KR100476359B1 - 벤자스타틴 유도체의 제조시 중간체로 사용 가능한 새로운화합물 및 그 제조방법 - Google Patents

벤자스타틴 유도체의 제조시 중간체로 사용 가능한 새로운화합물 및 그 제조방법 Download PDF

Info

Publication number
KR100476359B1
KR100476359B1 KR10-2001-0052436A KR20010052436A KR100476359B1 KR 100476359 B1 KR100476359 B1 KR 100476359B1 KR 20010052436 A KR20010052436 A KR 20010052436A KR 100476359 B1 KR100476359 B1 KR 100476359B1
Authority
KR
South Korea
Prior art keywords
compound
formula
group
methyl
benzyl
Prior art date
Application number
KR10-2001-0052436A
Other languages
English (en)
Other versions
KR20020018100A (ko
Inventor
유익동
홍남두
조원제
이찬복
김진표
김원곤
Original Assignee
주식회사한국신약
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사한국신약 filed Critical 주식회사한국신약
Publication of KR20020018100A publication Critical patent/KR20020018100A/ko
Application granted granted Critical
Publication of KR100476359B1 publication Critical patent/KR100476359B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/22Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an aralkyl radical attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an alkyl or cycloalkyl radical attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/40Nitrogen atoms, not forming part of a nitro radical, e.g. isatin semicarbazone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Indole Compounds (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 지질 과산화 저해제로 유용한 벤자스타틴 유도체의 기본 골격 구조를 갖는 화합물 및 그의 제조방법에 관한 것으로, 보다 구체적으로 본 발명의 화합물은 지질 과산화 억제 활성이 우수한 벤자스타틴 유도체 및 그의 유도체를 제조하는데 유용한 중간체로 사용할 수 있다.
(상기식에서, R1, R2 R3는 명세서 내에 기재된 바와 같다.)

Description

벤자스타틴 유도체의 제조시 중간체로 사용 가능한 새로운 화합물 및 그 제조방법 {NOVEL COMPOUNDS AS A INTERMEDIATED COMPOUND FOR THE PREPARATION OF BENZASTATIN DERIVATIVES, AND THE PROCESS FOR THE PREPARATION}
본 발명은 지질 과산화 저해제로 유용한 벤자스타틴 유도체의 기본 골격이 되는 하기 화학식 1로 표시되는 화합물 및 그의 제조방법에 관한 것이다.
화학식 1
(상기식에서,
R1은 H, CH3, OH, 니트릴기, 아마이드기, C1 ∼ C4 의 알콕시기, 또는 하이드록시메틸기이고;
R2는 H, CH3 또는 PMB(paramethoxy benzyl) 등의 질소 보호기를 나타내며;
R3는 H, CH3, C1∼C10의 알킬기 또는 부분적으로 불포화된 직쇄 또는 측쇄 탄화수소이다.)
대기 중의 산소는 효소계, 환원대사 과정 및 광화학적 반응 등을 거치면서 반응성이 매우 큰 슈퍼옥사이드 자유라디칼 (superoxide radical, 02 -), 하이드록시 라디칼 (HO·), 과산화수소 (H2O2), 단일항 산소 (1O2) 등의 활성 산소로 변화하여 비선택적 및 비가역적 파괴작용을 함으로써 산소독성을 일으킨다. 생체 내에서는 이러한 활성산소에 대한 방어기구로, 항산화제 (superoxide dismutase, SOD), 카탈라아제 (catalase), 과산화효소 (peroxidase) 등과 같은 항산소성 효소계와 비타민 E 및 글루타치온 (glutathione)과 같은 항산화 물질이 존재하여 활성산소로부터 보호한다.
그러나, 이들 활성산소 방어기구에 이상이 발생하거나, 물리적 화학적 요인에 의해 과다한 활성산소의 증가가 일어나면 활성산소는 생체내의 각 부위에 치명적인 장애를 일으켜 생체막을 공격하거나 조직을 손상시키고 더 나아가서는 노화를 비롯한 허혈성뇌질환, 파킨슨씨병, 혈액재환류장애, 염증, 류마티스 관절염, 각종 암 등의 질병의 원인이 되고 있다. 또한 활성산소는 식품에 다량으로 존재하는 불포화 지방산 등과 반응하여 산패의 원인이 되어 식품의 안전성 및 고품질 유지에 결정적인 결함을 초래하기도 하며 각종 산화물에 의한 동식물의 산화적 스트레스, 미생물 발효시 발생하는 활성산소에 의한 수율저하 등 많은 분야에서 활성산소에 의한 문제가 야기되고 있다. 현재 이들 활성산소를 제거할 수 있는 지질과산화 저해물질의 탐색 및 개발에 대한 많은 연구가 이루어지고 있다.
종래 선진국에서는 식품의 안전성 및 고품질 유지 등을 목적으로 많은 연구가 수행되었으나 최근에는 자유라디칼 제거제로서 염증, 류마티스 관절염, 자기면역질환, 허혈장애 및 암화 등의 치료목적으로까지 광범위한 분야에 연구가 활발히 진행되고 있다. 식품분야에서는 지질과산화 저해물질 (antioxidants)로, 자동산화의 연쇄반응을 억제하는 라디칼 저해제 (free radical inhibitor)로써 페놀계 화합물 및 아민류의 항산화제가 이용되어 왔다. 또한, 과산화물 분해제 (peroxide decomposer) 및 금속 불활성화제 (metal deactivator)로써의 기능연구와 더불어 활성산소의 발생과 그에 따른 지질과산화 반응이 연구되면서 새로운 형태의 항산화제가 연구되었다. 그 결과, 단일항 산소 (1O2) 소거제로는 베타-카로틴 (β-carotene), 아민류, 토코페롤 (tocopherol), 히스티딘 (histidin) 등이 개발되었고, 슈퍼옥사이드 (O2) 소거제로는 토코페롤, 페놀계 화합물, 티올 화합물 등이 연구되고, 하이드록시 라디칼 소거제로써 만니톨 (mannitol) 등이 연구되었다. 그러나, 상기 항산화 물질들은 대부분 천연으로부터 얻어진 물질로 활성이 약하여 실제 식품분야에서는 활용되고 있으나 자유라디칼 제거제로서 고부가가치의 의약활성 물질로는 활용되지 못하고 있다. 따라서 항산화 활성물질을 각종 질병 치료제 개발을 위한 선도 물질로는 좀 더 강한 활성을 나타내면서 생체에 안정한 물질이 요구되어지고 있다.
한편, 미생물 대사산물로부터 탐색된 항산화물질은 약 20여 종이 알려져 있으며, 일본 동경대학 분자세포생물학 연구소의 세토 (seto) 그룹에 의해 주된 연구가 진행되고 있다. 지금까지 보고된 미생물로부터 유래된 항산화 활성물질은 대부분 스트렙토마이세스 (Streptomyces)에서 유래된 것이 대부분이며, 카바졸 (carbazole)계 화합물이 가장 많이 보고되었다. 대표적인 화합물들은 스트렙토마이세스 엑스폴리아투스 (Streptomyces exfoliatus) 균체 아세톤 추출물로부터 발견된 카르퀴노스타틴 (carquinostatin) 외에도 안티오스타틴 (antiostatin), 카라조스타틴 (carazostatin), 네오카로조스타틴 (neocarozostatin), 카바조마이신 (cabazomycin) 등이 보고되었다. 또한 페나진 (phenazine)계 항산화 물질로는 벤토시아닌 (benthocyanin), 벤토포에닌 (benthophoenin), 페나조비리딘 (phenazoviridin) 등이 밝혀졌으며 기타 티아졸계 화합물로 티아졸스타틴과 나프테르핀 피롤로스타틴 등이 보고되었다.
상기 물질 중 카보졸 (carbozole) 계 화합물인 카르퀴노스타틴 화합물은 랫트의 간 마이크로좀계에서 항산화 활성을 나타낼 뿐만 아니라 산화적 스트레스에 의해 세포괴사가 일어나는 신경세포 하이브리도마 N18-RE-105 세포 (랫트 초대 망막신경세포 X 마우스 신경암세포)에 대한 글루타믹 산 독성을 ED50 0.4μM 농도에서 강하게 억제하는 활성을 보였다. 또한, N18-RE-105의 글루타메이트 세포독성을 저해하면서 활성산소를 소거하는 물질로 알려진 퀴논계의 이데베논 (idebenone)은 현재 일본에서 심장수술 또는 장기이식 후에 뇌대사 부활제로서 임상시험 중에 있다.
국내 지질과산화 저해물질의 탐색연구는 일찍이 식품공학분야 관련 연구자들에 의해 추진되어 왔으나, 대부분 식품소재를 재료로하여 항산화 활성의 유무 및 활성정도를 측정하고 식품보호제로서의 이용에 국한되어 있어 활성물질의 추출정제 및 구조해석 등의 연구는 매우 미흡한 실정이었다.
1990년대 초 생명공학 연구소에서 본격적으로 지질과산화 저해활성물질을 탐색하는 연구가 시작되어 토양방선균 배양액 또는 천연물로부터 지질과산화 저해활성물질을 조사하였으며, 스트렙토마이세스 균주로부터 페닐티아졸린 (phenylthiazoline)계 신규 화합물인 4-메틸애루진산 (4-methylaeruginic acid), 애그로사이브 실린드라세 (Agrocybe cylindracea) 균주로부터 강력한 자유라디칼 제거제 활성을 나타내는 새로운 인돌 알칼로이드 화합물, 폴리오젤루스 멀티플렉스 (Polyozellus multiplex) 균주로부터 테르페닐계 신규 화합물 폴리오젤린 (polyozellin), 국내 자생 약용식물인 울머스 다비디아나(Ulmus davidiana)로부터는 세스키테르펜 o-나프톨퀴논 (sesquiterpene o-naphthoquinone)계 신규 화합물인 다비디아논 (davidianone)을 발견하였다. 또한, 스트렙토마이세스 니트로스포리우스 (Streptomyces nitrosporeus) 균주로부터 벤자아마이드 (benzamide)계 화합물인 하기 화학식 2의 벤자스타틴 (benzastatin) A 및 B, 화학식 3의 벤자스타틴 C 및 D, 화학식 4의 벤자스타틴 E, F 및 G의 화합물을 발견하였다.
상기 화합물들은 강력한 지질 과산화 저해활성을 나타낼 뿐만 아니라 중추신경계의 신경전달 물질이며, 동시에 강한 신경독성을 유발하는 글루타메이트 (glutamate) 신경독성을 강력하게 보호하는 특성이 있다. 상기 벤자스타틴 유도체들은 현재 뇌대사 부활제로 임상에 응용되고 있는 이데베논에 비해 약 1 ∼ 9배 이상 우수하면서도 세포독성면에서 약 10 ∼ 40배 이상 안전함을 보여 허혈성 뇌졸중, 뇌대사부활제 등 노인성 질환 치료제 및 항산화제로의 개발 가능성이 매우 높다고 평가되고 있다. (대한민국 특허 제 154506호, 대한민국 특허 공개번호 제 1999-018281호)
이에, 본 발명자들은 상기 벤자스타틴 유도체 제조에 유용한 중간체를 제조하고자 노력한 결과, 화학식 1의 화합물을 합성하였으며, 상기 화합물을 이용해 벤자스타틴 유도체를 제조하여 본 발명을 완성하였다.
본 발명의 목적은 상기 벤자스타틴의 기본 골격구조를 갖는 화합물 및 그의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 벤자스타틴의 기본 골격구조가 되는 하기 화학식 1로 표시되는 화합물을 제공한다.
화학식 1
(상기식에서,
R1은 H, CH3, OH, 니트릴기, 아마이드기, C1 ∼ C4 의 알콕시기, 또는 하이드록시메틸기이고;
R2는 H, CH3 또는 PMB(para-methoxy benzoic acid) 등의 질소 보호기를 나타내며;
R3는 H, CH3, C1∼C10의 알킬기 또는 부분적으로 불포화된 직쇄 또는 측쇄 탄화수소이다.)
바람직하기로는,
R1 은 H 또는 CH3 이고,
R2 는 CH3, 또는 PMB 이고,
R3 는 H 또는 C5H11, -CH2CH2CH=CH(CH3) 2 또는 -CH2CH2C(CH3)=CH(CH3)2 이다.)
상기 화학식 1로 표시되는 화합물의 바람직한 예로는 하기와 같다:
1) 1-(메틸-1H-인돌-2-일)-카바알데하이드 (실시예 1의 화합물),
2) 1-(4-메톡시-벤질)-1H-인돌-2-카바알데하이드 (실시예 2의 화합물),
3) 1-(4-메톡시-벤질)-5-메틸-1H-인돌-2-카바알데하이드 (실시예 3의 화합물), 및
4) 1-(1-메틸-1H-인돌-2-일)-1-헵타논 (실시예 4의 화합물).
또한, 본 발명은 상기 반응식 1 및 반응식 2로 표시되는 화학식 1호 표시되는 화합물의 제조방법을 제공한다.
(상기식에서, R1, R2 는 상기에서 정의한 바와 같다.)
구체적으로,
1-a) 화학식 5의 화합물을 환원제로 환원시켜 화학식 6의 알코올 화합물을 제조하고;
1-b) 상기 화학식 6의 알코올 화합물을 산화반응시켜 본 발명의 화학식 (1a)의 화합물을 제조한다.
구체적으로, 반응식 1의 단계 1은 화학식 5의 화합물로부터 에스테르 화합물을 환원제를 이용하여 화학식 6의 알코올 화합물로 환원시킨다.
이때 반응 온도는 -78 ℃ ∼ 40 ℃가 바람직하며, 용매로는 디에틸에테르, 테트라하이드로퓨란 또는 트리플루오르아세트산이 사용 가능하다. 환원제는 리튬알루미늄하이드라이드 (LiAlH4)로 환원시키거나, 높은 압력 , 높은 온도에서 CuO·CuCr2O4를 사용하여 환원시키기도 하며, 바람직하게는 LiAlH4를 사용한다.
상기 제조된 생성된 화학식 6의 알코올 화합물을 산화제로 산화 반응시켜 본 발명의 화학식 1a로 표시되는 화합물을 얻는다.
산화제는 K2Cr2O7과 황산의 혼합물, 피리디늄 클로로크로메이트(PCC, pyridinium chlorochromate), 피리디늄 디크로메이트(PDC, pyridinium dichromate); 이산화망간 등을 사용하거나 스완 산화반응(swern oxidation)을 사용할 수 있다. 바람직하게는 PDC (Pyridinium dichromate)와 이산화망간을 사용하여 산화반응 시키는 것이다.
또한, 상기 얻어진 화학식 1a의 화합물을 반응시켜 새로운 관능기를 도입할 수 있다.
(상기식에서, R1, R2 및 R3 는 상기에서 정의한 바와 같다.)
구체적으로, 상기 반응식 2에 나타나 있는 것처럼,
2-a) 상기 단계 1-b에서 얻어진 화학식 1a의 화합물을 그리나드 반응시켜 화학식 7의 알코올 화합물을 제조하고;
2-b) 상기 화학식 7의 알코올 화합물을 산화제를 이용하여 산화 반응시켜 본 발명의 화학식 1b의 화합물을 제조한다.
반응식 2는 구체적으로 비활성기체 하에 화학식 1a 화합물과 그리나드 시약(grinard reagent) 또는 유기 리튬(organolithium) 화합물을 반응시켜 높은 수율로 화학식 7의 화합물을 얻을 수 있다. 이때 반응은 통상적인 그리나드 반응 조건인 -78 ℃ ∼ 40 ℃에서 용매로 디에틸에테르 또는 테트라하이드로퓨란을 사용하는 것이 바람직하다.
반응식 2의 단계 2는 상기 화학식 7의 알코올 화합물에 산화제를 첨가하여 산화반응시켜 본 발명의 화학식 1b의 케톤 화합물을 얻을 수 있으며, 산화반응은 단계 1에서 사용된 산화제 및 산화반응 조건과 동일하게 반응할 수 있다.
한편, 반응식 1에 출발 물질로 사용되는 화학식 5의 화합물은 공지의 방법에 의해 쉽게 합성할 수 있다(R. S. Mali, V. J. Yadav, a useful synthesis of ethyl indole-2-carboxyates and 3,4-dihydrocarbostyrils, Synthesis, 862-865 (1984); A. Monge Vega, M. T. Martinez, J. A. Palop, J. M. Mateo and E. Fernandez Alvarez, Synthesis of 1H[1,2]diazepino[4,5-b]indole Derivatives, J. Heterocylic Chem. 18, 889-892 (1981)).
하기 반응식 3에 합성과정이 나타나 있다.
시판되는 화학식 8의 알데하이드 화합물에 위티그(wittig) 반응으로 화학식 9의 화합물을 제조한 다음 고리화 반응을 통해 화학식 10의 화합물을 제조한다. 상기 제조된 화학식 10의 화합물의 질소에 보호기를 도입하여 화학식 5의 화합물을 제조한다.
출발물질은 최종물질의 치환기에 따라 R1은 수소, 메틸기, 하이드록시기, 보호된 하이드록시메틸기 또는 니트릴기인 화합물을 사용하며, 질소보호기로 치환된 R2는 메틸기 또는 파라메톡시 벤질기(PMB)를 도입할 수 있다.
본 발명에서 제조된 화학식 1로 표시되는 화합물(1a, 1b)은 지질산화가 우수한 벤자스타틴 유도체를 제조하는 데 유용하게 사용될 수 있다. 구체적으로 하기 반응식 4 ∼ 8에 본 발명의 화학식 1로 표시되는 화합물을 이용하여 벤자스타틴 E, F, G의 제조방법을 제시하였으며, 이러한 제조방법에 따라 벤자스타틴 E, F, G를 합성하는 방법을 한정하는 것은 아니다.
Ⅰ) 벤자스타틴 E
(상기식에서, R2는 상기에서 정의한 바와 같다.)
벤자스타틴 E는,
본 발명의 화학식 1b로 표시될 수 있는 화학식 11의 케톤 화합물을 위티그 반응 (Wittig reaction)을 통해 화학식 12의 올레핀 화합물을 얻고;
상기 화합물에 디하이드록시화 반응 (dihydroxylation)시켜 화학식 13의 화합물을 제조하고;
상기 제조된 화학식 13 화합물의 1차 알코올은 메틸 요오드 (MeI)를 이용하여 선택적으로 메틸화하여 화학식 14의 화합물을 제조하고;
상기 제조된 화학식 14의 화합물의 오원고리의 이중결합은 트리플루오르아세트산 내에서 소듐 보로하이드라이드(NaBH4) 또는 소듐 시아노보로하이드라이드 (NaBH3CN)를 사용하여 환원 시켜 화학식 15의 화합물을 제조하고;
화합물 15의 보호기를 탈보호 반응시켜 화학식 16의 화합물을 얻고 이를 BF3/아세트산과 반응시켜 목적하는 벤자스타틴 E를 합성할 수 있다.
상기 디하이드록시화 반응에 사용될 수 있는 시약으로는 통상적으로 디하이드록시화 반응에 사용될 수 있는 모든 시약이 가능하며, 바람직하기로는 오스뮴 테트라옥사이드와 N-메틸몰포린 옥사이드(N-methylmorpholine oxide)를 사용한다.
Ⅱ) 벤자스타틴 E
(상기 식에서, R1, R2 는 상기 정의한 바와 같다.)
상기 반응식 5에 나타난 것처럼,
본 발명의 화학식 1a로 나타내어지는 화학식 1d의 화합물에 그리나드 시약을 첨가하여 화학식 18의 화합물을 만든 후 Ac2O를 첨가하여 화학식 19의 화합물을 제조한다.
상기 제조된 화학식 19의 화합물은 OsO4 또는 NaIO4를 사용하여 알데히드로 합성하고, 그리나드 시약을 사용하는 단계를 거처 화학식 21의 화합물을 제조하거나 Hg(OAc)2를 사용하여 직접적으로 화학식 19의 화합물로부터 화학식 21의 화합물을 합성할 수 있다.
상기 합성된 화학식 21의 화합물을 제조된 산화시켜 화학식 22의 화합물의 보호기를 치환하고 일련의 반응을 진행하여 벤자스타틴 E 유도체를 합성할 수 있다.
Ⅲ) 벤자스타틴 F 및 G
(상기식에서, R2는 상기에서 정의한 바와 같으며, R3는 H, CH3, C1 ∼C10의 알킬기 또는 부분적으로 불포화된 직쇄 또는 측쇄 탄화수소이다.)
구체적으로,
알데하이드 화학식 26의 화합물을 그리나드 시약을 사용하여 화학식 28의 알코올 화합물을 얻고;
상기 얻어진 화학식 27의 알코올 화합물을 리튬 알루미늄 하이드라이드 또는 소듐 보로하이드라이드와 같은 환원제로 환원시켜 화학식 28의 화합물을 제조하고;
상기 얻어진 화학식 28의 화합물의 아민을 탈보호하여 화학식 29의 화합물을 얻고;
얻어진 화학식 29의 화합물의 시아노기를 산화시켜 아마이드기로 변환하여 벤자스타틴 E 유도체를 합성한다.
이하, 본 발명의 실시예를 하기에 의해 설명하는바 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니며, 본 발명의 기술 분야에 속하는 통상의 지식을 가진 자라면 청구범위에 기재된 본 발명의 보호 범위 내에서 다양한 보완 및 변형이 가능할 것이다.
실시예에서 사용된 시약은 알드리치 (Aldrich)사의 시약을 정제없이 사용하였으며, 용매는 준세이 (Junsei) 및 동양화학의 제품을 정제하여 사용하였다. 용매중 테트라하리드로퓨란(THF)와 에테르는 나트륨/벤조페논 케틸과 함께 증류하였다. 얇은층 크로마토그래피(Thin Layer Chromatography)는 Kiesel gel 254 silica gel coated plate를 사용하였고, 컬럼 크로마토그래피에는 Kiesel gel 60 (70-230 매쉬)을 사용하였다.
화합물은 1H-NMR은 Bruker AC 80 및 Varian 300 spectrometer를 사용하고, 내부 표준 용액으로는 트라이메틸실란을 사용하였고, IR은 Perkin Elmer 783 spectrometer를 사용하여 확인하였다. 녹는점은 모세관 방법을 사용한 전기 열역학 IA9200 디지털 녹는점 측정기를 사용하여 측정하였다.
<제조예 1>에틸-1-메틸-1H-인돌-2-카르복실레이트의 제조 (5a)
단계 1 : 에틸 o-니트로신나메이트 (9a)의 합성
o-니트로벤조알데하이드(8a)(11 g, 70 mmol)및 (카보에톡시메틸렌)트리페닐포스포란(25 g, 70 mmol) 혼합물을 벤젠(100 ml)용액에서 2시간 동안 환류 교반하였다. 반응이 완결되면 감압증류하여 용매를 제거하고 농축액을 실리카겔 컬럼 크로마토그래피(n-헥산-에틸아세테이트= 4 : 1)로 정제하여 목적 화합물(90 %)을 얻었다.
1H NMR(300 MHz, CDCl3) : 8.1 (1H, d, J = 15.8Hz, CH=CH), 8.03 (1H, d, J = 7.8Hz, Ar-H), 7.68-7.53 (3H, m, Ar-H), 6.38 (1H, d, J = 15.8Hz, CH=CH), 4.29 (2H, q, J = 7.1Hz, CH2), 1.35 (3H, t, J = 7.1Hz, CH3)
단계 2 : 에틸 인돌-2-카르복실레이트 (10a)
상기 단계 1에서 제조된 에틸 o-니트로신나메이트 (9a)(21.23 g, 96 mmol)를 트리에틸 포스핀(79.68 g, 480 mmol)에 녹이고 3시간 동안 환류 교반하였다. 반응이 완결되면 잉여의 트리에틸포스핀을 감압여과하여 제거하고, 생성물을 감압 농축하였다. 농축액을 실리카겔 컬럼 크로마토그래피(n-헥산-에틸아세테이트 = 8 : 1)로 정제하여 노란색 고체의 목적 화합물을(86 %) 얻었다.
1H NMR(300 MHz, CDCl3) : 9.29 (1H, s, NH), 7.68 (1H, d, J = 9.0Hz, Ar-H), 7.44-7.24 (2H, m, Ar-H), 7.24 (1H, s, C3-H), 7.14 (1H, t, J = 7.2Hz, Ar-H), 4.42 (2H, q, J = 7.2Hz, CH2), 1.42 (3H, t, J = 7.2Hz, CH3)
단계 3 : 에틸-1-메틸-1H-인돌-2-카르복실레이트의 제조 (5a)
상기 단계 2에서 제조된 에틸 1H-인돌-2-카르복실레이트(15 g)를 아세톤(200 ml)에 용해시키고 칼슘카보네이트(160 g), 디케틸설페이트(32 g)를 가한 후 가하고 7시간 동안 환류 교반하였다. 반응이 완결되면 냉각시키고 암모늄 하이드록사이드(100 ml)를 가하고 감압여과한 후 여과액을 메틸렌클로라이드로 추출하였다. 메틸렌클로라이드 층을 물로 세척하고 Na2SO4로 건조시킨 후 농축하였다. 상기 농축액을 컬럼(헥산 : 에틸아세테이트 = 6 : 1)으로 분리 정제하여 목적 화합물(14 g, 88 %)을 얻었다.
<제조예 2> 1-(4-메톡시-벤질)-1H-인돌-2-카르복실릭 산 에틸 에스터의 제조 (5b)
단계 1 : 에틸 o-니트로신나메이트 (9a)의 합성
상기 제조예 1의 단계 1과 동일한 방법으로 제조하였다.
단계 2 : 에틸 인돌-2-카르복실레이트 (10a)
상기 제조예 1의 단계 2와 동일한 방법으로 제조하였다.
단계 3 : 1-(4-메톡시-벤질)-1H-인돌-2-카르복실릭 산 에틸 에스터의 제조 (5b)
상기 단계 2에서 제조된 에틸 인돌-2-카르복실레이트 (10a)의 반응물(6.4 g, 24 mmol)과 60 % 소듐 하이드라이드(NaH) (1.5 g, 40 mmol)를 DMSO에서 6시간동안 교반하였다. 이어서, 4-메톡시벤질 클로라이드를 첨가하고 실온에서 하루동안 계속 교반하였다. 반응이 완결된 후, 물을 첨가하고 얻어진 생성물을 에틸에테르로 추출하였다. 유기층을 선택하여 물과 소금물로 씻고 NaSO4로 건조 시킨후 감압농축 하였다. 얻어진 농축액을 컬럼 크로마토그래피( n-헥산 : 에틸아세테이트 = 8 : 1)로 분리하여 노란색 액체의 목적 화합물(9.6 g ,92%)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.66-6.69 (9H, m, Ar-H), 5.70 (2H, s, Ar-CH2 ), 4.28 (2H, q, J = 7.2Hz, CH2-O), 3.62 (3H, s, CH3-O ), 1.30 (3H, t, J = 7.2Hz, CH3)
<제조예 3>1-(4-메톡시-벤질)-5-메틸-1H-인돌-2-카르복실산 에틸 에스터의 제조 (5c)
단계 1 : 5-메틸-2-니트로-벤즈알데하이드 (8b)
5-메틸-2-니트로-벤질릭 알코올 (5.01 g, 30 mmol)과 피리딘 다이크로메이트(22.5 g, 60 mmol)반응 혼합물을 메틸렌클로라이드에 녹여 밤새도록 교반하였다. 반응 종료 후 생성물을 여과한 후 메틸렌클로라이드로 세척하였다. 얻어진 생성물을 갑압 증류하여 용매를 제거하고, 농축액을 실리카겔 컬럼 크로마트그래피( n-헥산 : 에틸아세테이트 = 4 : 1)로 정제하여 노란색 액체의 목적 화합물(4.46 g, 90 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 10.43 (1H, s, CHO), 8.04 (1H, d, J = 8.4Hz, Ar-H), 7.71 (1H, s, Ar-H), 7.55 (1H, d, J = 8.4Hz, Ar-H), 2.53 (3H, s, CH3 ).
단계 2 : 3-(5-메틸-2-니트로-페닐)-아크릭릭산 에틸에스터 (9b)
출발물질로 o-니트로벤조알데하이드 (8a) 대신 상기 단계1에서 제조된 5-메틸-2-니트로-벤즈알데하이드 (8b)를 사용하는 것을 제외하고는, 상기 제조예 1의 단계 1과 동일한 방법으로 수행하여 노란색 액체의 목적 화합물 에스터 (9b)(98 %)를 얻었다.
1H NMR (300 MHz, CDCl3) : 8.13 (1H, d, J = 15.8Hz, CH=CH), 7.97(1H, d, J = 8.3Hz, Ar-H), 7.41 (1H, s, Ar-H), 7.32 (1H, d, J = 8.3Hz, Ar-H), 6.33 (1H, d, J = 15.8Hz, CH=CH), 4.28 (2H, q, J = 7.1Hz, CH2), 2.47 (3H, s, Ar-CH3), 1.35 (3H, t, J = 7.1Hz, CH3)
단계 3 : 5-메틸-1H-인돌-2-카르복실 산 에틸 에스테르 (10b)
출발 물질로 에틸 o-니트로신나메이트 (9a) 대신 상기 단계 2에서 제조된 3-(5-메틸-2-니트로-페닐)-아크릭산 에틸에스터 (9b)를 사용하는 것을 제외하고는, 상기 제조예 1의 단계 2와 동일한 방법으로 수행하여 노란색 고체의 목적화합물 에스터 (10b) (88 %)를 얻었다.
M.p 159-160.7 oC.
1H NMR (300 MHz, CDCl3) : 7.44-7.11 (4H, m, Ar-H), 4.40 (2H, q, J = 7.1Hz, O-CH2 ), 2.42 (3H, s, CH3 ), 1.40 (3H, t, J = 7.1Hz, O-CH2 CH3 ).
단계 4 : 1-(4-메틸-벤질)-5-메틸-1H-인돌-카르복실산 에틸에스터 (5c)
출발물질로 에틸 인돌-2-카르복실레이트 (10a) 대신 5-메틸-1H-인돌-2-카르복실 산 에틸 에스테르 (10b)를 사용하는 것을 제외하고는, 제조예 2의 단계 3과 동일한 방법으로 수행하여 목적 화합물인 노란색의 고체 (5c)를(100 %)를 얻었다.
1H NMR (300 MHz, CDCl3) : 7.46-6.74 (8H, m, Ar-H), 5.74 (2H, s, Ar-CH2 ), 4.31 (2H, q, J = 7.1Hz, CH2-O), 3.72 (3H, s, CH3 -O), 2.43 (3H, s, Ar-CH 3 ), 1.36 (3H, t, J = 7.1Hz, CH3)
<제조예 4> 5-하이드록시메틸-1-(4-메톡시-벤질)1H-인돌-2-카바알데히드의 제조 (5d)
단계 1 : 5-메틸-2-니트로-벤조산 메틸 에스터 (32)의 합성
촉매량의 황산과 5-메틸-2-니트로-벤조산 (31)의 혼합물을 메탄올에 용해시켜 24시간 동안 환류교반 하였다. 반응물에 소디움 바이카보네이트 용액을 가하여 중화시키고 메틸렌클로라이드로 추출하였다. 추출물을 물, 소금물로 세척하고 용액을 증발시켜 건조시켰다. 농축액을 컬럼 크로마토그래피(헥산 : 에틸아세테이트 =4:1)로 정제하여 흰색 고체의 목적화합물 에스터(32)(90 %)를 얻었다.
1H NMR (80 MHz, CDCl3) : 7.85 (1H, d, J = 8Hz, Ar-H ), 7.45 (1H, s, Ar-H), 7.32 (1H, d, J = 8Hz, Ar-H), 3.91 (3H, s, Ar-CH3 ), 2.46 (3H, s, O-CH3).
단계 2 : 5-디브로모에틸-2-니트로-벤조산 메틸에스터 (33)
상기 단계1에서 제조된 5-메틸-2-니트로-벤조산 메틸 에스터 (32) (1.95 g, 10 mmol)를 사염화탄소에 녹이고 N-브로모석신이미드(1.78 g, 10 mmol)및 1,1-아조비스(사이클로헥산카보나이트릴)을 첨가한 후 빛에 방치하여 24시간 동안 환류 교반 하였다. 반응이 종결된 후에, 혼합물에 물을 넣고 메틸렌클로라이드로 추출하였다. 상기 메틸렌클로라이드 추출물을 물, 소금물로 세척하였다. 메틸렌클로라이드를 제거하고 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 8 : 1)로 정제하여 오렌지색 액체의 목적화합물 (33)(52 %)를 얻었다.
1H NMR (80 MHz, CDCl3) : 7.91-7.85 (3H, m, Ar-H), 6.64 (3H, s, Ar-CH-Br2), 3.95 (3H, s, O-CH3).
단계 3 : 5-포르밀-2-니트로-벤조산 메틸에스터 (34)
상기 단계 2에서 제조된 5-디브로모에틸-2-니트로-벤조산 메틸에스터 (33)(1.44 g, 4 mol) 및 칼슘 카보네이트 (1.6 g, 16 mmol)를 물에 녹여 24시간 동안 환류교반 하였다. 반응물을 여과하고 메틸렌클로라이드로 추출하였다. 상기 메틸렌클로라이드 추출물을 물 및 소금물로 세척한 후 농축시켰다. 농축액을 컬럼 크로마토그래피(n-헥산: 에틸아세테이트 = 4 : 1)로 정제하여 흰색 고체의 목적 화합물 (34)(40 %)을 얻었다.
1H NMR (80 MHz, CDCl3) : 10.36 (1H, s, CHO), 8.52-8.10 (3H, m, Ar-H), 4.00 (3H, s, O-CH3).
단계 4 : 5-하이드록시메틸-2-니트로-벤조산 메틸에스터 (35)
상기 단계2에서 제조된 5-포르밀-2-니트로-벤조산 메틸에스터 (34) (300 mg, 1.4 mmol)를 메탄올에 용해시키고 소디움 보로하이드라이드(NaBH4)(310 mg, 8.4 mmol)로 환원시켰다. 물을 첨가하여 반응을 종결시키고 혼합물을 메틸렌클로라이드를 사용하여 추출하였다. 메틸렌클로라이드 추출물을 물 및 소금물로 세척하고 메틸렌클로라이드롤 제거한 후 농축액을 컬럼 크로마토그래피( n-헥산 : 에틸아세테이드 = 3 : 1)로 정제하여 목적화합물인 에스터 (35)(215 mg, 71 %)를 얻었다.
1H NMR (80 MHz, CDCl3) : 8.19-7.64 (3H, m, Ar-H), 4.74 (2H, s, Ar-CH3-OH), 3.87(3H, s, O-CH3).
단계 5 : 5-(tert-부틸-다이페닐-신나닐오시메틸)-2-니트로-벤조산 메틸 에스터 (36)
tert-부틸크롤로다이페닐실란(660 mg, 2.4 mmol)과 상기 단계 4에서 제조된 5-하이드록시메틸-2-니트로-벤조산 메틸에스터 (35) (330 mg, 1.5 mmol), 및 이미다졸(330 mg, 4.8 mmol)을 DMF에 용해시켰고 60℃로 가열하였다. 반응이 완료된 후에 혼합물을 물로 희석하고 에테르로 추출하였다. 유기층을 물 및 소금물로 씻고 건조농축 하였다. 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 6 : 1)로 정제하여 노란색 액체의 목적화합물(678 mg, 95 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.72-736 (13H, m, Ar-H), 4.81(2H, s, Ar-CH2-O), 3.87 (3H, s, O-CH3), 1.06 (9H, s, CH3).
단계 6 : 5-하이드록시메틸-1-(4-메톡시-벤질)1H-인돌-2-카바알데히드 (5d)의 합성
상기 제조된 5-(tert-부틸-다이페닐-신나닐옥시메틸)-2-니트로-벤조익에시드 메틸에스터 (36)를 상기 제조예 1 또는 제조예 2의 방법을 사용하여 화합물 (5d)를 제조했다.
상기 제조예에서 제도된 화합물들을 하기의 표 1에 나타나 있다.
R1 R2 화합물
제조예 1 H Me 5a
제조예 2 H PMB 5b
제조예 3 CH3 PMB 5c
제조예 4 CH2OH PMB 5d
*PMB : para-methoxybenzyl
상기 제조예에서 제조된 화합물(5)로부터 본 발명인 화합물(1)을 제조하였다.
<실시예 1>1-메틸-1H-인돌-2-일-카보알데하이드 (1c)
단계 1 : (1-메틸-1H-인돌-2-일)메탄올 (6a)
제조예 1에서 제조된 에틸-1-메틸-1H-인돌-2-카르복실레이트(5a)(6.18 g, 20 mmol) 및 리튬알루미늄 하이드라이드(1.14 g, 30 mmol)를 THF 용액에 용해시켜 20 ℃에서 2시간동안 교반하였다. 물을 첨가하여 반응을 완결시키고 셀라이트로 여과하였다. 상기 걸러진 반응용액을 메틸렌클로라이드로 추출하였다. 유기층을 물 및 소금물로 세척하고 건조하여 농축시켰다. 농축액을 컬럼크로마토그래피(n-헥산 : 에틸아세테이트 = 4 : 1)로 정제하여 목적화합물(4.55 g, 85 %)을 얻었다.
단계 2 : 1-메틸-1H-인돌-2-일-카보알데하이드 (1c)
상기 단계1에서 제조된 (1-메틸-1H-인돌-2-일)메탄올 (6a)(4.55g, 17mmol)과 이산화망간(15.3g, 255 mmol)을 사염화탄소에 녹인 후 실온에서 10시간 동안 교반하였다. 반응이 종결되면 혼합물을 여과하고 농축시켰다. 생성물 농축액을 컬럼 크로마토그래피 (n-헥산 : 에틸아세테이트 = 6 : 1)로 정제하여 노란색 고체의 목적화합물 알데하이드(3.72 g, 83 %)를 얻었다
<실시예 2> 1-(4-메톡시-벤질)-1H-인돌-2-카보알데하이드 (1d)
단계 1 : [1-(4-메톡시-벤질)-1H-인돌-2-일]메탄올 (6b)
출발물질로 에틸-1-메틸-1H-인돌-2-카르복실레이트(5a) 대신 1-(4-메톡시-벤질)-1H-인돌-2-카르복실릭 산 에틸 에스터 (5b) (6.18g, 20mmol)를 사용하는 것을 제외하고는 제조예 1의 단계1과 같은 방법으로 제조하여 목적 화합물(4.55 g, 85 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.60-6.45 (9H, m, Ar-H), 5.30 (2H, s, Ar-CH2 ), 4.62 (2H, s, CH2-OH ), 3.68 (3H, s, CH3-O ), 1.96 (1H, b, OH)
단계 2 : 1-(4-메톡시-벤질)-1H-인돌-2-카보알데하이드 (1d)
(1-메틸-1H-인돌-2-일)메탄올 (6a)대신 상기 단계1에서 제조된 [1-(4-메톡시-벤질)-1H-인돌-2-일]메탄올 (6b) (4.55 g, 17 mmol)을 사용하는 것을 제외하고 실시예 1의 단계2 와 같은 방법으로 제조하여 목적화합물 알데하이드(3.72 g, 83 %)를 얻었다.
1H NMR (300 MHz, CDCl3) : 9.87 (1H, s, CHO), 7.74-6.73 (9H, m, Ar-H), 5.73(2H, s, Ar-CH2 ), 3.68 (3H, s, CH3 -O ).
<실시예 3> 1-(4-메톡시-벤질)- 5-메틸-1H-인돌-2-카보알데하이드 (1e)
단계 1 : [1-(4-메톡시-벤질)- 5-메틸-1H-인돌-2-일]-메탄올 (6c)
에틸-1-메틸-1H-인돌-2-카르복실레이트 (5a)대신 상기 제조예 3에서 제조된 1-(4-메톡시-벤질)-5-메틸-1H-인돌-2-카르복실산 에틸 에스터 (5c)를 사용하는 것을 제외하고 상기 실시예 1의 단계 1과 같은 방법으로 제조하여 목적 화합물 (6c)(87 %)를 얻었다.
M.p 110-112.6 ℃.
1H NMR (300 MHz, CDCl3) : 7.39 (1H, s, Ar-H), 7.14 (1H, d, J = 8.4Hz, Ar-H ), 7.00 (1H, d, J = 8.4Hz, Ar-H), 6.92 (2H, m, Ar-H), 6.77 (2H, m, Ar-H), 6.43 (1H, s, C3-H), 5.36 (2H, s, Ar-CH2 ), 4.69 (2H, q, CH2-OH ), 3.73 (3H, s, CH3 -O ), 2.43(3H, s, Ar-CH3 ).
단계 2 : 1-(4-메톡시-벤질)- 5-메틸-1H-인돌-2-카보알데하이드 (1e)
(1-메틸-1H-인돌-2-일)메탄올 (6a)대신 상기 단계1에서 제조된 [1-(4-메톡시-벤질)- 5-메틸-1H-인돌-2-일]-메탄올 (6c)(1.78g, 6.4mmol)를 사용하는 것을 제외하고는 실시예 1의 단계 2와 같은 방법으로 제조하여 노란색 고체의 목적화합물 알데하이드 (1e)(1.4 g, 78 %)를 얻었다.
M.p 90.4-91.7 ℃.
1H NMR (300 MHz, CDCl3) : 9.86 (1H, s, CHO), 7.51 (1H, s, Ar-H), 7.50-6.75 (7H, m, Ar-H), 5.72 (2H, s, Ar-CH2 ), 3.72 (3H, s, CH3-O), 2.43 (3H, s, Ar-CH3).
<실시예 4> 1-(1-메틸-1H-인돌-2-일)-1-헵타논(1f)
상기 실시예 1에서 제조된 1-(1-메틸-1H-인돌-2-일)-1-헵타논 (1c) (100mg)에 카본 테트라클로라이드 (5㎖)에 활성화된 이산화망간 (521mg)을 가하고 50℃에서 6시간 교반하였다. 반응용액을 냉각시킨 후, 반응물을 여과하고 용매를 갑압 유거한 후 잔류물을 컬럼 (헥산 : 에틸아세테이트 = 6 : 1)으로 분리정제하여 상기 목적화합물 (80mg, 82%)을 얻었다.
1H-NMR (CDCl3) δ: 7.69 (1H, d, J = 8.0Hz, aromatic H), 7.39-7.13 (3H, m, aromatic H), 7.26 (1H, s, C3-H), 4.08 (3H, s, -NMe), 2.96 (2H, t, J=7.4Hz, -CH2-), 1.78-0.97 (11H, m, aliphatic H).
상기 실시예 1-4에서 제조된 화합물 (1)은 하기의 표 2에 나타난 것과 같다.
R1 R2 R3 화합물
실시예 1 H CH3 H 1c
PMB H 1d
실시예 2 H PMB H 1e
실시예 3 CH3
실시예 4 H CH3 -(CH2)4CH3 1f
*PMB : para-methoxybenzyl
<실시예 5> 벤자스타틴의 합성
상기 제조예 및 실시예 1 ∼ 4를 통해 제조된 본 발명의 화합물을 이용하여 벤자스타틴을 합성하였다.
① 벤자스타틴 E의 합성
상기 반응식 5의 경로대로 제조하였다.
단계 1 : 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-6-헥센-1-올 (18)
마그네슘 분말(320mg, 15mmol)을 5-브로모-1-펜텐(1.5 g, 10 mmol)과 건조된 에테르에 용해시켜 실온에서 2시간 동안 반응시켰다. 반응 혼합물을 0 ℃로 식히고 1-메틸-1H-인돌-2-일-카보알데하이드 (1c) (1.32 g, 5 mmol)를 첨가하였다. 물을 첨가하여 반응을 종결시키고 셀라이트에 여과하였다. 여과한 용액을 메틸렌클로라이드로 추출하고 유기층을 물, 소금물로 세척한 후 농축하였다. 상기 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 6 : 1 )로 정제하여 액체의 목적 화합물 (1.61 g, 95 %)를 얻었다.
1H NMR (300 MHz, CDCl3) : 7.60 (1H, m, Ar-H), 7.23-7.09 (3H, m, Ar-H), 6.95 (2H, m, Ar-H), 6.78 (2H, m, Ar-H), 6.52 (1H, s, C3-H), 5.74 (1H, m, CH=CH2 ), 5.41 (2H, s, Ar-CH2 ), 4.94 (1H, m, CH 2 =CH), 4.73 (1H, t, CH-OH ), 3.73 (3H, s, CH3 -O ), 2.02 (2H, m, aliphatic chain), 1.88 (2H, m, aliphatic chain), 1.51 (2H, m, aliphatic chain).
단계 2 : 아세트산 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥스-5-에닐 에스터 (19)
상기 단계 1에서 제조된 화합물 (18)(1.92g, 6mmol)과 4-(디메틸아민)피리딘(1.5 g, 12 mmol)의 혼합물과 메틸렌클로라이드에 용해시킨 아세트산 무수물(1.2 g, 12 mmol)를 실온에서 5시간 동안 가열하였다. 물을 첨가하여 반응을 종결하고 메틸렌클로라이드로 추출하였다. 메틸렌클로라이드 추출물을 물, 소금물로 씻고 건조 농축하였다. 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 6 : 1 )로 분리 정제하여 보호기가 도입된 목적 화합물 (19)(2.1 g , 90 % )를 얻었다.
1H NMR (300 MHz, CDCl3) : 7.62 (1H, d, J = 6.9Hz, Ar-H ), 7.24-7.10 (3H, m, Ar-H), 6.86-6.75 (4H, m, Ar-H), 6.63 (1H, s, C3-H), 6.04 (1H, t, J = 7.1Hz, CH-OAc ), 5.70 (1H, m, CH=CH2 ), 5.37 (2H, s, Ar-CH2 ), 4.93 (2H, m, C H 2 =CH), 3.73 (3H, s, O-CH3), 2.08-1.93 (4H, m, aliphatic chain), 1.77 (3H, s, CH3 -COO ), 1.37 (2H, m, aliphatic chain).
단계 3 : 아세트산 -[1-(4-메톡시-벤질)-1H-인돌-2-일]-5-옥소-펜틸 에스터 (20)
물 및 THF 각 20 ml 에 상기 단계 2에서 제조된 아세트산 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥스-5-에닐 에스터 (19)(2.83 g, 7.5 mmol)를 녹이고 실온에서 오스늄테트록사이드(19 mg, 0.75 mol)를 첨가한 후 용액을 교반하였다. 30분 후에, 소디움 페리오데이드(sodium periodate)(4.8 g, 22.5 mmol)를 첨가하고 용액을 4시간 동안 계속 교반하였다. 상기 반응액을 여과하여 물을 첨가한 후, 에테르로 추출하였다. 유기층을 물, 소금물로 세척하고 감압 농축하고, 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 6 : 1 )로 분리 정제하여 오렌지색 고체의 목적 화합물(20) (1.95 g, 66 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 9.66 (1H, s , CHO), 7.62 (1H, d, J = 6.9Hz, Ar-H ), 7.26-7.11 (3H, m, Ar-H), 6.87-6.76 (4H, m, Ar-H), 6.65 (1H, s, C3-H), 6.03 (1H, t, J = 7.1Hz, CH-OAc ), 5.38 (2H, s, Ar-CH2 ), 3.75 (3H, s, O-CH3), 2.36-2-27 (2H, m, CH 2 -CHO), 1.78 (3H, s, CH3 -COO ), 1.57 (2H, m, aliphatic chain).
단계 4: 아세트산 5-하이드록시-1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥실 에스터 (21)
본 화합물은 2가지 방법에 의해 제조될 수 있다.
방법 1 : 아세트산 -[1-(4-메톡시-벤질)-1H-인돌-2-일]-5-옥소-펜틸 에스터 (20)을 출발 물질로 사용하여 제조
상기 단계 3에서 얻어진 화합물 (20)(1.95 g, 5.2 mmol)을 0 ℃에서 교반하면서 메틸 마그네슘 브로마이드(10.5 ml, 10.5 mmol)를 첨가하였다. 온도가 실온에 도달할 때까지 교반하였다. 3 시간 후에, 물을 첨가하여 반응을 종료하고 셀라이트로 여과하였다. 여과된 화합물을 메틸렌클로라이드로 추출하고, 유기층을 물, 소금물로 씻은 후 용매를 건조 증류하였다. 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 3 : 1 )로 분리 정제하여 노란색 액체의 목적화합물(21)(1.11 g, 52 %)을 얻었다.
방법 2 : 아세트산 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥스-5-에닐 에스터 (19)를 출발 물질로 사용하여 제조
수은 아세테이트(4g, 12.5 mmol)가 담긴 플라스크에 13 ml의 물 및 THF를 순서대로 첨가했다. 그리고 나서 상기 단계 2에서 얻어진 화합물(19)(1.9 g, 5.1 mm)를 첨가한 후 실온에서 2시간 동안 교반하여 옥시머큐레이션 단계를 완성하였다. 13 ml 의 3M 수산화나트륨과 3.0M 수산화나트륨에 소듐 보로하이드라이드 용액 13 ml를 각각을 첨가하였다. 수은이 침전되도록 가만히 두었다. 염화나트륨을 첨가하여 물층을 포화시키고 위층을 분리하였다. 용매를 제거하고 농축액을 컬럼 크로마토그래피(n-헥산 :에틸아세테이트 = 3 : 1)로 분리 정제하여 노란색 액체의 목적화합물 알코올 (976 mg, 50 %)을 얻었고, 출발물질(530 mg, 25 %)을 회수하였다.
1H NMR (300 MHz, CDCl3) : 7.62 (1H, d, J = 6.9Hz, Ar-H ), 7.24-7.10 (3H, m, Ar-H), 6.86-6.74 (4H, m, Ar-H), 6.63 (1H, s, C3-H), 6.03 (1H, t, J = 7.1Hz, CH-OAc ), 5.36 (2H, s, Ar-CH2 ), 3.71 (3H, s, O-CH3), 3.66 (1H, m, CH-OH), 1.77 (3H, s, CH3 -COO ), 1.34 (2H, m, aliphatic H), 1.09 ( 3H, d, J = 6.2 Hz, CH 3 -CH-OH)
단계 6 : 아세트산 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-5-옥소-헥실 에스터 (22)
상기 단계 5에서 얻어진 아세트산 5-하이드록시-1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥실 에스터 (21)(976 mg, 2.5 mmol)과 피리딘 다이크로메이트(1.88 g, 5 mmol)를 메틸렌클로라이드에 용매시켜 밤새도록 교반하였다. 반응물을 여과하고 메틸렌클로라이드로 세척하였다. 여과된 화합물의 용매를 제거한 후 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 4 : 1 )로 분리정제하여 노란색 액체의 목적 화합물 (22)(575 mg, 59 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.62 (1H, d, J = 6.9Hz, Ar-H ), 7.24-7.10 (3H, m, Ar-H), 6.86-6.75 (4H, m, Ar-H), 6.65 (1H, s, C3-H), 6.01 (1H, t, J = 7.0Hz, CH-OAc ), 5.37 (2H, s, Ar-CH2 ), 3.73 (3H, s, O-CH3), 1.98 (3H, s, CH3 -CO ), 1.94 (2H, m, aliphatic H), 1.78 (3H, s, CH3 -COO ), 1.52 (2H, m, aliphatic H).
단계 7 : 6-하이드록시-1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥산-2-논 (23)
소디움 메톡사이드(120 mg, 2.1 mmol)와 상기 단계 6에서 얻어진 아세트산 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-5-옥소-헥실 에스터 (22)(410 mg, 1.05 mmol)를 메탄올 용액에 첨가하고 실온에서 교반하였다. 물을 첨가하여 반응을 종결하고 반응 혼합물을 메틸렌클로라이드로 추출하였다. 메틸렌클로라이드 추출물을 물, 소금물로 씻은 후 유기용매층을 건조 농축하였다. 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 4 : 1 )로 분리 정제하여 노란색 액체의 목적 화합물 (23)(215 mg, 54 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.58 (1H, d, J = 6.9Hz, Ar-H ), 7.20-7.06 (3H, m, Ar-H), 6.86-6.71 (4H, m, Ar-H), 6.46 (1H, s, C3-H), 5.33 (2H, s, Ar-CH2 ), 4.62 (1H, t, J = 6.6Hz, CH-OH ), 3.67 (3H, s, O-CH3), 2.64 (1H, b, OH), 2.28 (2H, m, aliphatic H), 1.98 (3H, s, CH3 -CO ), 1.74 (2H, m, aliphatic H), 1.54(2H, m, aliphatic H).
단계 8 : 6-(tert-부틸-메틸-신나닐옥시)-6-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥산-2-논 (24)
tert-부틸다이메틸실닐 클로라이드(112 mg, 0.75 mmol)를 상기 단계 7에서 얻어진 6-하이드록시-1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-헥산-2-논 (23) (215 mg, 0.6 mmol) 및 이미다졸(103 mg, 1.5 mmol)을 DMF에 녹인 혼합액에 첨가한 후 60 ℃에서 반응을 진행하였다. 반응이 종료된 후에, 혼합물을 물로 희석하고 에테르로 추출하였다. 에테르 추출액을 물, 소금물로 세척한 후 용매를 제거하였다. 용매를 제거한 후, 농축액을 컬럼 크로마토그래피(n-헥산 : 에틸아세테이트 = 6 : 1 )로 분리 정제하여 보호기가 도입된 노란색 액체의 목적화합물(24) (150 mg, 50 %)을 얻었다.
상기 제조된 화합물을 통상적인 방법을 사용하여 벤자스타틴 E 유도체를 합성하였다.
③ 벤자스타틴 G 유도체의 합성
단계 1 : 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-5-메틸-헥스-4-엔-1-올 (37)
그리나드 시약의 종류를 달리하고 벤자스타틴 E 합성의 단계1의 화합물(18)의 제조방법과 같은 방법으로 제조하여 액상의 목적화합물(50 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.59 (1H, d, J = 8.1Hz, Ar-H), 7.21-7.06 (3H, m, Ar-H), 6.90-6.82 (2H, m, Ar-H), 6.77-6.74 (2H, m, Ar-H), 6.51 (1H, s, C3-H), 5.38 (2H, s, Ar-CH2 ), 5.06 (1H, m, CH=C), 4.72 (1H, t, CH-OH ), 3.71 (3H, s, CH3-O ), 2.09 (2H, m, aliphatic chain), 1.92 (2H, m, aliphatic chain), 1.68 (3H, s, CH3), 1.55 (3H, s, CH3).
단계 2 : [1-1-(4-메톡시-벤질)-1H-인돌-2-일]-5-메틸-헥사-4-엔-1-논 (38)
상기 제조된 1-[1-(4-메톡시-벤질)-1H-인돌-2-일]-5-메틸-헥스-4-엔-1-올 (37)(86 mg, 0.25 mmol)과 이산화망간(350 g, 4 mmol)을 사염화탄소에 녹이고 밤새도록 교반하였다. 반응이 완결되면 여과하여 메틸렌클로라이드로 세척하였다. 용매를 제거하고 농축액을 컬럼 크로마토그래피로 분리정제하여 갈색 액체의 목적화합물 (60 mg, 70 %)를 얻었다.
1H NMR (300 MHz, CDCl3) : 7.71 (1H, d, J = 8.1Hz, Ar-H), 7.36-7.31 (3H, m, Ar-H), 7.14-6.74 (5H, m, Ar-H), 5.76 (2H, s, Ar-CH2 ), 5.12 (1H, m, CH=C), 3.70 (3H, s, CH3-O ), 2.96 (2H, m, CH2-CO), 2.39 (2H, m, CH2-CH=C), 1.67 (3H, s, CH3), 1.60 (3H, s, CH3)
단계 3 : 벤자 스타틴 G 유도체의 제조
상기 제조된 [1-1-(4-메톡시-벤질)-1H-인돌-2-일]-5-메틸-헥사-4-엔-1-논 (40)에 그리나드 시약을 첨가하여 벤자스타틴 유도체를 얻었다.
② 벤자스타틴 F 유도체의 합성
본 발명의 화합물로 하기의 반응식에 따라 벤자스타틴 F를 합성하였다.
단계 1 : 1-[1-(4-메톡시-벤질)-5메틸-1H-인돌-2-일]-헥스-5-엔-1-올 (39)
출발물질을 화합물(1d) 대신 실시예 3에서 제조된 화합물(1e)을 사용하는 것을 제외하고는 벤자스타틴 E 합성의 단계1의 화합물 (18)의 제조방법과 같은 방법으로 제조하여 노란색 액체의 목적 화합물(93 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.39 (1H, s, Ar-H), 7.11 (1H, d, J = 8.4, Ar-H), 6.97 (1H, d, J = 8.4, Ar-H), 6.89-6.85 (2H, m, Ar-H), 6.77-6.74 (2H, m, Ar-H), 6.43 (1H, s, C3-H), 5.73 (1H, m, CH=CH2 ), 5.38 (2H, s, Ar-CH2 ), 4.99 (2H, m, CH 2 =CH), 4.89 (1H, t, CH-OH ), 4.71 (1H, b, OH), 3.78 (3H, s, CH3 -O ), 2.42 (3H, s, Ar-CH3), 2.02 (2H, m, aliphatic chain), 1.89 (2H, m, aliphatic chain), 1.64 (2H, m, aliphatic chain)
단계 2 : 아세트산 1-[1-(4-메톡시-벤질)-5-메틸-1H-인돌-2-일]-헥-5-에닐 에스터 (40)
출발물질을 화합물 (18) 대신 상기 단계 1에서 제조된 화합물 (39)를 사용하는 것을 제외하고는 벤자스타틴 E 합성의 단계1의 화합물 (19)의 제조방법과 같은 방법으로 제조하여 노란색 액체의 목적 화합물(86 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.41 (1H, s, Ar-H), 7.10 (2H, d, J = 8.4, Ar-H), 6.98 (1H, d, J = 8.4, Ar-H), 6.85-6.76 (4H, m, Ar-H), 6.54 (1H, s, C3-H), 6.02 (1H, t, J = 7.1Hz, CH-OAc ), 5.67 (1H, m, CH=CH2 ), 5.34 (2H, s, Ar-CH 2 ), 4.96-4.89 (2H, m, CH 2 =CH), 3.77 (3H, s, O-CH2), 2.43 (3H, s, Ar-CH3), 2.21-1.92 (2H, m, aliphatic chain), 1.76 (3H, s, CH3-COO ), 1.36-1.27 (4H, m, aliphatic chain).
단계 3 : 아세트산 1-[1-(4-메톡시-벤질)-5-메틸--1H-인돌-2-일]-5-옥소-펜틸 에스터 (41)
출발물질을 화합물 (19) 대신 상기 단계 2에서 제조된 화합물 (40)을 사용하는 것을 제외하고는 벤자스타틴 E 합성의 단계1의 화합물 (20)의 제조방법과 같은 방법으로 제조하여 오렌지색 고체의 목적화합물(44 %)을 얻었다.
1H NMR (300 MHz, CDCl3) : 9.62(1H, s , CHO), 7.41-6.74 (8H, m, Ar-H), 6.55 (1H, s, C3-H), 6.00 (1H, t, J = 7.0Hz, CH-OAc ), 5.34 (2H, s, Ar-CH2 ), 3.73 (3H, s, O-CH3), 2.43 (3H, s, Ar-CH3), 2.31-2.28 (2H, m, CH 2 -CHO), 2.04 (2H, m, aliphatic chain), 1.77 (3H, s, CH3-COO ), 1.58 (2H, m, aliphatic chain).
단계 4 : 아세트산-5-하이드록시-1-[1-(4-메톡시-벤질)-5-메틸-1H-인돌-2-일]-헥실 에스터 (42)
알코올을 2가지 방법으로 제조될 수 있고. 이들은 출발물질만 다르고 실시예 5의 단계 4의 화합물 (21)의 제조방법과 같다.
방법 1: 출발물질로 화합물 (41)을 사용하고 실시예 5에 기재된 단계 4의 방법 1의 제조방법으로 제조하여 목적화합물 (12 %)을 얻었다.
방법 2 : 화합물 (40)을 출발 물질로 사용하고 실시예 5의 단계 4의 방법 2의 제조방법으로 제조하여 목적화합물 (5%)을 얻었다.
1H NMR (300 MHz, CDCl3) : 7.41 (1H, s, Ar-H), 7.12 (1H, m, Ar-H), 6.99 (1H, d, Ar-H), 6.86-6.83 (2H, m, Ar-H), 6.77-6.74 (2H, m, Ar-H), 6.54 (1H, s, C3-H), 6.01 (1H, t, J = 7.1Hz, CH-OAc ), 5.34 (2H, s, Ar-CH2 ), 3.73 (3H, s, O-CH3), 3.66 (1H, m, CH-OH), 2.43 (3H, s, Ar-CH3), 1.93-177 (2H, m ,alphatic H), 1.76 (3H, s, CH3 -COO ), 1.38-1.28 (4H, m, aliphatic H), 1.10 ( 3H, d, J = 6.2 Hz, CH 3 -CH-OH).
단계 5 : 벤자스타틴 F 유도체의 제조
상기 벤자 스타틴 E의 제조방법에 있어서 화합물 (21) 대신 상기 단계 4에서 제조된 화합물(44)를 사용하고 반응식 4의 반응과 동일한 방법으로 제조하였다.
이상에서 상세히 살펴 본 바와 같이, 본 발명에서는 벤자스타틴 유도체의 기본 골격이 되는 화합물 및 이의 제조방법을 확립하였으며, 이에 따라 다양한 치환기가 도입된 새로운 벤자스타틴 유도체를 합성할 수 있고, 합성한 각종 유도체와 약리활성간의 상관관계를 연구할 수 있어 벤자스타틴보다 뛰어난 활성을 가진 새로운 화합물을 합성할 수 있다.

Claims (8)

  1. 하기 화학식 1로 표시되는 벤자스타틴 유도체 제조용 중간체.
    화학식 1
    (상기식에서,
    R1은 H, CH3, OH, 니트릴기, 아마이드기, C1 ∼ C4 의 알콕시기, 또는 하이드록시메틸기이고;
    R2는 CH3 또는 PMB(para-methoxy benzyl) 등의 질소 보호기를 나타내며;
    R3는 H, CH3, C1∼C10의 알킬기 또는 부분적으로 불포화된 직쇄 또는 측쇄 탄화수소이다.)
  2. 제 1항에 있어서, R1가 H 또는 CH3 이고;
    R2가 CH3, 또는 PMB이고;
    R3가 H, -(CH2)4CH3, -CH2CH2CH=CH(CH 3)2 또는 -CH2CH2C(CH3)=CH(CH3 )2인 것을 특징으로 하는 화합물.
  3. 제 1항에 있어서, 상기 화합물이
    1) 1-메틸-1H-인돌-2-일-카보알데하이드;
    2) 1-(4-메톡시-벤질)-1H-인돌-2-카보알데하이드;
    3) 1-(4-메톡시-벤질)-5-메틸-1H-인돌-2-카보알데하이드; 또는
    4) 1-(1-메틸-1H-인돌-2-일)-1-헵타논인 것을 특징으로 하는 화합물.
  4. 삭제
  5. 삭제
  6. a) 화학식 1a의 알데히드 화합물을 그리나드 반응시켜 화학식 7의 알코올 화합물을 제조하고(단계 1).
    b) 상기 알코올 화합물을 산화시켜 화학식 1b의 화합물을 제조하는 단계(단계 2)로 이루어지는 것을 특징으로 하는 청구항 1항에 따른 화합물의 제조방법.
    반응식 2
    (상기식에서,
    R1은 H, CH3, OH, 니트릴기, 아마이드기, C1 ∼ C4 의 알콕시기, 또는 하이드록시메틸기이고;
    R2는 CH3 또는 PMB(para-methoxy benzyl) 등의 질소 보호기를 나타내며;
    R3는 CH3, C1∼C10의 알킬기 또는 부분적으로 불포화된 직쇄 또는 측쇄 탄화수소이다.)
  7. 제 6항에 있어서, 상기 산화제가 K2Cr2O7과 황산 화합물; 피리디늄 클로로크로메이트; 피리디늄 디크로메이트; 이산화망간 및 스완 산화반응 시약으로 이루어진 그룹에서 선택되는 것을 특징으로 하는 제조방법.
  8. 삭제
KR10-2001-0052436A 2000-08-31 2001-08-29 벤자스타틴 유도체의 제조시 중간체로 사용 가능한 새로운화합물 및 그 제조방법 KR100476359B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20000050972 2000-08-31
KR1020000050972 2000-08-31

Publications (2)

Publication Number Publication Date
KR20020018100A KR20020018100A (ko) 2002-03-07
KR100476359B1 true KR100476359B1 (ko) 2005-03-16

Family

ID=19686285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0052436A KR100476359B1 (ko) 2000-08-31 2001-08-29 벤자스타틴 유도체의 제조시 중간체로 사용 가능한 새로운화합물 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR100476359B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053624A (en) * 1974-05-31 1977-10-11 Boehringer Mannheim Gmbh Indole-2-carbaldehyde compounds and blood sugar reducing compositions
JPS63297363A (ja) * 1987-05-28 1988-12-05 Nippon Steel Chem Co Ltd 3−メチルインド−ル類の製造法
JPH04173786A (ja) * 1990-11-06 1992-06-22 Kawaken Fine Chem Co Ltd 4―ケト―テトラハイドロ―β―カルボリン化合物の製造方法
JPH05208910A (ja) * 1991-09-06 1993-08-20 Merck & Co Inc Hiv逆転写酵素の阻害剤
US5657064A (en) * 1993-03-19 1997-08-12 Xerox Corporation Recording sheets containing pyrrole, pyrrolidine, pyridine, piperidine, homopiperidine, quinoline, isoquinoline, quinuclidine, indole, and indazole compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053624A (en) * 1974-05-31 1977-10-11 Boehringer Mannheim Gmbh Indole-2-carbaldehyde compounds and blood sugar reducing compositions
JPS63297363A (ja) * 1987-05-28 1988-12-05 Nippon Steel Chem Co Ltd 3−メチルインド−ル類の製造法
JPH04173786A (ja) * 1990-11-06 1992-06-22 Kawaken Fine Chem Co Ltd 4―ケト―テトラハイドロ―β―カルボリン化合物の製造方法
JPH05208910A (ja) * 1991-09-06 1993-08-20 Merck & Co Inc Hiv逆転写酵素の阻害剤
US5657064A (en) * 1993-03-19 1997-08-12 Xerox Corporation Recording sheets containing pyrrole, pyrrolidine, pyridine, piperidine, homopiperidine, quinoline, isoquinoline, quinuclidine, indole, and indazole compounds

Also Published As

Publication number Publication date
KR20020018100A (ko) 2002-03-07

Similar Documents

Publication Publication Date Title
Waldmann et al. Asymmetric tandem Mannich-Michael reactions of amino acid ester imines with Danishefsky's diene
EP1860103B1 (en) Anticancer compound, intermediate therefor, and processes for producing these
EP2142501B1 (fr) Procede de preparation de derives de porphyrine, telle que la protoporphyrine (ix) et intermediaire de synthese
EP0213006B1 (fr) Nouveaux dérivés du dihydro-2,3 benzofuranne, leurs procédés de préparation et les compositions pharmaceutiques qui les contiennent
Solladie et al. Chiral sulfoxides in asymmetric synthesis: Enantioselective synthesis of the lactonic moiety of (+)-Compactin and (+)-Mevinolin. Application to a compactin analog
Srinivas et al. Stereoselective total synthesis of (+)-varitriol
EP0011059B1 (fr) Procédé de préparation de la (+,-) vincadifformine et d&#39;autres dérivés pentacycliques apparentés
KR100476359B1 (ko) 벤자스타틴 유도체의 제조시 중간체로 사용 가능한 새로운화합물 및 그 제조방법
US6313320B1 (en) Process for the preparation of calanolide precursors
CN112645863B (zh) 二吡咯甲烯-1-酮类化合物及其制备方法
Hanselmann et al. Enantioselective Synthesis of a Wieland-Miescher Ketone Bearing an Angular Hydroxymethyl Group
RU2282633C1 (ru) СПОСОБ ПОЛУЧЕНИЯ 1,11-ДИАЛКИЛ-3,5-ДИГИДРОФУРО[2&#39;,3&#39;:3,4]ЦИКЛОГЕПТА[c]ИЗОХРОМЕНОВ
Kato et al. Ketene and its derivatives. 100. 1-(Dimethylphosphono)-and 1-(diphenylphosphinyl)-5-oxo-4-oxaspiro [2.3] hexanes. Synthesis and some reactions
JP3338854B2 (ja) 新しいアレノ〔e〕インドールの製造方法
CH639075A5 (fr) Ethers dibenzyliques substitues actifs sur le plan therapeutique.
US4200638A (en) Indole derivatives and therapeutically acting drugs
EP0685473B1 (fr) Composés benzohétérocycliques, en tant qu&#39;antioxydants
BE1006226A3 (fr) Derives de la benzofuranylimidazole, leur procede de preparation ainsi qu&#39;une composition therapeutique les contenant.
EP0430808B1 (fr) Dérivés dihydropyranniques, leurs procédés de préparation et leur utilisation
FR2752840A1 (fr) Derives de benzothiophene, leur preparation et leur application en therapeutique
FR2472573A1 (fr) Derives polycycliques de l&#39;anthracene et du naphtacene et procede pour leur preparation
EP0165225B1 (fr) Procédé de préparation de l&#39;aza-5 indole et intermédiaires
EP0317416A1 (fr) Procédé de préparation de chloro-1 alkyl-5 isoquinoleines condensées avec des groupes aromatiques, les nouveaux produits obtenus, et leur application comme médicaments
Novák et al. Rearrangement of Allyl Aryl Ethers I. Reaction of hydroquinone with conjugated Dien-ols and Trien-ol
FR2727410A1 (fr) Chlorures de sulfonyles, leur preparation et leur utilisation comme intermediaires de synthese

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130204

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200122

Year of fee payment: 16