KR100470129B1 - Method for the preparation of thin film transistor having improved interface property - Google Patents

Method for the preparation of thin film transistor having improved interface property Download PDF

Info

Publication number
KR100470129B1
KR100470129B1 KR10-2002-0004378A KR20020004378A KR100470129B1 KR 100470129 B1 KR100470129 B1 KR 100470129B1 KR 20020004378 A KR20020004378 A KR 20020004378A KR 100470129 B1 KR100470129 B1 KR 100470129B1
Authority
KR
South Korea
Prior art keywords
insulating film
thin film
film transistor
film
semiconductor film
Prior art date
Application number
KR10-2002-0004378A
Other languages
Korean (ko)
Other versions
KR20030063989A (en
Inventor
이시우
이청
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2002-0004378A priority Critical patent/KR100470129B1/en
Publication of KR20030063989A publication Critical patent/KR20030063989A/en
Application granted granted Critical
Publication of KR100470129B1 publication Critical patent/KR100470129B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Abstract

본 발명은 계면특성이 우수한 박막 트랜지스터의 제조방법에 관한 것으로서, 폴리실리콘 반도체막 위에 이산화규소 절연막을 1차 증착시킨 다음, 증착된 절연막을 산소, 질소 또는 산화질소로 플라즈마 처리하고, 이어서 절연막을 추가로 증착시키는 본 발명의 방법에 따르면, 반도체막과 절연막 간의 계면부 및 전이영역의 결함을 감소시키고 전기적 화학적 특성을 개선시켜 우수한 전기적 특성을 갖는 박막 트랜지스터를 제조할 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film transistor having excellent interfacial properties, wherein a silicon dioxide insulating film is first deposited on a polysilicon semiconductor film, and the deposited insulating film is plasma treated with oxygen, nitrogen, or nitrogen oxide, and then an insulating film is added. According to the method of the present invention, the thin film transistor having excellent electrical properties can be manufactured by reducing defects in the interface portion and transition region between the semiconductor film and the insulating film and improving the electrochemical properties.

Description

계면특성이 우수한 박막 트랜지스터의 제조방법{METHOD FOR THE PREPARATION OF THIN FILM TRANSISTOR HAVING IMPROVED INTERFACE PROPERTY}Method for manufacturing thin film transistor with excellent interfacial properties {METHOD FOR THE PREPARATION OF THIN FILM TRANSISTOR HAVING IMPROVED INTERFACE PROPERTY}

본 발명은 계면특성이 우수한 박막 트랜지스터의 제조방법에 관한 것으로서, 구체적으로는 반도체막 위에 절연막을 증착시키는 중간에 플라즈마 처리를 수행함으로써, 반도체막과 절연막 간의 계면부 및 전이영역의 결함을 감소시키고 전기적화학적 특성을 개선시켜 우수한 계면 특성을 가지는 박막 트랜지스터를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor having excellent interfacial properties. Specifically, the plasma treatment is performed in the middle of depositing an insulating film on a semiconductor film, thereby reducing defects in the interface and transition region between the semiconductor film and the insulating film. The present invention relates to a method of manufacturing a thin film transistor having improved interfacial properties by improving chemical properties.

일반적인 박막 트랜지스터는 다층으로 구성되며, 반도체막, 절연막, 보호막 및 전극 등을 포함한다. 폴리실리콘 반도체막 및 이산화규소 절연막을 포함하는 박막 트랜지스터를 제조함에 있어서, 플라즈마 화학증착법을 이용하여 반도체막 위에 이산화규소 절연막을 증착시키는 경우 플라즈마에 의한 계면의 결함(damage)을 최소화하고 두 막 사이의 계면특성을 개선시키고자 하는 다양한 노력이 계속적으로 진행되어 왔다.A general thin film transistor is composed of a multilayer and includes a semiconductor film, an insulating film, a protective film, an electrode, and the like. In manufacturing a thin film transistor including a polysilicon semiconductor film and a silicon dioxide insulating film, in the case of depositing a silicon dioxide insulating film on the semiconductor film by using plasma chemical vapor deposition, the interface between the two films is minimized while minimizing the damage of the interface by the plasma. Various efforts have been made to improve the interfacial properties.

반도체막과 절연막 간의 계면특성을 개선하기 위한 일환으로서, 원격(remote) 플라즈마 화학증착법 및 전자-사이클로트론 공명(electron-cyclotron resonance) 플라즈마 화학증착법과 같은 다양한 증착법을 적용하거나, 또는 절연막 증착에 앞서 반도체막의 표면을 수소 또는 산소 등으로 플라즈마 처리하는 방법이 소개되었다.As part of improving the interfacial properties between the semiconductor film and the insulating film, various deposition methods such as remote plasma chemical vapor deposition and electron-cyclotron resonance plasma chemical vapor deposition may be applied, or the semiconductor film may be deposited before the insulating film is deposited. A method of plasma treating a surface with hydrogen or oxygen has been introduced.

그러나, 상기한 증착법에 사용되는 기구들은 대면적의 기판에 적용하기에는 한계가 있어 실제 TFT-LCD 등의 기판에 적용이 불가능하다는 문제점을 가진다. 또한, 상기한 표면 전처리방법은 그 개선효과가 미비하여 실공정에 거의 적용되지 못하고 있는 실정이다.However, the apparatuses used in the above deposition method have a problem in that it is impossible to apply to a substrate such as a TFT-LCD because there is a limit to apply to a large-area substrate. In addition, the above-described surface pretreatment method is a situation that is hardly applied to the actual process because the improvement effect is insignificant.

이에 본 발명자들은 예의 연구한 결과, 폴리실리콘 반도체막 위에 이산화규소 절연막을 증착시키는 중간에 플라즈마 처리를 수행함으로써, 반도체막과 절연막 간의 계면부 및 전이영역의 결함을 감소시키고 전기적 화학적 특성을 개선시켜 우수한 계면특성을 가지는 박막 트랜지스터를 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors earnestly studied, and by performing a plasma treatment in the middle of depositing a silicon dioxide insulating film on a polysilicon semiconductor film, it is possible to reduce the defects of the interface portion and the transition region between the semiconductor film and the insulating film and to improve the electrochemical properties The present invention has been accomplished by discovering that a thin film transistor having interfacial properties can be manufactured.

본 발명의 목적은 폴리실리콘 반도체막과 이산화규소 절연막 간의 계면특성이 우수한 박막 트랜지스터의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for manufacturing a thin film transistor having excellent interface characteristics between a polysilicon semiconductor film and a silicon dioxide insulating film.

도 1은 본 발명에 따른 절연막 증착공정을 단계별로 보여주는 개략도이고;1 is a schematic view showing step by step an insulating film deposition process according to the present invention;

도 2a 내지 2c 각각은, 실시예 1, 2 및 비교예 각각에서 얻어진, 반도체막과 절연막 간의 계면부 및 전이영역(transition region)에 대해 XPS(X-ray Photoelectron Spectroscopy) 분석한 결과 그래프를 나타내며;2A to 2C each show graphs of the results of X-ray Photoelectron Spectroscopy (XPS) analysis on the interface region and transition region between the semiconductor film and the insulating film obtained in Examples 1, 2 and Comparative Examples, respectively;

도 3a 및 3b 각각은, 실시예 1 및 2에 있어서, 플라즈마 처리 이전에 증착시키는 절연막의 두께 변화에 따른 반도체막과 절연막 간의 계면부의 계면 결함 밀도 및 플랫밴드(flat band) 전이 변화 그래프 각각을 나타낸다.3A and 3B respectively show graphs of change in the interface defect density and flat band transition between the interface portion between the semiconductor film and the insulating film according to the thickness change of the insulating film deposited before the plasma treatment in Examples 1 and 2; .

상기 목적을 달성하기 위하여 본 발명에서는, 폴리실리콘 반도체막 및 이산화규소 절연막을 포함하는 박막 트랜지스터를 제조함에 있어서, 반도체막 위에 절연막을 1차 증착시킨 다음, 증착된 절연막을 산소, 질소 또는 산화질소로 플라즈마 처리하고, 이어서 절연막을 추가로 증착시키는 것을 특징으로 하는, 박막 트랜지스터의 제조방법을 제공한다.In order to achieve the above object, in the present invention, in manufacturing a thin film transistor including a polysilicon semiconductor film and a silicon dioxide insulating film, by first depositing an insulating film on the semiconductor film, the deposited insulating film to oxygen, nitrogen or nitrogen oxide A plasma treatment, followed by further depositing an insulating film, provides a method for producing a thin film transistor.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 방법은 이산화규소 절연막 증착 도중에 산소, 질소 또는 산화질소로 플라즈마 처리를 수행함으로써 절연막을 두 번에 나누어 증착시키는 것을 기술구성상 특징으로 한다.The method of the present invention is characterized by a technical configuration of depositing the insulating film in two portions by performing a plasma treatment with oxygen, nitrogen or nitrogen oxide during the deposition of the silicon dioxide insulating film.

본 발명에 따른 절연막 증착공정을 단계별로 보여주는 개략도를 도 1에 나타내었다. 도 1에 도시된 공정을 살펴보면, 단계 1)에서는 예를 들어, TEOS(테트라에톡시실란)/O2반응기체를 폴리실리콘 반도체막 위에 플라즈마 화학증착시켜 이산화규소 절연막을 형성하는데, 이때 형성하는 절연막의 두께는 추후 단계에서의 플라즈마 처리가 반도체막과 절연막 간의 계면부에까지 영향을 미칠 수 있게 하는 3 내지 9nm의 범위가 바람직하다. 상기한 절연막의 플라즈마 화학증착은 통상적으로 100 내지 500℃ 및 0.1 내지 10 torr의 조건 하에서 수행될 수 있다.A schematic diagram showing step by step an insulating film deposition process according to the present invention is shown in FIG. 1. Referring to the process illustrated in FIG. 1, in step 1), for example, a TEOS (tetraethoxysilane) / O 2 reactor is plasma-chemically deposited on a polysilicon semiconductor film to form a silicon dioxide insulating film. The thickness of is preferably in the range of 3 to 9 nm, which allows the plasma treatment in a later step to affect the interface between the semiconductor film and the insulating film. Plasma chemical vapor deposition of the insulating film can be carried out under the conditions of 100 to 500 ℃ and 0.1 to 10 torr typically.

단계 2)에서는, 증착된 절연막을 산소, 질소 또는 산화질소로 플라즈마 처리하여 플라즈마에 의해 이온화되거나 활성화된 라디칼들을 절연막에 침투시켜 계면부 및 전이영역까지 도달시킴으로써, 계면부 및 전이영역의 화학적 결합을 보다 치밀하게 하고 미반응 및 불완전반응된 실리콘의 산화상태를 우수하게 하여, 결함 상태가 많이 존재하는 전이영역의 두께를 감소시킨다.In step 2), the deposited insulating film is plasma treated with oxygen, nitrogen, or nitrogen oxide to infiltrate the insulating film with radicals ionized or activated by the plasma to reach the interface portion and the transition region, thereby chemically bonding the interface portion and the transition region. The denser and better oxidation state of unreacted and incompletely reacted silicon reduces the thickness of the transition region in which many defect states exist.

이러한 산소, 질소 또는 산화질소로의 플라즈마 처리는 100 내지 500℃ 및 0.1 내지 100 torr 하에서 10초 내지 10분 동안 수행될 수 있다.Such plasma treatment with oxygen, nitrogen or nitrogen oxide may be performed for 10 seconds to 10 minutes under 100 to 500 ℃ and 0.1 to 100 torr.

이어, 단계 3)에서는, 이산화규소 절연막을 상기 단계 1)에서와 동일한 조건하에서 원하는 두께까지 추가로 증착시켜 절연막의 증착을 완료한다. 통상적으로, 형성된 절연막은 50 내지 200nm의 두께를 가진다.Subsequently, in step 3), the silicon dioxide insulating film is further deposited to a desired thickness under the same conditions as in step 1) to complete deposition of the insulating film. Typically, the formed insulating film has a thickness of 50 to 200 nm.

이와 같이 형성된 폴리실리콘 반도체막 및 이산화규소 절연막(게이트 절연막) 위에 게이트막, 층간 절연막 및 전극을 통상적인 방법에 따라 차례로 형성시켜 박막 트랜지스터를 제조할 수 있다.A thin film transistor can be fabricated by sequentially forming a gate film, an interlayer insulating film, and an electrode on the polysilicon semiconductor film and the silicon dioxide insulating film (gate insulating film) thus formed in accordance with a conventional method.

본 발명의 방법에 따라 제조된 박막 트랜지스터는 결함이 감소되고 전기적화학적 특성이 개선된, 폴리실리콘 반도체막과 이산화규소 절연막 간의 계면부 및 전이영역을 포함하므로 우수한 전기적 특성을 나타낸다.The thin film transistor fabricated according to the method of the present invention exhibits excellent electrical properties because it includes an interface portion and a transition region between the polysilicon semiconductor film and the silicon dioxide insulating film, which have reduced defects and improved electrochemical properties.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

실리콘 기판 위에 형성된 폴리실리콘 반도체막 위에, 350℃ 및 1 torr 조건 하에서 TEOS/O2반응기체를 플라즈마 화학증착시켜 이산화규소 절연막을 형성하였다. 이때, 형성되는 절연막의 두께를 0, 3, 6, 9 및 12nm로 변화시켰다. 증착된 절연막을 350℃ 및 1 torr 하에서 산소로 1분 동안 플라즈마 처리한 다음, 절연막의 증착을 다시 수행하여 두께 100nm의 이산화규소 절연막을 형성하였다.On the polysilicon semiconductor film formed on the silicon substrate, TEOS / O 2 reactor body was plasma chemically deposited at 350 ° C. and 1 torr conditions to form a silicon dioxide insulating film. At this time, the thickness of the insulating film formed was changed to 0, 3, 6, 9 and 12 nm. The deposited insulating film was plasma treated with oxygen at 350 ° C. and 1 torr for 1 minute, and then the insulating film was deposited again to form a silicon dioxide insulating film having a thickness of 100 nm.

실시예 2Example 2

산소 대신에 질소를 사용하여 플라즈마 처리한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 두께 100nm의 이산화규소 절연막을 형성하였다.A silicon dioxide insulating film having a thickness of 100 nm was formed in the same manner as in Example 1, except that the plasma treatment was performed using nitrogen instead of oxygen.

비교예Comparative example

실리콘 기판 위에 형성된 폴리실리콘 반도체막 위에, 350℃ 및 1 torr 조건하에서 TEOS/O2반응기체를 플라즈마 화학증착시켜 두께 100nm의 이산화규소 절연막을 한번에 형성하였다.On the polysilicon semiconductor film formed on the silicon substrate, a TEOS / O 2 reactor body was plasma chemically deposited at 350 ° C. and 1 torr conditions to form a silicon dioxide insulating film having a thickness of 100 nm at one time.

XPS(X-ray Photoelectron Spectroscopy) 분석X-ray photoelectron spectroscopy (XPS) analysis

상기 실시예 1, 2 및 비교예 각각에서 얻어진, 반도체막과 절연막 간의 계면부 및 전이영역(transition region)에 대해 XPS 분석을 수행하여, 그 결과를 도 2a 내지 2c 및 하기 표 1에 나타내었다. 이때, 도 2 및 표 1의 결과값은 실시예 1 및 2에서 플라즈마 처리 이전에 형성된 절연막의 두께가 6nm인 것에 대한 데이터이다.XPS analysis was performed on the interface portion and transition region between the semiconductor film and the insulating film obtained in each of Examples 1, 2 and Comparative Examples, and the results are shown in FIGS. 2A to 2C and Table 1 below. 2 and Table 1 show data for the thickness of the insulating film formed in Example 1 and 2 before the plasma treatment is 6 nm.

NSiOx *a(x1015/cm2)N SiOx * a (x10 15 / cm 2 ) θ1 *b θ 1 * b θ2 θ 2 θ3 θ 3 비교예Comparative example 1.251.25 0.370.37 0.370.37 0.260.26 실시예 1Example 1 1.071.07 0.370.37 0.330.33 0.300.30 실시예 2Example 2 0.910.91 0.360.36 0.330.33 0.310.31 *a : 전이영역에서의 실리콘 원자의 표면 밀도*b : θi= Sii+/(Si1++Si2++Si3+) (이때, i는 1, 2 또는 3이다)* a: surface density of silicon atoms in the transition region * b: θ i = Si i + / (Si 1+ + Si 2+ + Si 3+ ), where i is 1, 2 or 3

도 2a 내지 2c의 그래프에서, Six+의 x는 실리콘에 결합되어 있는 산소 원자 수를 의미하므로, 실시예 1 및 2의 계면부 및 전이영역의 실리콘의 산화 상태가 비교예보다 더 우수함을 알 수 있다.In the graphs of FIGS. 2A to 2C, since x in Si x + means the number of oxygen atoms bonded to silicon, it can be seen that the oxidation state of silicon in the interface portion and the transition region of Examples 1 and 2 is better than that of the comparative example. have.

아울러, 상기 표 1로부터 알 수 있듯이, 실시예 1 및 2의 전이영역의 실리콘 원자의 표면 밀도가 비교예보다 더 작으며, 이는 전이영역의 두께가 감소했음을 의미한다. 또한, 실시예 1 및 2의 경우, 비교예의 경우보다 θ3의 값이 더 커서 전이영역내에서 실리콘의 산화 상태가 보다 우수함을 알 수 있다.In addition, as can be seen from Table 1, the surface density of the silicon atoms in the transition region of Examples 1 and 2 is smaller than the comparative example, which means that the thickness of the transition region is reduced. In addition, in the case of Examples 1 and 2, the value of θ 3 is greater than that of the comparative example, and it can be seen that the oxidation state of silicon is better in the transition region.

최초 절연막의 두께에 따른 계면 결함 정도 분석Analysis of Interfacial Defects According to Thickness of Initial Insulator

상기 실시예 1 및 2에 있어서, 플라즈마 처리 이전에 증착시키는 절연막(최초 절연막)의 두께 변화에 따른 반도체막과 절연막 간의 계면부의 계면 결함 밀도 및 플랫밴드(flat band) 전이 변화를 측정하여, 그 결과를 도 3a 및 3b에 각각 나타내었다.In Examples 1 and 2, the interface defect density and the flat band transition change of the interface portion between the semiconductor film and the insulating film according to the thickness change of the insulating film (first insulating film) deposited before the plasma treatment were measured, and the result Are shown in FIGS. 3A and 3B, respectively.

도 3a 및 3b에 있어서, 계면 결함 밀도 및 플랫밴드 전이는 최초 절연막의 두께에 따라 계속 변하는데, 두께 3 내지 9nm에 해당하는 영역에서 계면 결함의 감소가 두드러짐을 알 수 있으며(도 3a), 절연막 내에 양으로 대전된 결함이 증가할수록 음으로 이동하는 플랫밴드 전위 역시 두께 3 내지 9nm에 해당하는 영역에서 0V(이상적인 플랫밴드 전위값)에 가깝게 측정됨을 알 수 있다(도 3b).In FIGS. 3A and 3B, the interfacial defect density and flat band transition continue to change with the thickness of the initial insulating film, and it can be seen that the reduction of the interfacial defects is prominent in the region corresponding to the thickness of 3 to 9 nm (FIG. 3A). It can be seen that as the positively charged defects increase, negatively moving flatband dislocations are also measured to be close to 0V (ideal flatband dislocation values) in a region corresponding to 3 to 9 nm in thickness (FIG. 3B).

이와 같이, 본 발명의 방법에 의하면, 폴리실리콘 반도체막과 이산화규소 절연막 간의 계면부 및 전이영역의 결함이 감소되고 전기적 화학적 특성이 개선되므로, 이를 포함하는 박막 트랜지스터는 우수한 전기적 특성을 나타낼 수 있다.As described above, according to the method of the present invention, the defects in the interface portion and the transition region between the polysilicon semiconductor film and the silicon dioxide insulating film are reduced and the electrochemical properties are improved, and thus the thin film transistor including the same may exhibit excellent electrical properties.

Claims (5)

폴리실리콘 반도체막 및 이산화규소 절연막을 포함하는 박막 트랜지스터를 제조함에 있어서, 반도체막 위에 절연막을 3 내지 9 nm의 두께로 1차 증착시킨 다음, 증착된 절연막을 산소, 질소 또는 산화질소 플라즈마로 처리하고, 이어서 나머지 두께의 절연막을 추가로 증착시키는 것을 특징으로 하는, 박막 트랜지스터의 제조방법.In manufacturing a thin film transistor comprising a polysilicon semiconductor film and a silicon dioxide insulating film, the insulating film is first deposited to a thickness of 3 to 9 nm on the semiconductor film, and then the deposited insulating film is treated with oxygen, nitrogen, or nitrogen oxide plasma. And subsequently depositing an insulating film having the remaining thickness. 삭제delete 제 1 항에 있어서,The method of claim 1, 플라즈마 처리를 100 내지 500℃ 및 0.1 내지 10 torr 하에서 10초 내지 10분 동안 수행하는 것을 특징으로 하는 방법.Plasma treatment at 100 to 500 ° C. and 0.1 to 10 torr for 10 seconds to 10 minutes. 제 1 항에 있어서,The method of claim 1, 절연막을 100 내지 500℃ 및 0.1 내지 10 torr의 조건 하에서 플라즈마 화학증착시키는 것을 특징으로 하는 방법.Plasma chemical vapor deposition under conditions of 100 to 500 ℃ and 0.1 to 10 torr. 제 1 항, 제 3 항 및 제 4 항 중 어느 한 항의 방법에 의해 제조된, 폴리실리콘 반도체막 및 이산화규소 절연막을 포함하는 박막 트랜지스터.A thin film transistor comprising a polysilicon semiconductor film and a silicon dioxide insulating film produced by the method of any one of claims 1, 3 and 4.
KR10-2002-0004378A 2002-01-25 2002-01-25 Method for the preparation of thin film transistor having improved interface property KR100470129B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0004378A KR100470129B1 (en) 2002-01-25 2002-01-25 Method for the preparation of thin film transistor having improved interface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0004378A KR100470129B1 (en) 2002-01-25 2002-01-25 Method for the preparation of thin film transistor having improved interface property

Publications (2)

Publication Number Publication Date
KR20030063989A KR20030063989A (en) 2003-07-31
KR100470129B1 true KR100470129B1 (en) 2005-02-04

Family

ID=32219327

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0004378A KR100470129B1 (en) 2002-01-25 2002-01-25 Method for the preparation of thin film transistor having improved interface property

Country Status (1)

Country Link
KR (1) KR100470129B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145504B2 (en) * 2019-01-14 2021-10-12 Applied Materials, Inc. Method of forming film stacks with reduced defects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186170A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Manufacture of semiconductor device
KR970030863A (en) * 1995-11-20 1997-06-26 김주용 Method for manufacturing gate insulating film of thin film transistor
KR970052338A (en) * 1995-12-23 1997-07-29 김주용 Manufacturing method of semiconductor device
JP2000068261A (en) * 1998-08-19 2000-03-03 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186170A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Manufacture of semiconductor device
KR970030863A (en) * 1995-11-20 1997-06-26 김주용 Method for manufacturing gate insulating film of thin film transistor
KR970052338A (en) * 1995-12-23 1997-07-29 김주용 Manufacturing method of semiconductor device
JP2000068261A (en) * 1998-08-19 2000-03-03 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR20030063989A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US6653247B2 (en) Dielectric layer for a semiconductor device and method of producing the same
KR100547248B1 (en) A method for forming gate dielectric layer using alumina in semiconductor device
US7727828B2 (en) Method for fabricating a gate dielectric of a field effect transistor
US7888217B2 (en) Method for fabricating a gate dielectric of a field effect transistor
US6025280A (en) Use of SiD4 for deposition of ultra thin and controllable oxides
US7723781B2 (en) Vertical thin-film transistor with enhanced gate oxide
JP4850871B2 (en) Insulating film formation method
WO2004081984A2 (en) Two-step post nitridation annealing for lower eot plasma nitrided gate dielectrics
JPH09116104A (en) Manufacture of capacitor for semiconductor element
US5336361A (en) Method of manufacturing an MIS-type semiconductor device
US7786021B2 (en) High-density plasma multilayer gate oxide
WO2003058701A2 (en) Uv-enhanced oxy-nitridation of semiconductor substrates
KR100470129B1 (en) Method for the preparation of thin film transistor having improved interface property
US11732352B2 (en) Hydrogen free silicon dioxide
US7122487B2 (en) Method for forming an oxide with improved oxygen bonding
KR102172776B1 (en) Preparation method of deelectronics thin film blocking leakage current
JP2728880B2 (en) Thin film semiconductor device and method of manufacturing the same
KR100329745B1 (en) A method for forming gate dielectric layer using alumina
KR100321702B1 (en) Method for forming tantalum oxide and method for fabricating capacitor by the same
US20210249263A1 (en) Deposition of hafnium oxide within a high aspect ratio hole
KR100379533B1 (en) method for fabricating gate insulating film of semiconductor device
KR970009978B1 (en) Forming method of low temperature gate oxide film
KR20000003915A (en) Method for forming a gate insulator of semiconductor devices
KR20230004189A (en) Method of forming silicon oxynitride thin film
JPH04236424A (en) Semiconductor wafer provided with insulating film and manufacture thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100211

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee