KR100475840B1 - Compact, flexible and economical nitrogen removal process for municipal and industrial waste water - Google Patents

Compact, flexible and economical nitrogen removal process for municipal and industrial waste water Download PDF

Info

Publication number
KR100475840B1
KR100475840B1 KR10-2002-0025184A KR20020025184A KR100475840B1 KR 100475840 B1 KR100475840 B1 KR 100475840B1 KR 20020025184 A KR20020025184 A KR 20020025184A KR 100475840 B1 KR100475840 B1 KR 100475840B1
Authority
KR
South Korea
Prior art keywords
nitrogen
tank
sewage
sludge
heat treatment
Prior art date
Application number
KR10-2002-0025184A
Other languages
Korean (ko)
Other versions
KR20030087216A (en
Inventor
염남철
Original Assignee
주식회사 태진엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태진엔지니어링 filed Critical 주식회사 태진엔지니어링
Priority to KR10-2002-0025184A priority Critical patent/KR100475840B1/en
Publication of KR20030087216A publication Critical patent/KR20030087216A/en
Application granted granted Critical
Publication of KR100475840B1 publication Critical patent/KR100475840B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

본 발명은 고온ㆍ고압의 열처리(Thermal Hydrolysis)에 의한 열처리액(thermal hydrolysate)을 외부 탄소원으로 이용하는 방법과 외부탄소 없이 고농도 질소 처리할수 있는 호기성 탈암모늄 공법을 선택적으로 혹은 동시에 채택해서 집적(COMPACT), 유연성(FLEXIBLE) 및 경제적(ECONOMICAL)인 질소처리 장치 및 그 방법을 제안한다.The present invention uses a method of using a thermal hydrolysate by high temperature and high pressure thermal hydrolysis as an external carbon source, and selectively or simultaneously adopting an aerobic deammonium method that can treat a high concentration of nitrogen without external carbon. The present invention proposes a nitrogen treatment apparatus and method thereof which are flexible and economical.

Description

하ㆍ폐수의 질소 처리장치{COMPACT, FLEXIBLE AND ECONOMICAL NITROGEN REMOVAL PROCESS FOR MUNICIPAL AND INDUSTRIAL WASTE WATER} Nitrogen treatment equipment for sewage and wastewater {COMPACT, FLEXIBLE AND ECONOMICAL NITROGEN REMOVAL PROCESS FOR MUNICIPAL AND INDUSTRIAL WASTE WATER}

본 발명은 하ㆍ폐수의 질소 처리장치에 관한 것으로서, 특히 하ㆍ폐수 슬러지 열처리에 의한 탄소원 이용과 슬러지 탈수여액의 고농도 질소처리를 호기성 탈암모늄 공법을 이용하여 단계별로 하ㆍ폐수 내의 질소를 처리할 수 있는 장치에 관한 것이다.The present invention relates to a nitrogen treatment apparatus for sewage and wastewater, and in particular, the use of a carbon source by sewage and wastewater sludge heat treatment and a high concentration of nitrogen treatment of sludge dewatering liquor are treated in a stepwise manner by using an aerobic deammonium process. It relates to a device that can.

최근 하천과 호수 등의 부영양화 현상으로 사회적 문제가 됨에 따라 부영양화 현상의 원인물질인 질소 및 인의 제거 기술연구에 관한 관심이 확대되고 있다. 암모니아성 질소는 부영양화의 원인물질이며 수계에 있어서도 수생생물의 독성물질로 알려져 있어 그 제거기술에 대한 연구는 오래 전부터 행하여져 왔으나, 질소제거를 위한 건설비 및 유지비 등으로 실용화에서는 아직 미비한 실정이다. 더욱이 2003년부터는 산업폐수에 있어서도 수질기준이 적용된다고 함에 따라 고농도 질소를 포함한 산업폐수의 질소제거 처리기술의 보급이 시급한 실정이다.Recently, as social problems are caused by eutrophication of rivers and lakes, interests in research on technology for removing nitrogen and phosphorus, which are the causes of eutrophication, are expanding. Ammonia nitrogen is a causative agent of eutrophication and is known as a toxic substance of aquatic organisms in water, and research on its removal technology has been conducted for a long time, but it is still insufficient in practical use due to construction cost and maintenance cost for nitrogen removal. Furthermore, since 2003, since the water quality standards are applied to industrial wastewater, it is urgent to spread the nitrogen removal treatment technology of industrial wastewater including high concentration nitrogen.

한편, 폐수 중의 질소 제거방법으로는 크게 물리ㆍ화학적 방법과 생물학적 방법으로 나눌 수 있으며, 생물학적인 제거방법이 가장 효과적이고 경제적인 것으로 알려져 있다. 생물학적 처리는 하ㆍ폐수 중에 존재하는 유기성 질소 및 암모니아성 질소를 호기성 조건하에서 산화세균을 이용하여 아질산 또는 질산소 질소로 산화 시킨 후, 무산소 조건하에서 탈질소 세균을 이용하여 질소가스까지 환원시켜 대기중으로 방출시키는 처리방법이다.On the other hand, the nitrogen removal in the waste water can be divided into physical and chemical methods and biological methods, biological removal method is known to be the most effective and economical. In biological treatment, organic nitrogen and ammonia nitrogen present in sewage and waste water are oxidized to nitrous acid or nitrous nitrogen using oxidizing bacteria under aerobic conditions, and then reduced to nitrogen gas using denitrifying bacteria under anoxic conditions. It is a treatment method to release.

현재, 생물학적 질소제거 처리방법에 있어서도 질산화 공정시의 산소공급에 따른 동력비 절감과 탈질 공정시의 유기탄소원의 절감이 가장 요구되어지고 있는 실정이다.Currently, even in the biological nitrogen removal treatment method, the reduction of power cost according to the oxygen supply in the nitrification process and the reduction of the organic carbon source in the denitrification process are most demanded.

또한, C/N비가 적절하지 못한 하ㆍ폐수 종말처리장이나 고농도의 질소 처리를 위한 산업폐수 처리장에서는 보다 경제성 있는 질소처리방법에 대하여 많은 기술ㆍ연구가 행해지고 있는 실정이다. 특히, 국내 하수처리장에 있어서도 고도처리를 위한 다량의 외부 탄소원이 필요하며, 상기 외부 탄소원 개발에 있어서 하수슬러지를 이용한 방법의 연구에는 미생물을 이용한 산 발효 공법에 의한 것이 대부분이다.In addition, many technologies and studies are being conducted on more economical nitrogen treatment methods in sewage and wastewater treatment plants for which the C / N ratio is not appropriate or industrial wastewater treatment plants for high concentration nitrogen treatment. In particular, even in domestic sewage treatment plants, a large amount of external carbon sources are required for advanced treatment, and in the development of the external carbon sources, most of the researches on the method using sewage sludge are performed by acid fermentation using microorganisms.

따라서, 본 발명은 이와 같은 에너지 절감과 유기탄소원 절감을 필요로 하는 산업지역과 인접한 하수종말처리장, C/N비가 적절하지 못한 하ㆍ폐수 처리장 및 하수 잉여슬러지 처리를 필요로 하는 하수처리장을 위하여, 외부 탄소원의 개발과 잉여 탄소원 대여를 목적으로 개발하고, 상기 C/N비가 낮은 탈수여액의 고농도 질소 처리를 위하여 외부 탄소원 투여없이 저 산소량으로 질소처리가 가능한 공법으로 전처리 개념의 질소처리를 해서 원(main) 하수처리장의 C/N비를 조정하는 방법이나 산업폐수처리장의 전ㆍ후처리 등의 단계별(step by step) 하ㆍ폐수의 질소 처리장치를 제공하는데 그 목적이 있다.Therefore, the present invention is for sewage treatment plants adjacent to industrial areas that require such energy savings and organic carbon source reduction, sewage and wastewater treatment plants where C / N ratio is not appropriate, and sewage treatment plants requiring sewage excess sludge treatment. Developed for the purpose of developing an external carbon source and renting a surplus carbon source, and for nitrogen treatment with high concentration of dehydration solution with low C / N ratio, it is possible to treat nitrogen with a low oxygen amount without administering an external carbon source. main) It aims to provide a nitrogen treatment system for sewage and wastewater by adjusting the C / N ratio of the sewage treatment plant and step by step of pre and post treatment of industrial wastewater treatment plant.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 하수 또는 폐수에 함유되어 있는 슬러지를 침전시키는 1차 침전지와; 교반기가 설치되고 담체들이 충진된 다수개의 탱크로 구성되며, 상기 1차 침전지로부터 공급되는 하수에 함유되어 있는 질소를 제거하는 질소처리조와; 상기 질소처리조에서 질소처리를 위해 생성된 미생물 과 하수에 함유되어 있는 슬러지를 침전시키는 2차 침전지와; 상기 1,2차 침전지로부터 배출되는 슬러지를 농축시키는 농축조와; 상기 농축조로부터 공급되는 슬러지를 150~180℃의 고온 및 5~10BAR의 고압에서 10~30분간 열처리하여 외부탄소원으로 변환시키는 고온ㆍ고압 열처리조와; 상기 고온ㆍ고압 열처리조에 의해 생성된 열처리액을 탈수 처리하는 탈수장치와; 상기 탈수장치로부터 공급되는 열처리액을 저장하고, 이를 상기 질소처리조로 공급하는 열처리액조 및 상기 탈수장치로부터 배출되는 고체 슬러지를 발효 처리하는 소화조와; 상기 소화조부터 공급되는 탈수여액을 담체를 이용하여 고농도 질소처리를 하는 호기성 탈암모늄조로 구성됨을 특징으로 한다.The present invention for achieving the above object, the primary sedimentation basin for sedimentation sludge contained in sewage or waste water; A nitrogen treatment tank comprising a plurality of tanks provided with a stirrer and filled with carriers, for removing nitrogen contained in the sewage supplied from the primary sedimentation basin; A secondary sedimentation basin for settling sludge contained in the microorganisms and sewage generated for nitrogen treatment in the nitrogen treatment tank; A concentrating tank for concentrating the sludge discharged from the first and second settling basins; A high temperature / high pressure heat treatment tank for converting the sludge supplied from the concentration tank to an external carbon source by heat-treating the sludge for 10 to 30 minutes at a high temperature of 150 to 180 ° C. and a high pressure of 5 to 10 Bar; A dewatering apparatus for dewatering the heat treatment solution generated by the high temperature and high pressure heat treatment tank; A heat treatment liquid tank for storing the heat treatment liquid supplied from the dehydration apparatus, and supplying the heat treatment liquid to the nitrogen treatment tank and a fermentation tank for fermenting the solid sludge discharged from the dehydration apparatus; The dehydration liquid supplied from the digester is characterized by consisting of an aerobic deammonium tank for high concentration nitrogen treatment using a carrier.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

이하 본 발명의 바람직한 실시예의 상세한 설명이 첨부된 도면들을 참조하여 설명될 것이다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.DETAILED DESCRIPTION A detailed description of preferred embodiments of the present invention will now be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

우선 본 발명에서는 고온 고압의 열처리(Thermal Hydrolysis)에 의한 열처리액(thermal hydrolysate)을 외부 탄소원으로 이용하는 방법을 채택함으로써 생물학적 산발효 처리보다 외부탄소원 생성율이 높고 슬러지 탈수가 개선되며, 또한 살균의 효과가 뛰어날 뿐만 아니라 프로세스의 안정성이 탁월한 하ㆍ폐수의 질소 처리장치를 제시하고자 한다.First, in the present invention, by adopting a method of using a thermal hydrolysate by thermal hydrolysis at high temperature and high pressure as an external carbon source, the external carbon source generation rate is higher than that of biological acid fermentation, and sludge dewatering is improved, and the effect of sterilization is also improved. In addition, the present invention proposes a nitrogen treatment system for sewage and wastewater that is excellent in process stability.

또한 본 발명은 호기성 탈암모늄조를 MBBR(Moving Bed Biofilm Reactor) 공정과 접목해서 인공담체에 니트로소아민(nitrosamine)균과 호기성탈질균을 동일조내에 집적시킴으로서 유입수내의 암모니아를 수소공여체로 하고, 또한 하기의 화학식 1에 나타낸 바와 같이 니트로소아민균에 의해 발생되는 아질산성 질소를 수소수용체로 하는 독립영양세균에 의한 탈질이 이루어 지게 하는 것이다.In addition, the present invention combines aerobic deammonium bath with MBBR (Moving Bed Biofilm Reactor) process to integrate nitrosamines and aerobic denitrifiers into artificial tanks in the same tank to make ammonia in the influent as a hydrogen donor. As shown in Formula 1 below, the denitrification is performed by autotrophic bacteria having nitrite nitrogen generated by nitrosoamine bacteria as a hydrogen receptor.

{화학식 1}{Formula 1}

NH4 + + NO2 - → N2 + 2H2O(△GO' = -358KJ/mol NH4+) NH 4 + + NO 2 - → N 2 + 2H 2 O (△ GO '= -358KJ / mol NH 4 +)

한편, 본 발명은 질산화시 산소의 공급량을 60%정도 줄일 수 있으며, 탈질시는 유기탄소원이 필요하지 않다는 장점을 가지고 있으며, 본 발명에 사용할 MBBR 공정은 기존의 간헐폭기방식, A20, A0 및 SBR 공법 등에 비하여 미생물 충격부하에 강하고, 미생물 폐쇄현상이 적으며, 반송이 필요없기 때문에 운전관리가 용이하고, 설치면적이 적으므로 기존의 질소처리시설에 대한 적용이 가능하다는 큰 장점이 있다.On the other hand, the present invention can reduce the amount of oxygen supplied by nitrification by 60%, has the advantage that no organic carbon source is required when denitrification, MBBR process to be used in the present invention is the existing intermittent aeration method, A20, A0 and SBR Compared to the construction method, it is resistant to microbial impact load, there is little microbial closure phenomenon, and there is no need for transportation, so it is easy to manage and install, and it has a big advantage that it can be applied to the existing nitrogen treatment facility.

하수처리장인 경우, 본 발명에서는 열처리액(thermal hydrolysate)을 외부 탄소원으로 이용한 방법으로 주(main) 하수처리 질소공법 스템과 저산소 투여 및 외부 탄소원을 필요치 않은 방법으로 탈수여액을 호기성 탈암모늄공법(Aerobic Deammonification)으로 경제적으로 전처리함과, 총질소를 단계별로 처리하는 복합적인 질소처리 공법이 본 발명의 특성이다. 특히 생물학처리 공법에서의 부하 변동이나 온도의 변화에 대한 공법의 안정성 및 특성적인 미생물군의 활성화를 위해 담체를 적절히 이용함으로, 상기 담체의 추가 고정비용부분을 담체의 이용도를 최적화하기 때문에 유연성 설계를 가능하도록 하여 경제성 부분도 고려할 수 있는 것이 개발의 범위에 포함되어 있다.In the case of a sewage treatment plant, the present invention uses a thermal hydrolysate as an external carbon source, and the dehydration solution is aerobic deammonium (Aerobic) method using a main sewage treatment nitrogen process stem, low oxygen administration, and a method that does not require an external carbon source. Pretreatment economically with Deammonification, and a complex nitrogen treatment method for treating total nitrogen step by step is a feature of the present invention. In particular, by using the carrier appropriately for the stability of the method against the load variation or the temperature change in the biological treatment method and the activation of the characteristic microbial group, the additional fixed cost part of the carrier optimizes the use of the carrier. It is included in the scope of development to enable economic feasibility and to consider economic aspects.

또한, 산업폐수인 경우에는 유입질소의 농도가 1000mg/L 정도 혹은 그 이상으로 외부탄소원을 필요로 하는 미생물 처리공법은 매우 경제적이지 못하다. 본 발명은 외부 탄소원이 필요없고, 저 산소농도로 질소제거가 가능한 호기성 탈암모늄공법으로 경제적으로 전처리가 가능하며, 보다 엄격한 방류수 질소 수질을 보장하기 위해서는 열처리액을 외부탄소원으로 하는 담체를 이용한 후처리 질소처리 공법을 사용하는 것이 발명의 특성이다.In addition, in the case of industrial wastewater, the microbial treatment method that requires an external carbon source with a concentration of nitrogen of about 1000 mg / L or more is not very economical. The present invention does not require an external carbon source, and can be economically pretreated by an aerobic deammonium method that can remove nitrogen at low oxygen concentration, and in order to guarantee more stringent effluent nitrogen water quality, a post-treatment using a carrier having a heat treatment solution as an external carbon source It is a characteristic of the invention to use a nitrogen treatment method.

이하, 본 발명의 바람직한 실시예에 의거 상세히 설명하겠는 바, 상기 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on the preferred embodiments of the present invention, but the present invention is not limited to the embodiments.

{실시예 1}{Example 1}

도 1은 본 발명에 따른 고온ㆍ고압 열처리조 및 호기성 탈암모늄조를 구비하는 질소처리장치를 이용하여 하수를 처리하는 방법 및 전체적인 메카니즘을 나타낸 도면으로서, 상기 도면을 참조하여 본 발명의 실시예를 서술하면 다음과 같다.1 is a view showing a method and an overall mechanism of treating sewage using a nitrogen treatment apparatus including a high temperature / high pressure heat treatment tank and an aerobic deammonium bath according to the present invention, with reference to the drawings. The description is as follows.

상기 도 1을 참조하면, 전처리조(10)는 파이프(a)를 통해 공급되는 무기응집제와 하수를 교반시키고, 1차 침전지(12)는 파이프(b)를 통해 공급되는 고분자 응집제와 상기 전처리조(10)에서 교반된 하수가 혼합되어 유입되고 상기 하수에 함유되어 있는 슬러지를 침전시킨다. 이때 상기 1차 침전지(12)는 파이프(e)와 연결되어 있으며, 이 파이프(e)를 통해 침전된 슬러지가 농축조(18)로 이송되어진다.Referring to FIG. 1, the pretreatment tank 10 agitates the inorganic coagulant and the sewage supplied through the pipe (a), and the primary sedimentation basin 12 is the polymer coagulant and the pretreatment tank supplied through the pipe (b). The sewage stirred at 10 is mixed and introduced and the sludge contained in the sewage is precipitated. At this time, the primary sedimentation basin 12 is connected to the pipe (e), the sludge precipitated through the pipe (e) is transferred to the concentration tank (18).

질소처리조(14)는 상기 1차 침전지(12)에 의해 슬러지가 제거된 하수가 유입되며, 상기 하수에 함유되어 있는 질소를 담체(34)를 이용하여 제거한다. 또한 상기 질소처리조(14)는 다수개의 탱크로, 상세하게는 약 7개의 탱크로 구성되고 이들은 서로 연결되어 있으며, 각 탱크에는 교반기가 설치되어 있다. 한편 전술한 질소처리조(14) 중에서 최외측에 설치된 탱크(14a)는 잉여 탄소(C)를 제거하는 역할을 하고, 도 1에서 4번째에 위치한 탱크에는 내부순환 파이프(c)가 연결되어 있는데 상기 파이프(c)를 통해 "NH4→NO3"으로 변환된 하수가 첫 번째에 위치한 탱크로 다시 유입되어진다.Nitrogen treatment tank 14 is introduced into the sewage from which the sludge has been removed by the primary sedimentation basin 12, the nitrogen contained in the sewage is removed using a carrier (34). In addition, the nitrogen treatment tank 14 is composed of a plurality of tanks, specifically, about seven tanks, which are connected to each other, and each tank is provided with an agitator. On the other hand, the tank 14a installed on the outermost side of the nitrogen treatment tank 14 described above serves to remove excess carbon (C), and the inner circulation pipe (c) is connected to the tank located in the fourth in FIG. Through the pipe (c) the sewage converted to "NH 4 → NO 3 " is introduced back into the tank located first.

2차 침전지(16)에는 상기 질소처리조(14)에서 질소가 제거된, 바람직하게는 "NH4→NO3→N2↑"와 같이 질소가 약 90%이상 제거된 하수가 유입된다. 즉, 상기 2차 침전지(16)는 파이프(i)를 통해 공급되는 무기응집제와 질소가 제거된 하수가 혼합되어 함께 유입되고 상기 하수에 함유되어 있는 슬러지를 침전시킨다. 이때 상기 2차 침전지(16)는 파이프(f)와 연결되어 있는데 이 파이프(f)를 통해 침전된 슬러지가 농축조(18)로 이송되어진다.Secondary sedimentation basin 16 is introduced into the sewage from which nitrogen is removed from the nitrogen treatment tank 14, and preferably at least about 90% of nitrogen is removed, such as " NH 4 → NO 3 → N 2 ↑. &Quot; That is, the secondary sedimentation basin 16 is mixed with the inorganic coagulant supplied through the pipe (i) and the nitrogen-free sewage is introduced into the sediment and precipitate the sludge contained in the sewage. At this time, the secondary sedimentation basin 16 is connected to the pipe (f), the sludge precipitated through the pipe (f) is transferred to the concentration tank (18).

한편, 상기 농축조(18)는 전술한 1차 침전지(12)로부터 배출되는 슬러지와 2차 침전지(16)로부터 배출되는 슬러지를 농축시키는 역할을 하며, 고온ㆍ고압 열처리조(20)는 본 발명의 주요구성 요소로서 농축된 슬러지를 150~180℃의 고온 및 5~10BAR의 고압에서 10~30분간 열처리하여 외부탄소원(이하"열처리액"이라 함)을 생성시킨다.On the other hand, the concentration tank 18 serves to concentrate the sludge discharged from the above-described primary sedimentation basin 12 and the secondary sedimentation basin 16, the high temperature, high pressure heat treatment tank 20 of the present invention As a main component, the concentrated sludge is heat-treated for 10 to 30 minutes at a high temperature of 150-180 ° C. and a high pressure of 5-10 BAR to generate an external carbon source (hereinafter referred to as “heat treatment liquid”).

탈수장치(22)는 고온/고압 처리된 하수를, 바람직하게는 전술한 고온ㆍ고압 열처리조(20)에 의해 생성된 열처리액을 탈수 처리하여 고체 슬러지는 파이프(h)를 통해 소화조(26)로 배출시키고 탈수된 열처리액은 열처리액조(24)로 보낸다. 상기 열처리액조(24)는 열처리액(C-S)을 저장하고, 상기 열처리액을 파이프(g)를 통해 질소처리조(14)의 5번째 탱크로 보낸다. 이때 상기 질소처리조(14)에서는, 바람직하게는 5,6번째 탱크에서는 하수에 함유된 질소를 제거(NO3→N2↑) 한다.The dewatering device 22 dehydrates the hot / high pressure treated sewage, preferably the heat treatment liquid generated by the above-described high temperature / high pressure heat treatment tank 20, so that the solid sludge is digested through the pipe h. The heat treatment liquid is discharged to and sent to the heat treatment liquid tank 24. The heat treatment solution tank 24 stores the heat treatment solution CS and sends the heat treatment solution to the fifth tank of the nitrogen treatment tank 14 through the pipe g. At this time, in the nitrogen treatment tank 14, preferably, in the fifth and sixth tanks, nitrogen contained in the sewage is removed (NO 3 → N 2 ↑).

소화조(26)는 상기 고체 슬러지를 발효 처리하여 체적을 1/10로 줄이고, 탈수장치(28)는 발효된 슬러지를 탈수 처리하여 고체로 된 슬러지는 배출시키고 탈수된 탈수여액은 저장조(30)로 보낸다. 이때 상기 탈수여액은 유기물은 매우 적게함유되어 있고 질소만 다량 함유된 액체를 말한다.The digester 26 fermented the solid sludge to reduce the volume to 1/10, and the dehydrator 28 dehydrates the fermented sludge to discharge the sludge as a solid, and the dehydrated filtrate was transferred to the storage tank 30. send. In this case, the dehydration liquid refers to a liquid containing very little organic matter and containing only a large amount of nitrogen.

호기성 탈암모늄조(32)는 3개의 탱크로 구성되고, 각 탱크에서는 담체(34)들이 충진되어 있다. 상기 호기성 탈암모늄조(32)는 탈수여액 저장조(30)로부터 공급되는 탈수여액(즉, 유기물은 매우 적고, 질소만 다량 함유된 탈수여액)을 담체를 이용하여 고농도 질소처리를 한다. 이때 상기 호기성 탈암모늄 처리액은 파이프(d)를 통해 1차 침전조(12)로 이송되어진다.이때 상기 담체에는 아질산화균과 호기성 탈질균을 집적시켜 즉, 하수 슬러지에서 존재하는 특정 2가지 종을 운전조건으로 자연적으로 접종 후 성장시켜 미생물 막이 형성되도록 해서 담체에 부착시켜 고농도 질소 처리를 하는 것이며, 이는 전술한 화학식 1에 그 메카니즘이 상세히 기재되어 있다.The aerobic deammonium bath 32 consists of three tanks, each of which is filled with carriers 34. The aerobic deammonium tank 32 is subjected to a high concentration of nitrogen treatment using a carrier using a dehydration liquid (that is, a dehydration liquid containing very little organic matter and a large amount of nitrogen) supplied from the dehydration liquid storage tank 30. At this time, the aerobic deammonium treatment liquid is transferred to the primary settling tank 12 through a pipe (d). At this time, the carrier accumulates nitrite and aerobic denitrification bacteria, i.e., two specific species present in sewage sludge. It is grown after inoculation naturally under operating conditions to form a microbial membrane and attached to a carrier for high concentration nitrogen treatment, which is described in detail in the above formula (1).

{실시예 2}{Example 2}

도 2는 본 발명에 따른 고온ㆍ고압 열처리조 및 호기성 탈암모늄조를 구비하는 질소처리장치를 이용하여 폐수를 처리하는 방법 및 전체적인 메카니즘을 나타낸 도면으로서, 상기 도면을 참조하여 본 발명의 실시예를 서술하면 아래와 같다.FIG. 2 is a view showing a method and overall mechanism of treating wastewater using a nitrogen treatment apparatus including a high temperature / high pressure heat treatment tank and an aerobic deammonium tank according to the present invention, with reference to the drawings. The description is as follows.

상기 도 2를 참조하면, 1차 유량저장조(50)는 외부로부터 유입된 폐수를 저장하는 곳이고, 호기성 탈암모늄조(52)는 담체(54)들이 충진된 3개의 탱크로 구성되고 상기 1차 유량조절조(50)로부터 공급되는 폐수에 함유되어 있는 질소를 담체(34)를 이용하여 약 80%정도 제거한다.Referring to FIG. 2, the primary flow rate storage tank 50 is a place for storing wastewater introduced from the outside, and the aerobic deammonium tank 52 is composed of three tanks filled with carriers 54 and the primary About 80% of nitrogen contained in the wastewater supplied from the flow regulating tank 50 is removed using the carrier 34.

1차 침전지(56)는 전술한 호기성 탈암모늄조(52)에 의해 질소가 제거된 폐수에 함유되어 있는 슬러지를 침전시킨다. 이때 상기 1차 침전지(56)는 파이프(f)와 연결되어 있으며, 이 파이프(f)를 통해 침전된 슬러지가 농축조(64)로 이송되어진다. 한편 2차 유량조절조(58)는 상기 1차 침전지(56)에 의해 슬러지가 제거된 폐수를 저정하는 곳이다.The primary sedimentation basin 56 precipitates the sludge contained in the wastewater from which nitrogen was removed by the above-mentioned aerobic deammonium tank 52. At this time, the primary sedimentation basin 56 is connected to the pipe (f), the sludge precipitated through the pipe (f) is transferred to the concentration tank (64). On the other hand, the secondary flow control tank 58 is a place for storing the wastewater from which the sludge is removed by the primary sedimentation basin 56.

질소처리조(60)는 상기 2차 유량조절조(58)로부터 공급되는 폐수를 담체(34)를 이용하여 제거, 바람직하게는 상기 폐수에 함유되어 있는 질소를 제거한다. 또한 상기 질소처리조(60)는 다수개의 탱크로, 상세하게는 약 7개의 탱크로 구성되고 이들은 서로 연결되어 있으며, 각 탱크에는 교반기가 설치되어 있다. 한편 전술한 질소처리조(60) 중에서 최외측에 설치된 탱크(60a)는 잉여 탄소(C)를 제어하는 역할을 하고, 도 2에서 4번째에 위치한 탱크에는 내부순환 파이프(b)가 연결되어 있는데 상기 파이프(b)를 통해 "NH4→NO3"으로 변환된 폐수가 첫 번째에 위치한 탱크로 다시 유입되어진다.The nitrogen treatment tank 60 removes the wastewater supplied from the secondary flow control tank 58 using the carrier 34, and preferably removes the nitrogen contained in the wastewater. In addition, the nitrogen treatment tank 60 is composed of a plurality of tanks, in particular about seven tanks, which are connected to each other, each tank is provided with a stirrer. On the other hand, the tank 60a installed on the outermost side of the above-described nitrogen treatment tank 60 controls surplus carbon (C), and the inner circulation pipe (b) is connected to the fourth tank in FIG. Through the pipe (b), the wastewater converted to “NH 4 → NO 3 ” is introduced back into the tank located first.

2차 침전지(62)에는 상기 질소처리조(60)에서 질소가 제거된, 바람직하게는 "NH4→NO3→N2↑"와 같이 질소가 약 90%이상 제거된 폐수가 유입된다. 즉, 상기 2차 침전지(62)는 파이프(a)를 통해 공급되는 무기응집제와 질소가 제거된 폐수가 혼합되어 함께 유입되고 상기 폐수에 함유되어 있는 슬러지를 침전시킨다. 이때 상기 2차 침전지(62)는 파이프(g)와 연결되어 있는데 이 파이프(g)를 통해 침전된 슬러지가 농축조(64)로 이송되어진다.Wastewater from which nitrogen is removed from the nitrogenous treatment tank 60, preferably “NH 4 → NO 3 → N 2 ↑”, is removed from the secondary sedimentation basin 62 by 90% or more. That is, the secondary sedimentation basin 62 is mixed with the inorganic coagulant supplied through the pipe (a) and the waste water from which nitrogen is removed to flow in together and settle the sludge contained in the waste water. At this time, the secondary sedimentation basin 62 is connected to the pipe g, and the sludge precipitated through the pipe g is transferred to the concentration tank 64.

한편, 상기 농축조(64)는 전술한 1차 침전지(56)로부터 배출되는 슬러지와 2차 침전지(62)로부터 배출되는 슬러지를 농축시키는 역할을 하며, 고온ㆍ고압 열처리조(66)는 본 발명의 주요구성 요소로서 농축된 슬러지를 150~180℃의 고온 및 5~10BAR의 고압에서 10~30분간 열처리하여 외부탄소원(이하"열처리액"이라 함)을 생성시킨다.On the other hand, the concentration tank 64 serves to concentrate the sludge discharged from the primary settling basin 56 and the sludge discharged from the secondary settling basin 62, the high temperature, high pressure heat treatment tank 66 of the present invention As a main component, the concentrated sludge is heat-treated for 10 to 30 minutes at a high temperature of 150-180 ° C. and a high pressure of 5-10 BAR to generate an external carbon source (hereinafter referred to as “heat treatment liquid”).

탈수장치(68)는 고온/고압 처리된 폐수를, 바람직하게는 전술한 고온ㆍ고압 열처리조(20)에 의해 생성된 열처리액을 탈수 처리하여 고체 슬러지는 파이프(c)를 통해 소화조(72)로 배출시키고 탈수된 열처리액은 열처리액조(70)로 보낸다. 상기 열처리액조(70)는 열처리액(C-S)을 저장하고, 상기 열처리액을 파이프(d)를 통해 질소처리조(60)의 5번째 탱크로 보낸다. 이때 상기 질소처리조(60)에서는, 바람직하게는 5,6번째 탱크에서는 하수에 함유된 질소를 제거(NO3→N2↑) 한다.The dewatering apparatus 68 dehydrates the hot / high pressure treated wastewater, preferably the heat treatment solution generated by the above-described high temperature / high pressure heat treatment tank 20, so that the solid sludge is digested through the pipe c. The heat treatment liquid discharged to the dehydration and sent to the heat treatment liquid tank (70). The heat treatment liquid tank 70 stores the heat treatment liquid CS, and sends the heat treatment liquid to the fifth tank of the nitrogen treatment tank 60 through the pipe d. At this time, in the nitrogen treatment tank 60, preferably in the fifth and sixth tank to remove the nitrogen contained in the sewage (NO 3 → N 2 ↑).

소화조(72)는 상기 고체 슬러지를 발효 처리하여 체적을 1/10로 줄이고, 탈수장치(74)는 발효된 슬러지를 탈수 처리하여 고체로 된 슬러지는 배출시키고 탈수된 탈수여액은 파이프(e)를 통해 질소처리조(60)로 보내어진다. 이때 상기 탈수여액은 유기물은 매우 적게 함유되어 있고 질소만 다량 함유된 액체를 말한다.The digester 72 fermented the solid sludge to reduce the volume to 1/10, and the dehydrator 74 dehydrates the fermented sludge to discharge the sludge made of solids, and the dehydrated filtrate discharges the pipe (e). It is sent to the nitrogen treatment tank 60 through. At this time, the dehydration liquid refers to a liquid containing very little organic matter and a large amount of nitrogen.

한편, 본 발명은 실시예 1,2에서 서술한 바와 같이 하수처리장이나 폐수처리장에 적용가능하다는 것을 알 수 있으며, 하기에서는 간략적인 시험을 통해 전술한 실시예 1,2에 나타낸 구성 및 방법에 대해 이해를 증대시키고 보다 현장적용 가능한 시험(full scale pilot plant)에 대한 기초를 마련함과 동시에 최종적으로 본 발명을 상업화시킬 수 있다는 것을 입증할 것이다.On the other hand, it can be seen that the present invention is applicable to a sewage treatment plant or a wastewater treatment plant as described in Examples 1 and 2, and in the following for the configuration and method shown in Examples 1 and 2 through a brief test It will demonstrate that we can finally commercialize the present invention while increasing our understanding and laying the groundwork for a more full scale pilot plant.

{실험 1} 슬러지 열처리 시험{Experiment 1} Sludge Heat Treatment Test

1. 실험개요1. Experiment Overview

: J하수처리장 1,2차 슬러지를 탈수한 다음, 이를 150~180℃의 고온 및 5~10BAR의 고압에서 10~30분간 열처리 후, 정체시킨 상등액의 수율과 조성을 분석하였다.이때 1,2차 슬러지를 농축한 것과 탈수한 것의 차이는 주로 수분 함량이며, 실험 1에서 고온, 고안 열처리의 탈수해서 실험한 것은 실험실적인 고온,고압 열처리기의 용량 문제이며, 이때 슬러지의 성분상 2가지 차이가 커지 않고, 특히 실제 현장에서 적용할 때 다른 하수 처리장에서 슬러지를 고온,고압 열처리가 있는 하수처리장으로 운송할 때는 주로 탈수해서 운반하기 때문에 복합적인 실험의 의미를 부여한 것이다.: Dehydration of 1st and 2nd sludge of J sewage treatment plant, heat treatment at 150 ~ 180 ℃ and high pressure of 5 ~ 10BAR for 10 ~ 30 minutes, then analyzed the yield and composition of stagnant supernatant. The difference between concentrated sludge and dewatered sludge is mainly water content, and the experiment of dehydration of high temperature and high temperature heat treatment in Experiment 1 is a problem of the capacity of laboratory high temperature and high pressure heat treatment machine. In particular, when applied in actual field, when transporting sludge from another sewage treatment plant to a sewage treatment plant with high temperature and high pressure heat treatment, the dehydration and transport are mainly performed, thereby giving the meaning of a complex experiment.

2. 실험결과2. Experimental Results

1) 수율(Yield)1) Yield

160℃ : CODf의 22%160 ° C: 22% of COD f

180℃ : CODf의 28%180 ° C: 28% of COD f

2) 함량(Organic Content)2) Content

3. 참조 시험3. Reference test

1) 수율(Yield) : CODf의 10-15%Yield: 10-15% of COD f

2) 함량(Organic Content)2) Content

{실험 2} 열처리액(Thermal hydrolysate)의 외부탄소원을 이용한 질소처리 시험{Experiment 2} Nitrogen treatment test using external carbon source of thermal hydrolysate

1. 실험 개요1. Experiment Overview

: 열처리액의 탄소원을 이용하여 담체를 이용한 질소처리공정을 적용함으로써 그 탄소원의 이용율의 결과를 분석.: Analysis of the results of utilization of the carbon source by applying a nitrogen treatment step using a carrier using the carbon source of the heat treatment solution.

2. 시험조건2. Test condition

1) 시료 : S하수처리장 1차 처리수1) Sample: Primary Sewage Treatment Plant

COD : 150mg/L          COD: 150mg / L

NH4 +-N : 70mg/LNH 4 + -N: 70mg / L

T-N : 70mg/L          T-N: 70mg / L

2) 온도조건 : 20℃2) Temperature condition: 20 ℃

3) REACTOR VOLUME : 4L×7EA3) REACTOR VOLUME: 4L × 7EA

4) FLOW : 224L4) FLOW: 224L

5) PERIOD : 6개월즉, 상기 시험조건은 시험의 객관성을 유지하기 위해 시료는 S하수처리장의 실제 원수 중 1차 처리되어진 처리수를 이용했고, 온도조건과 시험조의 용량과 유입 유량 등은 일반적인 하수 처리장 운전사항에 근접하도록 하였으며, 그 기간은 6개월이었다.5) PERIOD: In other words, the test conditions used for the first treatment of the raw water of the S sewage treatment plant in order to maintain the objectivity of the test, the temperature conditions, the capacity of the test tank and the inflow flow rate is generally It was close to the sewage treatment plant operation and the duration was 6 months.

3. 시험 결과3. Test result

여기서 질소처리 효율은 주로 T-N의 유입과 유출 농도의 개선으로 나타내나 실험적인 데이터 정리시에 다양한 분석을 통해 질소처리 과정 등을 추적해서 실험의 정확도를 나타내고, 각 미생물의 활성도 등을 분석한다. 대부분 하수 처리장 1차 처리수에는 NO3-N의 효율은 NH4-N이 질소 처리시 1차적으로 NO3-N으로 바뀌기 때문에, 즉 NH4-N 70mg/L이 NO3-N mg/L으로 바뀌고 유출 NO3-N은 6mg/L이기 때문에 (70-6/70) 효율은 91.4%이다. Nitrogen treatment efficiency is mainly represented by the improvement of inflow and outflow concentration of TN, but it shows the accuracy of the experiment by tracking the nitrogen treatment process through various analysis in the arrangement of experimental data, and analyzes the activity of each microorganism. In most sewage treatment plants, the efficiency of NO 3 -N in the primary treatment water is that NH 4 -N is changed to NO 3 -N primarily during nitrogen treatment, that is, NH 4 -N 70mg / L is NO 3 -N mg / L. And the effluent NO 3 -N is 6 mg / L (70-6 / 70), the efficiency is 91.4%.

{실험 3} 호기성 탈암모늄(Aerobic Deammonification) 시험{Experiment 3} Aerobic Deammonification Test

1. 실험개요1. Experiment Overview

: 유입수 내의 암모니아를 수소공여체로 하고, 니트로소아민(nitrosamine)균 에 의해 발생되는 아질산성 질소를 수소수용체로 하는 독립영양세균에 의한 탈질이이루어 지며, 저 산소농도 유지 및 외부 탄소원 이용없이 고농도 질소(mg/L) 제거를 위한 시험.이때 전술한 외부 탄소원 이용없이는 본 발명에 따른 열처리액을 외부탄소원으로 이용하는 것 뿐만 아니라 기존 하,폐수 처리장에서 이용하는 고비용 외부탄소원을 모두 포함하고, 고농도 질소 처리에서 '외부 탄소원 없이' 라는 것은 매우 경제적인 장치를 나타낸다.: Denitrification by autotrophic bacteria with ammonia in influent as hydrogen donor and nitrite nitrogen produced by nitrosamine bacteria as hydrogen acceptor, maintaining low oxygen concentration and high concentration nitrogen without using external carbon source (mg / L) test for removal. At this time, without using the external carbon source described above, the heat treatment solution according to the present invention is used as an external carbon source as well as all expensive external carbon sources used in existing sewage and wastewater treatment plants, 'Without external carbon source' represents a very economical device.

2. 화학식 2. Chemical formula

NH4 + + NO2 - → N2 + 2H2O(△GO' = -358KJ/mol NH4+) NH 4 + + NO 2 - → N 2 + 2H 2 O (△ GO '= -358KJ / mol NH 4 +)

3. 시험조건3. Test condition

1) 시료 : S사 폐수1) Sample: S company wastewater

CODCr : 180mg/LCOD Cr : 180mg / L

NH4 +-N : 1000mg/LNH 4 + -N: 1000 mg / L

2) 온도조건 : 27℃2) Temperature condition: 27 ℃

3) REACTOR VOLUME : 4L×3EA3) REACTOR VOLUME: 4L × 3EA

4) FLOW : 15L/day4) FLOW: 15L / day

5) PERIOD : 6개월한편 상기 시료는 고농도 질소를 함유한 S사 폐수를 이용했고, 온도조건과 시험 조의 용량과 유입 유량 등은 기존 하,폐수 처리장에서 적용된 바가 없어, 호기성 탈 암모늄 공정의 미생물 활성화 조건에 적합한 조건으로 운전하였으며, 그 기간은 6개월이었다.5) PERIOD: 6 months on the other hand, the sample used S company wastewater containing high concentration of nitrogen, and the temperature condition, test tank capacity and inflow rate were not applied in the existing sewage and wastewater treatment plant. The vehicle was operated under conditions suitable for the conditions, and the period was 6 months.

4. 시험 결과4. Test result

상술한 바와 같이 본 발명의 실시예에 따른 하ㆍ폐수의 질소 처리장치는 다음과 같은 많은 효과를 달성한다.As described above, the nitrogen treatment apparatus for sewage and wastewater according to the embodiment of the present invention achieves many effects as follows.

첫 번째로, 열처리액의 수율, 즉 열처리 전 슬러지의 COD값을 열처리 후 여과한 CODf의 값으로 나눈 값의 백분율이 28%이고, 특히 열처리액의 조성에 대한 것이 미생물에 의한 산 발효와 분율은 다르지만 비슷한 조성을 갖는다.Firstly, the yield of the heat treatment solution, that is, the percentage of the COD value of the sludge before the heat treatment divided by the value of the COD f filtered after the heat treatment, is 28%. Are different but have a similar composition.

두 번째로, 열처리액을 외부탄소원으로 가지고 담체를 이용한 질소처리 공법에 있어서 약 90%이상의 효율을 갖는다. Secondly, the heat treatment solution as an external carbon source has an efficiency of about 90% or more in the nitrogen treatment method using a carrier.

세 번째로, 고농도의 유입농도 및 고 부하를 갖는 산업폐수의 저 산소 및 외부 탄소원 없이 처리되는 질소처리 효율이 80%이상 결과로 나타났다. Third, the efficiency of nitrogen treatment without high oxygen and external carbon source of industrial wastewater with high concentration of inflow and high load resulted in more than 80%.

도 1은 본 발명의 바람직한 제1 실시 예에 따른 고온ㆍ고압 열처리조 및 호기성 탈암모늄조를 구비하는 질소 처리장치를 이용하여 하수를 처리하는 방법을 보이고 있는 도면.1 is a view showing a method of treating sewage using a nitrogen treatment apparatus having a high temperature and high pressure heat treatment tank and an aerobic deammonium tank according to a first embodiment of the present invention.

도 2는 본 발명의 바람직한 제2 실시 예에 따른 고온ㆍ고압 열처리조 및 호기성 탈암모늄조를 구비하는 질소 처리장치를 이용하여 폐수를 처리하는 방법을 보이고 있는 도면.2 is a view showing a method for treating wastewater using a nitrogen treatment apparatus having a high temperature / high pressure heat treatment tank and an aerobic deammonium tank according to a second embodiment of the present invention.

Claims (4)

삭제delete 삭제delete 하ㆍ폐수 내의 질소를 처리할 수 있는 장치에 있어서,In the apparatus capable of treating nitrogen in sewage and wastewater, 상기 하수 또는 폐수에 함유되어 있는 슬러지를 침전시키는 1차 침전지와;A primary sedimentation basin for settling sludge contained in the sewage or waste water; 교반기가 설치되고 담체들이 충진된 다수개의 탱크로 구성되며, 상기 1차 침전지로부터 공급되는 하수에 함유되어 있는 질소를 제거하는 질소처리조와;A nitrogen treatment tank comprising a plurality of tanks provided with a stirrer and filled with carriers, for removing nitrogen contained in the sewage supplied from the primary sedimentation basin; 상기 질소처리조에서 질소가 제거된 하수에 함유되어 있는 슬러지를 침전시키는 2차 침전지와;A secondary sedimentation basin which precipitates sludge contained in the sewage from which nitrogen is removed in the nitrogen treatment tank; 상기 1,2차 침전지로부터 배출되는 슬러지를 농축시키는 농축조와;A concentrating tank for concentrating the sludge discharged from the first and second settling basins; 상기 농축조로부터 공급되는 슬러지를 150~180℃의 고온 및 5~10BAR의 고압에서 10~30분간 열처리하여 외부탄소원으로 변환시키는 고온ㆍ고압 열처리조와;A high temperature / high pressure heat treatment tank for converting the sludge supplied from the concentration tank to an external carbon source by heat-treating the sludge for 10 to 30 minutes at a high temperature of 150 to 180 ° C. and a high pressure of 5 to 10 Bar; 상기 고온ㆍ고압 열처리조에 의해 생성된 열처리액을 탈수 처리하는 탈수장치와;A dewatering apparatus for dewatering the heat treatment solution generated by the high temperature and high pressure heat treatment tank; 상기 탈수장치로부터 공급되는 열처리액을 저장하고, 이를 상기 질소처리조로 공급하는 열처리액조 및 상기 탈수장치로부터 배출되는 고체 슬러지를 발효 처리하는 소화조와;A heat treatment liquid tank for storing the heat treatment liquid supplied from the dehydration apparatus, and supplying the heat treatment liquid to the nitrogen treatment tank and a fermentation tank for fermenting the solid sludge discharged from the dehydration apparatus; 상기 소화조부터 공급되는 탈수여액을 담체를 이용하여 호기성 탈암모늄 공법에 의해 고농도 질소를 처리하는 호기성 탈암모늄조로 구성됨을 특징으로 하는 하ㆍ폐수의 질소 처리장치.A nitrogen treatment apparatus for sewage and wastewater, characterized in that the dewatering liquid supplied from the digester is composed of an aerobic deammonium tank for treating a high concentration of nitrogen by an aerobic deammonium method using a carrier. 삭제delete
KR10-2002-0025184A 2002-05-08 2002-05-08 Compact, flexible and economical nitrogen removal process for municipal and industrial waste water KR100475840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0025184A KR100475840B1 (en) 2002-05-08 2002-05-08 Compact, flexible and economical nitrogen removal process for municipal and industrial waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0025184A KR100475840B1 (en) 2002-05-08 2002-05-08 Compact, flexible and economical nitrogen removal process for municipal and industrial waste water

Publications (2)

Publication Number Publication Date
KR20030087216A KR20030087216A (en) 2003-11-14
KR100475840B1 true KR100475840B1 (en) 2005-03-15

Family

ID=32381929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0025184A KR100475840B1 (en) 2002-05-08 2002-05-08 Compact, flexible and economical nitrogen removal process for municipal and industrial waste water

Country Status (1)

Country Link
KR (1) KR100475840B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701613B1 (en) * 2004-11-10 2007-03-30 한국건설기술연구원 Sludge liquidation apparatus for enchancing digestion efficiency and a sewage treatmemt system having the apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474375B1 (en) * 2002-05-09 2005-03-08 한국건설기술연구원 Organic Acid Producing Facility for Advanced Biological Nutrient Removal, and Facility and Method of Hybrid of Sludge & Nutrient Removal (HSNR) by the OAPF
CN110127962A (en) * 2019-06-28 2019-08-16 南通大恒环境工程有限公司 A kind of processing method of the waste water containing glue

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150896A (en) * 1984-01-18 1985-08-08 Kubota Ltd Treatment of sludge
KR940014177A (en) * 1992-12-09 1994-07-18 박기석 How to remove biological nitrogen and phosphorus from organic wastewater
KR19990000453A (en) * 1997-06-05 1999-01-15 김정국 Arrangement apparatus of microbial tank where nitrification and denitrification microorganisms are selectively cultured
KR20010078472A (en) * 2001-03-09 2001-08-21 백병천 Production of Carbon Source from Sewage Sludge and Denitrification Technologies for Advanced Treatment of Wastewater
KR20010100301A (en) * 2000-04-14 2001-11-14 허준무 System for Removal of Nitrogen and Phosphorus from Sewage
KR20030065092A (en) * 2002-01-29 2003-08-06 엄태경 The procces and apparatus of Livestock wastewater treatment.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150896A (en) * 1984-01-18 1985-08-08 Kubota Ltd Treatment of sludge
KR940014177A (en) * 1992-12-09 1994-07-18 박기석 How to remove biological nitrogen and phosphorus from organic wastewater
KR19990000453A (en) * 1997-06-05 1999-01-15 김정국 Arrangement apparatus of microbial tank where nitrification and denitrification microorganisms are selectively cultured
KR20010100301A (en) * 2000-04-14 2001-11-14 허준무 System for Removal of Nitrogen and Phosphorus from Sewage
KR20010078472A (en) * 2001-03-09 2001-08-21 백병천 Production of Carbon Source from Sewage Sludge and Denitrification Technologies for Advanced Treatment of Wastewater
KR20030065092A (en) * 2002-01-29 2003-08-06 엄태경 The procces and apparatus of Livestock wastewater treatment.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701613B1 (en) * 2004-11-10 2007-03-30 한국건설기술연구원 Sludge liquidation apparatus for enchancing digestion efficiency and a sewage treatmemt system having the apparatus

Also Published As

Publication number Publication date
KR20030087216A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP5899373B2 (en) Process comprising an ANAMOX microorganism on a biofilm carrier for removing ammonium from a wastewater stream
KR101828212B1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream
US8323487B2 (en) Waste water treatment apparatus
Qian et al. Startup and performance of a novel single-stage partial nitritation/anammox system for reject water treatment
US10556816B2 (en) Wastewater treatment apparatus
Constantine North American experience with centrate treatment technologies for ammonia and nitrogen removal
KR20090055160A (en) Wastewater treatment system and method using an equalization tank as a biological reactor
JP5148642B2 (en) Wastewater nitrogen treatment method and equipment
Mulder et al. Full-scale experience with the SHARON process through the eyes of the operators
KR20180130423A (en) Wastewater treatment system based on anaerobic ammonium oxidation in mainstream for improving efficiency of nitrogen treatment
KR20210040632A (en) Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
KR100475840B1 (en) Compact, flexible and economical nitrogen removal process for municipal and industrial waste water
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR101932611B1 (en) Advanced water treatment system using Heat-Recovery system for Prevention of Microorganism Activation Reduction by temperature difference of water treatment step
CN103373796A (en) Method for treating oil refining wastewater
KR101959145B1 (en) Mainstream anabolic ammonium oxidation in wastewater treatment plant for improving efficiency of removal of nitrogen and phosphorus
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
KR101345642B1 (en) Method for removing nitrogen in waste water
KR200368392Y1 (en) Anaerobic tank, anaerobic tank, sedimentation concentration function
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
KR100321679B1 (en) Advanced wastewater treatment method
KR20110059691A (en) Method for removing nitrogen from anaerobic digested waste water
KR101959144B1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream for simutaneous removal of nitrogen and phosphorus
KR20110045812A (en) Apparatus and method for removing nitrogen from anaerobic digested waste water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 15