, A of Figure 9 shows the accumulation of lead and B represents the accumulation of lead and cadmium.

상기 실험결과, 도 9의 A에 나타낸 바와 같이, YCF1 애기장대 식물은 천연형 애기장대 및 PBI에 비하여 2배 내지 1.4배의 높은 납 축적성을 나타내었다. 또한, 도 9의 B에 나타낸 바와 같이, YCF1 애기장대 식물은 PBI에 비하여 2 배 내지 3배의 축적성을 나타내었다.As a result of the experiment, as shown in FIG. 9A, the YCF1 Arabidopsis plants exhibited 2 to 1.4 times higher lead accumulation than the native Arabidopsis and PBI. In addition, as shown in FIG. 9B, YCF1 Arabidopsis plants showed two to three times the accumulation compared to PBI.

따라서, YCF1 애기장대 식물은 천연형 애기장대에 비하여 높은 납 및 카드뮴 축적성을 가짐을 확인하였다.Thus, it was confirmed that YCF1 Arabidopsis plants have higher lead and cadmium accumulation than native Arabidopsis.

실시예 8: Example 8: YCF1YCF1 형질전환 식물의 유해물질 내성 기작 Mechanisms to Resist Hazardous Substances in Transgenic Plants

YCF1 형질전환 식물이 납, 카드뮴, 비소와 제초제에 대한 내성을 보였고, 납 과 카드뮴에 축적성을 보였다. 이 현상이 액포에 존재하는 YCF1 단백질이 중금속을 액포에 넣어서 일어난 것인지 확인하기 위해, YCF1 형질전환 식물과 야생형 식물 (wt)에서 액포를 분리하여 카드뮴 및 제초제에 대한 수송실험을 수행했다. 상기 YCF1 형질전환 식물 및 천연형 식물의 액포에서 카드뮴 (Cd+GSH) 및 제초제 (DNB-GS)에 대한 수송실험 결과를 하기 표 1에 나타냈다. YCF1 transgenic plants were resistant to lead, cadmium, arsenic and herbicides, and accumulated on lead and cadmium. To determine whether this phenomenon was caused by the heavy metals contained in the vacuoles, YCF1 protein was extracted from YCF1 transgenic plants and wild-type plants (wt) to carry out cadmium and herbicide transport experiments. The results of transport experiments for cadmium (Cd + GSH) and herbicides (DNB-GS) in vacuoles of the YCF1 transgenic plants and natural plants are shown in Table 1 below.

GS-관련 화합물의 섭취 (단위: pmol/1 μl vacuole/20min) Ingestion of GS-related compounds (unit: pmol / 1 μl vacuole / 20min) 화합물 compound 천연형 식물(wt)Natural plant (wt) YCF1 형질전환 식물YCF1 Transgenic Plant -MgATPMgATP +MgATP+ MgATP -MgATPMgATP +MgATP+ MgATP DNB-GSDNB-GS 21 ± 1.121 ± 1.1 28 ± 1.328 ± 1.3 24 ± 0.924 ± 0.9 33 ± 1.233 ± 1.2 Cd+GSHCd + GSH 75 ± 3.375 ± 3.3 104 ± 4.9104 ± 4.9 71 ± 3.471 ± 3.4 177 ± 9.8177 ± 9.8 GSHGSH -- 70 ± 2.270 ± 2.2 -- 69 ± 1.169 ± 1.1

상기 표 1에 나타낸 바와 같이, YCF1은 물질을 수송할 때 MgATP를 에너지로 사용하기 때문에, -MgATP 그룹에서는 카드뮴 (Cd+GSH) 및 제초제 (DNB-GS)의 량이 YCF1 형질전환체와 천연형 식물은 차이가 없었다. 그러나, MgATP를 넣었을 때 카드뮴 (Cd+GSH)의 경우, YCF1 형질전환체 액포가 wt 액포보다 약 1.7배 함량이 높았다. 제초제 (DNB-GS)의 경우, YCF1 형질전환체가 천연형보다 약간 더 함량이 높았다. As shown in Table 1, since YCF1 uses MgATP as energy for transporting materials, the amount of cadmium (Cd + GSH) and herbicide (DNB-GS) in the -MgATP group is YCF1 transformant and natural plant. Did not make a difference. However, when MgATP was added, the YCF1 transformant vacuole was about 1.7 times higher than the wt vacuole in the case of cadmium (Cd + GSH). For herbicides (DNB-GS), the YCF1 transformants were slightly higher in content than the native form.

YCF1 형질전환 애기장대 식물이 천연형보다 납, 카드뮴, 비소와 제초제에 대해 내성과 축적성을 갖는 것을 확인했었다. 이러한 현상은 YCF1 형질전환 애기장대 식물의 액포에 발현하는 YCF1 단백질이 납, 카드뮴, 비소와 제초제를 액포에 넣어 안정화시켜서 이들 유해물질 대한 내성과 축적성을 가지게 하는 것을 확인했다. YCF1 transgenic Arabidopsis plants were found to be more resistant and accumulating to lead, cadmium, arsenic and herbicides than their native counterparts. This phenomenon confirmed that the YCF1 protein expressed in the vacuoles of YCF1 transgenic Arabidopsis plants stabilized lead, cadmium, arsenic and herbicides in the vacuoles, thereby making them resistant and accumulating.

실시예 9: 형질전환 포플러 식물의 성장Example 9: Growth of Transgenic Poplar Plants

9-1: YCF1 형질전환 포플러 식물9-1: YCF1 Transgenic Poplar Plant

실시예 5의 YCF1포플러 식물의 잎과 줄기 조각을 납 500 ppm이 함유된 캘러스 유도배지 위에 올려놓고, 2주 동안 배양하여 성장정도를 확인하였다. 형질전환시키지 않은 야생형 포플러(wt) 식물을 같은 방법으로 처리하여 대조군으로 비교하였으며, 실험결과를 도 10에 나타냈다. 도 10은 YCF1 형질전환 포플러 식물의 성장정도를 나타낸 사진과 그래프이다. YCF1 Poplar of Example 5 The leaves and stem pieces of the plant were placed on a callus induction medium containing 500 ppm of lead, and cultured for 2 weeks to confirm the growth. Wild-type poplar (wt) plants that were not transformed were treated with the same method and compared with the control group, and the experimental results are shown in FIG. 10. 10 is a photograph and a graph showing the growth of YCF1 transgenic poplar plants.

도 10에 나타낸 바와 같이, YCF1 포플러와 대조구 식물을 납이 함유된 배지에서 2주 동안 키웠을 때, YCF1 포플러 (1,2,3,4)의 줄기 조각들은 야생형 (wt)보다 생장이 약 2배 정도 높았으며 (A,C), 과 YCF1 포플러 (1,2,3)의 잎 조각들은 야생형 (wt)보다 갈변이 덜 되고, 푸른 엽록소의 색을 유지하였다(B).As shown in FIG. 10, when the YCF1 poplar and control plants were grown for two weeks in a medium containing lead, the stem fragments of the YCF1 poplar (1, 2, 3, 4) grew about 2 times wild type (wt). It was about twice as high (A, C), and leaf fragments of YCF1 poplar (1,2,3) were less browned than wild type (wt) and retained the color of blue chlorophyll (B).

9-2: YHL035C 형질전환 포플러 식물9-2: YHL035C Transgenic Poplar Plant

실시예 5의 YHL035C 형질전환 포플러 식물을 화분에 옮겨서 포트 묘로 육성하였다. 내성실험을 위해 Pb(NO)3 500ppm 용액에 침지시킨 토양에 상기 포트 묘를 옮겨 심었다. 상기 실험결과를 도 11에 나타냈다.The YHL035C transgenic poplar plants of Example 5 were transferred to pots and grown into pot seedlings. The pot seedlings were transferred to soil soaked in 500 ppm solution of Pb (NO) 3 for resistance testing. The experimental results are shown in FIG. 11.

도 11은 납이 포함된 토양에서 4주 동안 자란 야생형 포플러(wt)는 거의 생장을 못했으나, YHL035C 형질전환체는 야생형보다 생육이 매우 좋다는 것을 보여주는 사진이다. 따라서, 실시예 5의 YCF1 형질전환 포플러 식물과 YHL035C 포플러 식물은 납에 대한 내성이 있음이 확인되었다.FIG. 11 is a photograph showing that wild type poplar (wt) grown for 4 weeks in the soil containing lead was hardly grown, but YHL035C transformants were much better than wild type. Therefore, it was confirmed that the YCF1 transgenic poplar plant and the YHL035C poplar plant of Example 5 were resistant to lead.

상기에 언급한 바와 같이, 본 발명의 YCF1 유전자는 생물체내의 중금속 및 다른 유해물질에 대한 내성 및 축적성을 향상시키는 것이며, YHL035C 유전자는 납에 대한 내성을 향상시키는 것으로, 상기 유전자를 발현하는 형질전환체를 제조하여 유해물질로 오염된 환경을 정화하는 목적으로 사용할 수 있다. 본 발명의 형질전환체를 이용하여 환경친화적이고, 경제적인 환경정화를 실시할 수 있다.As mentioned above, the YCF1 gene of the present invention is to improve the resistance and accumulation of heavy metals and other harmful substances in the organism, the YHL035C gene is to improve the resistance to lead, the transformation that expresses the gene It can be used for the purpose of preparing a sieve to purify the environment contaminated with hazardous substances. The transformant of the present invention can be used for environmentally friendly and economical environmental purification.

도 1은 YCF1 돌연변이 효모의 납 및 카드뮴에 대한 민감성을 효모의 성장정도로 확인한 사진이고,1 is a photograph confirming the growth of yeast susceptibility to lead and cadmium of YCF1 mutant yeast,

도 2는 ycf1-pESC 효모, wt-pESC 효모 및 ycf1-YCF1 효모의 납 또는 카드뮴 내성을 성장정도로 확인한 사진(A), 및 노던블롯 결과(B)이고,2 is a ycf1 -pESC yeast, wt-pESC Yeast and photo checking the resistance of the lead or cadmium ycf1-YCF1 yeast growth so (A), and Northern blot results (B),

도 3은 ycf1-pESC 효모, wt-pESC 효모 및 ycf1-YCF1 효모의 납 또는 카드뮴 축적량을 비교한 그래프이고,3 is a graph comparing lead or cadmium accumulation of ycf1 -pESC yeast, wt-pESC yeast and ycf1 - YCF1 yeast,

도 4는 YHL035C 돌연변이 효모의 납에 대한 민감성을 효모의 성장정도로 확인한 사진이고,4 is a photograph confirming the sensitivity of the YHL035C mutant yeast to the growth of the yeast,

도 5는 YCF1 형질전환 애기장대식물에서 YCF1의 발현을 RT-PCR로 확인한 사진이고,5 is a photograph confirming the expression of YCF1 in YCF1 transgenic Arabidopsis by RT-PCR,

도 6은 YCF1 형질전환 애기장대식물의 납 및 카드뮴 내성을 성장정도로 확인한 사진이고,6 is a photograph confirming the growth of lead and cadmium resistance of YCF1 transgenic Arabidopsis plants,

도 7은 YCF1 형질전환 애기장대식물의 비소에 대한 내성을 성장정도로 확인한 사진이고,Figure 7 is a photograph confirming the growth of the resistance to arsenic of YCF1 transgenic Arabidopsis plants,

도 8은 YCF1 형질전환 애기장대식물의 제초제에 대한 내성을 성장정도로 확인한 사진이고,8 is a photograph confirming the growth resistance of the herbicide of YCF1 transgenic Arabidopsis plants,

도 9는 YCF1 형질전환 애기장대식물의 납 및 카드뮴 축적성을 분석한 그래프이다.9 is a graph analyzing lead and cadmium accumulation of YCF1 transgenic Arabidopsis plants.

도 10은 YCF1 형질전환 포플러 식물의 납 내성을 성장정도로 확인한 사진이고,10 is a photograph confirming the growth of lead resistance of YCF1 transgenic poplar plants,

도 11는 YHL035C 형질전환 포플러 식물의 납 내성을 성장정도로 확인한 사진이다.11 is a photograph confirming the growth of the lead resistance of YHL035C transgenic poplar plants.

<110> POSCO Pohang University of Science and Technology <120> Transgenic organism expressing fungal MRP-like ABC transporters <130> DPP2002-2952KR <150> KR10-2001-0063802 <151> 2001-10-16 <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 4548 <212> DNA <213> ycf1 gene <400> 1 atggctggta atcttgtttc atgggcctgc aagctctgta gatctcctga agggtttgga 60 cctatatcct tttacggtga ctttactcaa tgcttcatcg acggtgtgat cctaaatcta 120 tcagcaattt tcatgataac cttcggtatc agagatttag ttaacctttg caagaaaaaa 180 cactctggca tcaaatatag gcggaattgg attattgtct ctaggatggc actagttctg 240 ttggagatag cgtttgtttc acttgcgtct ttaaatattt ctaaagaaga agcggaaaac 300 tttaccattg taagtcaata tgcttctaca atgttatctt tatttgttgc tttagcctta 360 cactggatag aatacgatag atcagttgta gccaatacgg tacttttatt ctattggctt 420 tttgaaacat tcggtaattt tgctaaacta ataaatattc taattagaca cacctacgaa 480 ggcatttggt attccggaca aacgggtttc atactaacgt tattccaagt aataacatgt 540 gccagtatcc tgttacttga agctcttcca aagaagccgc taatgccaca tcaacacata 600 catcaaactt taacaagaag aaaaccaaat ccatacgata gcgcaaacat attttccagg 660 attaccttct cttggatgtc aggtttgatg aaaactggct atgaaaaata cttagtggaa 720 gcagatttat ataaattacc gaggaacttt agtagtgaag aactctctca aaaattggag 780 aaaaactggg aaaatgagtt gaagcaaaaa tcaaatcctt cattatcatg ggctatatgc 840 agaacttttg gatctaaaat gcttttagcc gcattcttta aagcaattca tgatgttcta 900 gcatttactc aaccacaact actaaggatt ttaatcaagt tcgtcacaga ctataacagt 960 gagagacagg atgaccattc ttctcttcaa gggtttgaaa ataaccaccc acaaaaatta 1020 cccattgtaa gagggttttt gattgcgttt gctatgtttc tggtgggctt tactcagaca 1080 tctgtcctgc atcaatattt cctgaatgtc ttcaacacag gcatgtatat taagagcgcc 1140 ctaacggctt taatatatca aaaatcctta gtgctatcta atgaggcttc tggactttcc 1200 tctaccggtg acattgtcaa tctcatgagt gtggatgttc aaaaattaca agatttaaca 1260 caatggctaa atttaatatg gtcagggcct tttcaaatca ttatttgctt atattctctg 1320 tataagttgt tgggaaattc catgtgggtt ggcgtgatta tactagttat tatgatgcca 1380 ttgaactcat ttttgatgag gatacaaaag aagttgcaaa aatcccagat gaagtacaaa 1440 gatgaaagga cccgtgttat aagtgaaata ctaaacaata ttaaatcttt gaagttatat 1500 gcatgggaga agccttatag ggaaaagcta gaagaagtaa gaaataacaa agagttaaaa 1560 aatcttacaa aactaggatg ttatatggct gtgacaagtt ttcagttcaa tatagtacca 1620 ttccttgttt catgttgtac ctttgctgta tttgtttata ctgaggatag agcattgact 1680 actgacttag ttttccctgc tttgactctg ttcaacctgc tctcattccc actaatgatt 1740 attcctatgg ttttaaattc ttttatcgaa gcttctgttt ctattggtag attatttaca 1800 ttctttacca atgaagagct acaaccagat tcggttcagc gtttaccaaa agtaaaaaat 1860 attggcgatg tagccattaa cattggagat gatgctacct ttttatggca acggaaaccg 1920 gaatacaaag tagccttaaa gaatattaat ttccaagcta aaaaaggaaa tttgacctgt 1980 attgttggta aagttggcag tggtaaaaca gctctattgt catgcatgtt aggtgatcta 2040 ttcagggtta aaggtttcgc caccgttcat ggttctgttg cttatgtttc acaagttcca 2100 tggataatga atggtactgt aaaggaaaac attttatttg ggcatagata cgacgcggaa 2160 ttttacgaaa aaacgatcaa ggcctgtgcg ttaactattg atcttgcaat tttgatggat 2220 ggagataaga cattagttgg cgagaaaggg atctccttat ctggaggaca aaaagctcgt 2280 ttgtctttag caagagcagt ttatgcgaga gctgacactt atttacttga tgatcctttg 2340 gcagctgttg atgaacacgt tgccaggcac ttgatcgaac atgtgttggg tccaaatggt 2400 ttattacata caaaaacgaa ggtattagcc actaataagg tgagcgcgtt atccatcgca 2460 gattctattg cattattaga taatggagaa atcacacagc agggtacata tgatgagatt 2520 acgaaggacg ctgattcgcc attatggaaa ttgctcaaca actatggtaa aaaaaataac 2580 ggtaagtcga atgaattcgg tgactcctct gaaagctcag ttcgagaaag tagtatacct 2640 gtagaaggag agctggaaca actgcagaaa ttaaatgatt tggattttgg caactctgac 2700 gccataagtt taaggagggc cagtgatgca actttgggaa gcatcgattt tggtgacgat 2760 gaaaatattg ctaaaagaga gcatcgtgaa cagggaaaag taaagtggaa catttaccta 2820 gagtacgcta aagcttgcaa cccgaaaagc gtttgtgtat tcatattgtt tattgttata 2880 tcgatgttcc tctctgttat gggtaacgtt tggttgaaac attggtctga agttaatagc 2940 cgctatggat ctaatccaaa tgccgcgcgt tacttggcca tttattttgc acttggtatt 3000 ggttcagcac tggcaacatt aatccagaca atcgttctct gggttttttg taccattcat 3060 gcctccaaat atttacacaa cttgatgaca aactctgtgt tgagagcccc aatgacgttt 3120 tttgaaacaa caccaatcgg tagaattcta aacagattct caaatgacat atacaaagtg 3180 gatgctttat taggaagaac attttctcag tttttcgtca atgcagtgaa agtcacattc 3240 actattacgg ttatctgtgc gacgacatgg caatttatct tcattatcat tccactaagt 3300 gtgttttaca tctactacca gcagtattac ctgagaacat caagggagtt gcgtcgttta 3360 gactctatta ctaggtctcc aatctactct catttccaag agactttggg tggccttgca 3420 acggttagag gttattctca acagaaaagg ttttcccaca ttaatcaatg ccgcattgat 3480 aataacatga gtgcgttcta tccctctatc aatgctaacc gttggctagc atataggttg 3540 gaacttattg gttcaattat cattctaggt gctgcaactt tatccgtttt tagactaaaa 3600 caaggcacat taacggcagg tatggtgggt ttatcattaa gctatgcttt acaaatcact 3660 caaacgttaa attggattgt tagaatgact gtggaagttg aaacgaatat tgtttcagtg 3720 gaaagaataa aggaatatgc tgatttgaag agcgaggcac ctttaatagt tgaaggccac 3780 agaccaccca aagaatggcc gagccagggt gatataaagt ttaataatta ttccactcgt 3840 tataggccgg agcttgatct tgttctgaag cacattaata tacacattaa accaaatgaa 3900 aaagttggta tcgtgggtag aacgggtgcg ggaaaatcct cattaacgct agcattattc 3960 aggatgattg aggctagcga gggaaacatc gtaatcgaca acattgccat caacgagatt 4020 gggttatatg atttgagaca taaattgtca atcatacctc aggattctca agtttttgag 4080 ggcactgttc gtgagaacat tgatcccatt aaccaataca ctgatgaagc tatttggagg 4140 gcattggaac tttctcattt gaaagaacac gtgctatcaa tgagcaatga cggattagat 4200 gcccaactaa ccgaaggtgg tggcaactta agtgttggac aaagacaatt attatgtctt 4260 gcaagagcaa tgttggttcc atcaaagatt ttggtgcttg atgaagccac ggccgcagtc 4320 gacgtggaga cagataaagt cgtccaagag acgattcgta ctgctttcaa ggacagaact 4380 atcttgacca tcgcgcatag actgaacacg ataatggaca gtgatagaat catagtgttg 4440 gacaatggta aagtagccga gtttgactct ccgggccagt tattaagtga taacaaatca 4500 ttgttctatt cactgtgcat ggaggctggt ttggtcaatg aaaattaa 4548 <210> 2 <211> 1515 <212> PRT <213> Ycf1 protein <400> 2 Met Ala Gly Asn Leu Val Ser Trp Ala Cys Lys Leu Cys Arg Ser Pro 1 5 10 15 Glu Gly Phe Gly Pro Ile Ser Phe Tyr Gly Asp Phe Thr Gln Cys Phe 20 25 30 Ile Asp Gly Val Ile Leu Asn Leu Ser Ala Ile Phe Met Ile Thr Phe 35 40 45 Gly Ile Arg Asp Leu Val Asn Leu Cys Lys Lys Lys His Ser Gly Ile 50 55 60 Lys Tyr Arg Arg Asn Trp Ile Ile Val Ser Arg Met Ala Leu Val Leu 65 70 75 80 Leu Glu Ile Ala Phe Val Ser Leu Ala Ser Leu Asn Ile Ser Lys Glu 85 90 95 Glu Ala Glu Asn Phe Thr Ile Val Ser Gln Tyr Ala Ser Thr Met Leu 100 105 110 Ser Leu Phe Val Ala Leu Ala Leu His Trp Ile Glu Tyr Asp Arg Ser 115 120 125 Val Val Ala Asn Thr Val Leu Leu Phe Tyr Trp Leu Phe Glu Thr Phe 130 135 140 Gly Asn Phe Ala Lys Leu Ile Asn Ile Leu Ile Arg His Thr Tyr Glu 145 150 155 160 Gly Ile Trp Tyr Ser Gly Gln Thr Gly Phe Ile Leu Thr Leu Phe Gln 165 170 175 Val Ile Thr Cys Ala Ser Ile Leu Leu Leu Glu Ala Leu Pro Lys Lys 180 185 190 Pro Leu Met Pro His Gln His Ile His Gln Thr Leu Thr Arg Arg Lys 195 200 205 Pro Asn Pro Tyr Asp Ser Ala Asn Ile Phe Ser Arg Ile Thr Phe Ser 210 215 220 Trp Met Ser Gly Leu Met Lys Thr Gly Tyr Glu Lys Tyr Leu Val Glu 225 230 235 240 Ala Asp Leu Tyr Lys Leu Pro Arg Asn Phe Ser Ser Glu Glu Leu Ser 245 250 255 Gln Lys Leu Glu Lys Asn Trp Glu Asn Glu Leu Lys Gln Lys Ser Asn 260 265 270 Pro Ser Leu Ser Trp Ala Ile Cys Arg Thr Phe Gly Ser Lys Met Leu 275 280 285 Leu Ala Ala Phe Phe Lys Ala Ile His Asp Val Leu Ala Phe Thr Gln 290 295 300 Pro Gln Leu Leu Arg Ile Leu Ile Lys Phe Val Thr Asp Tyr Asn Ser 305 310 315 320 Glu Arg Gln Asp Asp His Ser Ser Leu Gln Gly Phe Glu Asn Asn His 325 330 335 Pro Gln Lys Leu Pro Ile Val Arg Gly Phe Leu Ile Ala Phe Ala Met 340 345 350 Phe Leu Val Gly Phe Thr Gln Thr Ser Val Leu His Gln Tyr Phe Leu 355 360 365 Asn Val Phe Asn Thr Gly Met Tyr Ile Lys Ser Ala Leu Thr Ala Leu 370 375 380 Ile Tyr Gln Lys Ser Leu Val Leu Ser Asn Glu Ala Ser Gly Leu Ser 385 390 395 400 Ser Thr Gly Asp Ile Val Asn Leu Met Ser Val Asp Val Gln Lys Leu 405 410 415 Gln Asp Leu Thr Gln Trp Leu Asn Leu Ile Trp Ser Gly Pro Phe Gln 420 425 430 Ile Ile Ile Cys Leu Tyr Ser Leu Tyr Lys Leu Leu Gly Asn Ser Met 435 440 445 Trp Val Gly Val Ile Ile Leu Val Ile Met Met Pro Leu Asn Ser Phe 450 455 460 Leu Met Arg Ile Gln Lys Lys Leu Gln Lys Ser Gln Met Lys Tyr Lys 465 470 475 480 Asp Glu Arg Thr Arg Val Ile Ser Glu Ile Leu Asn Asn Ile Lys Ser 485 490 495 Leu Lys Leu Tyr Ala Trp Glu Lys Pro Tyr Arg Glu Lys Leu Glu Glu 500 505 510 Val Arg Asn Asn Lys Glu Leu Lys Asn Leu Thr Lys Leu Gly Cys Tyr 515 520 525 Met Ala Val Thr Ser Phe Gln Phe Asn Ile Val Pro Phe Leu Val Ser 530 535 540 Cys Cys Thr Phe Ala Val Phe Val Tyr Thr Glu Asp Arg Ala Leu Thr 545 550 555 560 Thr Asp Leu Val Phe Pro Ala Leu Thr Leu Phe Asn Leu Leu Ser Phe 565 570 575 Pro Leu Met Ile Ile Pro Met Val Leu Asn Ser Phe Ile Glu Ala Ser 580 585 590 Val Ser Ile Gly Arg Leu Phe Thr Phe Phe Thr Asn Glu Glu Leu Gln 595 600 605 Pro Asp Ser Val Gln Arg Leu Pro Lys Val Lys Asn Ile Gly Asp Val 610 615 620 Ala Ile Asn Ile Gly Asp Asp Ala Thr Phe Leu Trp Gln Arg Lys Pro 625 630 635 640 Glu Tyr Lys Val Ala Leu Lys Asn Ile Asn Phe Gln Ala Lys Lys Gly 645 650 655 Asn Leu Thr Cys Ile Val Gly Lys Val Gly Ser Gly Lys Thr Ala Leu 660 665 670 Leu Ser Cys Met Leu Gly Asp Leu Phe Arg Val Lys Gly Phe Ala Thr 675 680 685 Val His Gly Ser Val Ala Tyr Val Ser Gln Val Pro Trp Ile Met Asn 690 695 700 Gly Thr Val Lys Glu Asn Ile Leu Phe Gly His Arg Tyr Asp Ala Glu 705 710 715 720 Phe Tyr Glu Lys Thr Ile Lys Ala Cys Ala Leu Thr Ile Asp Leu Ala 725 730 735 Ile Leu Met Asp Gly Asp Lys Thr Leu Val Gly Glu Lys Gly Ile Ser 740 745 750 Leu Ser Gly Gly Gln Lys Ala Arg Leu Ser Leu Ala Arg Ala Val Tyr 755 760 765 Ala Arg Ala Asp Thr Tyr Leu Leu Asp Asp Pro Leu Ala Ala Val Asp 770 775 780 Glu His Val Ala Arg His Leu Ile Glu His Val Leu Gly Pro Asn Gly 785 790 795 800 Leu Leu His Thr Lys Thr Lys Val Leu Ala Thr Asn Lys Val Ser Ala 805 810 815 Leu Ser Ile Ala Asp Ser Ile Ala Leu Leu Asp Asn Gly Glu Ile Thr 820 825 830 Gln Gln Gly Thr Tyr Asp Glu Ile Thr Lys Asp Ala Asp Ser Pro Leu 835 840 845 Trp Lys Leu Leu Asn Asn Tyr Gly Lys Lys Asn Asn Gly Lys Ser Asn 850 855 860 Glu Phe Gly Asp Ser Ser Glu Ser Ser Val Arg Glu Ser Ser Ile Pro 865 870 875 880 Val Glu Gly Glu Leu Glu Gln Leu Gln Lys Leu Asn Asp Leu Asp Phe 885 890 895 Gly Asn Ser Asp Ala Ile Ser Leu Arg Arg Ala Ser Asp Ala Thr Leu 900 905 910 Gly Ser Ile Asp Phe Gly Asp Asp Glu Asn Ile Ala Lys Arg Glu His 915 920 925 Arg Glu Gln Gly Lys Val Lys Trp Asn Ile Tyr Leu Glu Tyr Ala Lys 930 935 940 Ala Cys Asn Pro Lys Ser Val Cys Val Phe Ile Leu Phe Ile Val Ile 945 950 955 960 Ser Met Phe Leu Ser Val Met Gly Asn Val Trp Leu Lys His Trp Ser 965 970 975 Glu Val Asn Ser Arg Tyr Gly Ser Asn Pro Asn Ala Ala Arg Tyr Leu 980 985 990 Ala Ile Tyr Phe Ala Leu Gly Ile Gly Ser Ala Leu Ala Thr Leu Ile 995 1000 1005 Gln Thr Ile Val Leu Trp Val Phe Cys Thr Ile His Ala Ser Lys Tyr 1010 1015 1020 Leu His Asn Leu Met Thr Asn Ser Val Leu Arg Ala Pro Met Thr Phe 1025 1030 1035 1040 Phe Glu Thr Thr Pro Ile Gly Arg Ile Leu Asn Arg Phe Ser Asn Asp 1045 1050 1055 Ile Tyr Lys Val Asp Ala Leu Leu Gly Arg Thr Phe Ser Gln Phe Phe 1060 1065 1070 Val Asn Ala Val Lys Val Thr Phe Thr Ile Thr Val Ile Cys Ala Thr 1075 1080 1085 Thr Trp Gln Phe Ile Phe Ile Ile Ile Pro Leu Ser Val Phe Tyr Ile 1090 1095 1100 Tyr Tyr Gln Gln Tyr Tyr Leu Arg Thr Ser Arg Glu Leu Arg Arg Leu 1105 1110 1115 1120 Asp Ser Ile Thr Arg Ser Pro Ile Tyr Ser His Phe Gln Glu Thr Leu 1125 1130 1135 Gly Gly Leu Ala Thr Val Arg Gly Tyr Ser Gln Gln Lys Arg Phe Ser 1140 1145 1150 His Ile Asn Gln Cys Arg Ile Asp Asn Asn Met Ser Ala Phe Tyr Pro 1155 1160 1165 Ser Ile Asn Ala Asn Arg Trp Leu Ala Tyr Arg Leu Glu Leu Ile Gly 1170 1175 1180 Ser Ile Ile Ile Leu Gly Ala Ala Thr Leu Ser Val Phe Arg Leu Lys 1185 1190 1195 1200 Gln Gly Thr Leu Thr Ala Gly Met Val Gly Leu Ser Leu Ser Tyr Ala 1205 1210 1215 Leu Gln Ile Thr Gln Thr Leu Asn Trp Ile Val Arg Met Thr Val Glu 1220 1225 1230 Val Glu Thr Asn Ile Val Ser Val Glu Arg Ile Lys Glu Tyr Ala Asp 1235 1240 1245 Leu Lys Ser Glu Ala Pro Leu Ile Val Glu Gly His Arg Pro Pro Lys 1250 1255 1260 Glu Trp Pro Ser Gln Gly Asp Ile Lys Phe Asn Asn Tyr Ser Thr Arg 1265 1270 1275 1280 Tyr Arg Pro Glu Leu Asp Leu Val Leu Lys His Ile Asn Ile His Ile 1285 1290 1295 Lys Pro Asn Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ala Gly Lys 1300 1305 1310 Ser Ser Leu Thr Leu Ala Leu Phe Arg Met Ile Glu Ala Ser Glu Gly 1315 1320 1325 Asn Ile Val Ile Asp Asn Ile Ala Ile Asn Glu Ile Gly Leu Tyr Asp 1330 1335 1340 Leu Arg His Lys Leu Ser Ile Ile Pro Gln Asp Ser Gln Val Phe Glu 1345 1350 1355 1360 Gly Thr Val Arg Glu Asn Ile Asp Pro Ile Asn Gln Tyr Thr Asp Glu 1365 1370 1375 Ala Ile Trp Arg Ala Leu Glu Leu Ser His Leu Lys Glu His Val Leu 1380 1385 1390 Ser Met Ser Asn Asp Gly Leu Asp Ala Gln Leu Thr Glu Gly Gly Gly 1395 1400 1405 Asn Leu Ser Val Gly Gln Arg Gln Leu Leu Cys Leu Ala Arg Ala Met 1410 1415 1420 Leu Val Pro Ser Lys Ile Leu Val Leu Asp Glu Ala Thr Ala Ala Val 1425 1430 1435 1440 Asp Val Glu Thr Asp Lys Val Val Gln Glu Thr Ile Arg Thr Ala Phe 1445 1450 1455 Lys Asp Arg Thr Ile Leu Thr Ile Ala His Arg Leu Asn Thr Ile Met 1460 1465 1470 Asp Ser Asp Arg Ile Ile Val Leu Asp Asn Gly Lys Val Ala Glu Phe 1475 1480 1485 Asp Ser Pro Gly Gln Leu Leu Ser Asp Asn Lys Ser Leu Phe Tyr Ser 1490 1495 1500 Leu Cys Met Glu Ala Gly Leu Val Asn Glu Asn 1505 1510 1515 <210> 3 <211> 4776 <212> DNA <213> Artificial Sequence <220> <223> yhl035c gene <400> 3 atgggaacgg atccccttat tatccgaaat aatggttcat tttgggaagt tgatgatttt 60 actcgtttag gaagaactca gctattgagc tactatttac cattggctat catagcctca 120 attggcattt tcgcactttg tcgcagtgga ttatctcgtt atgtaagatc tgccgagtgc 180 gatttagtga acgaatatct atttggcgca caagaagaga gaaaagaaga taatagtata 240 gaaagacttc tacggaactc aaatacccaa gccaattacg tcaacgtcaa aaagcaagga 300 aggattttga aacttagaca ttttgatata acaactatag atgtcaagca aatcgatgct 360 aaaaatcatg gtggactaac gtttagtaga ccgtctacta gtgaccactt aagaaaatca 420 tctgaaattg tattaatgtc tttacaaata attggccttt cctttttaag agtaacaaaa 480 atcaatattg aattaacgaa cagagatgtt acaactttac tattattttg gttaatacta 540 ctttccctaa gtatcttaag agtttacaag cgttcaacga atctttgggc catctgtttt 600 actgcccata caactatttg gatttcaacc tggattccaa ttcgttcggt ctatattggt 660 aatatcgatg atgtaccctc acagatattt tacatctttg aattcgtaat tacttcaacc 720 ttacagccaa taaagctcac ttcaccgatt aaagacaact catccatcat ctacgttaga 780 gacgaccata cgtctccttc gagggaacac atatcctcaa ttttaagttg cattacttgg 840 agctggatta ccaattttat atgggaggcc caaaagaaca ctattaagtt aaaggatatt 900 tggggcttat caatggaaga ctatagcatt ttcattctaa aagggtttac caggagaaac 960 aagcacatta ataatttgac gctagcactg tttgaatctt tcaaaacata tttactcata 1020 ggaatgttat gggttctggt gaacagtatt gtaaaccttc ttcccacaat tttaatgaaa 1080 agatttttag aaattgtgga taacccaaac cgttcctcat catgcatgaa tttggcgtgg 1140 ctttatatta ttggtatgtt catttgtaga ttgacattag caatttgtaa ttcccaaggt 1200 caatttgttt ctgataagat ttgtttaaga ataagagcca tactcatagg agaaatttat 1260 gcaaaaggct tacgtaggag gctgtttaca tctccaaaaa ccagctctga ttcagatagt 1320 atctccgcaa accttggtac cataattaat ctcatttcta ttgactcatt taaggtatcg 1380 gaactagcaa actaccttta tgtgacagtt caggcagtaa ttatgataat agttgttgta 1440 ggactacttt tcaacttttt aggtgtttca gcttttgcag gaatttcaat tatcttagtg 1500 atgttcccat tgaatttctt gttagcgaat ttgttaggta agtttcaaaa gcaaacactg 1560 aaatgtactg accaaagaat ctcaaaattg aacgagtgct tacagaacat aagaattgtc 1620 aaatattttg cttgggaaag gaatattata aatgaaatca aatcaataag gcaaaaggaa 1680 ttaagatcct tattaaaaaa atctttggtg tggtccgtaa cttcttttct ttggttcgtg 1740 acaccgacct tggtgacagg tgtcactttc gccatctgta catttgttca acatgaagat 1800 ttgaatgccc cgcttgcttt cactactttg tcactcttca ctttgttaaa gacacccctg 1860 gatcaattat caaatatgct aagtttcata aatcaatcaa aagtctctct aaaaagaata 1920 agcgattttt taaggatgga cgatacagaa aaatataatc aactaaccat atctccagac 1980 aaaaataaaa ttgaatttaa aaatgcgact ttaacctgga atgaaaatga cagcgatatg 2040 aatgcattca aattatgtgg tttgaatatt aaatttcaaa ttggtaagtt aaatttgatt 2100 ttgggttcta caggatctgg taaaagtgca ttgctgctgg gtttactggg tgaactaaat 2160 ctaattagtg gctctatcat tgttccgagc ttagaaccaa agcatgattt aattcccgac 2220 tgcgaaggtt taaccaattc cttcgcatat tgttcacaaa gtgcgtggct attaaatgac 2280 acggtaaaaa acaatattat ctttgataac ttctataacg aggataggta caacaaagta 2340 attgatgcat gtgggctgaa aagagacctg gagattttac cagcaggtga cctaacagaa 2400 attggtgaaa agggtataac tttatcagga gggcagaaac agagaatttc cttggcgaga 2460 gctgtttatt cgagtgctaa gcatgtctta ctagatgatt gtttgagcgc tgtcgattca 2520 catactgctg tatggatcta tgaaaattgc atcacaggtc cactaatgaa aaatagaacc 2580 tgcattttag ttacgcacaa tgtttcatta acacttagaa atgcccattt cgcgattgtg 2640 ttggaaaatg gcaaagtgaa gaatcaagga actattacag aattacaaag caaagggctt 2700 tttaaggaaa aatatgttca actttcttct cgagatagca ttaatgaaaa gaacgctaat 2760 agattaaaag ctcccagaaa aaatgactct cagaaaatcg aacctgtcac cgagaacata 2820 aattttgatg caaattttgt caatgatggc cagctaatag aagaggaaga aaaatcaaac 2880 ggtgccataa gccccgatgt ttataaatgg tacctgaaat tttttggagg cttcaaagct 2940 ttaacagccc tgttcgctct ttatatcaca gctcaaattt tgttcatcag tcagtcttgg 3000 tggatacgac attgggtcaa cgataccaat gtacgaataa atgctccagg ttttgcgatg 3060 gacacgctgc cattaaaagg gatgaccgac tcttcgaaaa ataaacataa tgcattttat 3120 tacttaaccg tatattttct tattggtatc attcaggcaa tgctaggtgg ttttaaaaca 3180 atgatgacgt ttttatccgg tatgcgagcc tccagaaaga tctttaataa tctgctagat 3240 ctagttctac atgcccaaat acgatttttc gacgtgacgc cggttggtag aatcatgaat 3300 cgcttttcaa aggacatcga aggtgttgat caagaattga ttccatactt agaagtaact 3360 atattttgcc taattcaatg cgcatcaatt atatttctca ttaccgtaat aactcctcgc 3420 tttttgacag tcgccgttat cgtttttgtt ttatatttct ttgtggggaa atggtactta 3480 acggcaagta gagaattgaa aaggttagat tcaataacca aatcacccat ttttcaacat 3540 ttctcagaga ccttggtagg cgtttgcaca attcgtgcat ttggcgacga gaggagattc 3600 attttagaaa atatgaacaa aattgaccaa aataacagag cattctttta tttatcagtt 3660 actgtcaaat ggttttcttt tagagtcgac atgattggcg cattcattgt tttagcatca 3720 ggttctttta ttctgctcaa tattgcaaat attgactcgg gtcttgccgg catttctttg 3780 acatatgcca ttttgtttac agatggtgct ttatggttag ttagactgta ctcaacattt 3840 gaaatgaaca tgaactctgt tgaaagacta aaagaatatt ctagcattga acaagagaac 3900 tatcttggcc atgatgaagg ccgcattcta cttctaaacg aaccatcgtg gccaaaagat 3960 ggagaaattg aaattgaaaa cttatcttta cgttacgcgc caaatttgcc tcctgtcata 4020 agaaatgtta gtttcaaagt ggatcctcaa agtaagattg ggattgtcgg aagaactggc 4080 gcaggcaaat ctaccataat aacggcatta ttcagattac tagaaccaat aaccggatgt 4140 atcaaaatag atgggcagga tataagtaaa attgatctcg ttacattacg tcgttccatt 4200 actatcatcc ctcaggaccc tattctattt gcaggtacaa tcaaaagtaa tgttgatcca 4260 tatgatgaat atgatgaaaa aaaaatattc aaagcacttt cacaagtaaa tctaatttct 4320 tcacatgaat ttgaagaagt gcttaactcg gaggaacgct ttaacagcac tcataataaa 4380 tttttaaatc ttcacacaga aatagctgag ggcggcttaa atctgtccca aggtgaaagg 4440 caattgcttt ttattgcacg atcattgtta cgcgagccaa agataatact tttggacgag 4500 gctacttcct ctattgatta cgattctgac catttaattc agggtattat aagaagtgag 4560 tttaataaaa gcacaattct tactattgca catcgtttga gatctgttat cgattacgac 4620 aggataattg tgatggatgc cggtgaggta aaagaatatg atcgccctag tgaactgttg 4680 aaagatgaac gcggtatatt ttatagtatg tgtcgtgaca gtgggggcct agagcttttg 4740 aagcaaatag ccaagcaatc aagtaagatg atgaaa 4776 <210> 4 <211> 1592 <212> PRT <213> Artificial Sequence <220> <223> yhl035c protein <400> 4 Met Gly Thr Asp Pro Leu Ile Ile Arg Asn Asn Gly Ser Phe Trp Glu 1 5 10 15 Val Asp Asp Phe Thr Arg Leu Gly Arg Thr Gln Leu Leu Ser Tyr Tyr 20 25 30 Leu Pro Leu Ala Ile Ile Ala Ser Ile Gly Ile Phe Ala Leu Cys Arg 35 40 45 Ser Gly Leu Ser Arg Tyr Val Arg Ser Ala Glu Cys Asp Leu Val Asn 50 55 60 Glu Tyr Leu Phe Gly Ala Gln Glu Glu Arg Lys Glu Asp Asn Ser Ile 65 70 75 80 Glu Arg Leu Leu Arg Asn Ser Asn Thr Gln Ala Asn Tyr Val Asn Val 85 90 95 Lys Lys Gln Gly Arg Ile Leu Lys Leu Arg His Phe Asp Ile Thr Thr 100 105 110 Ile Asp Val Lys Gln Ile Asp Ala Lys Asn His Gly Gly Leu Thr Phe 115 120 125 Ser Arg Pro Ser Thr Ser Asp His Leu Arg Lys Ser Ser Glu Ile Val 130 135 140 Leu Met Ser Leu Gln Ile Ile Gly Leu Ser Phe Leu Arg Val Thr Lys 145 150 155 160 Ile Asn Ile Glu Leu Thr Asn Arg Asp Val Thr Thr Leu Leu Leu Phe 165 170 175 Trp Leu Ile Leu Leu Ser Leu Ser Ile Leu Arg Val Tyr Lys Arg Ser 180 185 190 Thr Asn Leu Trp Ala Ile Cys Phe Thr Ala His Thr Thr Ile Trp Ile 195 200 205 Ser Thr Trp Ile Pro Ile Arg Ser Val Tyr Ile Gly Asn Ile Asp Asp 210 215 220 Val Pro Ser Gln Ile Phe Tyr Ile Phe Glu Phe Val Ile Thr Ser Thr 225 230 235 240 Leu Gln Pro Ile Lys Leu Thr Ser Pro Ile Lys Asp Asn Ser Ser Ile 245 250 255 Ile Tyr Val Arg Asp Asp His Thr Ser Pro Ser Arg Glu His Ile Ser 260 265 270 Ser Ile Leu Ser Cys Ile Thr Trp Ser Trp Ile Thr Asn Phe Ile Trp 275 280 285 Glu Ala Gln Lys Asn Thr Ile Lys Leu Lys Asp Ile Trp Gly Leu Ser 290 295 300 Met Glu Asp Tyr Ser Ile Phe Ile Leu Lys Gly Phe Thr Arg Arg Asn 305 310 315 320 Lys His Ile Asn Asn Leu Thr Leu Ala Leu Phe Glu Ser Phe Lys Thr 325 330 335 Tyr Leu Leu Ile Gly Met Leu Trp Val Leu Val Asn Ser Ile Val Asn 340 345 350 Leu Leu Pro Thr Ile Leu Met Lys Arg Phe Leu Glu Ile Val Asp Asn 355 360 365 Pro Asn Arg Ser Ser Ser Cys Met Asn Leu Ala Trp Leu Tyr Ile Ile 370 375 380 Gly Met Phe Ile Cys Arg Leu Thr Leu Ala Ile Cys Asn Ser Gln Gly 385 390 395 400 Gln Phe Val Ser Asp Lys Ile Cys Leu Arg Ile Arg Ala Ile Leu Ile 405 410 415 Gly Glu Ile Tyr Ala Lys Gly Leu Arg Arg Arg Leu Phe Thr Ser Pro 420 425 430 Lys Thr Ser Ser Asp Ser Asp Ser Ile Ser Ala Asn Leu Gly Thr Ile 435 440 445 Ile Asn Leu Ile Ser Ile Asp Ser Phe Lys Val Ser Glu Leu Ala Asn 450 455 460 Tyr Leu Tyr Val Thr Val Gln Ala Val Ile Met Ile Ile Val Val Val 465 470 475 480 Gly Leu Leu Phe Asn Phe Leu Gly Val Ser Ala Phe Ala Gly Ile Ser 485 490 495 Ile Ile Leu Val Met Phe Pro Leu Asn Phe Leu Leu Ala Asn Leu Leu 500 505 510 Gly Lys Phe Gln Lys Gln Thr Leu Lys Cys Thr Asp Gln Arg Ile Ser 515 520 525 Lys Leu Asn Glu Cys Leu Gln Asn Ile Arg Ile Val Lys Tyr Phe Ala 530 535 540 Trp Glu Arg Asn Ile Ile Asn Glu Ile Lys Ser Ile Arg Gln Lys Glu 545 550 555 560 Leu Arg Ser Leu Leu Lys Lys Ser Leu Val Trp Ser Val Thr Ser Phe 565 570 575 Leu Trp Phe Val Thr Pro Thr Leu Val Thr Gly Val Thr Phe Ala Ile 580 585 590 Cys Thr Phe Val Gln His Glu Asp Leu Asn Ala Pro Leu Ala Phe Thr 595 600 605 Thr Leu Ser Leu Phe Thr Leu Leu Lys Thr Pro Leu Asp Gln Leu Ser 610 615 620 Asn Met Leu Ser Phe Ile Asn Gln Ser Lys Val Ser Leu Lys Arg Ile 625 630 635 640 Ser Asp Phe Leu Arg Met Asp Asp Thr Glu Lys Tyr Asn Gln Leu Thr 645 650 655 Ile Ser Pro Asp Lys Asn Lys Ile Glu Phe Lys Asn Ala Thr Leu Thr 660 665 670 Trp Asn Glu Asn Asp Ser Asp Met Asn Ala Phe Lys Leu Cys Gly Leu 675 680 685 Asn Ile Lys Phe Gln Ile Gly Lys Leu Asn Leu Ile Leu Gly Ser Thr 690 695 700 Gly Ser Gly Lys Ser Ala Leu Leu Leu Gly Leu Leu Gly Glu Leu Asn 705 710 715 720 Leu Ile Ser Gly Ser Ile Ile Val Pro Ser Leu Glu Pro Lys His Asp 725 730 735 Leu Ile Pro Asp Cys Glu Gly Leu Thr Asn Ser Phe Ala Tyr Cys Ser 740 745 750 Gln Ser Ala Trp Leu Leu Asn Asp Thr Val Lys Asn Asn Ile Ile Phe 755 760 765 Asp Asn Phe Tyr Asn Glu Asp Arg Tyr Asn Lys Val Ile Asp Ala Cys 770 775 780 Gly Leu Lys Arg Asp Leu Glu Ile Leu Pro Ala Gly Asp Leu Thr Glu 785 790 795 800 Ile Gly Glu Lys Gly Ile Thr Leu Ser Gly Gly Gln Lys Gln Arg Ile 805 810 815 Ser Leu Ala Arg Ala Val Tyr Ser Ser Ala Lys His Val Leu Leu Asp 820 825 830 Asp Cys Leu Ser Ala Val Asp Ser His Thr Ala Val Trp Ile Tyr Glu 835 840 845 Asn Cys Ile Thr Gly Pro Leu Met Lys Asn Arg Thr Cys Ile Leu Val 850 855 860 Thr His Asn Val Ser Leu Thr Leu Arg Asn Ala His Phe Ala Ile Val 865 870 875 880 Leu Glu Asn Gly Lys Val Lys Asn Gln Gly Thr Ile Thr Glu Leu Gln 885 890 895 Ser Lys Gly Leu Phe Lys Glu Lys Tyr Val Gln Leu Ser Ser Arg Asp 900 905 910 Ser Ile Asn Glu Lys Asn Ala Asn Arg Leu Lys Ala Pro Arg Lys Asn 915 920 925 Asp Ser Gln Lys Ile Glu Pro Val Thr Glu Asn Ile Asn Phe Asp Ala 930 935 940 Asn Phe Val Asn Asp Gly Gln Leu Ile Glu Glu Glu Glu Lys Ser Asn 945 950 955 960 Gly Ala Ile Ser Pro Asp Val Tyr Lys Trp Tyr Leu Lys Phe Phe Gly 965 970 975 Gly Phe Lys Ala Leu Thr Ala Leu Phe Ala Leu Tyr Ile Thr Ala Gln 980 985 990 Ile Leu Phe Ile Ser Gln Ser Trp Trp Ile Arg His Trp Val Asn Asp 995 1000 1005 Thr Asn Val Arg Ile Asn Ala Pro Gly Phe Ala Met Asp Thr Leu Pro 1010 1015 1020 Leu Lys Gly Met Thr Asp Ser Ser Lys Asn Lys His Asn Ala Phe Tyr 1025 1030 1035 1040 Tyr Leu Thr Val Tyr Phe Leu Ile Gly Ile Ile Gln Ala Met Leu Gly 1045 1050 1055 Gly Phe Lys Thr Met Met Thr Phe Leu Ser Gly Met Arg Ala Ser Arg 1060 1065 1070 Lys Ile Phe Asn Asn Leu Leu Asp Leu Val Leu His Ala Gln Ile Arg 1075 1080 1085 Phe Phe Asp Val Thr Pro Val Gly Arg Ile Met Asn Arg Phe Ser Lys 1090 1095 1100 Asp Ile Glu Gly Val Asp Gln Glu Leu Ile Pro Tyr Leu Glu Val Thr 1105 1110 1115 1120 Ile Phe Cys Leu Ile Gln Cys Ala Ser Ile Ile Phe Leu Ile Thr Val 1125 1130 1135 Ile Thr Pro Arg Phe Leu Thr Val Ala Val Ile Val Phe Val Leu Tyr 1140 1145 1150 Phe Phe Val Gly Lys Trp Tyr Leu Thr Ala Ser Arg Glu Leu Lys Arg 1155 1160 1165 Leu Asp Ser Ile Thr Lys Ser Pro Ile Phe Gln His Phe Ser Glu Thr 1170 1175 1180 Leu Val Gly Val Cys Thr Ile Arg Ala Phe Gly Asp Glu Arg Arg Phe 1185 1190 1195 1200 Ile Leu Glu Asn Met Asn Lys Ile Asp Gln Asn Asn Arg Ala Phe Phe 1205 1210 1215 Tyr Leu Ser Val Thr Val Lys Trp Phe Ser Phe Arg Val Asp Met Ile 1220 1225 1230 Gly Ala Phe Ile Val Leu Ala Ser Gly Ser Phe Ile Leu Leu Asn Ile 1235 1240 1245 Ala Asn Ile Asp Ser Gly Leu Ala Gly Ile Ser Leu Thr Tyr Ala Ile 1250 1255 1260 Leu Phe Thr Asp Gly Ala Leu Trp Leu Val Arg Leu Tyr Ser Thr Phe 1265 1270 1275 1280 Glu Met Asn Met Asn Ser Val Glu Arg Leu Lys Glu Tyr Ser Ser Ile 1285 1290 1295 Glu Gln Glu Asn Tyr Leu Gly His Asp Glu Gly Arg Ile Leu Leu Leu 1300 1305 1310 Asn Glu Pro Ser Trp Pro Lys Asp Gly Glu Ile Glu Ile Glu Asn Leu 1315 1320 1325 Ser Leu Arg Tyr Ala Pro Asn Leu Pro Pro Val Ile Arg Asn Val Ser 1330 1335 1340 Phe Lys Val Asp Pro Gln Ser Lys Ile Gly Ile Val Gly Arg Thr Gly 1345 1350 1355 1360 Ala Gly Lys Ser Thr Ile Ile Thr Ala Leu Phe Arg Leu Leu Glu Pro 1365 1370 1375 Ile Thr Gly Cys Ile Lys Ile Asp Gly Gln Asp Ile Ser Lys Ile Asp 1380 1385 1390 Leu Val Thr Leu Arg Arg Ser Ile Thr Ile Ile Pro Gln Asp Pro Ile 1395 1400 1405 Leu Phe Ala Gly Thr Ile Lys Ser Asn Val Asp Pro Tyr Asp Glu Tyr 1410 1415 1420 Asp Glu Lys Lys Ile Phe Lys Ala Leu Ser Gln Val Asn Leu Ile Ser 1425 1430 1435 1440 Ser His Glu Phe Glu Glu Val Leu Asn Ser Glu Glu Arg Phe Asn Ser 1445 1450 1455 Thr His Asn Lys Phe Leu Asn Leu His Thr Glu Ile Ala Glu Gly Gly 1460 1465 1470 Leu Asn Leu Ser Gln Gly Glu Arg Gln Leu Leu Phe Ile Ala Arg Ser 1475 1480 1485 Leu Leu Arg Glu Pro Lys Ile Ile Leu Leu Asp Glu Ala Thr Ser Ser 1490 1495 1500 Ile Asp Tyr Asp Ser Asp His Leu Ile Gln Gly Ile Ile Arg Ser Glu 1505 1510 1515 1520 Phe Asn Lys Ser Thr Ile Leu Thr Ile Ala His Arg Leu Arg Ser Val 1525 1530 1535 Ile Asp Tyr Asp Arg Ile Ile Val Met Asp Ala Gly Glu Val Lys Glu 1540 1545 1550 Tyr Asp Arg Pro Ser Glu Leu Leu Lys Asp Glu Arg Gly Ile Phe Tyr 1555 1560 1565 Ser Met Cys Arg Asp Ser Gly Gly Leu Glu Leu Leu Lys Gln Ile Ala 1570 1575 1580 Lys Gln Ser Ser Lys Met Met Lys 1585 1590 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> YCFa primer <400> 5 actaccgtaa agctcgagaa aatggctggt aat 33 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> YCFb primer <400> 6 cttgcctaag tgacgtgacg tctcctt 27 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RT-YCF1A primer <400> 7 catgagtgcg ttctatccct ctat 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RT-YCF1B primer <400> 8 ccaccttcgg ttagttgggc atct 24 <210> 9 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> forward primer: YHL035Ca <400> 9 cgacgcggcc gcatgggaac ggatcccctt attatc 36 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> backward primer: YHL035Cb <400> 10 cgacgcggcc gccatcatct tacttgattg cttgg 35<110> POSCO Pohang University of Science and Technology <120> Transgenic organism expressing fungal MRP-like ABC transporters <130> DPP2002-2952KR <150> KR10-2001-0063802 <151> 2001-10-16 <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 4548 <212> DNA <213> ycf1 gene <400> 1 atggctggta atcttgtttc atgggcctgc aagctctgta gatctcctga agggtttgga 60 cctatatcct tttacggtga ctttactcaa tgcttcatcg acggtgtgat cctaaatcta 120 tcagcaattt tcatgataac cttcggtatc agagatttag ttaacctttg caagaaaaaa 180 cactctggca tcaaatatag gcggaattgg attattgtct ctaggatggc actagttctg 240 ttggagatag cgtttgtttc acttgcgtct ttaaatattt ctaaagaaga agcggaaaac 300 tttaccattg taagtcaata tgcttctaca atgttatctt tatttgttgc tttagcctta 360 cactggatag aatacgatag atcagttgta gccaatacgg tacttttatt ctattggctt 420 tttgaaacat tcggtaattt tgctaaacta ataaatattc taattagaca cacctacgaa 480 ggcatttggt attccggaca aacgggtttc atactaacgt tattccaagt aataacatgt 540 gccagtatcc tgttacttga agctcttcca aagaagccgc taatgccaca tcaacacata 600 catcaaactt taacaagaag aaaaccaaat ccatacgata gcgcaaacat attttccagg 660 attaccttct cttggatgtc aggtttgatg aaaactggct atgaaaaata cttagtggaa 720 gcagatttat ataaattacc gaggaacttt agtagtgaag aactctctca aaaattggag 780 aaaaactggg aaaatgagtt gaagcaaaaa tcaaatcctt cattatcatg ggctatatgc 840 agaacttttg gatctaaaat gcttttagcc gcattcttta aagcaattca tgatgttcta 900 gcatttactc aaccacaact actaaggatt ttaatcaagt tcgtcacaga ctataacagt 960 gagagacagg atgaccattc ttctcttcaa gggtttgaaa ataaccaccc acaaaaatta 1020 cccattgtaa gagggttttt gattgcgttt gctatgtttc tggtgggctt tactcagaca 1080 tctgtcctgc atcaatattt cctgaatgtc ttcaacacag gcatgtatat taagagcgcc 1140 ctaacggctt taatatatca aaaatcctta gtgctatcta atgaggcttc tggactttcc 1200 tctaccggtg acattgtcaa tctcatgagt gtggatgttc aaaaattaca agatttaaca 1260 caatggctaa atttaatatg gtcagggcct tttcaaatca ttatttgctt atattctctg 1320 tataagttgt tgggaaattc catgtgggtt ggcgtgatta tactagttat tatgatgcca 1380 ttgaactcat ttttgatgag gatacaaaag aagttgcaaa aatcccagat gaagtacaaa 1440 gatgaaagga cccgtgttat aagtgaaata ctaaacaata ttaaatcttt gaagttatat 1500 gcatgggaga agccttatag ggaaaagcta gaagaagtaa gaaataacaa agagttaaaa 1560 aatcttacaa aactaggatg ttatatggct gtgacaagtt ttcagttcaa tatagtacca 1620 ttccttgttt catgttgtac ctttgctgta tttgtttata ctgaggatag agcattgact 1680 actgacttag ttttccctgc tttgactctg ttcaacctgc tctcattccc actaatgatt 1740 attcctatgg ttttaaattc ttttatcgaa gcttctgttt ctattggtag attatttaca 1800 ttctttacca atgaagagct acaaccagat tcggttcagc gtttaccaaa agtaaaaaat 1860 attggcgatg tagccattaa cattggagat gatgctacct ttttatggca acggaaaccg 1920 gaatacaaag tagccttaaa gaatattaat ttccaagcta aaaaaggaaa tttgacctgt 1980 attgttggta aagttggcag tggtaaaaca gctctattgt catgcatgtt aggtgatcta 2040 ttcagggtta aaggtttcgc caccgttcat ggttctgttg cttatgtttc acaagttcca 2100 tggataatga atggtactgt aaaggaaaac attttatttg ggcatagata cgacgcggaa 2160 ttttacgaaa aaacgatcaa ggcctgtgcg ttaactattg atcttgcaat tttgatggat 2220 ggagataaga cattagttgg cgagaaaggg atctccttat ctggaggaca aaaagctcgt 2280 ttgtctttag caagagcagt ttatgcgaga gctgacactt atttacttga tgatcctttg 2340 gcagctgttg atgaacacgt tgccaggcac ttgatcgaac atgtgttggg tccaaatggt 2400 ttattacata caaaaacgaa ggtattagcc actaataagg tgagcgcgtt atccatcgca 2460 gattctattg cattattaga taatggagaa atcacacagc agggtacata tgatgagatt 2520 acgaaggacg ctgattcgcc attatggaaa ttgctcaaca actatggtaa aaaaaataac 2580 ggtaagtcga atgaattcgg tgactcctct gaaagctcag ttcgagaaag tagtatacct 2640 gtagaaggag agctggaaca actgcagaaa ttaaatgatt tggattttgg caactctgac 2700 gccataagtt taaggagggc cagtgatgca actttgggaa gcatcgattt tggtgacgat 2760 gaaaatattg ctaaaagaga gcatcgtgaa cagggaaaag taaagtggaa catttaccta 2820 gagtacgcta aagcttgcaa cccgaaaagc gtttgtgtat tcatattgtt tattgttata 2880 tcgatgttcc tctctgttat gggtaacgtt tggttgaaac attggtctga agttaatagc 2940 cgctatggat ctaatccaaa tgccgcgcgt tacttggcca tttattttgc acttggtatt 3000 ggttcagcac tggcaacatt aatccagaca atcgttctct gggttttttg taccattcat 3060 gcctccaaat atttacacaa cttgatgaca aactctgtgt tgagagcccc aatgacgttt 3120 tttgaaacaa caccaatcgg tagaattcta aacagattct caaatgacat atacaaagtg 3180 gatgctttat taggaagaac attttctcag tttttcgtca atgcagtgaa agtcacattc 3240 actattacgg ttatctgtgc gacgacatgg caatttatct tcattatcat tccactaagt 3300 gtgttttaca tctactacca gcagtattac ctgagaacat caagggagtt gcgtcgttta 3360 gactctatta ctaggtctcc aatctactct catttccaag agactttggg tggccttgca 3420 acggttagag gttattctca acagaaaagg ttttcccaca ttaatcaatg ccgcattgat 3480 aataacatga gtgcgttcta tccctctatc aatgctaacc gttggctagc atataggttg 3540 gaacttattg gttcaattat cattctaggt gctgcaactt tatccgtttt tagactaaaa 3600 caaggcacat taacggcagg tatggtgggt ttatcattaa gctatgcttt acaaatcact 3660 caaacgttaa attggattgt tagaatgact gtggaagttg aaacgaatat tgtttcagtg 3720 gaaagaataa aggaatatgc tgatttgaag agcgaggcac ctttaatagt tgaaggccac 3780 agaccaccca aagaatggcc gagccagggt gatataaagt ttaataatta ttccactcgt 3840 tataggccgg agcttgatct tgttctgaag cacattaata tacacattaa accaaatgaa 3900 aaagttggta tcgtgggtag aacgggtgcg ggaaaatcct cattaacgct agcattattc 3960 aggatgattg aggctagcga gggaaacatc gtaatcgaca acattgccat caacgagatt 4020 gggttatatg atttgagaca taaattgtca atcatacctc aggattctca agtttttgag 4080 ggcactgttc gtgagaacat tgatcccatt aaccaataca ctgatgaagc tatttggagg 4140 gcattggaac tttctcattt gaaagaacac gtgctatcaa tgagcaatga cggattagat 4200 gcccaactaa ccgaaggtgg tggcaactta agtgttggac aaagacaatt attatgtctt 4260 gcaagagcaa tgttggttcc atcaaagatt ttggtgcttg atgaagccac ggccgcagtc 4320 gacgtggaga cagataaagt cgtccaagag acgattcgta ctgctttcaa ggacagaact 4380 atcttgacca tcgcgcatag actgaacacg ataatggaca gtgatagaat catagtgttg 4440 gacaatggta aagtagccga gtttgactct ccgggccagt tattaagtga taacaaatca 4500 ttgttctatt cactgtgcat ggaggctggt ttggtcaatg aaaattaa 4548 <210> 2 <211> 1515 <212> PRT <213> Ycf1 protein <400> 2 Met Ala Gly Asn Leu Val Ser Trp Ala Cys Lys Leu Cys Arg Ser Pro 1 5 10 15 Glu Gly Phe Gly Pro Ile Ser Phe Tyr Gly Asp Phe Thr Gln Cys Phe 20 25 30 Ile Asp Gly Val Ile Leu Asn Leu Ser Ala Ile Phe Met Ile Thr Phe 35 40 45 Gly Ile Arg Asp Leu Val Asn Leu Cys Lys Lys Lys His Ser Gly Ile 50 55 60 Lys Tyr Arg Arg Asn Trp Ile Ile Val Ser Arg Met Ala Leu Val Leu 65 70 75 80 Leu Glu Ile Ala Phe Val Ser Leu Ala Ser Leu Asn Ile Ser Lys Glu 85 90 95 Glu Ala Glu Asn Phe Thr Ile Val Ser Gln Tyr Ala Ser Thr Met Leu 100 105 110 Ser Leu Phe Val Ala Leu Ala Leu His Trp Ile Glu Tyr Asp Arg Ser 115 120 125 Val Val Ala Asn Thr Val Leu Leu Phe Tyr Trp Leu Phe Glu Thr Phe 130 135 140 Gly Asn Phe Ala Lys Leu Ile Asn Ile Leu Ile Arg His Thr Tyr Glu 145 150 155 160 Gly Ile Trp Tyr Ser Gly Gln Thr Gly Phe Ile Leu Thr Leu Phe Gln 165 170 175 Val Ile Thr Cys Ala Ser Ile Leu Leu Leu Glu Ala Leu Pro Lys Lys 180 185 190 Pro Leu Met Pro His Gln His Ile His Gln Thr Leu Thr Arg Arg Lys 195 200 205 Pro Asn Pro Tyr Asp Ser Ala Asn Ile Phe Ser Arg Ile Thr Phe Ser 210 215 220 Trp Met Ser Gly Leu Met Lys Thr Gly Tyr Glu Lys Tyr Leu Val Glu 225 230 235 240 Ala Asp Leu Tyr Lys Leu Pro Arg Asn Phe Ser Ser Glu Glu Leu Ser 245 250 255 Gln Lys Leu Glu Lys Asn Trp Glu Asn Glu Leu Lys Gln Lys Ser Asn 260 265 270 Pro Ser Leu Ser Trp Ala Ile Cys Arg Thr Phe Gly Ser Lys Met Leu 275 280 285 Leu Ala Ala Phe Phe Lys Ala Ile His Asp Val Leu Ala Phe Thr Gln 290 295 300 Pro Gln Leu Leu Arg Ile Leu Ile Lys Phe Val Thr Asp Tyr Asn Ser 305 310 315 320 Glu Arg Gln Asp Asp His Ser Ser Leu Gln Gly Phe Glu Asn Asn His 325 330 335 Pro Gln Lys Leu Pro Ile Val Arg Gly Phe Leu Ile Ala Phe Ala Met 340 345 350 Phe Leu Val Gly Phe Thr Gln Thr Ser Val Leu His Gln Tyr Phe Leu 355 360 365 Asn Val Phe Asn Thr Gly Met Tyr Ile Lys Ser Ala Leu Thr Ala Leu 370 375 380 Ile Tyr Gln Lys Ser Leu Val Leu Ser Asn Glu Ala Ser Gly Leu Ser 385 390 395 400 Ser Thr Gly Asp Ile Val Asn Leu Met Ser Val Asp Val Gln Lys Leu 405 410 415 Gln Asp Leu Thr Gln Trp Leu Asn Leu Ile Trp Ser Gly Pro Phe Gln 420 425 430 Ile Ile Ile Cys Leu Tyr Ser Leu Tyr Lys Leu Leu Gly Asn Ser Met 435 440 445 Trp Val Gly Val Ile Ile Leu Val Ile Met Met Pro Leu Asn Ser Phe 450 455 460 Leu Met Arg Ile Gln Lys Lys Leu Gent Lys Ser Gln Met Lys Tyr Lys 465 470 475 480 Asp Glu Arg Thr Arg Val Ile Ser Glu Ile Leu Asn Asn Ile Lys Ser 485 490 495 Leu Lys Leu Tyr Ala Trp Glu Lys Pro Tyr Arg Glu Lys Leu Glu Glu 500 505 510 Val Arg Asn Asn Lys Glu Leu Lys Asn Leu Thr Lys Leu Gly Cys Tyr 515 520 525 Met Ala Val Thr Ser Phe Gln Phe Asn Ile Val Pro Phe Leu Val Ser 530 535 540 Cys Cys Thr Phe Ala Val Phe Val Tyr Thr Glu Asp Arg Ala Leu Thr 545 550 555 560 Thr Asp Leu Val Phe Pro Ala Leu Thr Leu Phe Asn Leu Leu Ser Phe 565 570 575 Pro Leu Met Ile Ile Pro Met Val Leu Asn Ser Phe Ile Glu Ala Ser 580 585 590 Val Ser Ile Gly Arg Leu Phe Thr Phe Phe Thr Asn Glu Glu Leu Gln 595 600 605 Pro Asp Ser Val Gln Arg Leu Pro Lys Val Lys Asn Ile Gly Asp Val 610 615 620 Ala Ile Asn Ile Gly Asp Asp Ala Thr Phe Leu Trp Gln Arg Lys Pro 625 630 635 640 Glu Tyr Lys Val Ala Leu Lys Asn Ile Asn Phe Gln Ala Lys Lys Gly 645 650 655 Asn Leu Thr Cys Ile Val Gly Lys Val Gly Ser Gly Lys Thr Ala Leu 660 665 670 Leu Ser Cys Met Leu Gly Asp Leu Phe Arg Val Lys Gly Phe Ala Thr 675 680 685 Val His Gly Ser Val Ala Tyr Val Ser Gln Val Pro Trp Ile Met Asn 690 695 700 Gly Thr Val Lys Glu Asn Ile Leu Phe Gly His Arg Tyr Asp Ala Glu 705 710 715 720 Phe Tyr Glu Lys Thr Ile Lys Ala Cys Ala Leu Thr Ile Asp Leu Ala 725 730 735 Ile Leu Met Asp Gly Asp Lys Thr Leu Val Gly Glu Lys Gly Ile Ser 740 745 750 Leu Ser Gly Gly Gln Lys Ala Arg Leu Ser Leu Ala Arg Ala Val Tyr 755 760 765 Ala Arg Ala Asp Thr Tyr Leu Leu Asp Asp Pro Leu Ala Ala Val Asp 770 775 780 Glu His Val Ala Arg His Leu Ile Glu His Val Leu Gly Pro Asn Gly 785 790 795 800 Leu Leu His Thr Lys Thr Lys Val Leu Ala Thr Asn Lys Val Ser Ala 805 810 815 Leu Ser Ile Ala Asp Ser Ile Ala Leu Leu Asp Asn Gly Glu Ile Thr 820 825 830 Gln Gln Gly Thr Tyr Asp Glu Ile Thr Lys Asp Ala Asp Ser Pro Leu 835 840 845 Trp Lys Leu Leu Asn Asn Tyr Gly Lys Lys Asn Asn Gly Lys Ser Asn 850 855 860 Glu Phe Gly Asp Ser Ser Glu Ser Ser Val Arg Glu Ser Ser Ile Pro 865 870 875 880 Val Glu Gly Glu Leu Glu Gln Leu Gln Lys Leu Asn Asp Leu Asp Phe 885 890 895 Gly Asn Ser Asp Ala Ile Ser Leu Arg Arg Ala Ser Asp Ala Thr Leu 900 905 910 Gly Ser Ile Asp Phe Gly Asp Asp Glu Asn Ile Ala Lys Arg Glu His 915 920 925 Arg Glu Gln Gly Lys Val Lys Trp Asn Ile Tyr Leu Glu Tyr Ala Lys 930 935 940 Ala Cys Asn Pro Lys Ser Val Cys Val Phe Ile Leu Phe Ile Val Ile 945 950 955 960 Ser Met Phe Leu Ser Val Met Gly Asn Val Trp Leu Lys His Trp Ser 965 970 975 Glu Val Asn Ser Arg Tyr Gly Ser Asn Pro Asn Ala Ala Arg Tyr Leu 980 985 990 Ala Ile Tyr Phe Ala Leu Gly Ile Gly Ser Ala Leu Ala Thr Leu Ile 995 1000 1005 Gln Thr Ile Val Leu Trp Val Phe Cys Thr Ile His Ala Ser Lys Tyr 1010 1015 1020 Leu His Asn Leu Met Thr Asn Ser Val Leu Arg Ala Pro Met Thr Phe 1025 1030 1035 1040 Phe Glu Thr Thr Pro Ile Gly Arg Ile Leu Asn Arg Phe Ser Asn Asp 1045 1050 1055 Ile Tyr Lys Val Asp Ala Leu Leu Gly Arg Thr Phe Ser Gln Phe Phe 1060 1065 1070 Val Asn Ala Val Lys Val Thr Phe Thr Ile Thr Val Ile Cys Ala Thr 1075 1080 1085 Thr Trp Gln Phe Ile Phe Ile Ile Ile Pro Leu Ser Val Phe Tyr Ile 1090 1095 1100 Tyr Tyr Gln Gln Tyr Tyr Leu Arg Thr Ser Arg Glu Leu Arg Arg Leu 1105 1110 1115 1120 Asp Ser Ile Thr Arg Ser Pro Ile Tyr Ser His Phe Gln Glu Thr Leu 1125 1130 1135 Gly Gly Leu Ala Thr Val Arg Gly Tyr Ser Gln Gln Lys Arg Phe Ser 1140 1145 1150 His Ile Asn Gln Cys Arg Ile Asp Asn Asn Met Ser Ala Phe Tyr Pro 1155 1160 1165 Ser Ile Asn Ala Asn Arg Trp Leu Ala Tyr Arg Leu Glu Leu Ile Gly 1170 1175 1180 Ser Ile Ile Ile Leu Gly Ala Ala Thr Leu Ser Val Phe Arg Leu Lys 1185 1190 1195 1200 Gln Gly Thr Leu Thr Ala Gly Met Val Gly Leu Ser Leu Ser Tyr Ala 1205 1210 1215 Leu Gln Ile Thr Gln Thr Leu Asn Trp Ile Val Arg Met Thr Val Glu 1220 1225 1230 Val Glu Thr Asn Ile Val Ser Val Glu Arg Ile Lys Glu Tyr Ala Asp 1235 1240 1245 Leu Lys Ser Glu Ala Pro Leu Ile Val Glu Gly His Arg Pro Pro Lys 1250 1255 1260 Glu Trp Pro Ser Gln Gly Asp Ile Lys Phe Asn Asn Tyr Ser Thr Arg 1265 1270 1275 1280 Tyr Arg Pro Glu Leu Asp Leu Val Leu Lys His Ile Asn Ile His Ile 1285 1290 1295 Lys Pro Asn Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ala Gly Lys 1300 1305 1310 Ser Ser Leu Thr Leu Ala Leu Phe Arg Met Ile Glu Ala Ser Glu Gly 1315 1320 1325 Asn Ile Val Ile Asp Asn Ile Ala Ile Asn Glu Ile Gly Leu Tyr Asp 1330 1335 1340 Leu Arg His Lys Leu Ser Ile Ile Pro Gln Asp Ser Gln Val Phe Glu 1345 1350 1355 1360 Gly Thr Val Arg Glu Asn Ile Asp Pro Ile Asn Gln Tyr Thr Asp Glu 1365 1370 1375 Ala Ile Trp Arg Ala Leu Glu Leu Ser His Leu Lys Glu His Val Leu 1380 1385 1390 Ser Met Ser Asn Asp Gly Leu Asp Ala Gln Leu Thr Glu Gly Gly Gly 1395 1400 1405 Asn Leu Ser Val Gly Gln Arg Gln Leu Leu Cys Leu Ala Arg Ala Met 1410 1415 1420 Leu Val Pro Ser Lys Ile Leu Val Leu Asp Glu Ala Thr Ala Ala Val 1425 1430 1435 1440 Asp Val Glu Thr Asp Lys Val Val Gln Glu Thr Ile Arg Thr Ala Phe 1445 1450 1455 Lys Asp Arg Thr Ile Leu Thr Ile Ala His Arg Leu Asn Thr Ile Met 1460 1465 1470 Asp Ser Asp Arg Ile Ile Val Leu Asp Asn Gly Lys Val Ala Glu Phe 1475 1480 1485 Asp Ser Pro Gly Gln Leu Leu Ser Asp Asn Lys Ser Leu Phe Tyr Ser 1490 1495 1500 Leu Cys Met Glu Ala Gly Leu Val Asn Glu Asn 1505 1510 1515 <210> 3 <211> 4776 <212> DNA <213> Artificial Sequence <220> <223> yhl035c gene <400> 3 atgggaacgg atccccttat tatccgaaat aatggttcat tttgggaagt tgatgatttt 60 actcgtttag gaagaactca gctattgagc tactatttac cattggctat catagcctca 120 attggcattt tcgcactttg tcgcagtgga ttatctcgtt atgtaagatc tgccgagtgc 180 gatttagtga acgaatatct atttggcgca caagaagaga gaaaagaaga taatagtata 240 gaaagacttc tacggaactc aaatacccaa gccaattacg tcaacgtcaa aaagcaagga 300 aggattttga aacttagaca ttttgatata acaactatag atgtcaagca aatcgatgct 360 aaaaatcatg gtggactaac gtttagtaga ccgtctacta gtgaccactt aagaaaatca 420 tctgaaattg tattaatgtc tttacaaata attggccttt cctttttaag agtaacaaaa 480 atcaatattg aattaacgaa cagagatgtt acaactttac tattattttg gttaatacta 540 ctttccctaa gtatcttaag agtttacaag cgttcaacga atctttgggc catctgtttt 600 actgcccata caactatttg gatttcaacc tggattccaa ttcgttcggt ctatattggt 660 aatatcgatg atgtaccctc acagatattt tacatctttg aattcgtaat tacttcaacc 720 ttacagccaa taaagctcac ttcaccgatt aaagacaact catccatcat ctacgttaga 780 gacgaccata cgtctccttc gagggaacac atatcctcaa ttttaagttg cattacttgg 840 agctggatta ccaattttat atgggaggcc caaaagaaca ctattaagtt aaaggatatt 900 tggggcttat caatggaaga ctatagcatt ttcattctaa aagggtttac caggagaaac 960 aagcacatta ataatttgac gctagcactg tttgaatctt tcaaaacata tttactcata 1020 ggaatgttat gggttctggt gaacagtatt gtaaaccttc ttcccacaat tttaatgaaa 1080 agatttttag aaattgtgga taacccaaac cgttcctcat catgcatgaa tttggcgtgg 1140 ctttatatta ttggtatgtt catttgtaga ttgacattag caatttgtaa ttcccaaggt 1200 caatttgttt ctgataagat ttgtttaaga ataagagcca tactcatagg agaaatttat 1260 gcaaaaggct tacgtaggag gctgtttaca tctccaaaaa ccagctctga ttcagatagt 1320 atctccgcaa accttggtac cataattaat ctcatttcta ttgactcatt taaggtatcg 1380 gaactagcaa actaccttta tgtgacagtt caggcagtaa ttatgataat agttgttgta 1440 ggactacttt tcaacttttt aggtgtttca gcttttgcag gaatttcaat tatcttagtg 1500 atgttcccat tgaatttctt gttagcgaat ttgttaggta agtttcaaaa gcaaacactg 1560 aaatgtactg accaaagaat ctcaaaattg aacgagtgct tacagaacat aagaattgtc 1620 aaatattttg cttgggaaag gaatattata aatgaaatca aatcaataag gcaaaaggaa 1680 ttaagatcct tattaaaaaa atctttggtg tggtccgtaa cttcttttct ttggttcgtg 1740 acaccgacct tggtgacagg tgtcactttc gccatctgta catttgttca acatgaagat 1800 ttgaatgccc cgcttgcttt cactactttg tcactcttca ctttgttaaa gacacccctg 1860 gatcaattat caaatatgct aagtttcata aatcaatcaa aagtctctct aaaaagaata 1920 agcgattttt taaggatgga cgatacagaa aaatataatc aactaaccat atctccagac 1980 aaaaataaaa ttgaatttaa aaatgcgact ttaacctgga atgaaaatga cagcgatatg 2040 aatgcattca aattatgtgg tttgaatatt aaatttcaaa ttggtaagtt aaatttgatt 2100 ttgggttcta caggatctgg taaaagtgca ttgctgctgg gtttactggg tgaactaaat 2160 ctaattagtg gctctatcat tgttccgagc ttagaaccaa agcatgattt aattcccgac 2220 tgcgaaggtt taaccaattc cttcgcatat tgttcacaaa gtgcgtggct attaaatgac 2280 acggtaaaaa acaatattat ctttgataac ttctataacg aggataggta caacaaagta 2340 attgatgcat gtgggctgaa aagagacctg gagattttac cagcaggtga cctaacagaa 2400 attggtgaaa agggtataac tttatcagga gggcagaaac agagaatttc cttggcgaga 2460 gctgtttatt cgagtgctaa gcatgtctta ctagatgatt gtttgagcgc tgtcgattca 2520 catactgctg tatggatcta tgaaaattgc atcacaggtc cactaatgaa aaatagaacc 2580 tgcattttag ttacgcacaa tgtttcatta acacttagaa atgcccattt cgcgattgtg 2640 ttggaaaatg gcaaagtgaa gaatcaagga actattacag aattacaaag caaagggctt 2700 tttaaggaaa aatatgttca actttcttct cgagatagca ttaatgaaaa gaacgctaat 2760 agattaaaag ctcccagaaa aaatgactct cagaaaatcg aacctgtcac cgagaacata 2820 aattttgatg caaattttgt caatgatggc cagctaatag aagaggaaga aaaatcaaac 2880 ggtgccataa gccccgatgt ttataaatgg tacctgaaat tttttggagg cttcaaagct 2940 ttaacagccc tgttcgctct ttatatcaca gctcaaattt tgttcatcag tcagtcttgg 3000 tggatacgac attgggtcaa cgataccaat gtacgaataa atgctccagg ttttgcgatg 3060 gacacgctgc cattaaaagg gatgaccgac tcttcgaaaa ataaacataa tgcattttat 3120 tacttaaccg tatattttct tattggtatc attcaggcaa tgctaggtgg ttttaaaaca 3180 atgatgacgt ttttatccgg tatgcgagcc tccagaaaga tctttaataa tctgctagat 3240 ctagttctac atgcccaaat acgatttttc gacgtgacgc cggttggtag aatcatgaat 3300 cgcttttcaa aggacatcga aggtgttgat caagaattga ttccatactt agaagtaact 3360 atattttgcc taattcaatg cgcatcaatt atatttctca ttaccgtaat aactcctcgc 3420 tttttgacag tcgccgttat cgtttttgtt ttatatttct ttgtggggaa atggtactta 3480 acggcaagta gagaattgaa aaggttagat tcaataacca aatcacccat ttttcaacat 3540 ttctcagaga ccttggtagg cgtttgcaca attcgtgcat ttggcgacga gaggagattc 3600 attttagaaa atatgaacaa aattgaccaa aataacagag cattctttta tttatcagtt 3660 actgtcaaat ggttttcttt tagagtcgac atgattggcg cattcattgt tttagcatca 3720 ggttctttta ttctgctcaa tattgcaaat attgactcgg gtcttgccgg catttctttg 3780 acatatgcca ttttgtttac agatggtgct ttatggttag ttagactgta ctcaacattt 3840 gaaatgaaca tgaactctgt tgaaagacta aaagaatatt ctagcattga acaagagaac 3900 tatcttggcc atgatgaagg ccgcattcta cttctaaacg aaccatcgtg gccaaaagat 3960 ggagaaattg aaattgaaaa cttatcttta cgttacgcgc caaatttgcc tcctgtcata 4020 agaaatgtta gtttcaaagt ggatcctcaa agtaagattg ggattgtcgg aagaactggc 4080 gcaggcaaat ctaccataat aacggcatta ttcagattac tagaaccaat aaccggatgt 4140 atcaaaatag atgggcagga tataagtaaa attgatctcg ttacattacg tcgttccatt 4200 actatcatcc ctcaggaccc tattctattt gcaggtacaa tcaaaagtaa tgttgatcca 4260 tatgatgaat atgatgaaaa aaaaatattc aaagcacttt cacaagtaaa tctaatttct 4320 tcacatgaat ttgaagaagt gcttaactcg gaggaacgct ttaacagcac tcataataaa 4380 tttttaaatc ttcacacaga aatagctgag ggcggcttaa atctgtccca aggtgaaagg 4440 caattgcttt ttattgcacg atcattgtta cgcgagccaa agataatact tttggacgag 4500 gctacttcct ctattgatta cgattctgac catttaattc agggtattat aagaagtgag 4560 tttaataaaa gcacaattct tactattgca catcgtttga gatctgttat cgattacgac 4620 aggataattg tgatggatgc cggtgaggta aaagaatatg atcgccctag tgaactgttg 4680 aaagatgaac gcggtatatt ttatagtatg tgtcgtgaca gtgggggcct agagcttttg 4740 aagcaaatag ccaagcaatc aagtaagatg atgaaa 4776 <210> 4 <211> 1592 <212> PRT <213> Artificial Sequence <220> <223> yhl035c protein <400> 4 Met Gly Thr Asp Pro Leu Ile Ile Arg Asn Asn Gly Ser Phe Trp Glu 1 5 10 15 Val Asp Asp Phe Thr Arg Leu Gly Arg Thr Gln Leu Leu Ser Tyr Tyr 20 25 30 Leu Pro Leu Ala Ile Ile Ala Ser Ile Gly Ile Phe Ala Leu Cys Arg 35 40 45 Ser Gly Leu Ser Arg Tyr Val Arg Ser Ala Glu Cys Asp Leu Val Asn 50 55 60 Glu Tyr Leu Phe Gly Ala Gln Glu Glu Arg Lys Glu Asp Asn Ser Ile 65 70 75 80 Glu Arg Leu Leu Arg Asn Ser Asn Thr Gln Ala Asn Tyr Val Asn Val 85 90 95 Lys Lys Gln Gly Arg Ile Leu Lys Leu Arg His Phe Asp Ile Thr Thr 100 105 110 Ile Asp Val Lys Gln Ile Asp Ala Lys Asn His Gly Gly Leu Thr Phe 115 120 125 Ser Arg Pro Ser Thr Ser Asp His Leu Arg Lys Ser Ser Glu Ile Val 130 135 140 Leu Met Ser Leu Gln Ile Gly Leu Ser Phe Leu Arg Val Thr Lys 145 150 155 160 Ile Asn Ile Glu Leu Thr Asn Arg Asp Val Thr Thr Leu Leu Leu Phe 165 170 175 Trp Leu Ile Leu Leu Ser Leu Ser Ile Leu Arg Val Tyr Lys Arg Ser 180 185 190 Thr Asn Leu Trp Ala Ile Cys Phe Thr Ala His Thr Thr Ile Trp Ile 195 200 205 Ser Thr Trp Ile Pro Ile Arg Ser Val Tyr Ile Gly Asn Ile Asp Asp 210 215 220 Val Pro Ser Gln Ile Phe Tyr Ile Phe Glu Phe Val Ile Thr Ser Thr 225 230 235 240 Leu Gln Pro Ile Lys Leu Thr Ser Pro Ile Lys Asp Asn Ser Ser Ile 245 250 255 Ile Tyr Val Arg Asp Asp His Thr Ser Pro Ser Arg Glu His Ile Ser 260 265 270 Ser Ile Leu Ser Cys Ile Thr Trp Ser Trp Ile Thr Asn Phe Ile Trp 275 280 285 Glu Ala Gln Lys Asn Thr Ile Lys Leu Lys Asp Ile Trp Gly Leu Ser 290 295 300 Met Glu Asp Tyr Ser Ile Phe Ile Leu Lys Gly Phe Thr Arg Arg Asn 305 310 315 320 Lys His Ile Asn Asn Leu Thr Leu Ala Leu Phe Glu Ser Phe Lys Thr 325 330 335 Tyr Leu Leu Ile Gly Met Leu Trp Val Leu Val Asn Ser Ile Val Asn 340 345 350 Leu Leu Pro Thr Ile Leu Met Lys Arg Phe Leu Glu Ile Val Asp Asn 355 360 365 Pro Asn Arg Ser Ser Ser Cys Met Asn Leu Ala Trp Leu Tyr Ile Ile 370 375 380 Gly Met Phe Ile Cys Arg Leu Thr Leu Ala Ile Cys Asn Ser Gln Gly 385 390 395 400 Gln Phe Val Ser Asp Lys Ile Cys Leu Arg Ile Arg Ala Ile Leu Ile 405 410 415 Gly Glu Ile Tyr Ala Lys Gly Leu Arg Arg Arg Leu Phe Thr Ser Pro 420 425 430 Lys Thr Ser Ser Asp Ser Asp Ser Ile Ser Ala Asn Leu Gly Thr Ile 435 440 445 Ile Asn Leu Ile Ser Ile Asp Ser Phe Lys Val Ser Glu Leu Ala Asn 450 455 460 Tyr Leu Tyr Val Thr Val Gln Ala Val Ile Met Ile Ile Val Val Val 465 470 475 480 Gly Leu Leu Phe Asn Phe Leu Gly Val Ser Ala Phe Ala Gly Ile Ser 485 490 495 Ile Ile Leu Val Met Phe Pro Leu Asn Phe Leu Leu Ala Asn Leu Leu 500 505 510 Gly Lys Phe Gln Lys Gln Thr Leu Lys Cys Thr Asp Gln Arg Ile Ser 515 520 525 Lys Leu Asn Glu Cys Leu Gln Asn Ile Arg Ile Val Lys Tyr Phe Ala 530 535 540 Trp Glu Arg Asn Ile Ile Asn Glu Ile Lys Ser Ile Arg Gln Lys Glu 545 550 555 560 Leu Arg Ser Leu Leu Lys Lys Ser Leu Val Trp Ser Val Thr Ser Phe 565 570 575 Leu Trp Phe Val Thr Pro Thr Leu Val Thr Gly Val Thr Phe Ala Ile 580 585 590 Cys Thr Phe Val Gln His Glu Asp Leu Asn Ala Pro Leu Ala Phe Thr 595 600 605 Thr Leu Ser Leu Phe Thr Leu Leu Lys Thr Pro Leu Asp Gln Leu Ser 610 615 620 Asn Met Leu Ser Phe Ile Asn Gln Ser Lys Val Ser Leu Lys Arg Ile 625 630 635 640 Ser Asp Phe Leu Arg Met Asp Asp Thr Glu Lys Tyr Asn Gln Leu Thr 645 650 655 Ile Ser Pro Asp Lys Asn Lys Ile Glu Phe Lys Asn Ala Thr Leu Thr 660 665 670 Trp Asn Glu Asn Asp Ser Asp Met Asn Ala Phe Lys Leu Cys Gly Leu 675 680 685 Asn Ile Lys Phe Gln Ile Gly Lys Leu Asn Leu Ile Leu Gly Ser Thr 690 695 700 Gly Ser Gly Lys Ser Ala Leu Leu Leu Gly Leu Leu Gly Glu Leu Asn 705 710 715 720 Leu Ile Ser Gly Ser Ile Ile Val Pro Ser Leu Glu Pro Lys His Asp 725 730 735 Leu Ile Pro Asp Cys Glu Gly Leu Thr Asn Ser Phe Ala Tyr Cys Ser 740 745 750 Gln Ser Ala Trp Leu Leu Asn Asp Thr Val Lys Asn Asn Ile Phe 755 760 765 Asp Asn Phe Tyr Asn Glu Asp Arg Tyr Asn Lys Val Ile Asp Ala Cys 770 775 780 Gly Leu Lys Arg Asp Leu Glu Ile Leu Pro Ala Gly Asp Leu Thr Glu 785 790 795 800 Ile Gly Glu Lys Gly Ile Thr Leu Ser Gly Gly Gln Lys Gln Arg Ile 805 810 815 Ser Leu Ala Arg Ala Val Tyr Ser Ser Ala Lys His Val Leu Leu Asp 820 825 830 Asp Cys Leu Ser Ala Val Asp Ser His Thr Ala Val Trp Ile Tyr Glu 835 840 845 Asn Cys Ile Thr Gly Pro Leu Met Lys Asn Arg Thr Cys Ile Leu Val 850 855 860 Thr His Asn Val Ser Leu Thr Leu Arg Asn Ala His Phe Ala Ile Val 865 870 875 880 Leu Glu Asn Gly Lys Val Lys Asn Gln Gly Thr Ile Thr Glu Leu Gln 885 890 895 Ser Lys Gly Leu Phe Lys Glu Lys Tyr Val Gln Leu Ser Ser Arg Asp 900 905 910 Ser Ile Asn Glu Lys Asn Ala Asn Arg Leu Lys Ala Pro Arg Lys Asn 915 920 925 Asp Ser Gln Lys Ile Glu Pro Val Thr Glu Asn Ile Asn Phe Asp Ala 930 935 940 Asn Phe Val Asn Asp Gly Gln Leu Ile Glu Glu Glu Glu Lys Ser Asn 945 950 955 960 Gly Ala Ile Ser Pro Asp Val Tyr Lys Trp Tyr Leu Lys Phe Phe Gly 965 970 975 Gly Phe Lys Ala Leu Thr Ala Leu Phe Ala Leu Tyr Ile Thr Ala Gln 980 985 990 Ile Leu Phe Ile Ser Gln Ser Trp Trp Ile Arg His Trp Val Asn Asp 995 1000 1005 Thr Asn Val Arg Ile Asn Ala Pro Gly Phe Ala Met Asp Thr Leu Pro 1010 1015 1020 Leu Lys Gly Met Thr Asp Ser Ser Lys Asn Lys His Asn Ala Phe Tyr 1025 1030 1035 1040 Tyr Leu Thr Val Tyr Phe Leu Ile Gly Ile Ile Gln Ala Met Leu Gly 1045 1050 1055 Gly Phe Lys Thr Met Met Thr Phe Leu Ser Gly Met Arg Ala Ser Arg 1060 1065 1070 Lys Ile Phe Asn Asn Leu Leu Asp Leu Val Leu His Ala Gln Ile Arg 1075 1080 1085 Phe Phe Asp Val Thr Pro Val Gly Arg Ile Met Asn Arg Phe Ser Lys 1090 1095 1100 Asp Ile Glu Gly Val Asp Gln Glu Leu Ile Pro Tyr Leu Glu Val Thr 1105 1110 1115 1120 Ile Phe Cys Leu Ile Gln Cys Ala Ser Ile Ile Phe Leu Ile Thr Val 1125 1130 1135 Ile Thr Pro Arg Phe Leu Thr Val Ala Val Ile Val Phe Val Leu Tyr 1140 1145 1150 Phe Phe Val Gly Lys Trp Tyr Leu Thr Ala Ser Arg Glu Leu Lys Arg 1155 1160 1165 Leu Asp Ser Ile Thr Lys Ser Pro Ile Phe Gln His Phe Ser Glu Thr 1170 1175 1180 Leu Val Gly Val Cys Thr Ile Arg Ala Phe Gly Asp Glu Arg Arg Phe 1185 1190 1195 1200 Ile Leu Glu Asn Met Asn Lys Ile Asp Gln Asn Asn Arg Ala Phe Phe 1205 1210 1215 Tyr Leu Ser Val Thr Val Lys Trp Phe Ser Phe Arg Val Asp Met Ile 1220 1225 1230 Gly Ala Phe Ile Val Leu Ala Ser Gly Ser Phe Ile Leu Leu Asn Ile 1235 1240 1245 Ala Asn Ile Asp Ser Gly Leu Ala Gly Ile Ser Leu Thr Tyr Ala Ile 1250 1255 1260 Leu Phe Thr Asp Gly Ala Leu Trp Leu Val Arg Leu Tyr Ser Thr Phe 1265 1270 1275 1280 Glu Met Asn Met Asn Ser Val Glu Arg Leu Lys Glu Tyr Ser Ser Ile 1285 1290 1295 Glu Gln Glu Asn Tyr Leu Gly His Asp Glu Gly Arg Ile Leu Leu Leu 1300 1305 1310 Asn Glu Pro Ser Trp Pro Lys Asp Gly Glu Ile Glu Ile Glu Asn Leu 1315 1320 1325 Ser Leu Arg Tyr Ala Pro Asn Leu Pro Pro Val Ile Arg Asn Val Ser 1330 1335 1340 Phe Lys Val Asp Pro Gln Ser Lys Ile Gly Ile Val Gly Arg Thr Gly 1345 1350 1355 1360 Ala Gly Lys Ser Thr Ile Ile Thr Ala Leu Phe Arg Leu Leu Glu Pro 1365 1370 1375 Ile Thr Gly Cys Ile Lys Ile Asp Gly Gln Asp Ile Ser Lys Ile Asp 1380 1385 1390 Leu Val Thr Leu Arg Arg Ser Ile Thr Ile Ile Pro Gln Asp Pro Ile 1395 1400 1405 Leu Phe Ala Gly Thr Ile Lys Ser Asn Val Asp Pro Tyr Asp Glu Tyr 1410 1415 1420 Asp Glu Lys Lys Ile Phe Lys Ala Leu Ser Gln Val Asn Leu Ile Ser 1425 1430 1435 1440 Ser His Glu Phe Glu Glu Val Leu Asn Ser Glu Glu Arg Phe Asn Ser 1445 1450 1455 Thr His Asn Lys Phe Leu Asn Leu His Thr Glu Ile Ala Glu Gly Gly 1460 1465 1470 Leu Asn Leu Ser Gln Gly Glu Arg Gln Leu Leu Phe Ile Ala Arg Ser 1475 1480 1485 Leu Leu Arg Glu Pro Lys Ile Ile Leu Leu Asp Glu Ala Thr Ser Ser 1490 1495 1500 Ile Asp Tyr Asp Ser Asp His Leu Ile Gln Gly Ile Ile Arg Ser Glu 1505 1510 1515 1520 Phe Asn Lys Ser Thr Ile Leu Thr Ile Ala His Arg Leu Arg Ser Val 1525 1530 1535 Ile Asp Tyr Asp Arg Ile Ile Val Met Asp Ala Gly Glu Val Lys Glu 1540 1545 1550 Tyr Asp Arg Pro Ser Glu Leu Leu Lys Asp Glu Arg Gly Ile Phe Tyr 1555 1560 1565 Ser Met Cys Arg Asp Ser Gly Gly Leu Glu Leu Leu Lys Gln Ile Ala 1570 1575 1580 Lys Gln Ser Ser Lys Met Met Lys 1585 1590 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> YCFa primer <400> 5 actaccgtaa agctcgagaa aatggctggt aat 33 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> YCFb primer <400> 6 cttgcctaag tgacgtgacg tctcctt 27 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> RT-YCF1A primer <400> 7 catgagtgcg ttctatccct ctat 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> RT-YCF1B primer <400> 8 ccaccttcgg ttagttgggc atct 24 <210> 9 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> forward primer: YHL035Ca <400> 9 cgacgcggcc gcatgggaac ggatcccctt attatc 36 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> backward primer: YHL035Cb <400> 10 cgacgcggcc gccatcatct tacttgattg cttgg 35

Claims (21)

납에 대한 내성 및 축적성을 나타내며, 곰팡이의 MRP-계통 ATP 결합 카세트 수송 단백질(multidrug resistance-associated protein-like ATP-binding casette transporter protein, MRP-계통 ABC 수송 단백질)을 코딩하는 DNA 분자. A DNA molecule that exhibits resistance to and accumulation of lead and encodes a fungal MRP-associated protein-like ATP-binding casette transporter protein (MRP-based ABC transport protein). 제 1 항에 있어서, 상기 곰팡이의 MRP-계통 ABC 수송 단백질은 YCF1 단백질, YHL035C 단백질, BPT1 단백질, YBT1 단백질, 및 YOR1 단백질로 이루어진 군에서 선택되는 것인, DNA 분자.The DNA molecule of claim 1, wherein the MRP-based ABC transport protein of the fungus is selected from the group consisting of YCF1 protein, YHL035C protein, BPT1 protein, YBT1 protein, and YOR1 protein. 제 2 항에 있어서, 상기 YCF1 단백질은 서열번호 2의 아미노산 서열을 가지며, 상기 아미노산 서열을 코딩하는 염기서열을 갖는 DNA 분자. The DNA molecule of claim 2, wherein the YCF1 protein has an amino acid sequence of SEQ ID NO: 2 and has a nucleotide sequence encoding the amino acid sequence. 제 3 항에 있어서, 상기 YCF1 단백질을 코딩하는 DNA 분자는 서열번호 1의 염기서열을 갖는 것인 DNA 분자. The DNA molecule of claim 3, wherein the DNA molecule encoding the YCF1 protein has a nucleotide sequence of SEQ ID NO: 1. 제 2 항에 있어서, 상기 YCF1 단백질은 납에 대한 내성 및 축적성 이외에, 카드뮴, 비소 및 제초제로 이루어진 군에서 선택된 1종 이상의 유해물질에 대한 내성 및 축적성을 추가로 나타내는 것인 DNA 분자. The DNA molecule of claim 2, wherein the YCF1 protein further exhibits resistance and accumulation to one or more harmful substances selected from the group consisting of cadmium, arsenic, and herbicides, in addition to resistance and accumulation to lead. 제 5 항에 있어서, 상기 제초제는 클로로디니트로벤젠 (chloro-dinitrobenzene)인 DNA 분자.6. The DNA molecule of claim 5, wherein the herbicide is chloro-dinitrobenzene. 제 2 항에 있어서, 상기 YHL035C 단백질은 서열번호 4의 아미노산 서열을 가지며, 상기 아미노산 서열을 코딩하는 염기서열을 갖는 DNA 분자. The DNA molecule of claim 2, wherein the YHL035C protein has an amino acid sequence of SEQ ID NO: 4 and has a nucleotide sequence encoding the amino acid sequence. 제 7 항에 있어서, 상기 YHL035C 단백질을 코딩하는 DNA 분자는 서열번호 3의 염기서열을 갖는 것인 DNA 분자. The DNA molecule of claim 7, wherein the DNA molecule encoding the YHL035C protein has a nucleotide sequence of SEQ ID NO: 3. 9. 제 1 항에 있어서, 상기 곰팡이의 MRP-계통 ABC 수송 단백질은 서열번호 2의 YCF1 단백질의 아미노산 서열, 또는 서열번호 4의 YHL035C 단백질의 아미노산 서열과 28% 이상의 아미노산 서열 상동성을 갖는 곰팡이의 MRP-계통 ABC 수송 단백질인, DNA 분자.According to claim 1, wherein the MRP-based ABC transport protein of the fungus MRP- of the fungus having an amino acid sequence homology of at least 28% of the amino acid sequence of the YCF1 protein of SEQ ID NO: 2, or YHL035C protein of SEQ ID NO: 4 DNA molecule, which is a lineage ABC transport protein. 제 9 항에 있어서, 상기 곰팡이의 MRP-계통 ABC 수송 단백질은 서열번호 2의 YCF1 단백질 또는 서열번호 4의 YHL035C 단백질의 아미노산 서열과 28% 이상의 서열 상동성을 가지며, The method according to claim 9, wherein the MRP-based ABC transport protein of the fungus has a sequence homology of at least 28% with the amino acid sequence of the YCF1 protein of SEQ ID NO: 2 or YHL035C protein of SEQ ID NO: 4, 상기 YCF1 단백질 또는 YHL035C 단백질은 각각 N-말단 연장 도메인(N-terminal extension domain), 첫번째 막관통 도메인(first transmembrane spanning domain), 첫번째 뉴클레오타이드 결합 도메인(first nucleotide binding fold domain), 두번째 막관통 도메인(second transmembrane spanning domain), 및 두번째 뉴클레오타이드 결합 도메인(second nucleotide binding fold domain)의 도메인으로 이루어지고, 상기 곰팡이의 MRP-계통 ABC 수송 단백질의 각 도메인은 서열번호 2의 YCF1 단백질 또는 서열번호 4의 YHL035C 단백질에 대응하는 각 도메인의 아미노산 서열과 28% 이상의 서열 상동성을 갖는 것인 DNA 분자. The YCF1 protein or YHL035C protein is N-terminal extension domain (N-terminal extension domain), the first transmembrane spanning domain, the first nucleotide binding fold domain, the second transmembrane domain (second transmembrane spanning domain, and a domain of a second nucleotide binding fold domain, wherein each domain of the fungal MRP-based ABC transport protein is linked to the YCF1 protein of SEQ ID NO: 2 or the YHL035C protein of SEQ ID NO: 4 A DNA molecule having at least 28% sequence homology with the amino acid sequence of each corresponding domain. 제 1항 내지 10항중 어느 한 항에 따른 곰팡이의 MRP-계통 ATP 결합 카세트 수송 단백질(multidrug resistance-associated protein-like ATP-binding casette transporter gene, MRP-계통 ABC 수송 유전자)을 코딩하는 DNA 분자를 포함하는 재조합 벡터. A DNA molecule encoding a fungal MRP-associated ATP-associated protein-like ATP-binding casette transporter gene (MRP-based ABC transport gene) according to any one of claims 1 to 10. Recombinant vector. 제 11 항에 있어서, 상기 재조합 벡터는 pESC-YCF1, ENpCambia-YCF1, 또는 PBI121-YCF1 재조합 벡터.The method of claim 11, wherein the recombinant vector is pESC- YCF1, ENpCambia-YCF1, or PBI121- YCF1 . Recombinant vector. 제 11 항에 있어서, 상기 재조합 벡터는 pESC-YHL035C 재조합 벡터, 또는 pPBI121-YHL035C인 재조합 벡터.The recombinant vector of claim 11, wherein the recombinant vector is a pESC- YHL035C recombinant vector, or pPBI121-YHL035C. 제 1항 내지 10항중 어느 한항에 따른 곰팡이의 MRP-계통 ATP 결합 카세트 수송 단백질(multidrug resistance-associated protein-like ATP-binding casette transporter gene, MRP-계통 ABC 수송 유전자)을 코딩하는 DNA 분자로 형질전환된 형질전환 생물. Transformation with a DNA molecule encoding the MRP-associated protein-like ATP-binding casette transporter gene (MRP-based ABC transport gene) of the fungus according to any one of claims 1 to 10 Transgenic organisms. 제 14 항에 있어서, 상기 형질전환 생물은 원핵생물 또는 진핵생물인 형질전환 생물. The transforming organism of claim 14, wherein the transforming organism is a prokaryote or eukaryote. 제 15 항에 있어서, 상기 진핵생물은 동물, 식물, 또는 효모인 형질전환 생물.The transforming organism of claim 15, wherein the eukaryotes are animals, plants, or yeasts. 제 16 항에 있어서, 상기 식물은 애기장대, 유채, 갓, 담배, 양파, 당근, 오The method of claim 16, wherein the plant is Arabidopsis, rapeseed, fresh, tobacco, onion, carrot, cucumber 이, 유채, 올리브, 고구마, 감자, 배추, 무, 상추, 담배, 브로콜리, 페츄니아, 해This, rapeseed, olives, sweet potato, potatoes, cabbage, radish, lettuce, tobacco, broccoli, petunia, sea 바라기, 갓, 잔디, 애기장대, 자작나무, 포플러, 버드나무, 및 박달나무로 이루Wishes, lampshade, grass, cephalopod, birch, poplar, willow, and birch 어진 군에서 선택되는 것인 형질전환 생물. Transgenic organisms selected from the group consisting of. 제 17 항에 있어서, 상기 형질전환 생물은 YCF1 애기장대(기탁 번호 KCTC 10064BP), 또는 YCF1 포플러인 형질전환 생물.The transforming organism of claim 17, wherein the transforming organism is YCF1 Arabidopsis (Accession No. KCTC 10064BP), or YCF1 poplar. 제 17 항에 있어서, 상기 형질전환 생물은 YHL035C 포플러인 형질전환 생물. 18. The method of claim 17, wherein the transforming organism is YHL035C poplar Transgenic organisms. 제 1항 내지 10항중 어느 한 항에 따른 곰팡이의 MRP-계통 ABC 수송 단백질(multidrug resistance-associated protein-like ATP-binding casette transporter gene, MRP-계통 ABC 수송 유전자)을 코딩하는 DNA 분자로 형질전환된 식물세포. Transformed with a DNA molecule encoding a multidrug resistance-associated protein-like ATP-binding casette transporter gene (MRP-based ABC transport gene) according to any one of claims 1 to 10 Plant cells. 제 20 항에 있어서, 상기 식물은 애기장대, 유채, 갓, 담배, 양파, 당근, 오이, 유채, 올리브, 고구마, 감자, 배추, 무, 상추, 담배, 브로콜리, 페츄니아, 해바라기, 갓, 잔디, 애기장대, 자작나무, 포플러, 버드나무, 및 박달나무로 이루어진 군에서 선택되는 것인 식물세포. The method of claim 20, wherein the plant is Arabidopsis, rapeseed, fresh, tobacco, onion, carrot, cucumber, rapeseed, olive, sweet potato, potato, Chinese cabbage, radish, lettuce, tobacco, broccoli, petunia, sunflower, fresh, grass, Plant cells selected from the group consisting of cephalopod, birch, poplar, willow, and birch.
KR10-2002-0062984A 2001-10-16 2002-10-15 Transgenic organism expressing fungal MRP-like ABC transporters KR100480843B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/KR2002/001934 WO2003033705A1 (en) 2001-10-16 2002-10-16 Transgenic organism expressing fungal mrp-like abc transporters
US10/492,880 US7358417B2 (en) 2001-10-16 2002-10-16 Transgenic organism expressing fungal MRP-like ABC transporters
DE60233424T DE60233424D1 (en) 2001-10-16 2002-10-16 MRP-SIMILAR ABC TRANSPORTS FROM MUSHROOMS EXPRESSING TRANSGENER ORGANISM
JP2003536430A JP2005505302A (en) 2001-10-16 2002-10-16 Transformed organism expressing fungal MRP-strain ABC transport protein
CNB028248538A CN100494378C (en) 2001-10-16 2002-10-16 Transgenic organism expressing fungal MRP-like ABC transporters
EP02781949A EP1446486B1 (en) 2001-10-16 2002-10-16 Transgenic organism expressing fungal mrp-like abc transporters
AT02781949T ATE440140T1 (en) 2001-10-16 2002-10-16 TRANSGENIC ORGANISM EXPRESSING MRP-LIKE ABC TRANSPORTERS FROM FUNGI

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010063802 2001-10-16
KR20010063802 2001-10-16

Publications (2)

Publication Number Publication Date
KR20030031867A KR20030031867A (en) 2003-04-23
KR100480843B1 true KR100480843B1 (en) 2005-04-07

Family

ID=29564914

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0062984A KR100480843B1 (en) 2001-10-16 2002-10-15 Transgenic organism expressing fungal MRP-like ABC transporters

Country Status (3)

Country Link
KR (1) KR100480843B1 (en)
AT (1) ATE440140T1 (en)
DE (1) DE60233424D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047354B1 (en) 2008-09-04 2011-07-07 이화여자대학교 산학협력단 Restoration method of heavy metal contaminated soil using cucumber plants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845279B1 (en) 2006-11-28 2008-07-09 포항공과대학교 산학협력단 Genes that alter capacity to accumulate heavy metals and salts or resistance to heavy metals salts or drought and transformants expressing the genes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077832A (en) * 2001-04-04 2002-10-14 주식회사 포스코 Genetic modification of plants for enhanced resistance and decreased uptake of heavy metals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077832A (en) * 2001-04-04 2002-10-14 주식회사 포스코 Genetic modification of plants for enhanced resistance and decreased uptake of heavy metals

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J Biol Chem. 1994 Sep 9;269(36):22853-7. *
J Biol Chem. 1997 Jun 13;272(24):15358-65 *
J Biol Chem. 1998 May 15;273(20):12612-22. *
Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):42-7. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047354B1 (en) 2008-09-04 2011-07-07 이화여자대학교 산학협력단 Restoration method of heavy metal contaminated soil using cucumber plants

Also Published As

Publication number Publication date
ATE440140T1 (en) 2009-09-15
KR20030031867A (en) 2003-04-23
DE60233424D1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
Luo et al. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis
CN110256544B (en) Application of NsNHX1 protein and related biological material thereof in cultivation of stress-tolerant poplar
CN101220358A (en) Modulation of cytokinin activity in plants
MX2010013722A (en) Compositions and methods of use of mitogen-activated protein kinase kinase kinase.
US20210238620A1 (en) Tonoplast proton/sugar antiporter proteins and the use thereof to increase the saccharose concentration in a saccharose storage organ of plants
EP1446486B1 (en) Transgenic organism expressing fungal mrp-like abc transporters
AU2019466501A9 (en) Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene thereof and use thereof
AU694457B2 (en) DNA sequences for ammonium transporter, plasmids, bacteria, yeasts, plant cells and plants containing the transporter
CN107012167A (en) The expression of the transcription regulaton factor of heat tolerance can be provided
US20040098759A1 (en) Genetic midification of plants for enhanced resistance and decreased uptake of heavy metals
CN113005138A (en) Arabidopsis PHO1; application of H10 protein and coding gene thereof in regulation and control of plant leaf anthocyanin synthesis
CN101001956B (en) Preparation of organisms with faster growth and/or higher yield
KR100480843B1 (en) Transgenic organism expressing fungal MRP-like ABC transporters
AU2010201673A1 (en) Preparation of organisms with faster growth and/or higher yield
US7816579B2 (en) Metal resistant plants, methods of manufacture, and methods of use thereof
CN112813097A (en) Method for regulating and controlling salt tolerance of rice
CN112481291A (en) Application of GmSAP16 protein and coding gene thereof in regulation and control of plant stress tolerance
CN113861279B (en) Soybean transcription factor GmbHLH664 and application of encoding gene thereof in improving seed protein content
KR100924927B1 (en) Polynucleotide Coding Polypeptide Having Function Related to Pyridoxine Biosynthesis
CN116606357A (en) Application of GmTIFY10e protein and encoding gene thereof in regulation and control of salt tolerance of plants
KR101374355B1 (en) Polypeptide Having Methionine Synthesis Function, Polynucleotide Coding the Polypeptide, and Those Use
CN113527450A (en) Wheat oxidative stress related protein and related biological material and application thereof
EA040510B1 (en) TONOPLAST PROTEINS FUNCTIONING AS PROTON/SUGAR ANTIPORTERS AND THEIR USE TO INCREASE THE SUCCAROSE CONCENTRATION IN THE SUCCAROSE STORAGE ORGANS OF PLANTS

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140324

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150316

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180312

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 15