KR100470907B1 - Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same - Google Patents

Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same Download PDF

Info

Publication number
KR100470907B1
KR100470907B1 KR10-2002-0021811A KR20020021811A KR100470907B1 KR 100470907 B1 KR100470907 B1 KR 100470907B1 KR 20020021811 A KR20020021811 A KR 20020021811A KR 100470907 B1 KR100470907 B1 KR 100470907B1
Authority
KR
South Korea
Prior art keywords
transposon
sequence
seq
gene
vector
Prior art date
Application number
KR10-2002-0021811A
Other languages
Korean (ko)
Other versions
KR20030083324A (en
Inventor
김선창
성봉현
유병조
김정민
이원식
이충훈
이준형
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2002-0021811A priority Critical patent/KR100470907B1/en
Priority to PCT/KR2003/000798 priority patent/WO2003089639A1/en
Priority to AU2003222482A priority patent/AU2003222482A1/en
Publication of KR20030083324A publication Critical patent/KR20030083324A/en
Application granted granted Critical
Publication of KR100470907B1 publication Critical patent/KR100470907B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 트랜스포존(transposon)의 분자내 전위(intramolecular trnaposition)와 선별마커(selection marker)를 이용한 염색체의 임의 부위의 제거에 관한 것으로, 더욱 상세하게는 트랜스포존의 전위효소 인식부위(outer element, OE)와 선별마커(selection markers)를 포함하는 트랜스포존 및 상기 트랜스포존과 전위효소(transposase) 발현벡터를 미생물에 삽입시켜 미생물 염색체의 임의 부위를 양방향으로 제거함으로써, 주어진 생장조건 하에서 생장에 불필요한 유전자를 선별함과 동시에, 유전자 일부가 제거된 새로운 미생물 변이주를 제조하는 새로운 방법에 관한 것이다. The present invention relates to the removal of any site of a chromosome using an intramolecular translocation and a selection marker of a transposon, and more particularly, to the translocation enzyme recognition site (OE) of the transposon. And inserting the transposon and the selection markers into the microorganism by inserting the transposon and the transposase expression vector into the microorganism to remove any part of the microbial chromosome in both directions, thereby selecting genes unnecessary for growth under a given growth condition. At the same time, it relates to a new method for preparing new microbial mutants with some genes removed.

Description

분자내 양방향 염색체 제거에 사용되는 트랜스포존, 이를 이용한 미생물 변이주 제조 및 생장 비필수 유전자 선별 방법{TRANSPOSON FOR BIDIRECTIONAL INTRAMOLECULAR GENOME DELETIONS, CONSTRUCTION OF NOVEL MICROORGANISM AND IDENTIFICATION OF NONESSENTIAL GENES USING THE SAME}TRANSPOZON used for intramolecular bidirectional chromosome removal, microbial mutant strain production and growth non-essential gene selection method using the same

본 발명은 트랜스포존(transposon)의 분자내 전위(intramolecular trnaposition)와 선별마커(selection marker)를 이용한 염색체의 임의 부위의 제거에 관한 것으로, 더욱 상세하게는, 트랜스포존의 전위효소 인식부위(outer element, OE)와 선별마커를 포함하는 트랜스포존 및 상기 트랜스포존과 전위효소(transposase) 발현벡터를 이용하여 미생물 염색체의 임의 부위를 양방향으로 제거함으로써, 주어진 생장조건 하에서 생장에 불필요한 유전자를 선별함과 동시에, 유전자 일부가 제거된 새로운 미생물 변이주를 제조하는 새로운 방법에 관한 것이다. The present invention relates to the removal of any site of a chromosome by using an intramolecular translocation and a selection marker of a transposon, and more particularly, the translocation enzyme recognition site (OE) of a transposon ) And a transposon containing a selection marker and the transposon and a transposase expression vector in both directions to remove any portion of the microbial chromosome, thereby selecting a gene that is unnecessary for growth under a given growth condition, A new method of making new microbial mutants removed.

일반적으로 트랜스포존을 염색체에 삽입시켜 트랜스포존이 삽입된 위치의 유전자 기능을 손실시킴으로써, 그 유전자의 기능을 연구하는 기술은 이미 공지되어 있다. 그러나, 삽입된 트랜스포존을 이용하여 삽입된 주변을 임의적으로 제거하는 방법은 사용된 바가 없다. 또한, 벡터 상에서 트랜스포존을 이용하여 주변 DNA단편을 제거하는 기술은 공지된 바 있으나, 생물체의 염색체에 삽입하여 주변 DNA 단편을 제거해 생장 비필수 유전자를 선별하고 염색체가 제거된 미생물 변이주를 제조하는 기술은 아직 보고된 바가 없다.In general, techniques for studying the function of a gene by inserting the transposon into the chromosome and losing the gene function at the position where the transposon is inserted are already known. However, no method of arbitrarily removing the inserted periphery using the inserted transposon has been used. In addition, techniques for removing peripheral DNA fragments using transposons on a vector have been known, but technology for inserting non-essential genes by inserting them into a chromosome of an organism to select non-essential growth genes and preparing microbial mutant strains from which chromosomes have been removed Nothing has been reported yet.

본 발명은, 아직 완전히 밝혀지지 않은 미생물의 유전자 기능으로 인해, 염색체의 특정부위가 제거된 미생물 변이주를 제조함에 있어서, 여러번의 시행착오를 거쳐서 염색체의 특정부위를 제거하던 종래의 방법을 개선하여, 보다 간편하게 염색체에서 생존에 불필요한 유전자를 선별 ·제거할 수 있는 방법 및 이에 사용되는 트랜스포존을 제공하는 것을 목적으로 한다. The present invention improves the conventional method of removing specific regions of a chromosome through several trials and errors in preparing a microorganism mutant strain from which specific regions of a chromosome have been removed due to the genetic function of the microorganisms which have not yet been fully revealed. It is an object of the present invention to provide a method for easily selecting and removing genes unnecessary for survival in a chromosome and a transposon used therein.

본 발명은 트랜스포존의 분자내 전위와 선별마커를 이용한 염색체의 임의 부위의 제거에 관한 것으로, 더욱 상세하게는, 트랜스포존의 전위효소 인식부위 및 선별마커를 포함하는 트랜스포존 및 상기 트랜스포존과 전위효소 발현벡터를 이용하여 미생물 염색체의 임의 부위를 양방향으로 제거함으로써, 주어진 생장조건 하에서 생장에 불필요한 유전자를 선별함과 동시에, 유전자 일부가 제거된 새로운 미생물 변이주를 제조하는 새로운 방법에 관한 것이다.The present invention relates to the removal of any site of the chromosome using the intramolecular translocation of the transposon and the selection marker, and more particularly, the transposon comprising the translocation enzyme recognition site and the selection marker of the transposon and the transposon and translocation enzyme expression vector. The present invention relates to a novel method for producing a new microbial mutant strain in which a part of a gene is removed while selecting genes unnecessary for growth under given growth conditions by bidirectionally removing an arbitrary portion of a microbial chromosome.

본 발명은 트랜스포존의 전위효소 인식부위 및 선별마커를 포함하는 트랜스포존 및 다음과 같은 단계를 포함하는 임의의 염색체 부분이 제거된 미생물 변이주의 제조방법을 제공한다:The present invention provides a method of preparing a transposon comprising a transposon recognition site and a selection marker of a transposon and any chromosomal variant wherein the chromosomal portion is removed, comprising the following steps:

(1) 트랜스포존 전위효소 인식부위 및 선별마커를 포함하는 트랜스포존을 제조하는 단계, (1) preparing a transposon comprising a transposon translocation enzyme recognition site and a selection marker,

(2) 상기 트랜스포존을 미생물 염색체의 임의의 위치에 삽입시키고 삽입된 위치를 확인하는 단계, (2) inserting the transposon at any position of the microbial chromosome and confirming the inserted position,

(3) 상기 염색체에 전위효소 발현 벡터를 삽입시켜, 삽입된 트랜스포존의 좌우 염색체 부분을 제거하는 단계, (3) inserting a translocation enzyme expression vector into the chromosome to remove left and right chromosomal portions of the inserted transposon,

(4) 제거된 염색체 부분을 확인하고 생장 필수 유전자를 선별하는 단계.(4) identifying the removed chromosomal portion and selecting growth essential genes.

본 발명에 따른 트랜스포존 및 상기 단계 (1)에 있어서, 상기 트랜스포존은 상기 트랜스포존 전위효소 인식부위로서 Tnγδ의 전위효소 인식부위 및 Tn5의 전위효소 인식부위를 포함하고, 상기 선별마커로서 고초균(Bacillus subtilis)의 sacB 유전자 및 Tn10의 테트라사이클린 저해(tetracycline repressor) 유전자(tetR)와 같은 음성적 선별마커(negative selection marker)와 클로람페니콜 저항 유전자(CmR)와 같은 양성적 선별마커(positive selection marker)를 포함한다. 이 때, Tn5 전위효소 인식부위는 트랜스포존의 염색체 내 삽입을 위한 것이며, Tnγδ 전위효소 인식부위는 분자내 전위를 위한 것이고, 선별마커는 트랜스포존이 삽입된 변이주를 선별하기 위한 것이다.In the transposon according to the present invention and step (1), the transposon comprises a translocation enzyme recognition site of Tnγδ and a translocation enzyme recognition site of Tn5 as the transposon translocation enzyme recognition site, and Bacillus subtilis as the selection marker. Negative selection markers such as the sacB gene and the tetracycline repressor gene (tetR) of Tn10 and positive selection markers such as the chloramphenicol resistance gene (Cm R ). In this case, the Tn5 translocation enzyme recognition site is for insertion into the chromosome of the transposon, the Tnγδ translocation enzyme recognition site is for intramolecular translocation, and the selection marker is for selecting the mutant strain into which the transposon is inserted.

본 발명의 한 구체예에 있어서, 본 발명에 따른 트랜스포존은 양 말단에 19개의 염기쌍으로 이루어진 Tn5의 전위효소 인식부위, 음성적 선별마커로 사용되는 tetR과 sacB 유전자, 양성적 선별마커로 상용되는 CmR 유전자를 포함하며, 상기 CmR 유전자 양 끝에 39개의 염기쌍으로 이루어진 Tnγδ의 전위효소 인식부위를 포함한다. 보다 구체적으로, 서열번호 2 의 서열을 갖는 Tn5 전위효소 인식부위(OE), 서열번호 4의 서열을 갖는 tetR 유전자, 서열번호 3의 서열을 갖는 Tnγδ 전위효소 인식부위, 서열번호 5의 서열을 갖는 CmR 유전자, 서열번호 3의 서열과 역상보적인 Tnγδ 전위효소 인식부위, 서열번호 6의 서열을 갖는 sacB 유전자 및 서열번호 2 의 서열과 역상보적인 Tn5 전위효소 인식부위를 5'→3' 방향으로 차례로 포함하는 트랜스포존을 제조하였으며, 이를 TnRIBD라고 명명하였다. 이 때, 본 발명에 따른 트랜스포존의 필수적 구성요소인 Tn5 전위효소 인식부위, Tnγδ 전위효소 인식부위 및 선별 마커 부위를 제외한 부분은 트랜스포존의 제조과정에서 사용되는 벡터의 종류에 따라 다양한 서열과 길이를 가질 수 있다.In one embodiment of the present invention, the transposon according to the present invention is a translocation enzyme recognition site of Tn5 consisting of 19 base pairs at both ends, tetR and sacB genes used as negative selection markers, and Cm R which is commonly used as positive selection markers. It includes a gene, and the translocation enzyme recognition site of Tnγδ consisting of 39 base pairs at both ends of the Cm R gene. More specifically, the Tn5 translocation enzyme recognition site (OE) having the sequence of SEQ ID NO: 2, the tetR gene having the sequence of SEQ ID NO: 4, the Tnγδ translocation enzyme recognition site having the sequence of SEQ ID NO: 3, and the sequence of SEQ ID NO: 5 5 '→ 3' direction of the Cm R gene, Tnγδ translocation enzyme recognition site which is reverse complementary to sequence of SEQ ID NO: 3, sacB gene having sequence of SEQ ID NO: 6, and Tn5 translocation enzyme recognition site which is reverse complementary to sequence of SEQ ID NO: 2 In order to prepare a transposon including one by one, it was named TnRIBD. At this time, the parts excluding the Tn5 translocation enzyme recognition site, the Tnγδ translocation enzyme recognition site, and the selection marker site, which are essential components of the transposon according to the present invention, may have various sequences and lengths depending on the type of the vector used in the preparation of the transposon. Can be.

본 발명의 한 구체예에 따르면, pRIBD 벡터(도2 참조)로부터 제한효소 XhoI을 처리함으로써 상기 트랜스포존 TnRIBD을 얻을 수 있다. According to one embodiment of the invention, the transposon TnRIBD can be obtained by treating restriction enzyme XhoI from a pRIBD vector (see Figure 2).

상기와 같이 pRIBD 벡터로부터 TnRIBD를 제조하는 방법은 다음의 단계를 포함할 수 있다:As described above, the method for preparing TnRIBD from a pRIBD vector may include the following steps:

(i) pDELTA2 (Wang, G. et al. 1993. pDUAL: a transposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo. Proc Natl Acad Sci U S A. 90:7874-8) 벡터에서 sacB와 Tnγδ의 OE를, Tn10에서 tetR을, pKClox (Yoon, Y. G. et al. 1998. Cre/loxP-mediated excision and amplification of large segments of the Escherichia coli genome. Genet Anal. 14:89-95) 벡터에서 CmR 유전자를 PCR을 수행하여 증폭하여 얻는 단계,(i) pDELTA2 (Wang, G. et al 1993. pDUAL:. a transposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo Proc Natl Acad Sci US A. 90:. 7874-8) sacB vector OE of Tnγδ, tetR in Tn10, Cm in pKClox (Yoon, YG et al. 1998. Cre / loxP-mediated excision and amplification of large segments of the Escherichia coli genome.Genet Anal. 14: 89-95) vector Amplifying the R gene by performing PCR,

(ii) 리가아제를 이용하여 선상의 pMOD 벡터에 sacB, tetR, CmR, Tnγδ의 OE를 삽입하여 pRIBD 벡터를 제조하는 단계, 및,(ii) inserting OEs of sacB, tetR, Cm R , and Tnγδ into a linear pMOD vector using a ligase to prepare a pRIBD vector, and

(iii) 상기 pRIBD 벡터를 제한효소 XhoI으로 잘라 선상의 TnRIBD를 제조하는 단계.(iii) cutting the pRIBD vector with restriction enzyme XhoI to prepare linear TnRIBD.

이와 같은 방법으로 제조된 트랜스포존 TnRIBD의 염기서열은 다음과 같으며, 이를 서열번호 1에 나타내었다.The base sequence of the transposon TnRIBD prepared in this manner is as follows, which is shown in SEQ ID NO: 1.

TnRIBD 염기서열TnRIBD Sequence

1 CTCGAG CTGT CTCTTATACA CATCT CAACC CTGAAGCTAT CTTCCGAAGC AATAAATTCA1 CTCGAG CTGT CTCTTATACA CATCT CAACC CTGAAGCTAT CTTCCGAAGC AATAAATTCA

∥← Tn5 OE →∥∥ Tn5 OE → ∥

61 CGTAATAACG TTGGCAAGAC TGGCATGATA AGGCCAATCC CCATGGCATC GAGTAACGTA 61 CGTAATAACG TTGGCAAGAC TGGCATGATA AGGCCAATCC CCATGGCATC GAGTAACGTA

121 ATTACCAATG CGATCTTTGT CGAACTATTC ATTTCACTTT TCTCTATCAC TGATAGGGAG 121 ATTACCAATG CGATCTTTGT CGAACTATTC ATTTCACTTT TCTCTATCAC TGATAGGGAG

181 TGGTAAAATA ACTCTATCAA TGATAGAGTG TCAACAAAAA TTAGGAATTA ATG ATGTCTA 181 TGGTAAAATA ACTCTATCAA TGATAGAGTG TCAACAAAAA TTAGGAATTA ATG ATGTCTA

∥←tetR                  ∥ ← tetR

241 GATTAGATAA AAGTAAAGTG ATTAACAGCG CATTAGAGCT GCTTAATGAG GTCGGAATCG 241 GATTAGATAA AAGTAAAGTG ATTAACAGCG CATTAGAGCT GCTTAATGAG GTCGGAATCG

301 AAGGTTTAAC AACCCGTAAA CTCGCCCAGA AGCTAGGTGT AGAGCAGCCT ACATTGTATT 301 AAGGTTTAAC AACCCGTAAA CTCGCCCAGA AGCTAGGTGT AGAGCAGCCT ACATTGTATT

361 GGCATGTAAA AAATAAGCGG GCTTTGCTCG ACGCCTTAGC CATTGAGATG TTAGATAGGC 361 GGCATGTAAA AAATAAGCGG GCTTTGCTCG ACGCCTTAGC CATTGAGATG TTAGATAGGC

421 ACCATACTCA CTTTTGCCCT TTAGAAGGGG AAAGCTGGCA AGATTTTTTA CGTAATAACG 421 ACCATACTCA CTTTTGCCCT TTAGAAGGGG AAAGCTGGCA AGATTTTTTA CGTAATAACG

481 CTAAAAGTTT TAGATGTGCT TTACTAAGTC ATCGCGATGG AGCAAAAGTA CATTTAGGTA 481 CTAAAAGTTT TAGATGTGCT TTACTAAGTC ATCGCGATGG AGCAAAAGTA CATTTAGGTA

541 CACGGCCTAC AGAAAAACAG TATGAAACTC TCGAAAATCA ATTAGCCTTT TTATGCCAAC 541 CACGGCCTAC AGAAAAACAG TATGAAACTC TCGAAAATCA ATTAGCCTTT TTATGCCAAC

601 AAGGTTTTTC ACTAGAGAAT GCATTATATG CACTCAGCGC TGTGGGGCAT TTTACTTTAG 601 AAGGTTTTTC ACTAGAGAAT GCATTATATG CACTCAGCGC TGTGGGGCAT TTTACTTTAG

661 GTTGCGTATT GGAAGATCAA GAGCATCAAG TCGCTAAAGA AGAAAGGGAA ACACCTACTA 661 GTTGCGTATT GGAAGATCAA GAGCATCAAG TCGCTAAAGA AGAAAGGGAA ACACCTACTA

721 CTGATAGTAT GCCGCCATTA TTACGACAAG CTATCGAATT ATTTGATCAC CAAGGTGCAG 721 CTGATAGTAT GCCGCCATTA TTACGACAAG CTATCGAATT ATTTGATCAC CAAGGTGCAG

781 AGCCAGCCTT CTTATTCGGC CTTGAATTGA TCATATGCGG ATTAGAAAAA CAACTTAAAT 781 AGCCAGCCTT CTTATTCGGC CTTGAATTGA TCATATGCGG ATTAGAAAAA CAACTTAAAT

841 GTGAAAGTGG GTCTTAA AAG CAGCATAACC TTTTTCCGTG ATGGTAACTT CACGGTAACC841 GTGAAAGTGG GTCTTAA AAG CAGCATAACC TTTTTCCGTG ATGGTAACTT CACGGTAACC

tetR →∥   tetR →

901 AAGATGTCGA GTTAACCACC CATCGATGAT AAGCTGTCAA ACATGAGAAT TCGGTGAATC 901 AAGATGTCGA GTTAACCACC CATCGATGAT AAGCTGTCAA ACATGAGAAT TCGGTGAATC

961 CCATAAATTC CCCGGATC GG GGTTTGAGGG CCAATGGAAC GAAAACGTAC GTTAAGG ATC961 CCATAAATTC CCCGGATC GG GGTTTGAGGG CCAATGGAAC GAAAACGTAC GTTAAGG ATC

∥← Tnγδ OE →∥∥ ← Tnγδ OE → ∥

1021 TCTATAGTGT CACCTAAATC GGACGCGCGC TGGTGGTACC TCCTTAGTTC CTATTCCGAA 1021 TCTATAGTGT CACCTAAATC GGACGCGCGC TGGTGGTACC TCCTTAGTTC CTATTCCGAA

1081 GTTCCTATTC TCTAGAAAGT ATAGGAACTT CGGCGCGCCT ACCTGTGACG GAAGATCACT 1081 GTTCCTATTC TCTAGAAAGT ATAGGAACTT CGGCGCGCCT ACCTGTGACG GAAGATCACT

1141 TCGCAGAATA AATAAATCCT GGTGTCCCTG TTGATACCGG GAAGCCCTGG GCCAACTTTT 1141 TCGCAGAATA AATAAATCCT GGTGTCCCTG TTGATACCGG GAAGCCCTGG GCCAACTTTT

1201 GGCGAAAATG AGACGTTGAT CGGCACGTAA GAGGTTCCAA CTTTCACCAT AATGAAATAA 1201 GGCGAAAATG AGACGTTGAT CGGCACGTAA GAGGTTCCAA CTTTCACCAT AATGAAATAA

1261 GATCACTACC GGGCGTATTT TTTGAGTTGT CGAGATTTTC AGGAGCTAAG GAAGCTAAA A 1261 GATCACTACC GGGCGTATTT TTTGAGTTGT CGAGATTTTC AGGAGCTAAG GAAGCTAAA A

∥←∥ ←

1321 TGGAGAAAAA AATCACTGGA TATACCACCG TTGATATATC CCAATGGCAT CGTAAAGAAC 1321 TGGAGAAAAA AATCACTGGA TATACCACCG TTGATATATC CCAATGGCAT CGTAAAGAAC

← CmR →                            ← CmR →

1381 ATTTTGAGGC ATTTCAGTCA GTTGCTCAAT GTACCTATAA CCAGACCGTT CAGCTGGATA 1381 ATTTTGAGGC ATTTCAGTCA GTTGCTCAAT GTACCTATAA CCAGACCGTT CAGCTGGATA

1441 TTACGGCCTT TTTAAAGACC GTAAAGAAAA ATAAGCACAA GTTTTATCCG GCCTTTATTC 1441 TTACGGCCTT TTTAAAGACC GTAAAGAAAA ATAAGCACAA GTTTTATCCG GCCTTTATTC

1501 ACATTCTTGC CCGCCTGATG AATGCTCATC CGGAATTACG TATGGCAATG AAAGACGGTG 1501 ACATTCTTGC CCGCCTGATG AATGCTCATC CGGAATTACG TATGGCAATG AAAGACGGTG

1561 AGCTGGTGAT ATGGGATAGT GTTCACCCTT GTTACACCGT TTTCCATGAG CAAACTGAAA 1561 AGCTGGTGAT ATGGGATAGT GTTCACCCTT GTTACACCGT TTTCCATGAG CAAACTGAAA

1621 CGTTTTCATC GCTCTGGAGT GAATACCACG ACGATTTCCG GCAGTTTCTA CACATATATT 1621 CGTTTTCATC GCTCTGGAGT GAATACCACG ACGATTTCCG GCAGTTTCTA CACATATATT

1681 CGCAAGATGT GGCGTGTTAC GGTGAAAACC TGGCCTATTT CCCTAAAGGG TTTATTGAGA 1681 CGCAAGATGT GGCGTGTTAC GGTGAAAACC TGGCCTATTT CCCTAAAGGG TTTATTGAGA

1741 ATATGTTTTT CGTCTCAGCC AATCCCTGGG TGAGTTTCAC CAGTTTTGAT TTAAACGTGG 1741 ATATGTTTTT CGTCTCAGCC AATCCCTGGG TGAGTTTCAC CAGTTTTGAT TTAAACGTGG

1801 CCAATATGGA CAACTTCTTC GCCCCCGTTT TCACCATGGG CAAATATTAT ACGCAAGGCG 1801 CCAATATGGA CAACTTCTTC GCCCCCGTTT TCACCATGGG CAAATATTAT ACGCAAGGCG

1861 ACAAGGTGCT GATGCCGCTG GCGATTCAGG TTCATCATGC CGTTTGTGAT GGCTTCCATG 1861 ACAAGGTGCT GATGCCGCTG GCGATTCAGG TTCATCATGC CGTTTGTGAT GGCTTCCATG

1921 TCGGCAGATG CTTAATGAAT ACAACAGTAC TGCGATGAGT GGCAGGGCGG GGCGTAA GGC1921 TCGGCAGATG CTTAATGAAT ACAACAGTAC TGCGATGAGT GGCAGGGCGG GGCGTAA GGC

CmR →∥CmR → ∥

1981 GCGCCATTTA AATGAAGTTC CTATTCCGAA GTTCCTATTC TCTAGAAAGT ATAGGAACTT 1981 GCGCCATTTA AATGAAGTTC CTATTCCGAA GTTCCTATTC TCTAGAAAGT ATAGGAACTT

2041 CGAAGCAGCT CCAGCCTACA GATCTGGCCG CTAATACGAC TCACTATAGG GAACTGAC CC 2041 CGAAGCAGCT CCAGCCTACA GATCTGGCCG CTAATACGAC TCACTATAGG GAACTGAC CC

∥←  ∥ ←

2101 TTAACGTACG TTTTCGTTCC ATTGGCCCTC AAACCCC AAT TCGTCAGACT TACGGTTAAG2101 TTAACGTACG TTTTCGTTCC ATTGGCCCTC AAACCCC AAT TCGTCAGACT TACGGTTAAG

Tnγδ OE →∥           Tnγδ OE → ∥

2161 CAGTCTGAAT GAATTCGAGC TCGCCGGGGA TCCTTTTTAA CCCATCACAT ATACCTGCCG 2161 CAGTCTGAAT GAATTCGAGC TCGCCGGGGA TCCTTTTTAA CCCATCACAT ATACCTGCCG

2221 TTCACTATTA TTTAGTGAAA TGAGATATTA TGATATTTTC TGAATTGTGA TTAAAAAGGC 2221 TTCACTATTA TTTAGTGAAA TGAGATATTA TGATATTTTC TGAATTGTGA TTAAAAAGGC

2281 AACTTTATGC CCATGCAACA GAAACTATAA AAAATACAGA GAATGAAAAG AAACAGATAG 2281 AACTTTATGC CCATGCAACA GAAACTATAA AAAATACAGA GAATGAAAAG AAACAGATAG

2341 ATTTTTTAGT TCTTTAGGCC CGTAGTCTGC AAATCCTTTT ATGATTTTCT ATCAAACAAA 2341 ATTTTTTAGT TCTTTAGGCC CGTAGTCTGC AAATCCTTTT ATGATTTTCT ATCAAACAAA

2401 AGAGGAAAAT AGACCAGTTG CAATCCAAAC GAGAGTCTAA TAGAATGAGG TCGAAAAGTA 2401 AGAGGAAAAT AGACCAGTTG CAATCCAAAC GAGAGTCTAA TAGAATGAGG TCGAAAAGTA

2461 AATCGCGCGG GTTTGTTACT GATAAAGCAG GCAAGACCTA AAATGTGTAA AGGGCAAAGT 2461 AATCGCGCGG GTTTGTTACT GATAAAGCAG GCAAGACCTA AAATGTGTAA AGGGCAAAGT

2521 GTATACTTTG GCGTCACCCC TTACATATTT TAGGTCTTTT TTTATTGTGC GTAACTAACT 2521 GTATACTTTG GCGTCACCCC TTACATATTT TAGGTCTTTT TTTATTGTGC GTAACTAACT

2581 TGCCATCTTC AAACAGGAGG GCTGGAAGAA GCAGACCGCT AACACAGTAC ATAAAAAAGG 2581 TGCCATCTTC AAACAGGAGG GCTGGAAGAA GCAGACCGCT AACACAGTAC ATAAAAAAGG

2641 AGAC ATGAAC GATGAACATC AAAAAGTTTG CAAAACAAGC AACAGTATTA ACCTTTACTA 2641 AGAC ATGAAC GATGAACATC AAAAAGTTTG CAAAACAAGC AACAGTATTA ACCTTTACTA

∥← sacB∥ ← sacB

2701 CCGCACTGCT GGCAGGAGGC GCAACTCAAG CGTTTGCGAA AGAAACGAAC CAAAAGCCAT 2701 CCGCACTGCT GGCAGGAGGC GCAACTCAAG CGTTTGCGAA AGAAACGAAC CAAAAGCCAT

2761 ATAAGGAAAC ATACGGCATT TCCCATATTA CACGCCATGA TATGCTGCAA ATCCCTGAAC 2761 ATAAGGAAAC ATACGGCATT TCCCATATTA CACGCCATGA TATGCTGCAA ATCCCTGAAC

2821 AGCAAAAAAA TGAAAAATAT CAAGTTCCTG AATTTGATTC GTCCACAATT AAAAATATCT 2821 AGCAAAAAAA TGAAAAATAT CAAGTTCCTG AATTTGATTC GTCCACAATT AAAAATATCT

2881 CTTCTGCAAA AGGCCTGGAC GTTTGGGACA GCTGGCCATT ACAAAACGCT GACGGCACTG 2881 CTTCTGCAAA AGGCCTGGAC GTTTGGGACA GCTGGCCATT ACAAAACGCT GACGGCACTG

2941 TCGCAAACTA TCACGGCTAC CACATCGTCT TTGCATTAGC CGGAGATCCT AAAAATGCGG 2941 TCGCAAACTA TCACGGCTAC CACATCGTCT TTGCATTAGC CGGAGATCCT AAAAATGCGG

3001 ATGACACATC GATTTACATG TTCTATCAAA AAGTCGGCGA AACTTCTATT GACAGCTGGA 3001 ATGACACATC GATTTACATG TTCTATCAAA AAGTCGGCGA AACTTCTATT GACAGCTGGA

3061 AAAACGCTGG CCGCGTCTTT AAAGACAGCG ACAAATTCGA TGCAAATGAT TCTATCCTAA 3061 AAAACGCTGG CCGCGTCTTT AAAGACAGCG ACAAATTCGA TGCAAATGAT TCTATCCTAA

3121 AAGACCAAAC ACAAGAATGG TCAGGTTCAG CCACATTTAC ATCTGACGGA AAAATCCGTT 3121 AAGACCAAAC ACAAGAATGG TCAGGTTCAG CCACATTTAC ATCTGACGGA AAAATCCGTT

3181 TATTCTACAC TGATTTCTCC GGTAAACATT ACGGCAAACA AACACTGACA ACTGCACAAG 3181 TATTCTACAC TGATTTCTCC GGTAAACATT ACGGCAAACA AACACTGACA ACTGCACAAG

3241 TTAACGTATC AGCATCAGAC AGCTCTTTGA ACATCAACGG TGTAGAGGAT TATAAATCAA 3241 TTAACGTATC AGCATCAGAC AGCTCTTTGA ACATCAACGG TGTAGAGGAT TATAAATCAA

3301 TCTTTGACGG TGACGGAAAA ACGTATCAAA ATGTACAGCA GTTCATCGAT GAAGGCAACT 3301 TCTTTGACGG TGACGGAAAA ACGTATCAAA ATGTACAGCA GTTCATCGAT GAAGGCAACT

3361 ACAGCTCAGG CGACAACCAT ACGCTGAGAG ATCCTCACTA CGTAGAAGAT AAAGGCCACA 3361 ACAGCTCAGG CGACAACCAT ACGCTGAGAG ATCCTCACTA CGTAGAAGAT AAAGGCCACA

3421 AATACTTAGT ATTTGAAGCA AACACTGGAA CTGAAGATGG CTACCAAGGC GAAGAATCTT 3421 AATACTTAGT ATTTGAAGCA AACACTGGAA CTGAAGATGG CTACCAAGGC GAAGAATCTT

3481 TATTTAACAA AGCATACTAT GGCAAAAGCA CATCATTCTT CCGTCAAGAA AGTCAAAAAC 3481 TATTTAACAA AGCATACTAT GGCAAAAGCA CATCATTCTT CCGTCAAGAA AGTCAAAAAC

3541 TTCTGCAAAG CGATAAAAAA CGCACGGCTG AGTTAGCAAA CGGCGCTCTC GGTATGATTG 3541 TTCTGCAAAG CGATAAAAAA CGCACGGCTG AGTTAGCAAA CGGCGCTCTC GGTATGATTG

3601 AGCTAAACGA TGATTACACA CTGAAAAAAG TGATGAAACC GCTGATTGCA TCTAACACAG 3601 AGCTAAACGA TGATTACACA CTGAAAAAAG TGATGAAACC GCTGATTGCA TCTAACACAG

3661 TAACAGATGA AATTGAACGC GCGAACGTCT TTAAAATGAA CGGCAAATGG TATCTGTTCA 3661 TAACAGATGA AATTGAACGC GCGAACGTCT TTAAAATGAA CGGCAAATGG TATCTGTTCA

3721 CTGACTCCCG CGGATCAAAA ATGACGATTG ACGGCATTAC GTCTAACGAT ATTTACATGC 3721 CTGACTCCCG CGGATCAAAA ATGACGATTG ACGGCATTAC GTCTAACGAT ATTTACATGC

3781 TTGGTTATGT TTCTAATTCT TTAACTGGCC CATACAAGCC GCTGAACAAA ACTGGCCTTG 3781 TTGGTTATGT TTCTAATTCT TTAACTGGCC CATACAAGCC GCTGAACAAA ACTGGCCTTG

3841 TGTTAAAAAT GGATCTTGAT CCTAACGATG TAACCTTTAC TTACTCACAC TTCGCTGTAC 3841 TGTTAAAAAT GGATCTTGAT CCTAACGATG TAACCTTTAC TTACTCACAC TTCGCTGTAC

3901 CTCAAGCGAA AGGAAACAAT GTCGTGATTA CAAGCTATAT GACAAACAGA GGATTCTACG 3901 CTCAAGCGAA AGGAAACAAT GTCGTGATTA CAAGCTATAT GACAAACAGA GGATTCTACG

3961 CAGACAAACA ATCAACGTTT GCGCCGAGCT TCCTGCTGAA CATCAAAGGC AAGAAAACAT 3961 CAGACAAACA ATCAACGTTT GCGCCGAGCT TCCTGCTGAA CATCAAAGGC AAGAAAACAT

4021 CTGTTGTCAA AGACAGCATC CTTGAACAAG GACAATTAAC AGTTAACAAA TAA AAACGCA4021 CTGTTGTCAA AGACAGCATC CTTGAACAAG GACAATTAAC AGTTAACAAA TAA AAACGCA

sacB →∥sacB → ∥

4081 AAAGAAAATG CCGATATCCT ATTGGCATTT TCTTTTATTT CTTATCAACA TAAAGGTGAA 4081 AAAGAAAATG CCGATATCCT ATTGGCATTT TCTTTTATTT CTTATCAACA TAAAGGTGAA

4141 TCCCATAAAT TCCCCGGATC CTCTAGAGTC GATGATGGTT G AGATGTGTA TAAGAGACAG 4141 TCCCATAAAT TCCCCGGATC CTCTAGAGTC GATGATGGTT G AGATGTGTA TAAGAGACAG

∥← Tn5 OE →∥∥ Tn5 OE → ∥

4201 CTCGAG4201 CTCGAG

상기한 바와 같이, 본 발명에 따른 트랜스포존에 있어서, Tn5와 Tnγδ의 전위효소 인식부위, CmR, tetR, sacB 유전자 부위를 제외한 나머지 부위의 염기서열이나 길이는 트랜스포존의 제조에 사용되는 벡터의 종류에 따라 달라질 수 있으며, Tn5와 Tnγδ의 전위효소 인식부위, 선별마커(CmR, tetR, sacB) 유전자 부위를 모두 포함하고 그 염기서열이 보존된다면, 이를 제외한 나머지 부위는 부분적으로 하나 이상의 염기가 결실, 삽입 또는 치환되어도 트랜스포존의 기능에는 영향이 없다. 또한 Tnγδ의 전위효소 인식부위는 트랜스포존 TnRIBD의 양 끝단 Tn5 전위효소 인식부위의 사이에 위치하면서 그 바깥쪽 좌우에 각 음성적 선별마커(tetR, sacB)를 가지고 내부에 양성적 선별마커(CmR)를 가지면 된다.As described above, in the transposon according to the present invention, the nucleotide sequence and length of the remaining portions except for the translocation enzyme recognition sites of Tn5 and Tnγδ, Cm R , tetR, and sacB gene regions are determined according to the type of vector used in the preparation of the transposon. If the nucleotide sequence includes all of the translocation enzyme recognition sites of Tn5 and Tnγδ, the selection marker (Cm R , tetR, sacB ) and the nucleotide sequence is preserved, the remaining sites partially delete one or more bases, Insertion or substitution does not affect the function of the transposon. In addition, the translocation enzyme recognition site of Tnγδ is located between the Tn5 translocation enzyme recognition sites at both ends of the transposon TnRIBD, and each of the negative selection markers (tetR and sacB ) is located on the outside and has a positive selection marker (Cm R ) therein. You just have to.

상기 단계 (2)에 있어서, 상기 트랜스포존 TnRIBD에 Tn5의 전위효소를 첨가하여 트랜스포좀(transposome)을 형성하고, 이 트랜스포좀을 통상적인 일렉트로포레이션(elcetroporation) 방법을 이용하여 미생물 균주에 전달하여, 미생물 균주 염색체의 임의의 위치에 트랜스포존을 삽입시킨 후, 상기 트랜스포존이 삽입된 미생물 변이주를 선별한 후, 선별된 변이주 내의 트랜스포존 삽입위치를 확인한다. 이 때, Tn5의 전위효소의 임의 삽입 기능은 마그네슘 이온에 의하여 활성화되므로, 트랜스포좀의 형성은 마그네슘 이온이 없는 조건하에서 수행하고, 미생물 균주 내에서의 트랜스포존의 임의 삽입은 마그네슘 이온이 존재하는 조건하에서 수행한다. 또한, 상기 트랜스포존에는 클로람페니콜 저항 유전자를 가지고 있기 때문에 클로람페니콜을 포함하는 배지에서 트랜스포존이 삽입된 균주를 선별할 수 있다. 삽입된 트랜스포존의 위치는 직접적 염색체 염기서열 분석(direct genome sequencing)을 통하여 확인할 수 있다.In step (2), transposomes are formed by adding a translocation enzyme of Tn5 to the transposon TnRIBD, and the transposomes are transferred to a microbial strain using a conventional electrotroporation method. After inserting the transposon at any position of the microbial strain chromosome, the microorganism mutant strain into which the transposon is inserted is selected, and then the transposon insertion position within the selected mutant strain is confirmed. At this time, since the arbitrary insertion function of the translocation enzyme of Tn5 is activated by magnesium ions, the formation of the transposome is performed under the condition that there is no magnesium ion, and the arbitrary insertion of the transposon in the microorganism strain is performed under the condition where the magnesium ion is present. To perform. In addition, since the transposon has a chloramphenicol resistance gene, it is possible to select a strain into which the transpozone is inserted in a medium containing chloramphenicol. The position of the inserted transposon can be confirmed by direct genome sequencing.

상기 단계 (3)에 있어서, 상기 변이주 내로 전위효소 발현벡터를 도입시킴으로써, 제거하고자 하는 염색체 부위 내부에 트랜스포존이 삽입된 미생물 변이주에 Tnγδ 전위효소를 지속적으로 발현시킨다. Tnγδ 전위효소가 Tnγδ 의 전위효소 인식부위를 인식하여 좌우방향으로 분자내 전위를 일으켜 트랜스포존 주변의 염색체 부분을 제거한다(도 1참조). In the step (3), by introducing a translocation enzyme expression vector into the mutant strain, Tnγδ translocation enzyme is continuously expressed in the microbial mutant strain in which the transposon is inserted into the chromosome region to be removed. Tnγδ translocation enzyme recognizes the translocation enzyme recognition site of Tnγδ to generate intramolecular potential in the left and right direction to remove the chromosome portion around the transposon (see FIG. 1).

본 발명의 한 구체 예에 있어서, 상기 전위효소 발현벡터는 pXRD4043를 제한효소 NaeI/ClaI으로 절단하여 전위효소 관련 유전자 tnpA(서열번호 7)를 포함하는 절단말단(blunt end)의 유전자 단편을 제조한 후, 이를 제한효소 BamHI로 절단하여 얻은 절단말단을 갖는 선상의 벡터 pEL3에 리가아제를 이용하여 삽입하여 얻을 수 있다. 상기와 같은 방법으로 제조된 전위효소 발현벡터를 pELTP라고 명명하고, 이를 도 3에 나타내고 그 서열을 서열번호 8에 나타내었다. In one embodiment of the invention, the translocation enzyme expression vector is a pXRD4043 cleaved with a restriction enzyme NaeI / Cla I to prepare a gene fragment of the cut end (blunt end) comprising the translocation enzyme-related gene tnpA (SEQ ID NO: 7) Then, it can be obtained by inserting a linear vector pEL3 having a cleavage end obtained by cleavage with the restriction enzyme BamHI using ligase. The translocation enzyme expression vector prepared by the above method was named pELTP, and this is shown in FIG. 3 and the sequence thereof is shown in SEQ ID NO: 8.

상기 단계 (4)에 있어서, 도 4a 및 도 5a에서 알 수 있는 바와 같이, 트랜스포존 내부에 위치하는 프라이머와 트랜스포존에서 수 kb ~ 수십 kb 정도 떨어져서 위치하는 프라이머를 이용하여 PCR을 수행하여 제거된 염색체 크기를 측정함으로써, 대략의 염색체 제거정도를 추정할 수 있다. 이 때, 본 발명의 한 구체예에 있어서, 트랜스포존 내부에 위치하는 프라이머와 트랜스포존에서 떨어져서 위치하는 프라이머로서 3C(서열번호 12)와 p15(서열번호 13) 또는 5C(서열번호 14)와 m10(성려번호 15)을 이용한 직접적인 염색체 염기서열 분석을 통하여 정확한 결실의 크기를 알 수 있다.In step (4), as can be seen in Figures 4a and 5a, the chromosome size removed by PCR using a primer located within the transposon and a primer located a few kb to several tens of kb away from the transposon By measuring the approximate degree of chromosome removal can be estimated. At this time, in one embodiment of the present invention, the primers located inside the transposon and the primers located away from the transposon, 3C (SEQ ID NO: 12) and p15 (SEQ ID NO: 13) or 5C (SEQ ID NO: 14) and m10 Direct chromosomal sequence analysis using No. 15) shows the exact size of the deletion.

Bacillus subtilis의 유전자 sacB는 레반수크라아제(levansucrase)를 발현시키며, 이는 자당(sucrose)을 포도당(glucose)과 과당(fructose)로 분해하고 과당을 중합체인 레반(levan)으로 합성한다. 그러나, 상기 레반이 미생물에 대하여 독성을 가지고 있기 때문에, 자당이 포함된 배지에서 sacB 유전자를 지닌 미생물이 생존하지 못한다. 따라서, 전위 효소가 그 인식부위를 인식하여 분자내 전위를 일으키면 sacB 유전자가 제거 되게 되고, sacB 유전자가 제거된 균주는 자당을 포함하는 배지에서 살 수 있게 된다. 이 때, sacB 유전자만이 제거가 되는 것이 아니라, 그 주변에 있는 다른 유전자들도 제거가 된다. 따라서 제거되는 부위에 생존에 필수적인 유전자가 존재하지 않는다면 그 주변 유전자가 제거되어도 즉 염색체의 부분이 제거된 균주는 배지에서 살수가 있을 것이다. 이를 통해서 제거된 부분 내에 있는 유전자를 생존에 필수적인 유전자가 아니라고 선별할 수 있다.The gene sacB of Bacillus subtilis expresses levansucrase, which breaks down sucrose into glucose and fructose and synthesizes fructose into the polymer levan. However, because the levan is toxic to microorganisms, microorganisms with sacB gene do not survive in a medium containing sucrose. Therefore, when the translocation enzyme recognizes the recognition site and causes intramolecular translocation, the sacB gene is removed, and the strain from which the sacB gene is removed can live in a medium containing sucrose. At this time, not only sacB gene is removed, but other genes around it are also removed. Therefore, if there is no gene necessary for survival at the site of removal, even if the surrounding genes are removed, that is, the strain in which the part of the chromosome is removed will be able to live in the medium. This allows the genes in the removed part to be identified as not essential for survival.

트랜스포존의 내에 있는 tetR에서 발현된 테트라사이클린 억제체(repressor)에 의해서 MG1655 λatt::Ptet-KmR의 λ 부착부위(attachment site)의 테트라사이클린 프로모터의 조절하에 있는 KmR(가나마이신 저항 유전자; kanamycin resistant gene)의 발현이 저해된다. 따라서, 분자내 전위를 통해서 tetR 유전자가 제거된 균주만이 가나마이신을 포함한 배지에서 살 수 있다. 이 경우에도 상기와 같이 tetR 유전자와 동시에 tetR 유전자 바깥 부분의 염색체 부분도 제거된다. 이를 이용하여 염색체의 일부분이 제거된 미생물 변이주를 얻을 수 있다. 또한 제거된 염색체 내에 존재하는 유전자는 주어진 성장 조건에서 비필수 유전자라고 선별할 수 있다.Km R (ganamycin resistance gene) under the control of the tetracycline promoter of the λ attachment site of MG1655 λatt :: P tet- Km R by a tetracycline repressor expressed in tetR within the transposon; kanamycin resistant gene expression is inhibited. Therefore, only strains from which the tetR gene has been removed through intramolecular translocation can live in a medium containing kanamycin. In this case, the chromosomal portion outside the tetR gene is also removed at the same time as the tetR gene. This can be used to obtain a microbial mutant strain from which a portion of the chromosome has been removed. In addition, genes present in the removed chromosome can be selected as non-essential genes under given growth conditions.

본 발명은 상기 대상 미생물로 대장균 (E. coli)를 사용하였으며, 상기 트랜스포존 Tn5와 Tnγδ를 기초로 하여 제조하였다. Tn5는 미생물 염색체 임의의 위치로 삽입이 가능한 것으로 보고되어 있으며(Berg, D. D. and M. M. Howe. 1989. Mobile DNA. American Society for Microbiology, Washington, D. C.), Tnγδ는 분자내 전위를 할 수 있다고 보고되어 있다(Wang, G. et al. 1993. pDUAL: A tranoposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo. Pro. Natl. Acad. Sci. USA 90, 7874-7878). 또한 고초균의 sacB 유전자를 지닌 대장균은 5%의 자당을 포함하는 배지에서 살 수 없다고 보고되어 있으며(Link, A. J. et al. 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol. 179, 6228-37), 테트라사이클린 저해체가 발현되면 테트라사이클린 프로모터 조절하에 있는 가나마이신 저항 유전자가 발현되지 않아 가나마이신 배지에서 대장균이 살수 없음이 보고되어 있다(Koob, M. D. et al. 1994. Minimizing the genome of Escherichia coli. Motivation and strategy. Ann N Y Acad Sci. 30, 1-3).In the present invention, E. coli was used as the target microorganism, and was prepared based on the transposon Tn5 and Tnγδ. It has been reported that Tn5 can be inserted at any position of the microbial chromosome (Berg, DD and MM Howe. 1989. Mobile DNA. American Society for Microbiology, Washington, DC), and Tnγδ is reported to be capable of intramolecular translocation. (Wang, G. et al . 1993. pDUAL: A tranoposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo . Pro. Natl. Acad. Sci. USA 90, 7874-7878). It is also reported that Escherichia coli carrying the sacB gene of Bacillus subtilis cannot live in a medium containing 5% sucrose (Link, AJ et al . 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli : Application to open reading frame characterization.J Bacteriol. 179, 6228-37), the expression of tetracycline inhibitors did not express the kanamycin resistance gene under the control of the tetracycline promoter, and it has been reported that E. coli could not be killed in kanamycin media. (Koob, MD et al . 1994. Minimizing the genome of Escherichia coli . Motivation and strategy. Ann NY Acad Sci. 30, 1-3).

그러므로, 본 발명은 트랜스포존에 Tn5와 Tnγδ의 전위효소 인식부위를 삽입하여 미생물 염색체 내의 임의의 위치에 삽입하고, Tnγδ 전위효소를 통하여 삽입된 트랜스포존의 좌우 염색체 부분을 제거하고, 염색체의 제거를 음성적 선별마커인 sacB와 tetR/Ptet-KmR을 이용하여 선별하는, 즉 트랜스포존 좌우의 염색체 부분을 제거함으로 미생물 변이주를 제조하고, 또한 생장 불필요 유전자를 검출하는 기술을 개발한 것이다.Therefore, the present invention inserts a translocation enzyme recognition site of Tn5 and Tnγδ into a transposon, inserts it at an arbitrary position in the microbial chromosome, removes the left and right chromosomal portions of the transposon inserted through the Tnγδ translocation enzyme, and removes the chromosome negatively. By using the markers sacB and tetR / P tet -Km R , the microbial mutant strains were prepared by removing the chromosomal parts on the left and right sides of the transposon, and also the development of a technique for detecting a growth unnecessary gene.

이하, 본 발명을 다음의 실시예에 의하여 보다 상세히 설명하겠으나, 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

실시예Example

실시예 1Example 1

대장균 염색체의 임의의 위치에 삽입이 가능한 트랜스포존 TnRIBD의 제조Preparation of transposon TnRIBD capable of insertion at any position of E. coli chromosome

도 1은 직선형 트랜스포존 TnRIBD의 염색체 삽입을 나타내는 것으로, TnRIBD는 sacB, CmR, tetR, Tnγδ의 OE를 가지고 있으며 그 양쪽 말단에 19 염기쌍으로 이루어진 Tn5의 전위효소 인식부위(Tn5 OE)를 가지고 있다.1 shows chromosomal insertion of a linear transposon TnRIBD, which has OEs of sacB , Cm R , tetR, and Tnγδ and has a translocation enzyme recognition site (Tn5 OE) of Tn5 consisting of 19 base pairs at both ends thereof.

도 2에서 알수 있는 바와 같이, 상기 트랜스포존 TnRIBD는 pRIBD 벡터에서 제한 효소 XhoI을 처리함으로써 얻을 수 있다. As can be seen in Figure 2, the transposon TnRIBD can be obtained by treating the restriction enzyme XhoI in the pRIBD vector.

상기 pRIBD 벡터는 다음과 같은 방법으로 제조하였다. The pRIBD vector was prepared by the following method.

우선 PCR을 통해서 Tn10(Michael Koob 교수, 미네소타대학교, 미국)에서 증폭시킨 tetA와 tetR 유전자를 제한효소 NotI/ClaI(New England Biolabs Inc., MA, 미국) 를 이용하여 절단한 후, 이를 제한효소 NotI/ClaI로 절단시킨 선상의 γ-ori를 포함하는 벡터 pKClox(Yoon, YG, et al., 1998, Cre/loxP-mediated excision and amplification of the Escherichia coli genome, Genetic Analysis 14, 89-95)에 리가아제(New England Biolabs Inc.)를 이용하여 삽입하여 새로운 벡터를 만든 후, 이를 pKCtet이라고 명명하였다. PCR을 통해서 pDELTA2(Gibco BRL products, MD, USA)에서 증폭시킨 sacB 유전자를 제한효소 BamHI(New England Biolabs Inc.)을 이용하여 절단한 후, 이를 제한효소 BamHI로 절단시킨 선상의 벡터 pKCtet에 리가아제를 사용하여 삽입하여 새로운 벡터를 만든 후, 이를 pGtesa라고 명명하였다. 또한, PCR을 통하여 pDELTA2에서 증폭시킨 Tnγδ의 OE를 포함하는 부분을 제한효소 EcoRI(New England Biolabs Inc.)을 이용하여 절단한 후, 이를 제한효소 EcoRI로 절단시킨 선상의 벡터 pGtesa에 리가아제를 사용하여 삽입하여 새로운 벡터를 만든 후, 이를 pGtesa3이라고 명명하였다. 그리고, PCR을 통해서 pKClox에서 증폭한 CmR 유전자를 제한효소 KpnI/BglII(New England Biolabs Inc.)를 이용하여 절단한 후, 이를 제한효소 KpnI/BglII로 절단시킨 선상의 벡터 pGtesa3에 리가아제를 사용하여 삽입하여 새로운 벡터를 만든 후, 이를 pGCtesa3이라고 명명하였다. 벡터 pMOD(Epicentre technologies, WI, USA)를 제한효소 EcoRI/BamHI(New England Biolabs Inc.)으로 절단한 후, T4 DNA 중합효소(New England Biolabs Inc.)를 이용하여 절단말단(blunt end)으로 만든 후, 리가아제를 이용하여 자가 결찰(ligation)하여 이를 pMb2로 명명하였다. 그리고, 5¢-GAATTCTCGAGCTGTCTCTTATACACATCTC-3¢ 서열을 갖는 5' 프라이머(서열번호 9)와 5¢-ACATGTCTCGAGCTGTCTCTTATACACATCTC-3¢ 서열을 갖는 3' 프라이머(서열번호 10)를 이용하여, pMb2의 Tn5 전위효소 인식부위 서열을 포함하는 DNA 부분을 PCR로 증폭시킨 후, 리가아제를 이용하여 제한효소 EcoRI/AflIII(New England Biolabs Inc.)를 이용하여 절단한 선상의 벡터 pUC19(New England Biolabs Inc.)에 삽입하여 새로운 벡터를 만들고, 이를 pMb3으로 명명하였다. 벡터pGCtesa3을 제한효소 HindIII(New England Biolabs Inc.)를 이용하여 선상으로 만든 후, 이를 제한효소 HindIII로 절단한 선상의 벡터 pMb3에 리가아제를 사용하여 삽입하여 새로운 벡터를 만들고, 이를 pRIBDt로 명명하였다. 벡터 pRIBDt를 제한효소 EcoRV/NotI(New England Biolabs Inc.)으로 절단한 후, tetR, CmR, sacB, Tnγδ와 Tn5의 OE를 가지고 있는 DNA 단편을 T4 DNA 중합효소를 이용하여 절단 말단(blunt end)으로 만든 후, 리가아제를 이용하여 자가 결찰(ligation)한 후, 이를 pRIBD로 명명하였다(도 2 참조).First, the tetA and tetR genes amplified by Tn10 (Professor Michael Koob, University of Minnesota, USA) by PCR were cleaved using restriction enzyme NotI / ClaI (New England Biolabs Inc., MA, USA) and then restriction enzyme NotI Riga in a vector pKClox (Yoon, YG, et al., 1998, Cre / loxP-mediated excision and amplification of the Escherichia coli genome, Genetic Analysis 14, 89-95) containing linear γ-ori cleaved with / ClaI A new vector was created by insertion using an enzyme (New England Biolabs Inc.) and named pKCtet. The sacB gene amplified by pDELTA2 (Gibco BRL products, MD, USA) by PCR was digested with restriction enzyme BamHI (New England Biolabs Inc.), and then ligase was added to the linear vector pKCtet digested with restriction enzyme BamHI. After inserting to create a new vector, we named it pGtesa. In addition, a portion containing OE of Tnγδ amplified in pDELTA2 by PCR was cleaved using restriction enzyme EcoRI (New England Biolabs Inc.), and then ligase was used in the linear vector pGtesa cut with restriction enzyme EcoRI. Insert it into a new vector and name it pGtesa3. Then, the Cm R gene amplified in pKClox by PCR was cleaved using the restriction enzyme KpnI / BglII (New England Biolabs Inc.), and then ligase was used in the linear vector pGtesa3 cleaved with the restriction enzyme KpnI / BglII. And inserted into a new vector, named pGCtesa3. Vector pMOD (Epicentre technologies, WI, USA) was digested with restriction enzyme EcoRI / BamHI (New England Biolabs Inc.) and then made into a blunt end using T4 DNA polymerase (New England Biolabs Inc.). After that, it was self-ligation using ligase and named it pMb2. Tn5 translocation enzyme recognition site of pMb2 using a 5 ′ primer (SEQ ID NO: 9) having a 5′-GAATTCTCGAGCTGTCTCTTATACACATCTC-3 ′ sequence and a 3 ′ primer having a 5′-ACATGTCTCGAGCTGTCTCTTATACACATCTC-3 ′ sequence (SEQ ID NO: 10) After amplifying the DNA portion containing the sequence by PCR, it was inserted into a linear vector pUC19 (New England Biolabs Inc.) cut using the restriction enzyme EcoRI / AflIII (New England Biolabs Inc.) using ligase. A vector was created and named pMb3. The vector pGCtesa3 was linearized with the restriction enzyme HindIII (New England Biolabs Inc.), and then inserted into the linear vector pMb3 digested with the restriction enzyme HindIII using ligase to make a new vector, which was named pRIBDt. . After cleaving the vector pRIBDt with restriction enzyme EcoRV / NotI (New England Biolabs Inc.), DNA fragments containing OEs of tetR, Cm R , sacB , Tnγδ and Tn5 were digested with T4 DNA polymerase. ), Followed by self ligation using ligase, which was named pRIBD (see FIG. 2).

상기와 같이 합성된 벡터 pRIBD를 제한 효소 XhoI(New England Biolabs Inc.)으로 처리한 후, 아가로스 겔(agarose gel)에서 추출하여 트랜스포존 TnRIBD로 이용하였다. The vector pRIBD synthesized as described above was treated with restriction enzyme XhoI (New England Biolabs Inc.), extracted from an agarose gel, and used as a transposon TnRIBD.

실시예 2Example 2

트랜스포존 TnRIBD를 대장균 염색체의 임의의 위치에 삽입 후, 삽입 위치 확인Insert the transposon TnRIBD at any position on the E. coli chromosome and confirm the insertion position

500ng의 트랜스포존 TnRIBD와 10unit의 Tn5 전위 효소(1unit/㎕, Epicentre technologies에서 구매)를 이차증류수와 반응시켜 총 20㎕로 만든 다음, 37℃에서 1시간동안 반응시켜 트랜스포좀을 형성하였다. 이 때, 전위효소의 임의 삽입 기능을 억제하기 위하여, 상기 반응은 2가의 마그네슘 이온이 없는 상황에서 진행하였다. 그리고 나서, 마그네슘 이온이 존재하는 반응조건 하에서 통상적인 일렉트로포레이션(electroporation) 방법(Bio-Rad, Bacterial electro-transformation and pulse controller instruction manual, Cat. No 165-2098)에 의하여 1㎕의 트랜스포좀을 대장균 MG1655 λatt::Ptet-KmR 균주(Koob, M. D. et al. 1994. Minimizing the genome of Escherichia coli. Motivation and strategy. Ann N Y Acad Sci. 30, 1-3, 미국 미네소타 대학의 Michael Koob에게서 입수)내로 전달시켰다. 상기 균주를 LB배지(tryptone 1%, yeast extract 0.5%, NaCl 0.5%)에서 배양하였다. 이 때, 상기 배지 내에 소량의 마그네슘 이온을 첨가하여, 상기 마그네슘 이온에 의하여 트랜스포좀의 대장균 균주 세포내에서의 임의 삽입기능을 활성화시켜서 대장균의 염색체의 임의의 위치로 삽입될 수 있게 하였다. 상기 트랜스포존이 삽입된 대장균 변이주는 트랜스포존에 존재하는 CmR 유전자로 인해 클로람페니콜에 대하여 저항성을 가지므로, 클로람페니콜 포함 배지에서 선별하였다. 이 때, 대장균 MG1655 λatt::Ptet-KmR 염색체 내로 삽입된 트랜스포존의 정확한 염색체 상의 위치는 염기서열분석 프라이머 Sac-out (5¢-TGTTGTCAAAGACAGCATCCTTGAACAAGG-¢3, (주)제노텍에서 합성, 서열번호 11))을 이용하여 직접적 염색체 염기서열 분석을 실행하였으며, 그 결과를 BLAST 프로그램을 이용하여 미국 유전자 은행의 DNA 서열(Gene Bank DNA sequence)과 비교하여 상기 대장균 균주 내로 트랜스포존이 삽입되었음을 확인하였다.500ng of transposon TnRIBD and 10units of Tn5 translocation enzyme (1unit / μl, purchased from Epicentre technologies) were reacted with secondary distilled water to make a total of 20μl, followed by reaction at 37 ° C. for 1 hour to form a transposome. At this time, in order to suppress the arbitrary insertion function of the translocation enzyme, the reaction proceeded in the absence of divalent magnesium ions. Subsequently, 1 μl of the transposome was removed by conventional electroporation method (Bio-Rad, Bacterial electro-transformation and pulse controller instruction manual, Cat. No 165-2098) under reaction conditions in which magnesium ions exist. E. coli MG1655 λ att :: P tet -Km R strain (Koob, MD et al. 1994. Minimizing the genome of Escherichia coli.Motivation and strategy.Anne NY Acad Sci. 30, 1-3, from Michael Koob, University of Minnesota, USA Obtained). The strain was incubated in LB medium (tryptone 1%, yeast extract 0.5%, NaCl 0.5%). At this time, a small amount of magnesium ions were added to the medium to activate an arbitrary insertion function in the E. coli strain cells of the transposomes by the magnesium ions to be inserted into any position of the chromosome of E. coli. The E. coli mutant strain into which the transposon was inserted has resistance to chloramphenicol due to the Cm R gene present in the transposon, and was selected from chloramphenicol-containing medium. At this time, the exact position on the chromosome of the transposon inserted into the E. coli MG1655 λ att :: P tet -Km R chromosome was determined by sequencing primer Sac-out (5′-TGTTGTCAAAGACAGCATCCTTGAACAAGG- ¢ 3, synthesized by Genotech Co., Ltd.). No. 11)) was used to perform direct chromosome sequencing, and the results were compared with the Gene Bank DNA sequence using the BLAST program to confirm that the transposon was inserted into the E. coli strain.

실시예 3Example 3

전위효소 발현 벡터 pELTP를 상기 균주에 도입하여 전위효소를 발현시켜 결실변이를 갖는 대장균 변이주의 제조Preparation of Escherichia coli mutant strain having a deletion mutation by introducing a translocation enzyme expression vector pELTP into the strain.

실시예 2에 따라 제조된, 트랜스포존 TnRIBD를 갖는 대장균 변이주에 전위효소를 발현시키는 벡터 pELTP(도 3 참조)를 도입시켰다. A vector pELTP (see FIG. 3) expressing a translocation enzyme was introduced into E. coli mutant strains having a transposon TnRIBD prepared according to Example 2.

상기 벡터 pELTP는 다음과 같이 제조하였다. 우선 전위효소 발현 벡터 pXRD4043(Gibco BRL products, Tsai, M. M. et al. 1987, Transposition of Tn1000: in vivo properties. J Bacteriol. 169: 5556-62)에서 전위효소 관련 유전자인 tnpA(SEQ ID NO:7)를 제한 효소 NaeI/ClaI(New England Biolabs Inc.)으로 절단하여 절단말단으로 만든 후, 이를 제한 효소 BamHI(New England Biolabs Inc.)로 절단하여 절단말단으로 만든 선상의 온도 민감성 벡터 pEL3(일본국립유전학연구소 Seiichi Yasuda(安田成一)에게서 얻음, Armstrong, K. A. et al. 1984. A 37 X 103 molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1. J Mol Biol. 175: 331-48)에 리가아제를 사용하여 삽입하여 새로운 벡터를 제조한 후, 이를 pELTP라고 명명하였다. 이와 같이 제조된 pELTP를 도 3에 나타내었다.The vector pELTP was prepared as follows. First, translocation enzyme expression vector pXRD4043 (Gibco BRL products, Tsai, MM et al. 1987, Transposition of Tn1000: in vivo properties. J Bacteriol. 169: 5556-62), tnpA (SEQ ID NO: 7) Was digested with a restriction enzyme NaeI / ClaI (New England Biolabs Inc.) to a cleavage end, and then cleaved with a restriction enzyme BamHI (New England Biolabs Inc.) to a cleavage end, a linear temperature sensitive vector pEL3 (National Genetics). Obtained from the Institute Seiichi Yasuda, Armstrong, KA et al. 1984. A 37 X 10 3 molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1.J Mol Biol. 175: 331-48) using ligase to prepare a new vector and name it pELTP. PELTP thus prepared is shown in FIG. 3.

상기와 같이 제조된 전위효소 발현벡터 pELTP를 트랜스포존 TnRIBD를 갖는 대장균 변이주에 형질도입하였다(J. Sambrook et al. Molecular Cloning-A Laboratory Manual. 2ed. Cold Spring Harbor. 1989). 발현벡터 pELTP에 존재하는 tnpA 유전자는 tac 프로모터에 의해 전사조절 되므로, IPTG(Isopropyl-beta-D-thiogalactoside)를 1mM의 최종농도로 처리하고 30℃에서 진탕배양하여 전위효소를 발현시켰다. 전위효소의 발현결과 얻어지는 결실변이 중 sacB 유전자의 결실을 유발하는 트랜스포존의 오른쪽으로 일어나는 결실 변이체(도 4a 참조)는 5% 자당 포함 배지에서 선별하였고, tetR 유전자의 결실을 유발하는 트랜스포존의 왼쪽으로 일어나는 결실변이체(도 5a 참조)는 가나마이신을 포함하는 배지에서 선별하였다. The translocation enzyme expression vector pELTP prepared as described above was transduced into the E. coli mutant strain having the transposon TnRIBD (J. Sambrook et al. Molecular Cloning-A Laboratory Manual. 2ed. Cold Spring Harbor. 1989). Since the tnpA gene present in the expression vector pELTP is regulated by the tac promoter, IPTG (Isopropyl-beta-D-thiogalactoside) was treated at a final concentration of 1 mM and shaken at 30 ° C to express translocation enzyme. Deletion variants that occur to the right of the transposon that result in the deletion of the sacB gene (see FIG. 4A) among the deletion mutations resulting from translocation enzyme expression were selected in 5% sucrose-containing medium and occurred to the left of the transposon that induces deletion of the tetR gene. Deletion variants (see FIG. 5A) were selected in media containing kanamycin.

본 실시예 2 및 실시예 3에서, 직접적 게놈 염기서열 분석을 통하여 삽입된 트랜스포존의 위치가 대장균 유전자 araA임을 확인하였고, 전위효소 발현 벡터 pELTP를 형질도입하여 전위효소를 발현시킨 후, 5% 자당을 포함하는 배지 및 가나마이신을 포함하는 배지에서 배양하여 염색체의 일부분이 제거된 균주를 선별하였으며, 이들의 염색체를 PCR 증폭하여 전기영동한 결과를 도 4b 및 도 5b에 나타내었다. 도 4b 및 도 5b에서 알 수 있는 바와 같이, 대장균의 염색체의 일부가 제거되었음을 확인할 수 있었다.In Examples 2 and 3, direct genomic sequencing confirmed that the position of the inserted transposon was E. coli gene araA . After transducing the translocation enzyme expression vector pELTP to express translocation enzyme, 5% sucrose was added. Strains in which a portion of the chromosome was removed by culturing in a medium containing and a medium containing kanamycin were selected, and the results of electrophoresis by PCR amplification of these chromosomes are shown in FIGS. 4B and 5B. As can be seen in Figures 4b and 5b, it could be confirmed that a part of the chromosome of E. coli was removed.

실시예4Example 4

제거된 염색에 부분 확인 및 주어진 조건하에서 생장에 불필요한 유전자 선별Partial Identification of Removed Staining and Selection of Unnecessary Genes for Growth Under Given Conditions

도 4b에서 알 수 있는 바와 같이, PCR 증폭 산물의 염기서열을 프라이머 3C(5¢-GTTCATCATGCCGTTTGTG-3¢, 서열번호 12)와 p15(5¢-CCTGCCACTGCTTCACCATCCCC-3¢, 서열번호 13)를 이용하여 분석한 결과, 염색체의 약 16kb가 제거되었음을 확인하였다. 제거된 부분에는 araBC, yabI, sfuCB, tbpA, yabN, setA, leuDCBALO, ilvI의 15개의 유전자가 존재하였다. 이를 통하여, 상기 15개의 유전자는 37℃, LB 배지에서 키울 경우에 있어서 생장에 불필요한 유전자임을 확인하였다.As can be seen in Figure 4b, the base sequence of the PCR amplification product was analyzed using primers 3C (5′-GTTCATCATGCCGTTTGTG-3 ′, SEQ ID NO: 12) and p15 (5′-CCTGCCACTGCTTCACCATCCCC-3 ′, SEQ ID NO: 13). As a result, it was confirmed that about 16 kb of the chromosome was removed. In the removed portion, 15 genes of araBC, yabI, sfuCB, tbpA, yabN, setA, leuDCBALO, and ilvI were present. Through this, it was confirmed that the 15 genes are unnecessary for growth when grown in 37 ℃, LB medium.

또한, 도 5b에서 알 수 있는 바와 같이, PCR 증폭산물의 염기서열을 프라이머 5C(5¢-CCTTAGCTCCTGAAAATCTCG-3¢, 서열번호 14)와 m10(5¢-GCTCATCGGAGATTTTCACTCCC-3¢, 서열번호 15)를 이용하여 분석한 결과, 염색체의 약 8kb가 제거되었음을 확인하였다. 제거된 부분에는 araAD, polB, hepA, rluA의 5개의 유전자가 존재하였다. 이를 통하여, 상기 5개의 유전자 또한 37℃, LB 배지에서 키울 경에 있어서 생장에 불필요한 유전자임을 확인하였다.In addition, as can be seen in Figure 5b, the base sequence of the PCR amplification product using primers 5C (5′-CCTTAGCTCCTGAAAATCTCG-3 ′, SEQ ID NO: 14) and m10 (5′-GCTCATCGGAGATTTTCACTCCC-3 ′, SEQ ID NO: 15) As a result of analysis, it was confirmed that about 8 kb of the chromosome was removed. In the removed portion, five genes , araAD, polB, hepA, and rluA, were present. Through this, it was confirmed that the five genes are unnecessary genes for growth when grown in 37 ° C. and LB medium.

상술한 바와 같이, 본 발명은 트랜스포존의 분자내 전위와 음성적 선별마커를 이용한 염색체의 임의 부위를 제거한 대장균 변이주 제조 방법으로 보다 효율적으로 다양한 부위의 대장균 염색체를 제거할 수 있고, 또한 기능이 밝혀지지 않은 유전자의 주어진 생장 조건 하에서의 필요성 여부를 쉽게 판별할 수 있다.As described above, the present invention is a method for preparing E. coli mutant strains by removing any portion of the chromosome using the intramolecular potential of the transposon and the negative selection marker, so that the E. coli chromosome of various sites can be removed more efficiently, and the function is not known. The necessity of a gene under given growth conditions can be readily determined.

이러한 방법으로 대장균 내 성장에 불필요한 유전자를 제거함으로써, 보다 유전적으로 간단한 염색체를 지니는 대장균 변이주를 구축하여, 이를 여러 가지 염색체 기능 연구에 이용할 수 있다. 또한, 성장에 불필요한 유전자를 제거함으로써 빠른 성장을 보이는 대장균 변이주를 선별하여 산업용 인공균주로서 사용할 수 도 있다. 또한, 대장균 뿐만 아니라 다른 미생물에서도 본 발명을 적용함으로써, 염색체가 선택적으로 축소된 다양한 미생물 변이주들을 창조해 낼 수 있는 효과가 있다. 또한, 본 발명에 따른 방법에 의하여 제조된 축소 미생물 염색체에 외래의 새로운 대사관련 유전자를 모아 카세트를 만들어 도입하여 여러 가지 유용한 기능들을 지닌 새로운 생물체를 만드는데 적용될 수 있다. By removing genes necessary for growth in Escherichia coli in this way, E. coli mutants having a more genetically simple chromosome can be constructed and used for various chromosome function studies. In addition, by removing genes unnecessary for growth, E. coli mutant strains showing rapid growth can be selected and used as industrial artificial strains. In addition, by applying the present invention to not only E. coli, but also other microorganisms, there is an effect that can create a variety of microbial mutants with chromosomes selectively reduced. In addition, by introducing a new metabolism-related gene of foreign origin into the reduced microbial chromosome prepared by the method according to the present invention can be applied to make a new organism having a variety of useful functions.

도 1은 트랜스포존 TnRIBD를 이용하여 염색체의 임의 부위가 제거된 염색체를 갖는 대장균(E. coli)을 제조하는 단계를 나타낸 것이다.Figure 1 shows the step of producing E. coli having a chromosome from which any portion of the chromosome was removed using transposon TnRIBD.

도 2는 트랜스포존 TnRIBD의 모벡터인 pRIBD의 구조를 나타낸 것이다.Figure 2 shows the structure of pRIBD, the parent vector of transposon TnRIBD.

도 3은 전위효소 발현 벡터인 pELTP의 구조를 나타낸 것이다. Figure 3 shows the structure of pELTP, a translocation enzyme expression vector.

도 4는 트랜스포존 TnRIBD의 음성적 마커 sacB 유전자를 이용한 염색체 임의 부분의 제거를 보여주는 것으로, 4a는 염색체에 삽입된 트랜스포존 TnRIBD의 음성적 마커 sacB 유전자를 이용하여 대장균 염색체의 임의 부위를 제거하고 제거정도를 확인하는 방법을 나타낸 것이고, 4b는 상기 4a의 방법을 이용한 염색체의 제거정도를 확인하기 위하여 PCR 증폭 결과를 전기영동한 사진이다.Figure 4 shows the removal of any part of the chromosome using the negative marker sacB gene of transposon TnRIBD, 4a using the negative marker sacB gene of transposon TnRIBD inserted into the chromosome to remove any part of the E. coli chromosome and confirm the degree of removal 4b is a photograph showing electrophoresis of PCR amplification results to confirm the degree of chromosome removal using the method of 4a.

도 5는 트랜스포존 TnRIBD의 음성적 마커 tetR/Ptet-KmR를 이용한 염색체 임의 부분의 제거를 보여주는 것으로, 5a는 염색체에 삽입된 트랜스포존 TnRIBD의 음성적 마커 tetR/Ptet-KmR를 이용하여 대장균 염색체의 임의 부위를 제거하고 제거정도를 확인하는 방법을 나타낸 것이고, 5b는 상기 도5a의 방법을 이용한 염색체의 제거정도를 확인하기 위하여 PCR 증폭 결과를 전기영동한 사진이다.Figure 5 shows the removal of any part of the chromosome using the negative marker tetR / P tet -Km R of transposon TnRIBD, 5a shows the removal of E. coli chromosome using the negative marker tetR / P tet -Km R of transposon TnRIBD inserted into the chromosome. 5B is a photograph of electrophoresis of PCR amplification results to confirm the degree of removal of chromosomes using the method of FIG. 5A.

<110> Korea Advanced Institute of Science and Technology <120> TRANSPOSON FOR BIDIRECTIONAL INTRAMOLECULAR GENOME DELETIONS, CONSTRUCTION OF NOVEL MICROORGANISM AND IDENTIFICATION OF NONESSENTIAL GENES USING THE SAME <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 4206 <212> DNA <213> Artificial Sequence <220> <223> transposon TnRIBD <400> 1 ctcgagctgt ctcttataca catctcaacc ctgaagctat cttccgaagc aataaattca 60 cgtaataacg ttggcaagac tggcatgata aggccaatcc ccatggcatc gagtaacgta 120 attaccaatg cgatctttgt cgaactattc atttcacttt tctctatcac tgatagggag 180 tggtaaaata actctatcaa tgatagagtg tcaacaaaaa ttaggaatta atgatgtcta 240 gattagataa aagtaaagtg attaacagcg cattagagct gcttaatgag gtcggaatcg 300 aaggtttaac aacccgtaaa ctcgcccaga agctaggtgt agagcagcct acattgtatt 360 ggcatgtaaa aaataagcgg gctttgctcg acgccttagc cattgagatg ttagataggc 420 accatactca cttttgccct ttagaagggg aaagctggca agatttttta cgtaataacg 480 ctaaaagttt tagatgtgct ttactaagtc atcgcgatgg agcaaaagta catttaggta 540 cacggcctac agaaaaacag tatgaaactc tcgaaaatca attagccttt ttatgccaac 600 aaggtttttc actagagaat gcattatatg cactcagcgc tgtggggcat tttactttag 660 gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga agaaagggaa acacctacta 720 ctgatagtat gccgccatta ttacgacaag ctatcgaatt atttgatcac caaggtgcag 780 agccagcctt cttattcggc cttgaattga tcatatgcgg attagaaaaa caacttaaat 840 gtgaaagtgg gtcttaaaag cagcataacc tttttccgtg atggtaactt cacggtaacc 900 aagatgtcga gttaaccacc catcgatgat aagctgtcaa acatgagaat tcggtgaatc 960 ccataaattc cccggatcgg ggtttgaggg ccaatggaac gaaaacgtac gttaaggatc 1020 tctatagtgt cacctaaatc ggacgcgcgc tggtggtacc tccttagttc ctattccgaa 1080 gttcctattc tctagaaagt ataggaactt cggcgcgcct acctgtgacg gaagatcact 1140 tcgcagaata aataaatcct ggtgtccctg ttgataccgg gaagccctgg gccaactttt 1200 ggcgaaaatg agacgttgat cggcacgtaa gaggttccaa ctttcaccat aatgaaataa 1260 gatcactacc gggcgtattt tttgagttgt cgagattttc aggagctaag gaagctaaaa 1320 tggagaaaaa aatcactgga tataccaccg ttgatatatc ccaatggcat cgtaaagaac 1380 attttgaggc atttcagtca gttgctcaat gtacctataa ccagaccgtt cagctggata 1440 ttacggcctt tttaaagacc gtaaagaaaa ataagcacaa gttttatccg gcctttattc 1500 acattcttgc ccgcctgatg aatgctcatc cggaattacg tatggcaatg aaagacggtg 1560 agctggtgat atgggatagt gttcaccctt gttacaccgt tttccatgag caaactgaaa 1620 cgttttcatc gctctggagt gaataccacg acgatttccg gcagtttcta cacatatatt 1680 cgcaagatgt ggcgtgttac ggtgaaaacc tggcctattt ccctaaaggg tttattgaga 1740 atatgttttt cgtctcagcc aatccctggg tgagtttcac cagttttgat ttaaacgtgg 1800 ccaatatgga caacttcttc gcccccgttt tcaccatggg caaatattat acgcaaggcg 1860 acaaggtgct gatgccgctg gcgattcagg ttcatcatgc cgtttgtgat ggcttccatg 1920 tcggcagatg cttaatgaat acaacagtac tgcgatgagt ggcagggcgg ggcgtaaggc 1980 gcgccattta aatgaagttc ctattccgaa gttcctattc tctagaaagt ataggaactt 2040 cgaagcagct ccagcctaca gatctggccg ctaatacgac tcactatagg gaactgaccc 2100 ttaacgtacg ttttcgttcc attggccctc aaaccccaat tcgtcagact tacggttaag 2160 cagtctgaat gaattcgagc tcgccgggga tcctttttaa cccatcacat atacctgccg 2220 ttcactatta tttagtgaaa tgagatatta tgatattttc tgaattgtga ttaaaaaggc 2280 aactttatgc ccatgcaaca gaaactataa aaaatacaga gaatgaaaag aaacagatag 2340 attttttagt tctttaggcc cgtagtctgc aaatcctttt atgattttct atcaaacaaa 2400 agaggaaaat agaccagttg caatccaaac gagagtctaa tagaatgagg tcgaaaagta 2460 aatcgcgcgg gtttgttact gataaagcag gcaagaccta aaatgtgtaa agggcaaagt 2520 gtatactttg gcgtcacccc ttacatattt taggtctttt tttattgtgc gtaactaact 2580 tgccatcttc aaacaggagg gctggaagaa gcagaccgct aacacagtac ataaaaaagg 2640 agacatgaac gatgaacatc aaaaagtttg caaaacaagc aacagtatta acctttacta 2700 ccgcactgct ggcaggaggc gcaactcaag cgtttgcgaa agaaacgaac caaaagccat 2760 ataaggaaac atacggcatt tcccatatta cacgccatga tatgctgcaa atccctgaac 2820 agcaaaaaaa tgaaaaatat caagttcctg aatttgattc gtccacaatt aaaaatatct 2880 cttctgcaaa aggcctggac gtttgggaca gctggccatt acaaaacgct gacggcactg 2940 tcgcaaacta tcacggctac cacatcgtct ttgcattagc cggagatcct aaaaatgcgg 3000 atgacacatc gatttacatg ttctatcaaa aagtcggcga aacttctatt gacagctgga 3060 aaaacgctgg ccgcgtcttt aaagacagcg acaaattcga tgcaaatgat tctatcctaa 3120 aagaccaaac acaagaatgg tcaggttcag ccacatttac atctgacgga aaaatccgtt 3180 tattctacac tgatttctcc ggtaaacatt acggcaaaca aacactgaca actgcacaag 3240 ttaacgtatc agcatcagac agctctttga acatcaacgg tgtagaggat tataaatcaa 3300 tctttgacgg tgacggaaaa acgtatcaaa atgtacagca gttcatcgat gaaggcaact 3360 acagctcagg cgacaaccat acgctgagag atcctcacta cgtagaagat aaaggccaca 3420 aatacttagt atttgaagca aacactggaa ctgaagatgg ctaccaaggc gaagaatctt 3480 tatttaacaa agcatactat ggcaaaagca catcattctt ccgtcaagaa agtcaaaaac 3540 ttctgcaaag cgataaaaaa cgcacggctg agttagcaaa cggcgctctc ggtatgattg 3600 agctaaacga tgattacaca ctgaaaaaag tgatgaaacc gctgattgca tctaacacag 3660 taacagatga aattgaacgc gcgaacgtct ttaaaatgaa cggcaaatgg tatctgttca 3720 ctgactcccg cggatcaaaa atgacgattg acggcattac gtctaacgat atttacatgc 3780 ttggttatgt ttctaattct ttaactggcc catacaagcc gctgaacaaa actggccttg 3840 tgttaaaaat ggatcttgat cctaacgatg taacctttac ttactcacac ttcgctgtac 3900 ctcaagcgaa aggaaacaat gtcgtgatta caagctatat gacaaacaga ggattctacg 3960 cagacaaaca atcaacgttt gcgccgagct tcctgctgaa catcaaaggc aagaaaacat 4020 ctgttgtcaa agacagcatc cttgaacaag gacaattaac agttaacaaa taaaaacgca 4080 aaagaaaatg ccgatatcct attggcattt tcttttattt cttatcaaca taaaggtgaa 4140 tcccataaat tccccggatc ctctagagtc gatgatggtt gagatgtgta taagagacag 4200 ctcgag 4206 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Tn5 Outer Element for tn5 trnsposase <400> 2 ctgtctctta tacacatct 19 <210> 3 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Tn-gamma delta Outer Element for Tn-gamma delta transposase <400> 3 ggggtttgag ggccaatgga acgaaaacgt acgttaagg 39 <210> 4 <211> 624 <212> DNA <213> Artificial Sequence <220> <223> tetR gene as a negative selection marker <400> 4 atgtctagat tagataaaag taaagtgatt aacagcgcat tagagctgct taatgaggtc 60 ggaatcgaag gtttaacaac ccgtaaactc gcccagaagc taggtgtaga gcagcctaca 120 ttgtattggc atgtaaaaaa taagcgggct ttgctcgacg ccttagccat tgagatgtta 180 gataggcacc atactcactt ttgcccttta gaaggggaaa gctggcaaga ttttttacgt 240 aataacgcta aaagttttag atgtgcttta ctaagtcatc gcgatggagc aaaagtacat 300 ttaggtacac ggcctacaga aaaacagtat gaaactctcg aaaatcaatt agccttttta 360 tgccaacaag gtttttcact agagaatgca ttatatgcac tcagcgctgt ggggcatttt 420 actttaggtt gcgtattgga agatcaagag catcaagtcg ctaaagaaga aagggaaaca 480 cctactactg atagtatgcc gccattatta cgacaagcta tcgaattatt tgatcaccaa 540 ggtgcagagc cagccttctt attcggcctt gaattgatca tatgcggatt agaaaaacaa 600 cttaaatgtg aaagtgggtc ttaa 624 <210> 5 <211> 658 <212> DNA <213> Artificial Sequence <220> <223> CmR gene as a positive selection marker <400> 5 atggagaaaa aaatcactgg atataccacc gttgatatat cccaatggca tcgtaaagaa 60 cattttgagg catttcagtc agttgctcaa tgtacctata accagaccgt tcagctggat 120 attacggcct ttttaaagac cgtaaagaaa aataagcaca agttttatcc ggcctttatt 180 cacattcttg cccgcctgat gaatgctcat ccggaattac gtatggcaat gaaagacggt 240 gagctggtga tatgggatag tgttcaccct tgttacaccg ttttccatga gcaaactgaa 300 acgttttcat cgctctggag tgaataccac gacgatttcc ggcagtttct acacatatat 360 tcgcaagatg tggcgtgtta cggtgaaaac ctggcctatt tccctaaagg gtttattgag 420 aatatgtttt tcgtctcagc caatccctgg gtgagtttca ccagttttga tttaaacgtg 480 gccaatatgg acaacttctt cgcccccgtt ttcaccatgg gcaaatatta tacgcaaggc 540 gacaaggtgc tgatgccgct ggcgattcag gttcatcatg ccgtttgtga tggcttccat 600 gtcggcagat gcttaatgaa tacaacagta ctgcgatgag tggcagggcg gggcgtaa 658 <210> 6 <211> 1429 <212> DNA <213> Artificial Sequence <220> <223> sacB gene as a negetive selection marker <400> 6 atgaacgatg aacatcaaaa agtttgcaaa acaagcaaca gtattaacct ttactaccgc 60 actgctggca ggaggcgcaa ctcaagcgtt tgcgaaagaa acgaaccaaa agccatataa 120 ggaaacatac ggcatttccc atattacacg ccatgatatg ctgcaaatcc ctgaacagca 180 aaaaaatgaa aaatatcaag ttcctgaatt tgattcgtcc acaattaaaa atatctcttc 240 tgcaaaaggc ctggacgttt gggacagctg gccattacaa aacgctgacg gcactgtcgc 300 aaactatcac ggctaccaca tcgtctttgc attagccgga gatcctaaaa atgcggatga 360 cacatcgatt tacatgttct atcaaaaagt cggcgaaact tctattgaca gctggaaaaa 420 cgctggccgc gtctttaaag acagcgacaa attcgatgca aatgattcta tcctaaaaga 480 ccaaacacaa gaatggtcag gttcagccac atttacatct gacggaaaaa tccgtttatt 540 ctacactgat ttctccggta aacattacgg caaacaaaca ctgacaactg cacaagttaa 600 cgtatcagca tcagacagct ctttgaacat caacggtgta gaggattata aatcaatctt 660 tgacggtgac ggaaaaacgt atcaaaatgt acagcagttc atcgatgaag gcaactacag 720 ctcaggcgac aaccatacgc tgagagatcc tcactacgta gaagataaag gccacaaata 780 cttagtattt gaagcaaaca ctggaactga agatggctac caaggcgaag aatctttatt 840 taacaaagca tactatggca aaagcacatc attcttccgt caagaaagtc aaaaacttct 900 gcaaagcgat aaaaaacgca cggctgagtt agcaaacggc gctctcggta tgattgagct 960 aaacgatgat tacacactga aaaaagtgat gaaaccgctg attgcatcta acacagtaac 1020 agatgaaatt gaacgcgcga acgtctttaa aatgaacggc aaatggtatc tgttcactga 1080 ctcccgcgga tcaaaaatga cgattgacgg cattacgtct aacgatattt acatgcttgg 1140 ttatgtttct aattctttaa ctggcccata caagccgctg aacaaaactg gccttgtgtt 1200 aaaaatggat cttgatccta acgatgtaac ctttacttac tcacacttcg ctgtacctca 1260 agcgaaagga aacaatgtcg tgattacaag ctatatgaca aacagaggat tctacgcaga 1320 caaacaatca acgtttgcgc cgagcttcct gctgaacatc aaaggcaaga aaacatctgt 1380 tgtcaaagac agcatccttg aacaaggaca attaacagtt aacaaataa 1429 <210> 7 <211> 2949 <212> DNA <213> Artificial Sequence <220> <223> tnpA gene, which is a transposase-relating gene <400> 7 atgcctgtcg actttctaac ctctgaccaa aaacagaatt acggttgtta tgctgcagaa 60 cctaatgacg tgcaactggc gcgctatttt catcttgatg aacgggatct ggccttcatt 120 aaccaacgac ggggcaaaca taataggctg ggcattgcgc ttcagctcac cacagcccgt 180 tttctgggaa catttctgac ggatttaact caggttctgc ctggtgttca acattttgtc 240 gcggtacagc ttaatatcca ccgtccagaa gttctctccc gctatgctga acgggacact 300 acccttagag aacatactgc attaattaag gaatattacg gctatcatga atttggtgat 360 tttccatggt ctttccgcct gaagcgtctg ctatataccc gggcgtggct cagtaatgag 420 cgaccgggtc tgatgtttga ttttgccact gcatggttgc ttcaaaataa ggtattactg 480 cccggagcaa ccacactagt acgtctcatc agtgaaattc gtgaaagggc aaatcagcgg 540 ctgtggaaaa agctggccgc actgccgaac aaatggcagg cagctcaagt gatggagctt 600 ctggtcattc cggaaggtca gcgtgtatca gcactggaac agttgaaaaa aggccctgtt 660 acagtcagtg gacctgcgtt taatgaagcg ctggaacgat atatccgatt acgaagtctt 720 gagttttccc gactgaactt ttccggtctg cctgccattc aactgcgtaa tctggctcgt 780 tatgctggca tggcgtcggt aaaatatatc gctcgaatgc cacagcagag aaagcttgct 840 gtacttactg cattcgttaa agcacaggaa ataacggcat tagacgatgc cgttgatgtg 900 cttgatatgc taattctgga cattatccgc gaagcaaaga aaaccgggca aaaaaaaaga 960 ctcaggacac tgaaagatct tgatcaggcc gcattgttac tggcgcgggc atgtgcattg 1020 ttgctggatg ataatacaga tgtcccagat ctcaggcagg ttatcttcaa gtgcgtaccc 1080 aaaaacagac tggcagaatc tgtaagcaag gttaatgaac ttgctcgtcc acagaacaat 1140 aatttccatg acgaaatggt tgagcagtac ggtcgggtta aacgttttct tccggcggtg 1200 ttgcgggacc tgcatttccg tgcggcaccg gcaggtgaac atgtactggc tgcgattcat 1260 tatctggcag aactgaatgg ttcgaaaaag cgcatccttg atgatgcgcc tgaacatatt 1320 atcaccggtc cctggaaacg cctcgtatac gatgcggagg gacggataca gcgtgcaggt 1380 tattcactat gtttgctgga acgccttcag gatgcactgc gccgccggga catctggctt 1440 gaaaacagtg atcgctgggg agatcctcgc gagaagttgt tgcaaggtga agagtggcag 1500 actcagcgta ttcctgtctg tcgggcactg ggacatcctg tcgatggacg taaaggtgtg 1560 caacaactgg ctattcagct ggatgagacc tggaaagccg tggcatcacg atttgaaaag 1620 aatgcggaag ttcatatctg taatgaaggt aaatatccat ccctgactat cagttgtctg 1680 gagaaacagg aagagccacc atcattgctt cgtctaaata atcggatcaa acagctactc 1740 ccaccggtag atttaacgga actgttactt gagatagatg cccagacagg atttacacat 1800 gagtttgcgc atgtcagtga atctggtgct cgagcgcaag atttgcacat cagtttatgt 1860 gcggtattga tggctgaagc ctgtaatatc ggactggaac cgctgataaa gcacaatata 1920 ccagcactga cccgccatcg gctcagttgg gtgaaacaga attaccttcg tgcagaaacg 1980 ctggtcagcg ccaatgcccg cctggttgat tttcagtcca cactggagct tgctggtcgt 2040 tggggaggtg gagaagtggc atcagctgac ggcatgcgct ttgtcacacc agtgaagacc 2100 atcaactcag gatctaacag aaaatatttt ggttctggac gaggcatcac ctggtataac 2160 ttcgtatctg atcagtactc tgggttccat ggcattgtgg tacccggtac attacgggat 2220 tcgatttttg tactggaagg acttcttgag cagcagacag ggctgaatcc agttgaaatc 2280 atgacagaca ctgcgggtag cagcgatatt attttcggtc tgttctggct actggggtat 2340 cagttttccc cccggcttgc cgatgcaggt gaggcggtgt tctggcgggt gaataaatcg 2400 gcaaactacg gagtactgga taagttggcc cgaggatatg cagatctgtc aaaagcggag 2460 agtcagtggg atgagatgat gcgaaccgct ggttcgctga agttgggtac aattcatgcg 2520 tcagaactca ttcgctcttt actgaaaagc tcgcgcccat caggactggc acaggcaatt 2580 atggaagtag ggcgtgtaaa caaaacgcta tatctcctca attatattga tgatgaagat 2640 tatcgtcggc ggatcctgac gcagcttaat cgaggagaag gccgccacgc tgtggctcgt 2700 gcgatttgtt acggacaacg cggagagatc agaaagcgtt atcgtgaagg gcaggatatg 2760 gaggaagcgt tgagctggat gcgccgtaat ggcgaagaaa ttatagatga agatatcgct 2820 cggctatctc ccctgatgca cgggcatatc aatatgttgg gccattatac attcacgttg 2880 ccagaggata ttttaaaagg ggaactgaga gctctaaatt taaatataaa caacgaatta 2940 tctccttaa 2949 <210> 8 <211> 7069 <212> DNA <213> Artificial Sequence <220> <223> Expression Vector pELPD for a transposase <400> 8 gcgctcaaag atgcaggggt aaaagctaac cgcatcttta ccgacaaggc atccggcagt 60 tcaacagatc gggaagggct ggatttgctg aggatgaagg tggaggaagg tgatgtcatt 120 ctggtgaaga agctcgaccg tcttggccgc gacaccgccg acatgatcca actgataaaa 180 gagtttgatg ctcagggtgt agcggttcgg tttattgacg acgggatcag taccgacggt 240 gatatggggc aaatggtggt caccatcctg tcggctgtgg cacaggctga acgccggagg 300 atccgataag cttactcccc atccccctgt tgacaattaa tcatcggctc gtataatgtg 360 tggaattgtg agcggataac aatttcacac aggaaacagg atcaaattat gcctgtcgac 420 tttctaacct ctgaccaaaa acagaattac ggttgttatg ctgcagaacc taatgacgtg 480 caactggcgc gctattttca tcttgatgaa cgggatctgg ccttcattaa ccaacgacgg 540 ggcaaacata ataggctggg cattgcgctt cagctcacca cagcccgttt tctgggaaca 600 tttctgacgg atttaactca ggttctgcct ggtgttcaac attttgtcgc ggtacagctt 660 aatatccacc gtccagaagt tctctcccgc tatgctgaac gggacactac ccttagagaa 720 catactgcat taattaagga atattacggc tatcatgaat ttggtgattt tccatggtct 780 ttccgcctga agcgtctgct atatacccgg gcgtggctca gtaatgagcg accgggtctg 840 atgtttgatt ttgccactgc atggttgctt caaaataagg tattactgcc cggagcaacc 900 acactagtac gtctcatcag tgaaattcgt gaaagggcaa atcagcggct gtggaaaaag 960 ctggccgcac tgccgaacaa atggcaggca gctcaagtga tggagcttct ggtcattccg 1020 gaaggtcagc gtgtatcagc actggaacag ttgaaaaaag gccctgttac agtcagtgga 1080 cctgcgttta atgaagcgct ggaacgatat atccgattac gaagtcttga gttttcccga 1140 ctgaactttt ccggtctgcc tgccattcaa ctgcgtaatc tggctcgtta tgctggcatg 1200 gcgtcggtaa aatatatcgc tcgaatgcca cagcagagaa agcttgctgt acttactgca 1260 ttcgttaaag cacaggaaat aacggcatta gacgatgccg ttgatgtgct tgatatgcta 1320 attctggaca ttatccgcga agcaaagaaa accgggcaaa aaaaaagact caggacactg 1380 aaagatcttg atcaggccgc attgttactg gcgcgggcat gtgcattgtt gctggatgat 1440 aatacagatg tcccagatct caggcaggtt atcttcaagt gcgtacccaa aaacagactg 1500 gcagaatctg taagcaaggt taatgaactt gctcgtccac agaacaataa tttccatgac 1560 gaaatggttg agcagtacgg tcgggttaaa cgttttcttc cggcggtgtt gcgggacctg 1620 catttccgtg cggcaccggc aggtgaacat gtactggctg cgattcatta tctggcagaa 1680 ctgaatggtt cgaaaaagcg catccttgat gatgcgcctg aacatattat caccggtccc 1740 tggaaacgcc tcgtatacga tgcggaggga cggatacagc gtgcaggtta ttcactatgt 1800 ttgctggaac gccttcagga tgcactgcgc cgccgggaca tctggcttga aaacagtgat 1860 cgctggggag atcctcgcga gaagttgttg caaggtgaag agtggcagac tcagcgtatt 1920 cctgtctgtc gggcactggg acatcctgtc gatggacgta aaggtgtgca acaactggct 1980 attcagctgg atgagacctg gaaagccgtg gcatcacgat ttgaaaagaa tgcggaagtt 2040 catatctgta atgaaggtaa atatccatcc ctgactatca gttgtctgga gaaacaggaa 2100 gagccaccat cattgcttcg tctaaataat cggatcaaac agctactccc accggtagat 2160 ttaacggaac tgttacttga gatagatgcc cagacaggat ttacacatga gtttgcgcat 2220 gtcagtgaat ctggtgctcg agcgcaagat ttgcacatca gtttatgtgc ggtattgatg 2280 gctgaagcct gtaatatcgg actggaaccg ctgataaagc acaatatacc agcactgacc 2340 cgccatcggc tcagttgggt gaaacagaat taccttcgtg cagaaacgct ggtcagcgcc 2400 aatgcccgcc tggttgattt tcagtccaca ctggagcttg ctggtcgttg gggaggtgga 2460 gaagtggcat cagctgacgg catgcgcttt gtcacaccag tgaagaccat caactcagga 2520 tctaacagaa aatattttgg ttctggacga ggcatcacct ggtataactt cgtatctgat 2580 cagtactctg ggttccatgg cattgtggta cccggtacat tacgggattc gatttttgta 2640 ctggaaggac ttcttgagca gcagacaggg ctgaatccag ttgaaatcat gacagacact 2700 gcgggtagca gcgatattat tttcggtctg ttctggctac tggggtatca gttttccccc 2760 cggcttgccg atgcaggtga ggcggtgttc tggcgggtga ataaatcggc aaactacgga 2820 gtactggata agttggcccg aggatatgca gatctgtcaa aagcggagag tcagtgggat 2880 gagatgatgc gaaccgctgg ttcgctgaag ttgggtacaa ttcatgcgtc agaactcatt 2940 cgctctttac tgaaaagctc gcgcccatca ggactggcac aggcaattat ggaagtaggg 3000 cgtgtaaaca aaacgctata tctcctcaat tatattgatg atgaagatta tcgtcggcgg 3060 atcctgacgc agcttaatcg aggagaaggc cgccacgctg tggctcgtgc gatttgttac 3120 ggacaacgcg gagagatcag aaagcgttat cgtgaagggc aggaagatca actgggggcg 3180 ctgggcctgg ttactaatgc agtggttctg tggaacacgc tctatatgga ggaagcgttg 3240 agctggatgc gccgtaatgg cgaagaaatt atagatgaag atatcgctcg gctatctccc 3300 ctgatgcacg ggcatatcaa tatgttgggc cattatacat tcacgttgcc agaggatatt 3360 ttaaaagggg aactgagagc tctaaattta aatataaaca acgaattatc tccttaacgt 3420 acgttttcgt tccattggaa cgccatgagc ggcctcattt cttattctga gttacaacag 3480 tccgcaccgc tgtccggtag ctccttccgg tgggcgcggg gcatgactat cgtcgccgca 3540 cttatgactg tcttctttat catgcaactc gtaggacagg tgccgatcct agagcgcacg 3600 aatgagggcc gacaggaagc aaagctgaaa ggaatcaaat ttggccgcag gcgtaccgtg 3660 gacaggaacg tcgtgctgac gcttcatcag aagggcactg gtgcaacgga aattgctcat 3720 cagctcagta ttgcccgctc cacggtttat aaaattcttg aagacgaaag ggcctcgtga 3780 tacgcctatt tttataggtt aatgtcatga taataatggt ttcttagacg tcaggtggca 3840 cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt tttctaaata cattcaaata 3900 tgtatccgct catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga 3960 gtatgagtat tcaacatttc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc 4020 ctgtttttgc tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg 4080 cacgagtggg ttacatcgaa ctggatctca acagcggtaa gatccttgag agttttcgcc 4140 ccgaagaacg ttttccaatg atgagcactt ttaaagttct gctatgtggc gcggtattat 4200 cccgtgttga cgccgggcaa gagcaactcg gtcgccgcat acactattct cagaatgact 4260 tggttgagta ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat 4320 tatgcagtgc tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga 4380 tcggaggacc gaaggagcta accgcttttt tgcacaacat gggggatcat gtaactcgcc 4440 ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga 4500 tgcctgcagc aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag 4560 cttcccggca acaattaata gactggatgg aggcggataa agttgcagga ccacttctgc 4620 gctcggccct tccggctggc tggtttattg ctgataaatc tggagccggt gagcgtgggt 4680 ctcgcggtat cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct 4740 acacgacggg gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg 4800 cctcactgat taagcattgg taactgtcag accaagttta ctcatatata ctttagattg 4860 atttaaaact tcatttttaa tttaaaagga tctaggtgaa gatccttttt gataatctca 4920 tgaccaaaat cccttaacgt gagttttcgt tccactgagc gtcagacccc gttgatgata 4980 ccgctgcctt actgggtgca ttagccagtc tgaatgacct gtcacgggat aatccgaagt 5040 ggtcagactg gaaaatcaga gggcaggaac tgctgaacag caaaaagtca gatagcacca 5100 catagcagac ccgccataaa acgccctgag aagcccgtga cgggcttttc ttgtattatg 5160 ggtagtttcc ttgcatgaat ccataaaagg cgcctgtagt gccatttacc cccattcact 5220 gccagagccg tgagcgcagc gaactgaatg tcacgaaaaa gacagcgact caggtgcctg 5280 atggtcggag acaaaaggaa tattcagcga tttgcccgag cttgcgaggg tgctacttaa 5340 gcctttaggg ttttaaggtc tgttttgtag aggagcaaac agcgtttgcg acatcctttt 5400 gtaatactgc ggaactgact aaagtagtga gttatacaca gggctgggat ctattctttt 5460 tatctttttt tattctttct ttattctata aattataacc acttgaatat aaacaaaaaa 5520 aacacacaaa ggtctagcgg aatttacaga gggtctagca gaatttacaa gttttccagc 5580 aaaggtctag cagaatttac agatacccac aactcaaagg aaaaggacta gtaattatca 5640 ttgactagcc catctcaatt ggtatagtga ttaaaatcac ctagaccaat tgagatgtat 5700 gtctgaatta gttgttttca aagcaaatga actagcgatt agtcgctatg acttaacgga 5760 gcatgaaacc aagctaattt tatgctgtgt ggcactactc aaccccacga ttgaaaaccc 5820 tacaaggaaa gaacggacgg tatcgttcac ttataaccaa tacgctcaga tgatgaacat 5880 cagtagggaa aatgcttatg gtgtattagc taaagcaacc agagagctga tgacgagaac 5940 tgtggaaatc aggaatcctt tggttaaagg ctttgagatt ttccagtgga caaactatgc 6000 caagttctca agcgaaaaat tagaattagt ttttagtgaa gagatattgc cttatctttt 6060 ccagttaaaa aaattcataa aatataatct ggaacatgtt aagtcttttg aaaacaaata 6120 ctctatgagg atttatgagt ggttattaaa agaactaaca caaaagaaaa ctcacaaggc 6180 aaatatagag attagccttg atgaatttaa gttcatgtta atgcttgaaa ataactacca 6240 tgagtttaaa aggcttaacc aatgggtttt gaaaccaata agtaaagatt taaacactta 6300 cagcaatatg aaattggtgg ttgataagcg aggccgcccg actgatacgt tgattttcca 6360 agttgaacta gatagacaaa tggatctcgt aaccgaactt gagaacaacc agataaaaat 6420 gaatggtgac aaaataccaa caaccattac atcagattcc tacctacgta acggactaag 6480 aaaaacacta cacgatgctt taactgcaaa aattcagctc accagttttg aggcaaaatt 6540 tttgagtgac atgcaaagta agcatgatct caatggttcg ttctcatggc tcacgcaaaa 6600 acaacgaacc acactagaga acatactggc taaatacgga aggatctgag gttcttatgg 6660 ctcttgtatc tatcagtgaa gcatcaagac taacaaacaa aagtagaaca actgttcacc 6720 gttagatatc aaagggaaaa ctgtccatat gcacagatga aaacggtgta aaaaagatag 6780 atacatcaga gcttttacga gtttttggtg catttaaagc tgttcaccat gaacagatcg 6840 acaatgtaac agatgaacag catgtaacac ctaatagaac aggtgaaacc agtaaaacaa 6900 agcaactaga acatgaaatt gaacacctga gacaacttgt tacagctcaa cagtcacaca 6960 tagacagcct gaaacaggcg atgctgctta tcgaatcaaa gctgccgaca acacgggagc 7020 cagtgacgcc tcccgtgggg aaaaaatcat ggcaattctg gaagaaata 7069 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> 5' primer for PCR of a DNA fragment comprising a Tn5 Outer Element <400> 9 gaattctcga gctgtctctt atacacatct c 31 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3' primer for PCR of a DNA fragment comprising a Tn5 Outer Element <400> 10 acatgtctcg agctgtctct tatacacatc tc 32 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer Sac-out for a sequence analysis <400> 11 tgttgtcaaa gacagcatcc ttgaacaagg 30 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer 3C <400> 12 gttcatcatg ccgtttgtg 19 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer p15 <400> 13 cctgccactg cttcaccatc ccc 23 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer 5C <400> 14 ccttagctcc tgaaaatctc g 21 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer m10 <400> 15 gctcatcgga gattttcact ccc 23<110> Korea Advanced Institute of Science and Technology <120> TRANSPOSON FOR BIDIRECTIONAL INTRAMOLECULAR GENOME DELETIONS, CONSTRUCTION OF NOVEL MICROORGANISM AND IDENTIFICATION OF NONESSENTIAL GENES USING THE SAME <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 4206 <212> DNA <213> Artificial Sequence <220> <223> transposon TnRIBD <400> 1 ctcgagctgt ctcttataca catctcaacc ctgaagctat cttccgaagc aataaattca 60 cgtaataacg ttggcaagac tggcatgata aggccaatcc ccatggcatc gagtaacgta 120 attaccaatg cgatctttgt cgaactattc atttcacttt tctctatcac tgatagggag 180 tggtaaaata actctatcaa tgatagagtg tcaacaaaaa ttaggaatta atgatgtcta 240 gattagataa aagtaaagtg attaacagcg cattagagct gcttaatgag gtcggaatcg 300 aaggtttaac aacccgtaaa ctcgcccaga agctaggtgt agagcagcct acattgtatt 360 ggcatgtaaa aaataagcgg gctttgctcg acgccttagc cattgagatg ttagataggc 420 accatactca cttttgccct ttagaagggg aaagctggca agatttttta cgtaataacg 480 ctaaaagttt tagatgtgct ttactaagtc atcgcgatgg agcaaaagta catttaggta 540 cacggcctac agaaaaacag tatgaaactc tcgaaaatca attagccttt ttatgccaac 600 aaggtttttc actagagaat gcattatatg cactcagcgc tgtggggcat tttactttag 660 gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga agaaagggaa acacctacta 720 ctgatagtat gccgccatta ttacgacaag ctatcgaatt atttgatcac caaggtgcag 780 agccagcctt cttattcggc cttgaattga tcatatgcgg attagaaaaa caacttaaat 840 gtgaaagtgg gtcttaaaag cagcataacc tttttccgtg atggtaactt cacggtaacc 900 aagatgtcga gttaaccacc catcgatgat aagctgtcaa acatgagaat tcggtgaatc 960 ccataaattc cccggatcgg ggtttgaggg ccaatggaac gaaaacgtac gttaaggatc 1020 tctatagtgt cacctaaatc ggacgcgcgc tggtggtacc tccttagttc ctattccgaa 1080 gttcctattc tctagaaagt ataggaactt cggcgcgcct acctgtgacg gaagatcact 1140 tcgcagaata aataaatcct ggtgtccctg ttgataccgg gaagccctgg gccaactttt 1200 ggcgaaaatg agacgttgat cggcacgtaa gaggttccaa ctttcaccat aatgaaataa 1260 gatcactacc gggcgtattt tttgagttgt cgagattttc aggagctaag gaagctaaaa 1320 tggagaaaaa aatcactgga tataccaccg ttgatatatc ccaatggcat cgtaaagaac 1380 attttgaggc atttcagtca gttgctcaat gtacctataa ccagaccgtt cagctggata 1440 ttacggcctt tttaaagacc gtaaagaaaa ataagcacaa gttttatccg gcctttattc 1500 acattcttgc ccgcctgatg aatgctcatc cggaattacg tatggcaatg aaagacggtg 1560 agctggtgat atgggatagt gttcaccctt gttacaccgt tttccatgag caaactgaaa 1620 cgttttcatc gctctggagt gaataccacg acgatttccg gcagtttcta cacatatatt 1680 cgcaagatgt ggcgtgttac ggtgaaaacc tggcctattt ccctaaaggg tttattgaga 1740 atatgttttt cgtctcagcc aatccctggg tgagtttcac cagttttgat ttaaacgtgg 1800 ccaatatgga caacttcttc gcccccgttt tcaccatggg caaatattat acgcaaggcg 1860 acaaggtgct gatgccgctg gcgattcagg ttcatcatgc cgtttgtgat ggcttccatg 1920 tcggcagatg cttaatgaat acaacagtac tgcgatgagt ggcagggcgg ggcgtaaggc 1980 gcgccattta aatgaagttc ctattccgaa gttcctattc tctagaaagt ataggaactt 2040 cgaagcagct ccagcctaca gatctggccg ctaatacgac tcactatagg gaactgaccc 2100 ttaacgtacg ttttcgttcc attggccctc aaaccccaat tcgtcagact tacggttaag 2160 cagtctgaat gaattcgagc tcgccgggga tcctttttaa cccatcacat atacctgccg 2220 ttcactatta tttagtgaaa tgagatatta tgatattttc tgaattgtga ttaaaaaggc 2280 aactttatgc ccatgcaaca gaaactataa aaaatacaga gaatgaaaag aaacagatag 2340 attttttagt tctttaggcc cgtagtctgc aaatcctttt atgattttct atcaaacaaa 2400 agaggaaaat agaccagttg caatccaaac gagagtctaa tagaatgagg tcgaaaagta 2460 aatcgcgcgg gtttgttact gataaagcag gcaagaccta aaatgtgtaa agggcaaagt 2520 gtatactttg gcgtcacccc ttacatattt taggtctttt tttattgtgc gtaactaact 2580 tgccatcttc aaacaggagg gctggaagaa gcagaccgct aacacagtac ataaaaaagg 2640 agacatgaac gatgaacatc aaaaagtttg caaaacaagc aacagtatta acctttacta 2700 ccgcactgct ggcaggaggc gcaactcaag cgtttgcgaa agaaacgaac caaaagccat 2760 ataaggaaac atacggcatt tcccatatta cacgccatga tatgctgcaa atccctgaac 2820 Agcaaaaaaa tgaaaaatat caagttcctg aatttgattc gtccacaatt aaaaatatct 2880 cttctgcaaa aggcctggac gtttgggaca gctggccatt acaaaacgct gacggcactg 2940 tcgcaaacta tcacggctac cacatcgtct ttgcattagc cggagatcct aaaaatgcgg 3000 atgacacatc gatttacatg ttctatcaaa aagtcggcga aacttctatt gacagctgga 3060 aaaacgctgg ccgcgtcttt aaagacagcg acaaattcga tgcaaatgat tctatcctaa 3120 aagaccaaac acaagaatgg tcaggttcag ccacatttac atctgacgga aaaatccgtt 3180 tattctacac tgatttctcc ggtaaacatt acggcaaaca aacactgaca actgcacaag 3240 ttaacgtatc agcatcagac agctctttga acatcaacgg tgtagaggat tataaatcaa 3300 tctttgacgg tgacggaaaa acgtatcaaa atgtacagca gttcatcgat gaaggcaact 3360 acagctcagg cgacaaccat acgctgagag atcctcacta cgtagaagat aaaggccaca 3420 aatacttagt atttgaagca aacactggaa ctgaagatgg ctaccaaggc gaagaatctt 3480 tatttaacaa agcatactat ggcaaaagca catcattctt ccgtcaagaa agtcaaaaac 3540 ttctgcaaag cgataaaaaa cgcacggctg agttagcaaa cggcgctctc ggtatgattg 3600 agctaaacga tgattacaca ctgaaaaaag tgatgaaacc gctgattgca tctaacacag 3660 taacagatga aattgaacgc gcgaacgtct ttaaaatgaa cggcaaatgg tatctgttca 3720 ctgactcccg cggatcaaaa atgacgattg acggcattac gtctaacgat atttacatgc 3780 ttggttatgt ttctaattct ttaactggcc catacaagcc gctgaacaaa actggccttg 3840 tgttaaaaat ggatcttgat cctaacgatg taacctttac ttactcacac ttcgctgtac 3900 ctcaagcgaa aggaaacaat gtcgtgatta caagctatat gacaaacaga ggattctacg 3960 cagacaaaca atcaacgttt gcgccgagct tcctgctgaa catcaaaggc aagaaaacat 4020 ctgttgtcaa agacagcatc cttgaacaag gacaattaac agttaacaaa taaaaacgca 4080 aaagaaaatg ccgatatcct attggcattt tcttttattt cttatcaaca taaaggtgaa 4140 tcccataaat tccccggatc ctctagagtc gatgatggtt gagatgtgta taagagacag 4200 ctcgag 4206 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Tn5 Outer Element for tn5 trnsposase <400> 2 ctgtctctta tacacatct 19 <210> 3 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Tn-gamma delta Outer Element for Tn-gamma delta transposase <400> 3 ggggtttgag ggccaatgga acgaaaacgt acgttaagg 39 <210> 4 <211> 624 <212> DNA <213> Artificial Sequence <220> <223> tet R gene as a negative selection marker <400> 4 atgtctagat tagataaaag taaagtgatt aacagcgcat tagagctgct taatgaggtc 60 ggaatcgaag gtttaacaac ccgtaaactc gcccagaagc taggtgtaga gcagcctaca 120 ttgtattggc atgtaaaaaa taagcgggct ttgctcgacg ccttagccat tgagatgtta 180 gataggcacc atactcactt ttgcccttta gaaggggaaa gctggcaaga ttttttacgt 240 aataacgcta aaagttttag atgtgcttta ctaagtcatc gcgatggagc aaaagtacat 300 ttaggtacac ggcctacaga aaaacagtat gaaactctcg aaaatcaatt agccttttta 360 tgccaacaag gtttttcact agagaatgca ttatatgcac tcagcgctgt ggggcatttt 420 actttaggtt gcgtattgga agatcaagag catcaagtcg ctaaagaaga aagggaaaca 480 cctactactg atagtatgcc gccattatta cgacaagcta tcgaattatt tgatcaccaa 540 ggtgcagagc cagccttctt attcggcctt gaattgatca tatgcggatt agaaaaacaa 600 cttaaatgtg aaagtgggtc ttaa 624 <210> 5 <211> 658 <212> DNA <213> Artificial Sequence <220> <223> CmR gene as a positive selection marker <400> 5 atggagaaaa aaatcactgg atataccacc gttgatatat cccaatggca tcgtaaagaa 60 cattttgagg catttcagtc agttgctcaa tgtacctata accagaccgt tcagctggat 120 attacggcct ttttaaagac cgtaaagaaa aataagcaca agttttatcc ggcctttatt 180 cacattcttg cccgcctgat gaatgctcat ccggaattac gtatggcaat gaaagacggt 240 gagctggtga tatgggatag tgttcaccct tgttacaccg ttttccatga gcaaactgaa 300 acgttttcat cgctctggag tgaataccac gacgatttcc ggcagtttct acacatatat 360 tcgcaagatg tggcgtgtta cggtgaaaac ctggcctatt tccctaaagg gtttattgag 420 aatatgtttt tcgtctcagc caatccctgg gtgagtttca ccagttttga tttaaacgtg 480 gccaatatgg acaacttctt cgcccccgtt ttcaccatgg gcaaatatta tacgcaaggc 540 gacaaggtgc tgatgccgct ggcgattcag gttcatcatg ccgtttgtga tggcttccat 600 gtcggcagat gcttaatgaa tacaacagta ctgcgatgag tggcagggcg gggcgtaa 658 <210> 6 <211> 1429 <212> DNA <213> Artificial Sequence <220> <223> sacB gene as a negetive selection marker <400> 6 atgaacgatg aacatcaaaa agtttgcaaa acaagcaaca gtattaacct ttactaccgc 60 actgctggca ggaggcgcaa ctcaagcgtt tgcgaaagaa acgaaccaaa agccatataa 120 ggaaacatac ggcatttccc atattacacg ccatgatatg ctgcaaatcc ctgaacagca 180 aaaaaatgaa aaatatcaag ttcctgaatt tgattcgtcc acaattaaaa atatctcttc 240 tgcaaaaggc ctggacgttt gggacagctg gccattacaa aacgctgacg gcactgtcgc 300 aaactatcac ggctaccaca tcgtctttgc attagccgga gatcctaaaa atgcggatga 360 cacatcgatt tacatgttct atcaaaaagt cggcgaaact tctattgaca gctggaaaaa 420 cgctggccgc gtctttaaag acagcgacaa attcgatgca aatgattcta tcctaaaaga 480 ccaaacacaa gaatggtcag gttcagccac atttacatct gacggaaaaa tccgtttatt 540 ctacactgat ttctccggta aacattacgg caaacaaaca ctgacaactg cacaagttaa 600 cgtatcagca tcagacagct ctttgaacat caacggtgta gaggattata aatcaatctt 660 tgacggtgac ggaaaaacgt atcaaaatgt acagcagttc atcgatgaag gcaactacag 720 ctcaggcgac aaccatacgc tgagagatcc tcactacgta gaagataaag gccacaaata 780 cttagtattt gaagcaaaca ctggaactga agatggctac caaggcgaag aatctttatt 840 taacaaagca tactatggca aaagcacatc attcttccgt caagaaagtc aaaaacttct 900 gcaaagcgat aaaaaacgca cggctgagtt agcaaacggc gctctcggta tgattgagct 960 aaacgatgat tacacactga aaaaagtgat gaaaccgctg attgcatcta acacagtaac 1020 agatgaaatt gaacgcgcga acgtctttaa aatgaacggc aaatggtatc tgttcactga 1080 ctcccgcgga tcaaaaatga cgattgacgg cattacgtct aacgatattt acatgcttgg 1140 ttatgtttct aattctttaa ctggcccata caagccgctg aacaaaactg gccttgtgtt 1200 aaaaatggat cttgatccta acgatgtaac ctttacttac tcacacttcg ctgtacctca 1260 agcgaaagga aacaatgtcg tgattacaag ctatatgaca aacagaggat tctacgcaga 1320 caaacaatca acgtttgcgc cgagcttcct gctgaacatc aaaggcaaga aaacatctgt 1380 tgtcaaagac agcatccttg aacaaggaca attaacagtt aacaaataa 1429 <210> 7 <211> 2949 <212> DNA <213> Artificial Sequence <220> <223> tnpA gene, which is a transposase-relating gene <400> 7 atgcctgtcg actttctaac ctctgaccaa aaacagaatt acggttgtta tgctgcagaa 60 cctaatgacg tgcaactggc gcgctatttt catcttgatg aacgggatct ggccttcatt 120 aaccaacgac ggggcaaaca taataggctg ggcattgcgc ttcagctcac cacagcccgt 180 tttctgggaa catttctgac ggatttaact caggttctgc ctggtgttca acattttgtc 240 gcggtacagc ttaatatcca ccgtccagaa gttctctccc gctatgctga acgggacact 300 acccttagag aacatactgc attaattaag gaatattacg gctatcatga atttggtgat 360 tttccatggt ctttccgcct gaagcgtctg ctatataccc gggcgtggct cagtaatgag 420 cgaccgggtc tgatgtttga ttttgccact gcatggttgc ttcaaaataa ggtattactg 480 cccggagcaa ccacactagt acgtctcatc agtgaaattc gtgaaagggc aaatcagcgg 540 ctgtggaaaa agctggccgc actgccgaac aaatggcagg cagctcaagt gatggagctt 600 ctggtcattc cggaaggtca gcgtgtatca gcactggaac agttgaaaaa aggccctgtt 660 acagtcagtg gacctgcgtt taatgaagcg ctggaacgat atatccgatt acgaagtctt 720 gagttttccc gactgaactt ttccggtctg cctgccattc aactgcgtaa tctggctcgt 780 tatgctggca tggcgtcggt aaaatatatc gctcgaatgc cacagcagag aaagcttgct 840 gtacttactg cattcgttaa agcacaggaa ataacggcat tagacgatgc cgttgatgtg 900 cttgatatgc taattctgga cattatccgc gaagcaaaga aaaccgggca aaaaaaaaga 960 ctcaggacac tgaaagatct tgatcaggcc gcattgttac tggcgcgggc atgtgcattg 1020 ttgctggatg ataatacaga tgtcccagat ctcaggcagg ttatcttcaa gtgcgtaccc 1080 aaaaacagac tggcagaatc tgtaagcaag gttaatgaac ttgctcgtcc acagaacaat 1140 aatttccatg acgaaatggt tgagcagtac ggtcgggtta aacgttttct tccggcggtg 1200 ttgcgggacc tgcatttccg tgcggcaccg gcaggtgaac atgtactggc tgcgattcat 1260 tatctggcag aactgaatgg ttcgaaaaag cgcatccttg atgatgcgcc tgaacatatt 1320 atcaccggtc cctggaaacg cctcgtatac gatgcggagg gacggataca gcgtgcaggt 1380 tattcactat gtttgctgga acgccttcag gatgcactgc gccgccggga catctggctt 1440 gaaaacagtg atcgctgggg agatcctcgc gagaagttgt tgcaaggtga agagtggcag 1500 actcagcgta ttcctgtctg tcgggcactg ggacatcctg tcgatggacg taaaggtgtg 1560 caacaactgg ctattcagct ggatgagacc tggaaagccg tggcatcacg atttgaaaag 1620 aatgcggaag ttcatatctg taatgaaggt aaatatccat ccctgactat cagttgtctg 1680 gagaaacagg aagagccacc atcattgctt cgtctaaata atcggatcaa acagctactc 1740 ccaccggtag atttaacgga actgttactt gagatagatg cccagacagg atttacacat 1800 gagtttgcgc atgtcagtga atctggtgct cgagcgcaag atttgcacat cagtttatgt 1860 gcggtattga tggctgaagc ctgtaatatc ggactggaac cgctgataaa gcacaatata 1920 ccagcactga cccgccatcg gctcagttgg gtgaaacaga attaccttcg tgcagaaacg 1980 ctggtcagcg ccaatgcccg cctggttgat tttcagtcca cactggagct tgctggtcgt 2040 tggggaggtg gagaagtggc atcagctgac ggcatgcgct ttgtcacacc agtgaagacc 2100 atcaactcag gatctaacag aaaatatttt ggttctggac gaggcatcac ctggtataac 2160 ttcgtatctg atcagtactc tgggttccat ggcattgtgg tacccggtac attacgggat 2220 tcgatttttg tactggaagg acttcttgag cagcagacag ggctgaatcc agttgaaatc 2280 atgacagaca ctgcgggtag cagcgatatt attttcggtc tgttctggct actggggtat 2340 cagttttccc cccggcttgc cgatgcaggt gaggcggtgt tctggcgggt gaataaatcg 2400 gcaaactacg gagtactgga taagttggcc cgaggatatg cagatctgtc aaaagcggag 2460 agtcagtggg atgagatgat gcgaaccgct ggttcgctga agttgggtac aattcatgcg 2520 tcagaactca ttcgctcttt actgaaaagc tcgcgcccat caggactggc acaggcaatt 2580 atggaagtag ggcgtgtaaa caaaacgcta tatctcctca attatattga tgatgaagat 2640 tatcgtcggc ggatcctgac gcagcttaat cgaggagaag gccgccacgc tgtggctcgt 2700 gcgatttgtt acggacaacg cggagagatc agaaagcgtt atcgtgaagg gcaggatatg 2760 gaggaagcgt tgagctggat gcgccgtaat ggcgaagaaa ttatagatga agatatcgct 2820 cggctatctc ccctgatgca cgggcatatc aatatgttgg gccattatac attcacgttg 2880 ccagaggata ttttaaaagg ggaactgaga gctctaaatt taaatataaa caacgaatta 2940 tctccttaa 2949 <210> 8 <211> 7069 <212> DNA <213> Artificial Sequence <220> <223> Expression Vector pELPD for a transposase <400> 8 gcgctcaaag atgcaggggt aaaagctaac cgcatcttta ccgacaaggc atccggcagt 60 tcaacagatc gggaagggct ggatttgctg aggatgaagg tggaggaagg tgatgtcatt 120 ctggtgaaga agctcgaccg tcttggccgc gacaccgccg acatgatcca actgataaaa 180 gagtttgatg ctcagggtgt agcggttcgg tttattgacg acgggatcag taccgacggt 240 gatatggggc aaatggtggt caccatcctg tcggctgtgg cacaggctga acgccggagg 300 atccgataag cttactcccc atccccctgt tgacaattaa tcatcggctc gtataatgtg 360 tggaattgtg agcggataac aatttcacac aggaaacagg atcaaattat gcctgtcgac 420 tttctaacct ctgaccaaaa acagaattac ggttgttatg ctgcagaacc taatgacgtg 480 caactggcgc gctattttca tcttgatgaa cgggatctgg ccttcattaa ccaacgacgg 540 ggcaaacata ataggctggg cattgcgctt cagctcacca cagcccgttt tctgggaaca 600 tttctgacgg atttaactca ggttctgcct ggtgttcaac attttgtcgc ggtacagctt 660 aatatccacc gtccagaagt tctctcccgc tatgctgaac gggacactac ccttagagaa 720 catactgcat taattaagga atattacggc tatcatgaat ttggtgattt tccatggtct 780 ttccgcctga agcgtctgct atatacccgg gcgtggctca gtaatgagcg accgggtctg 840 atgtttgatt ttgccactgc atggttgctt caaaataagg tattactgcc cggagcaacc 900 acactagtac gtctcatcag tgaaattcgt gaaagggcaa atcagcggct gtggaaaaag 960 ctggccgcac tgccgaacaa atggcaggca gctcaagtga tggagcttct ggtcattccg 1020 gaaggtcagc gtgtatcagc actggaacag ttgaaaaaag gccctgttac agtcagtgga 1080 cctgcgttta atgaagcgct ggaacgatat atccgattac gaagtcttga gttttcccga 1140 ctgaactttt ccggtctgcc tgccattcaa ctgcgtaatc tggctcgtta tgctggcatg 1200 gcgtcggtaa aatatatcgc tcgaatgcca cagcagagaa agcttgctgt acttactgca 1260 ttcgttaaag cacaggaaat aacggcatta gacgatgccg ttgatgtgct tgatatgcta 1320 attctggaca ttatccgcga agcaaagaaa accgggcaaa aaaaaagact caggacactg 1380 aaagatcttg atcaggccgc attgttactg gcgcgggcat gtgcattgtt gctggatgat 1440 aatacagatg tcccagatct caggcaggtt atcttcaagt gcgtacccaa aaacagactg 1500 gcagaatctg taagcaaggt taatgaactt gctcgtccac agaacaataa tttccatgac 1560 gaaatggttg agcagtacgg tcgggttaaa cgttttcttc cggcggtgtt gcgggacctg 1620 catttccgtg cggcaccggc aggtgaacat gtactggctg cgattcatta tctggcagaa 1680 ctgaatggtt cgaaaaagcg catccttgat gatgcgcctg aacatattat caccggtccc 1740 tggaaacgcc tcgtatacga tgcggaggga cggatacagc gtgcaggtta ttcactatgt 1800 ttgctggaac gccttcagga tgcactgcgc cgccgggaca tctggcttga aaacagtgat 1860 cgctggggag atcctcgcga gaagttgttg caaggtgaag agtggcagac tcagcgtatt 1920 cctgtctgtc gggcactggg acatcctgtc gatggacgta aaggtgtgca acaactggct 1980 attcagctgg atgagacctg gaaagccgtg gcatcacgat ttgaaaagaa tgcggaagtt 2040 catatctgta atgaaggtaa atatccatcc ctgactatca gttgtctgga gaaacaggaa 2100 gagccaccat cattgcttcg tctaaataat cggatcaaac agctactccc accggtagat 2160 ttaacggaac tgttacttga gatagatgcc cagacaggat ttacacatga gtttgcgcat 2220 gtcagtgaat ctggtgctcg agcgcaagat ttgcacatca gtttatgtgc ggtattgatg 2280 gctgaagcct gtaatatcgg actggaaccg ctgataaagc acaatatacc agcactgacc 2340 cgccatcggc tcagttgggt gaaacagaat taccttcgtg cagaaacgct ggtcagcgcc 2400 aatgcccgcc tggttgattt tcagtccaca ctggagcttg ctggtcgttg gggaggtgga 2460 gaagtggcat cagctgacgg catgcgcttt gtcacaccag tgaagaccat caactcagga 2520 tctaacagaa aatattttgg ttctggacga ggcatcacct ggtataactt cgtatctgat 2580 cagtactctg ggttccatgg cattgtggta cccggtacat tacgggattc gatttttgta 2640 ctggaaggac ttcttgagca gcagacaggg ctgaatccag ttgaaatcat gacagacact 2700 gcgggtagca gcgatattat tttcggtctg ttctggctac tggggtatca gttttccccc 2760 cggcttgccg atgcaggtga ggcggtgttc tggcgggtga ataaatcggc aaactacgga 2820 gtactggata agttggcccg aggatatgca gatctgtcaa aagcggagag tcagtgggat 2880 gagatgatgc gaaccgctgg ttcgctgaag ttgggtacaa ttcatgcgtc agaactcatt 2940 cgctctttac tgaaaagctc gcgcccatca ggactggcac aggcaattat ggaagtaggg 3000 cgtgtaaaca aaacgctata tctcctcaat tatattgatg atgaagatta tcgtcggcgg 3060 atcctgacgc agcttaatcg aggagaaggc cgccacgctg tggctcgtgc gatttgttac 3120 ggacaacgcg gagagatcag aaagcgttat cgtgaagggc aggaagatca actgggggcg 3180 ctgggcctgg ttactaatgc agtggttctg tggaacacgc tctatatgga ggaagcgttg 3240 agctggatgc gccgtaatgg cgaagaaatt atagatgaag atatcgctcg gctatctccc 3300 ctgatgcacg ggcatatcaa tatgttgggc cattatacat tcacgttgcc agaggatatt 3360 ttaaaagggg aactgagagc tctaaattta aatataaaca acgaattatc tccttaacgt 3420 acgttttcgt tccattggaa cgccatgagc ggcctcattt cttattctga gttacaacag 3480 tccgcaccgc tgtccggtag ctccttccgg tgggcgcggg gcatgactat cgtcgccgca 3540 cttatgactg tcttctttat catgcaactc gtaggacagg tgccgatcct agagcgcacg 3600 aatgagggcc gacaggaagc aaagctgaaa ggaatcaaat ttggccgcag gcgtaccgtg 3660 gacaggaacg tcgtgctgac gcttcatcag aagggcactg gtgcaacgga aattgctcat 3720 cagctcagta ttgcccgctc cacggtttat aaaattcttg aagacgaaag ggcctcgtga 3780 tacgcctatt tttataggtt aatgtcatga taataatggt ttcttagacg tcaggtggca 3840 cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt tttctaaata cattcaaata 3900 tgtatccgct catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga 3960 gtatgagtat tcaacatttc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc 4020 ctgtttttgc tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg 4080 cacgagtggg ttacatcgaa ctggatctca acagcggtaa gatccttgag agttttcgcc 4140 ccgaagaacg ttttccaatg atgagcactt ttaaagttct gctatgtggc gcggtattat 4200 cccgtgttga cgccgggcaa gagcaactcg gtcgccgcat acactattct cagaatgact 4260 tggttgagta ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat 4320 tatgcagtgc tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga 4380 tcggaggacc gaaggagcta accgcttttt tgcacaacat gggggatcat gtaactcgcc 4440 ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga 4500 tgcctgcagc aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag 4560 cttcccggca acaattaata gactggatgg aggcggataa agttgcagga ccacttctgc 4620 gctcggccct tccggctggc tggtttattg ctgataaatc tggagccggt gagcgtgggt 4680 ctcgcggtat cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct 4740 acacgacggg gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg 4800 cctcactgat taagcattgg taactgtcag accaagttta ctcatatata ctttagattg 4860 atttaaaact tcatttttaa tttaaaagga tctaggtgaa gatccttttt gataatctca 4920 tgaccaaaat cccttaacgt gagttttcgt tccactgagc gtcagacccc gttgatgata 4980 ccgctgcctt actgggtgca ttagccagtc tgaatgacct gtcacgggat aatccgaagt 5040 ggtcagactg gaaaatcaga gggcaggaac tgctgaacag caaaaagtca gatagcacca 5100 catagcagac ccgccataaa acgccctgag aagcccgtga cgggcttttc ttgtattatg 5160 ggtagtttcc ttgcatgaat ccataaaagg cgcctgtagt gccatttacc cccattcact 5220 gccagagccg tgagcgcagc gaactgaatg tcacgaaaaa gacagcgact caggtgcctg 5280 atggtcggag acaaaaggaa tattcagcga tttgcccgag cttgcgaggg tgctacttaa 5340 gcctttaggg ttttaaggtc tgttttgtag aggagcaaac agcgtttgcg acatcctttt 5400 gtaatactgc ggaactgact aaagtagtga gttatacaca gggctgggat ctattctttt 5460 tatctttttt tattctttct ttattctata aattataacc acttgaatat aaacaaaaaa 5520 aacacacaaa ggtctagcgg aatttacaga gggtctagca gaatttacaa gttttccagc 5580 aaaggtctag cagaatttac agatacccac aactcaaagg aaaaggacta gtaattatca 5640 ttgactagcc catctcaatt ggtatagtga ttaaaatcac ctagaccaat tgagatgtat 5700 gtctgaatta gttgttttca aagcaaatga actagcgatt agtcgctatg acttaacgga 5760 gcatgaaacc aagctaattt tatgctgtgt ggcactactc aaccccacga ttgaaaaccc 5820 tacaaggaaa gaacggacgg tatcgttcac ttataaccaa tacgctcaga tgatgaacat 5880 cagtagggaa aatgcttatg gtgtattagc taaagcaacc agagagctga tgacgagaac 5940 tgtggaaatc aggaatcctt tggttaaagg ctttgagatt ttccagtgga caaactatgc 6000 caagttctca agcgaaaaat tagaattagt ttttagtgaa gagatattgc cttatctttt 6060 ccagttaaaa aaattcataa aatataatct ggaacatgtt aagtcttttg aaaacaaata 6120 ctctatgagg atttatgagt ggttattaaa agaactaaca caaaagaaaa ctcacaaggc 6180 aaatatagag attagccttg atgaatttaa gttcatgtta atgcttgaaa ataactacca 6240 tgagtttaaa aggcttaacc aatgggtttt gaaaccaata agtaaagatt taaacactta 6300 cagcaatatg aaattggtgg ttgataagcg aggccgcccg actgatacgt tgattttcca 6360 agttgaacta gatagacaaa tggatctcgt aaccgaactt gagaacaacc agataaaaat 6420 gaatggtgac aaaataccaa caaccattac atcagattcc tacctacgta acggactaag 6480 Aaaaaacacta cacgatgctt taactgcaaa aattcagctc accagttttg aggcaaaatt 6540 tttgagtgac atgcaaagta agcatgatct caatggttcg ttctcatggc tcacgcaaaa 6600 acaacgaacc acactagaga acatactggc taaatacgga aggatctgag gttcttatgg 6660 ctcttgtatc tatcagtgaa gcatcaagac taacaaacaa aagtagaaca actgttcacc 6720 gttagatatc aaagggaaaa ctgtccatat gcacagatga aaacggtgta aaaaagatag 6780 atacatcaga gcttttacga gtttttggtg catttaaagc tgttcaccat gaacagatcg 6840 acaatgtaac agatgaacag catgtaacac ctaatagaac aggtgaaacc agtaaaacaa 6900 agcaactaga acatgaaatt gaacacctga gacaacttgt tacagctcaa cagtcacaca 6960 tagacagcct gaaacaggcg atgctgctta tcgaatcaaa gctgccgaca acacgggagc 7020 cagtgacgcc tcccgtgggg aaaaaatcat ggcaattctg gaagaaata 7069 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> 5 'primer for PCR of a DNA fragment comprising a Tn5 Outer Element <400> 9 gaattctcga gctgtctctt atacacatct c 31 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3 'primer for PCR of a DNA fragment comprising a Tn5 Outer Element <400> 10 acatgtctcg agctgtctct tatacacatc tc 32 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer Sac-out for a sequence analysis <400> 11 tgttgtcaaa gacagcatcc ttgaacaagg 30 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer 3C <400> 12 gttcatcatg ccgtttgtg 19 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer p15 <400> 13 cctgccactg cttcaccatc ccc 23 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer 5C <400> 14 ccttagctcc tgaaaatctc g 21 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer m10 <400> 15 gctcatcgga gattttcact ccc 23

Claims (10)

서열번호 2 의 서열을 갖는 Tn5 전위효소 인식부위, 서열번호 4의 서열을 갖는 tetR 유전자, 서열번호 3의 서열을 갖는 Tnγδ 전위효소 인식부위, 서열번호 5의 서열을 갖는 CmR 유전자, 서열번호 3의 서열과 역상보적인 Tnγδ 전위효소 인식부위, 서열번호 6의 서열을 갖는 sacB 유전자 및 서열번호 2 의 서열과 역상보적인 Tn5 전위효소 인식부위를 5'→3' 방향으로 차례로 포함하는 트랜스포존 TnRIBD.Tn5 translocation enzyme recognition site having the sequence of SEQ ID NO: 2, tetR gene having the sequence of SEQ ID NO: 4, Tnγδ translocation enzyme recognition site having the sequence of SEQ ID NO: 3, Cm R gene having the sequence of SEQ ID NO: 5, SEQ ID NO: 3 A transposon TnRIBD comprising, in sequence 5 '→ 3', a Tnγδ translocation enzyme recognition site that is reverse complementary to the sequence of, a sacB gene having the sequence of SEQ ID NO: 6, and a Tn5 translocation enzyme recognition site that is reverse complementary to the sequence of SEQ ID NO: 2. 제 1 항에 있어서, 서열번호 1의 염기서열을 포함하는 트랜스포존 TnRIBD.The transposon TnRIBD of claim 1, comprising the nucleotide sequence of SEQ ID NO: 1. 트랜스포존 전위효소 인식부위 및 선별마커를 포함하는 트랜스포존을 제조하는 단계; Preparing a transposon comprising a transposon translocation enzyme recognition site and a selection marker; 상기 트랜스포존을 미생물 염색체의 임의의 위치에 삽입시키고, 염색체 염기서열 분석을 통하여 삽입된 위치를 확인하는 단계; 및 Inserting the transposon at an arbitrary position of a microbial chromosome and confirming the inserted position through chromosome sequencing; And 상기 염색체에 전위효소 발현벡터를 도입하여 삽입된 트랜스포존의 좌우 염색체 부분을 제거하는 단계를 포함하는,Removing the left and right chromosomal portions of the inserted transposon by introducing translocation enzyme expression vectors into the chromosomes, 임의의 염색체 부위가 제거된 미생물 변이주 제조방법.Microbial mutant strain manufacturing method is removed any chromosomal site. 제 3 항에 있어서, 상기 트랜스포존이 제 1 항 또는 제 2 항에 따른 트랜스포존 TnRIBD인 미생물 변이주 제조방법.The method of claim 3, wherein the transposon is a transposon TnRIBD according to claim 1 or 2. 제 3 항에 있어서, 상기 트랜스포존이,The method of claim 3, wherein the transposon, pDELTA2 벡터로부터 sacB와 Tnγδ의 전위효소 인식부위를, Tn10로부터 tetR을, pKClox 벡터로부터 CmR 유전자를 PCR을 수행하여 증폭하여 얻는 단계,PCR amplification of translocation enzyme recognition sites of sacB and Tnγδ from pDELTA2 vector, tetR from Tn10, and Cm R gene from pKClox vector by PCR; 리가아제를 이용하여 선상의 pMOD 벡터에 sacB, tetR, CmR, Tnγδ의 OE를 삽입하여 pRIBD 벡터를 제조하는 단계 및,Preparing a pRIBD vector by inserting OEs of sacB, tetR, Cm R and Tnγδ into a linear pMOD vector using ligase, 상기 pRIBD 벡터를 제한효소 XhoI으로 절단하여 제 1 항 또는 제 2 항에 따른 트랜스포존 TnRIBD을 제조하는 단계를 포함하는 방법에 의하여 제조되는 미생물 변이주 제조방법.The method of claim 1, wherein the pRIBD vector is digested with restriction enzyme XhoI to prepare a transposon TnRIBD according to claim 1 or 2. 제 3 항에 있어서, 상기 전위효소 발현벡터를, According to claim 3, wherein the translocation enzyme expression vector, pXRD4043를 제한효소 NaeI/ClaI으로 절단하여 전위효소 관련 유전자 tnpA를 포함하는 절단말단의 유전자 단편을 제조한 후, pXRD4043 was digested with restriction enzyme NaeI / ClaI to prepare a truncated gene fragment containing a translocation enzyme related gene tnpA. 이를 제한효소 BamHI로 절단하여 얻은 절단말단을 갖는 선상의 벡터 pEL3에 리가아제를 이용하여 삽입하는 단계를 포함하는 방법에 의하여 제조하여 사용하는 미생물 변이주 제조방법.Method for producing a microbial mutant strain prepared by the method comprising the step of inserting using a ligase in the linear vector pEL3 having a cutting end obtained by cutting with the restriction enzyme BamHI. 제 3 항 내지 제 6 항 중 어느 한 항에 따른 방법으로 임의의 염색체 부위를 제거하여 새로운 미생물 변이주를 제조하고, 제거된 부분의 유전자를 확인한 후, 상기 주어진 변이주의 성장조건에서의 생존여부를 조사하여 생장에 비필수적인 미생물 유전자를 선별하는 방법.The method according to any one of claims 3 to 6, by removing any chromosomal region to prepare a new microbial mutant strain, after confirming the gene of the removed part, to investigate the survival of the given mutant strain growth conditions To select non-essential microbial genes for growth. 제 7 항에 있어서, 트랜스포존 내부 및 외부에 위치하는 일정 간격을 두고 결정한 두 개의 프라이머를 이용하는 PCR을 통하여 분자내 전위를 통한 임의의 염색체 부위의 절단 크기를 확인하는 단계를 포함하는 생장에 비필수적인 미생물 유전자를 선별하는 방법.8. The microorganism of claim 7, wherein the microorganisms are indispensable for growth, including the step of determining the cleavage size of any chromosomal site through intramolecular translocation through PCR using two primers determined at regular intervals located inside and outside the transposon. How to screen for genes. 제 8 항에 있어서, 상기 두 개의 프라이머로서 서열번호 12의 서열을 갖는 프라이머 C3과 서열번호 13의 서열을 갖는 프라이머 p15를 사용하여 절단 크기를 확인하는 단계를 포함하는 생장에 비필수적인 미생물 유전자를 선별하는 방법.The method of claim 8, wherein the microbial genes essential for growth are selected using the primers C3 having the sequence of SEQ ID NO: 12 and primer p15 having the sequence of SEQ ID NO: 13 as the two primers. How to. 제 8 항에 있어서, 상기 두 개의 프라이머로서 서열번호 14의 서열을 갖는 프라이머 C5과 서열번호 15의 서열을 갖는 프라이머 m10을 사용하여 절단 크기를 확인하는 단계를 포함하는 생장에 비필수적인 미생물 유전자를 선별하는 방법. The method of claim 8, wherein the microbial genes essential for growth are selected using the primers C5 having the sequence of SEQ ID NO: 14 and primer m10 having the sequence of SEQ ID NO: 15 as the two primers. How to.
KR10-2002-0021811A 2002-04-20 2002-04-20 Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same KR100470907B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2002-0021811A KR100470907B1 (en) 2002-04-20 2002-04-20 Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same
PCT/KR2003/000798 WO2003089639A1 (en) 2002-04-20 2003-04-18 Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same
AU2003222482A AU2003222482A1 (en) 2002-04-20 2003-04-18 Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0021811A KR100470907B1 (en) 2002-04-20 2002-04-20 Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same

Publications (2)

Publication Number Publication Date
KR20030083324A KR20030083324A (en) 2003-10-30
KR100470907B1 true KR100470907B1 (en) 2005-03-08

Family

ID=29244763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0021811A KR100470907B1 (en) 2002-04-20 2002-04-20 Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same

Country Status (3)

Country Link
KR (1) KR100470907B1 (en)
AU (1) AU2003222482A1 (en)
WO (1) WO2003089639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837844B1 (en) 2006-12-14 2008-06-13 씨제이제일제당 (주) - - Microoragnism of Corynbacterium genus with an enhanced L-glutamic acid productivity and method of producing L-glutamic acid using the microorganism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485701A1 (en) * 1990-09-28 1992-05-20 American Cyanamid Company Insertion of DNA by modified transposons
US5965443A (en) * 1996-09-09 1999-10-12 Wisconsin Alumni Research Foundation System for in vitro transposition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0885307A1 (en) * 1996-02-09 1998-12-23 Vereniging Het Nederlands Kanker Instituut Vectors and methods for providing cells with additional nucleic acid material integrated in the genome of said cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485701A1 (en) * 1990-09-28 1992-05-20 American Cyanamid Company Insertion of DNA by modified transposons
US5965443A (en) * 1996-09-09 1999-10-12 Wisconsin Alumni Research Foundation System for in vitro transposition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J Mol Biol. 1994 Jan 14;235(2):486-95, Wiegand TW *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837844B1 (en) 2006-12-14 2008-06-13 씨제이제일제당 (주) - - Microoragnism of Corynbacterium genus with an enhanced L-glutamic acid productivity and method of producing L-glutamic acid using the microorganism

Also Published As

Publication number Publication date
KR20030083324A (en) 2003-10-30
WO2003089639A1 (en) 2003-10-30
AU2003222482A1 (en) 2003-11-03

Similar Documents

Publication Publication Date Title
CN107299114B (en) Efficient yeast chromosome fusion method
CN113502235B (en) Construction and application of saccharomyces cerevisiae strain for strengthening expression of endoplasmic reticulum size regulating factor
CN110387385B (en) Baculovirus expression vector
KR102646320B1 (en) Recombinant bacteria for producing 3-hydroxypropionic acid, method for producing the same, and application thereof
CA2374497A1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
AU2021305359A1 (en) Improved RNA editing method
KR100470907B1 (en) Transposon for bidirectional intramolecular genome deletions, construction of novel microorganism and identification of nonessential genes using the same
CN111378687A (en) High-yield baculovirus expression vector
CN112501101A (en) High-yield strain of natural herbicide thaxtomins and preparation method and application thereof
CN111187785B (en) Cloning expression and application of serpentis grass tryptophan decarboxylase gene OpTDC2
CN110628806B (en) High-yield beta-ionone genetic engineering bacterium and construction method and application thereof
CN112410389B (en) Application of branched-chain alpha-keto acid dehydrogenase complex in preparation of malonyl-CoA
US20040096938A1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
Wang et al. Rapid positive selection of stable integrants following transfection of Plasmodium falciparum
CN106497960A (en) A kind of efficient shuttle plasmid for Escherichia coli riemerella anatipestifer
CN112996902A (en) Recombinant host cells for the production of benzylisoquinoline alkaloids (BIA) and novel methods for the production of benzylisoquinoline alkaloids (BIA)
CN114085874B (en) Method for preparing immortalized liver cells with reversible liver functions and application thereof
CN111926032B (en) Plant mottle protein HB1 and application of coding gene thereof in regulation and control of plant mottle phenotype
PL230884B1 (en) Helper plasmid, the strain and the system of the broad host spectrum plasmid mobilization and use thereof
Folliard A synthetic viral feedback loop results in robust expression
CN114839382A (en) Method for establishing bimolecular fluorescence complementary system based on red fluorescent protein in yeast
CN114196712B (en) Method for producing L-ornithine by immobilized enzyme method
CN114214353B (en) Method for producing human recombinant arginase I by fermentation
CN114292877B (en) Baculovirus expression vector for Ac63-64 gene knockout
CN114317608B (en) Gene knockout type baculovirus expression vector

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091208

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee