KR100468665B1 - Oxide film formation method - Google Patents

Oxide film formation method Download PDF

Info

Publication number
KR100468665B1
KR100468665B1 KR1019970019016A KR19970019016A KR100468665B1 KR 100468665 B1 KR100468665 B1 KR 100468665B1 KR 1019970019016 A KR1019970019016 A KR 1019970019016A KR 19970019016 A KR19970019016 A KR 19970019016A KR 100468665 B1 KR100468665 B1 KR 100468665B1
Authority
KR
South Korea
Prior art keywords
oxide film
gas
forming
oxygen gas
oxygen
Prior art date
Application number
KR1019970019016A
Other languages
Korean (ko)
Other versions
KR19980083639A (en
Inventor
임현우
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019970019016A priority Critical patent/KR100468665B1/en
Publication of KR19980083639A publication Critical patent/KR19980083639A/en
Application granted granted Critical
Publication of KR100468665B1 publication Critical patent/KR100468665B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

특성이 우수한 산화막을 형성하는 방법에 대해 개시되어 있다. 이 방법은 수소가스(H2)와 산소가스(O2)를 일정 비율로 반응시켜 웨이퍼에 실리콘산화막을 형성하는 단계와, 산소가스(O2)를 플로우하면서 웨이퍼에 산화막을 형성하는 단계로 이루어진다.A method of forming an oxide film having excellent characteristics is disclosed. The method comprises forming a silicon oxide film on a wafer by reacting hydrogen gas (H 2 ) and oxygen gas (O 2 ) at a predetermined ratio, and forming an oxide film on the wafer while flowing oxygen gas (O 2 ). .

Description

산화막 형성방법Oxide Formation Method

본 발명은 반도체장치의 제조방법에 관한 것으로, 특히 특성이 우수한 산화막을 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an oxide film having excellent characteristics.

실리콘(Si)과 산소(O2)의 결합에 의해 생성되는 실리콘산화막(SiO2)은 트랜지스터의 게이트절연막, 도전층 사이를 절연시키는 층간절연막 또는 캐패시터의 유전막으로 널리 사용된다. 이러한 산화막의 형성방법으로는 크게 수소가스(H2)와 산소가스(O2)를 일정 비율로 반응시켜 실리콘산화막을 형성하는 습식산화(wet oxidation) 방법과, 산소가스(O2)만을 플로우하여 실리콘산화막을 형성하는 건식산화(dry oxidation) 방법, 그리고 산소가스(O2)와 염화수소(HCl) 가스를 일정 비율로 플로우하면서 산화시키는 클린산화(clean oxidation) 방법이 있는데, 이중 한 가지 방법만을 사용한다. 이 중에서, 도 1의 흐름도를 참조하여 일반적인 클린산화 공정을 설명한다.The silicon oxide film (SiO 2 ) formed by the combination of silicon (Si) and oxygen (O 2 ) is widely used as a dielectric film of a gate insulating film of a transistor, an interlayer insulating film which insulates a conductive layer, or a capacitor. As a method of forming the oxide film, a wet oxidation method of forming a silicon oxide film by reacting hydrogen gas (H 2 ) and oxygen gas (O 2 ) at a predetermined ratio, and only oxygen gas (O 2 ) by flowing Dry oxidation method for forming silicon oxide film and clean oxidation method for oxidizing oxygen gas (O 2 ) and hydrogen chloride (HCl) gas in a certain ratio, using only one method do. Among these, the general clean oxidation process is demonstrated with reference to the flowchart of FIG.

먼저, 산화공정을 수행할 웨이퍼들을 보우트(boat)에 로딩(loading)한 후 히터(heater)로 이동시킨다(단계 5). First, the wafers to be subjected to the oxidation process are loaded into a boat and then moved to a heater (step 5).

히터의 온도를 대기(standby) 온도로 균일하게 될 때까지 일정 시간동안 유지시킨 다음(단계 10), 로의 온도를 공정 진행온도까지 균일한 속도로 올린다(단계 15). The temperature of the heater is maintained for a certain time until it becomes uniform to the standby temperature (step 10), and then the furnace temperature is raised to a process running temperature at a uniform speed (step 15).

공정진행 온도가 균일해질 때까지 일정 시간동안 유지시킨 다음(단계 20), 원하는 산화막 두께를 얻을 때까지 산소(O2), 수소(H2), 염화수소(HCl) 등의 가스를 사용하여 산화공정을 진행시킨다(단계 25).Maintain the process for a certain time until the process temperature is uniform (step 20), and then oxidize the process using gases such as oxygen (O 2 ), hydrogen (H 2 ) and hydrogen chloride (HCl) until the desired oxide thickness is obtained. Proceed (step 25).

다음에, 원하는 두께의 산화막이 성장되면 질소(N2) 가스 등을 플로우하여 어닐(anneal)을 실시한다(단계 30).Next, when an oxide film having a desired thickness is grown, annealing is performed by flowing nitrogen (N 2 ) gas or the like (step 30).

그 후, 로의 온도를 대기온도까지 일정한 속도로 내린후 진행된 웨이퍼들을 히터밖으로 언로딩(unloading)한다(단계 35).Thereafter, the furnace temperature is lowered to the atmospheric temperature at a constant speed, and the unloaded wafers are unloaded out of the heater (step 35).

반도체소자의 제조에 있어서, 게이트절연막을 형성할 때에는 상기한 클린산화 방법을 주로 사용한다. 그 이유는, 클린산화 공정 진행시 염화수소(HCl) 가스가 산화튜브 및 웨이퍼 자체 또는 그외 외부요인에 의해 존재할 수 있는 중금속이나, 칼륨이온(K+) 또는 나트륨이온(Na+)과 같은 알칼리 이온(유동전하의 일부임)을 게더링(gettering)하는 효과가 크기 때문에, 신뢰도가 높고 질이 좋은 산화막을 형성할 수 있기 때문이다. 그러나, 산화막에는 상기한 유동전하(mobile charge) 외에도 다른 여러 가지 전하들이 존재하는데 구체적으로 다음과 같다.In the manufacture of a semiconductor device, the above-mentioned clean oxidation method is mainly used when forming a gate insulating film. The reason for this is that, during the clean oxidation process, hydrogen chloride (HCl) gas may be present in the heavy metals in which the oxide tube and the wafer itself or other external factors may exist, or alkali ions such as potassium ions (K + ) or sodium ions (Na + ). This is because the effect of gettering (which is part of the flow charge) is large, so that an oxide film having high reliability and high quality can be formed. However, in addition to the mobile charge described above, there are other charges in the oxide film.

① 계면 트랩 전하 (interface trapped charge)는 실리콘과 산화막의 계면에 존재하는 전하로서, 불안정한 계면결합에 의해 생성된다. ① Interface trapped charge is a charge existing at the interface between silicon and oxide film and is generated by unstable interfacial bonding.

② 고정 전하 (fixed charge)는 실리콘과 산화막의 계면에서 산화막측으로 존재하며 결합에 참여하지 못한 원자나 전자에 의해 생성되며, 양(+) 전하를 띤다. (2) Fixed charge exists at the side of the oxide film at the interface between silicon and the oxide film and is generated by atoms or electrons that do not participate in the bond, and has a positive charge.

③ 유동 이온 전하 (mobile ionic charge)는 주로 산화가 이루어지는 로(furnace) 내부의 튜브나 그외 재질내에 포함되어 있는 칼륨이온(K+), 나트륨이온(Na+)과 같은 알칼리 이온이 주 원인이며, 산화공정시 이런 이온들이 막질내로 확산되어 생성된다.③ The mobile ionic charge is mainly caused by alkali ions such as potassium ions (K + ) and sodium ions (Na + ) contained in tubes or other materials inside the furnace where oxidation occurs. During the oxidation process, these ions diffuse into the membrane and are produced.

④ 트랩 산화막 전하 (trapped oxide charge)는 산화막에 전류가 가해지거나 이온주입시 이온화 방사(ionizing radiation)에 의하여 산화막 내에 트랩된 전하를 말하며, 트랩된 것이 정공(hole)인지 전자(electron)인지에 따라 양(+) 또는 음(-) 전하를 띠게 된다.(4) The trapped oxide charge refers to the charge trapped in the oxide film by applying current to the oxide film or by ionizing radiation during ion implantation, depending on whether the trapped is a hole or an electron. It will have a positive or negative charge.

이러한 전하를 모두 합친 것을 전체 전하(total charge)라고 볼 때, 클린산화시 염화수소(HCl) 가스에 의해 게더링될 수 있는 유동 전하의 양은 전체 전하에 비해 상당히 적은 양이다(일반적으로 유동전하는 전체 전하의 약 1/100 ∼ 1/100 정도 수준이다). Considering the sum of these charges as the total charge, the amount of flow charge that can be gathered by the hydrogen chloride (HCl) gas during clean oxidation is considerably less than the total charge (generally the flow charge is About 1/100 to 1/100).

그러나, 습식산화와 클린산화의 전하특성 및 수명을 나타낸 도 2를 참조하면, 전체전하 및 수명(life time)에서는 습식산화가 클린산화보다 월등히 우수한 것으로 나타나며, 유동전하의 게더링 측면에서는 습식산화가 클린산화에 뒤지는 것으로 나타난다.However, referring to FIG. 2, which shows the charge characteristics and lifetime of wet oxidation and clean oxidation, wet oxidation appears to be superior to clean oxidation in total charge and life time, and wet oxidation is clean in terms of gathering of flow charge. It appears to lag behind oxidation.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 전하특성 및 질이 우수한 산화막을 얻을 수 있고, 신뢰도 및 전기적 특성이 우수한 산화막을 형성할 수 있는 산화막 형성방법을 제공하는 것이다.Accordingly, the technical problem to be achieved by the present invention is to provide an oxide film forming method capable of obtaining an oxide film having excellent charge characteristics and quality, and forming an oxide film having excellent reliability and electrical properties.

상기한 과제를 이루기 위하여 본 발명에 의한 산화막 형성방법은, (a) 수소가스(H2)와 산소가스(O2)를 일정 비율로 반응시켜 웨이퍼에 실리콘산화막을 형성하는 단계; 및 (b) 산소가스(O2)를 플로우하면서 웨이퍼에 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, an oxide film forming method according to the present invention comprises the steps of: (a) forming a silicon oxide film on a wafer by reacting hydrogen gas (H 2 ) and oxygen gas (O 2 ) at a predetermined ratio; And (b) forming an oxide film on the wafer while flowing oxygen gas (O 2 ).

상기 (b) 단계에서 상기 산소가스(O2)와 염화수소(HCl) 가스를 일정 비율로 플로우하여 실리콘산화막을 형성하고, 상기 (b) 단계 이후에 질소가스를 이용하여 어닐링하는 단계를 더 구비하는 것이 바람직하다.In step (b), the oxygen gas (O 2 ) and hydrogen chloride (HCl) gas flows in a predetermined ratio to form a silicon oxide film, and after the step (b) further comprises the step of annealing using nitrogen gas It is preferable.

상기 과제를 이루기 위하여 본 발명에 의한 다른 산화막 형성방법은, (a) 산화로에 웨이퍼를 로딩하는 단계; (b) 상기 웨이퍼의 온도를 일정수준으로 상승시키는 단계; (c) 수소가스(H2)와 산소가스(O2)를 일정 비율로 반응시켜 웨이퍼에 실리콘산화막을 형성하는 단계; (d) 산소가스(O2)를 플로우하면서 웨이퍼에 산화막을 형성하는 단계; (e) 웨이퍼의 온도를 하강시키는 단계; 및 (f) 웨이퍼를 언로딩하는 단계를 구비하는 것을 특징으로 한다.Another oxide film forming method according to the present invention to achieve the above object, (a) loading the wafer into the oxidation furnace; (b) raising the temperature of the wafer to a constant level; (c) reacting hydrogen gas (H 2 ) with oxygen gas (O 2 ) at a predetermined rate to form a silicon oxide film on the wafer; (d) forming an oxide film on the wafer while flowing oxygen gas (O 2 ); (e) lowering the temperature of the wafer; And (f) unloading the wafer.

상기 (b) 단계에서 산소(O2) 또는 질소(N2) 가스를 플로우함으로써 계면 트랩 전하를 줄일 수 있으며, 상기 (c) 단계에서 수소가스(H2)와 산소가스(O2)를 1:1 ∼ 1.8:1의 비율로 플로우하는 것이 바람직하다. 그리고, 상기 (d) 단계에서 상기 산소가스(O2)와 염화수소(HCl) 가스를 일정 비율로 플로우하여 실리콘산화막을 형성하고, 이 때 산소가스(O2)와 염화수소(HCl) 가스를 25:1 ∼ 100:1의 비율로 플로우하는 것이 바람직하며, 상기 (d) 단계 이후에 질소가스를 이용하여 어닐링하는 단계를 더 구비하는 것이 바람직하다.Interfacial trap charge can be reduced by flowing oxygen (O 2 ) or nitrogen (N 2 ) gas in step (b), and hydrogen gas (H 2 ) and oxygen gas (O 2 ) in step (c) are 1. It is preferable to flow in the ratio of 1: 1-1.8: 1. In the step (d), the oxygen gas (O 2 ) and the hydrogen chloride (HCl) gas are flowed at a predetermined ratio to form a silicon oxide film. At this time, the oxygen gas (O 2 ) and the hydrogen chloride (HCl) gas are 25: It is preferable to flow in the ratio of 1-100: 1, and it is preferable to further comprise the step of annealing using nitrogen gas after the said (d) step.

본 발명에 따르면, 클린산화 또는 건식산화를 실시하기 전에 전하특성이 우수한 습식산화 공정을 실시함으로써 보다 우수한 산화막을 얻을 수 있고, 신뢰도 측면이나 전기적 특성이 우수한 소자를 제조할 수 있다.According to the present invention, by performing a wet oxidation process having excellent charge characteristics before performing clean oxidation or dry oxidation, an excellent oxide film can be obtained, and a device having excellent reliability and electrical characteristics can be manufactured.

이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 3은 본 발명에 의한 산화막 형성방법을 나타내는 흐름도이다.3 is a flowchart showing an oxide film forming method according to the present invention.

먼저, 산화공정을 수행할 웨이퍼들을 보우트에 로딩한 후 히터로 이동시킨 다음(단계 40), 히터의 온도를 대기(standby) 온도로 균일하게 될 때까지 일정 시간동안 유지시킨다(단계 45). 이 단계들은 종래의 산화막 형성방법과 동일하게 진행된다.First, the wafers to be subjected to the oxidation process are loaded into the boat and then moved to the heater (step 40), and the temperature of the heater is maintained for a predetermined time until the temperature becomes uniform to the standby temperature (step 45). These steps proceed in the same way as in the conventional oxide film forming method.

다음, 로의 온도를 공정 진행온도까지 균일한 속도로 올린다(단계 50). 이 때, 산소가스(O2)를 약 10 ∼ 30slpm 정도 플로우하거나, 질소가스(N2) 약 10 ∼ 30slpm 정도를 200 ∼ 5,000sccm의 산소가스(O2)에 희석시켜 플로우한다. 이렇게 하면, 산화막과 웨이퍼의 계면 트랩 전하를 줄일 수 있다.The temperature of the furnace is then raised to a process running temperature at a uniform rate (step 50). At this time, oxygen gas (O 2 ) is flowed about 10 to 30 slm, or nitrogen gas (N 2 ) is flowed by diluting about 10 to 30 slm in 200 to 5,000 sccm of oxygen gas (O 2 ). In this way, the interface trap charge between the oxide film and the wafer can be reduced.

다음에, 공정진행 온도가 균일해질 때까지 일정 시간동안 유진시킨 다음(단계 55), 원하는 산화막 두께를 얻을 때까지 산소(O2), 수소(H2), 염화수소(HCl) 등의 가스를 사용하여 산화공정을 진행하는데, 다음과 같이 2단계로 나누어 진행한다. 먼저, 1차로 수소가스(H2)와 산소가스(O2)를 일정 비율, 예를 들어 1:1 ∼ 1.8:1의 비율로 플로우시키는 습식산화 공정을 진행한다(단계 60). 이렇게 하면, 습식산화 공정의 특성상 전체 산화막 전하를 줄일 수 있다.Next, the process is allowed to flow for a predetermined time until the process temperature becomes uniform (step 55), and then gases such as oxygen (O 2 ), hydrogen (H 2 ) and hydrogen chloride (HCl) are used until a desired oxide thickness is obtained. Proceeds to the oxidation process, divided into two steps as follows. First, a wet oxidation process of firstly flowing hydrogen gas (H 2 ) and oxygen gas (O 2 ) at a ratio, for example, 1: 1 to 1.8: 1, is performed (step 60). This makes it possible to reduce the total oxide film charge due to the nature of the wet oxidation process.

이후, 2차로 산소가스(O2)와 염화수소(HCl) 가스를 일정 비율, 예를 들어 25:1 ∼ 100:1의 비율로 플로우시키는 클린산화 공정을 진행하여 유동전하를 줄인다(단계 65). 상기 클린산화 공정 대신에 산소가스(O2)만을 이용하는 건식산화 공정을 진행할 수도 있다.Thereafter, the flow of oxygen is reduced by performing a clean oxidation process in which oxygen gas (O 2 ) and hydrogen chloride (HCl) gas are flowed at a predetermined ratio, for example, 25: 1 to 100: 1. Instead of the clean oxidation process, a dry oxidation process using only oxygen gas (O 2 ) may be performed.

다음에, 원하는 두께의 산화막이 성장되면, 질소(N2) 가스 등을 플로우하여 어닐(anneal)을 실시하고(단계 70), 로의 온도를 대기온도까지 일정한 속도로 내린후 산화가 완료된 웨이퍼들을 히터밖으로 언로딩한다(단계 75).Next, when an oxide film having a desired thickness is grown, annealing is performed by flowing nitrogen (N 2 ) gas or the like (step 70), the furnace temperature is lowered to a constant speed to the atmospheric temperature, and the wafers that have been oxidized are heated. Unload out (step 75).

상술한 본 발명에 의한 산화막 형성방법에 의하면, 전체 전하량 및 수명에 있어서 월등이 우수한 습식산화 공정과 유동전하의 게더링 특성이 우수한 클린산화를 순차로 진행함으로써 보다 우수한 산화막을 얻을 수 있고, 게이트절연막 이외의 산화막 형성공정에 적용하면 신뢰도 측면이나 전기적 특성이 우수한 소자를 제조할 수 있다.According to the method for forming an oxide film according to the present invention described above, an excellent oxide film can be obtained by sequentially performing a wet oxidation process having excellent superiority in total charge amount and lifetime and clean oxidation having excellent gathering characteristics of flow charges, and other than the gate insulating film. When applied to the oxide film forming process, it is possible to manufacture devices with excellent reliability and electrical characteristics.

도 1은 종래의 클린(clean) 산화 공정을 나타내는 흐름도이다.1 is a flow diagram illustrating a conventional clean oxidation process.

도 2는 습식산화와 클린(clean) 산화의 전하특성을 비교하여 도시한 도면이다.FIG. 2 is a view showing a comparison of charge characteristics of wet oxidation and clean oxidation.

도 3은 본 발명에 따른 산화막 형성방법을 나타내는 흐름도이다.3 is a flowchart illustrating a method of forming an oxide film according to the present invention.

Claims (7)

(a) 수소가스(H2)와 산소가스(O2)를 일정 비율로 반응시키는 습식 산화법을이용하여 실리콘 웨이퍼 상에 제 1 실리콘산화막을 형성하는 단계; 및(a) forming a first silicon oxide film on a silicon wafer by using a wet oxidation method in which hydrogen gas (H 2 ) and oxygen gas (O 2 ) are reacted at a predetermined ratio; And (b) 상기 제 1 실리콘산화막이 형성된 결과물 상에 산소가스(O2)와 염화수소 가스(HCl)를 일정 비율로 플로우하여 산화막을 형성하는 클린 산화법을 이용하여 제 2 실리콘산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 산화막 형성방법.(b) forming a second silicon oxide film using a clean oxidation method in which an oxygen film is formed by flowing oxygen gas (O 2 ) and hydrogen chloride gas (HCl) at a predetermined ratio on the resultant formed silicon oxide film. An oxide film forming method, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 (b) 단계 이후에, 질소가스(N2)를 이용하여 어닐링하는 단계를 더 구비하는 것을 특징으로 하는 산화막 형성방법.After the step (b), further comprising the step of annealing using nitrogen gas (N 2 ). (a) 산화로에 실리콘 웨이퍼를 로딩하는 단계;(a) loading a silicon wafer into an oxidation furnace; (b) 상기 실리콘 웨이퍼의 온도를 일정 수준으로 상승시키는 단계;(b) raising the temperature of the silicon wafer to a predetermined level; (c) 수소가스(H2)와 산소가스(O2)를 일정 비율로 반응시키는 습식 산화법을 이용하여 상기 실리콘 웨이퍼 상에 제 1 실리콘산화막을 형성하는 단계;(c) forming a first silicon oxide film on the silicon wafer by using a wet oxidation method in which hydrogen gas (H 2 ) and oxygen gas (O 2 ) are reacted at a predetermined ratio; (d) 상기 제 1 실리콘산화막이 형성된 결과물 상에 산소가스(O2)와 염화수소가스(HCl)을 일정 비율로 플로우하여 산화막을 형성하는 클린 산화법에 의해 제 2 실리콘산화막을 형성하는 단계;(d) forming a second silicon oxide film by a clean oxidation method of forming an oxide film by flowing oxygen gas (O 2 ) and hydrogen chloride gas (HCl) at a predetermined ratio on the resultant product on which the first silicon oxide film is formed; (e) 상기 실리콘 웨이퍼의 온도를 하강시키는 단계; 및(e) lowering the temperature of the silicon wafer; And (f) 상기 실리콘 웨이퍼를 언로딩하는 단계를 구비하는 것을 특징으로 하는 산화막 형성방법and (f) unloading the silicon wafer. 제 3 항에 있어서, 상기 (b) 단계에서,The method of claim 3, wherein in step (b), 산소(O2) 또는 질소(N2) 가스를 플로우함으로써 계면 트랩 전하를 줄이는 것을 특징으로 하는 산화막 형성방법.An interfacial trap charge is reduced by flowing oxygen (O 2 ) or nitrogen (N 2 ) gas. 제 3 항에 있어서, 상기 (c) 단계에서,The method of claim 3, wherein in step (c), 수소가스(H2)와 산소가스(O2)를 1:1 ∼ 1.8:1의 비율로 플로우하는 것을 특징으로 하는 산화막 형성방법.A method of forming an oxide film, characterized by flowing hydrogen gas (H 2 ) and oxygen gas (O 2 ) at a ratio of 1: 1 to 1.8: 1. 제 3 항에 있어서, 상기 (d) 단계에서,The method of claim 3, wherein in step (d), 상기 산소가스(O2)와 염화수소가스(HCl)를 25:1 내지 100:1의 비율로 플로우 하는 것을 특징으로 하는 산화막 형성방법.The oxide film forming method, characterized in that the flow of oxygen gas (O 2 ) and hydrogen chloride gas (HCl) in a ratio of 25: 1 to 100: 1. 제 3 항 또는 제 6 항의 어느 한 항에 있어서, 상기 (d) 단계이후에,The method of claim 3 or 6, wherein after step (d), 질소가스(N2)를 이용하여 어닐링하는 단계를 더 구비하는 것을 특징으로 하는 산화막 형성방법.And annealing using nitrogen gas (N 2 ).
KR1019970019016A 1997-05-16 1997-05-16 Oxide film formation method KR100468665B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970019016A KR100468665B1 (en) 1997-05-16 1997-05-16 Oxide film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970019016A KR100468665B1 (en) 1997-05-16 1997-05-16 Oxide film formation method

Publications (2)

Publication Number Publication Date
KR19980083639A KR19980083639A (en) 1998-12-05
KR100468665B1 true KR100468665B1 (en) 2005-08-29

Family

ID=37304252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970019016A KR100468665B1 (en) 1997-05-16 1997-05-16 Oxide film formation method

Country Status (1)

Country Link
KR (1) KR100468665B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221230A (en) * 1985-07-22 1987-01-29 Hitachi Ltd Manufacture of semiconductor device
JPS62140450A (en) * 1985-12-16 1987-06-24 Hitachi Ltd Manufacture of semiconductor device
KR920702020A (en) * 1989-05-07 1992-08-12 오미 다다히로 Formation method of oxide film
JPH05343394A (en) * 1992-06-08 1993-12-24 Nippon Telegr & Teleph Corp <Ntt> Formation of thermal oxide film
JPH0620896A (en) * 1992-06-29 1994-01-28 Kyushu Electron Metal Co Ltd Manufacture of semiconductor wafer
KR940008071A (en) * 1992-09-26 1994-04-28 김광호 Manufacturing Method of Semiconductor Device
KR940016556A (en) * 1992-12-03 1994-07-23 김광호 Manufacturing Method of Semiconductor Device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221230A (en) * 1985-07-22 1987-01-29 Hitachi Ltd Manufacture of semiconductor device
JPS62140450A (en) * 1985-12-16 1987-06-24 Hitachi Ltd Manufacture of semiconductor device
KR920702020A (en) * 1989-05-07 1992-08-12 오미 다다히로 Formation method of oxide film
JPH05343394A (en) * 1992-06-08 1993-12-24 Nippon Telegr & Teleph Corp <Ntt> Formation of thermal oxide film
JPH0620896A (en) * 1992-06-29 1994-01-28 Kyushu Electron Metal Co Ltd Manufacture of semiconductor wafer
KR940008071A (en) * 1992-09-26 1994-04-28 김광호 Manufacturing Method of Semiconductor Device
KR940016556A (en) * 1992-12-03 1994-07-23 김광호 Manufacturing Method of Semiconductor Device

Also Published As

Publication number Publication date
KR19980083639A (en) 1998-12-05

Similar Documents

Publication Publication Date Title
US6190973B1 (en) Method of fabricating a high quality thin oxide
KR100944583B1 (en) Semiconductor memory device and method for manufacturing the same
KR940009597B1 (en) Forming method of gate oxide film
JP5283833B2 (en) Manufacturing method of semiconductor device
US5637528A (en) Semiconductor device manufacturing method including dry oxidation
US6204205B1 (en) Using H2anneal to improve the electrical characteristics of gate oxide
JP4095326B2 (en) Semiconductor device manufacturing method and semiconductor device
US4894353A (en) Method of fabricating passivated tunnel oxide
EP1193748A1 (en) Silicon oxidation method for reduction of the charge trap concentration at the silicon-oxide interface
JP4742867B2 (en) Semiconductor device provided with MIS field effect transistor
JP3391317B2 (en) Manufacturing method of nonvolatile semiconductor device
KR100468665B1 (en) Oxide film formation method
JP2636783B2 (en) Method for manufacturing semiconductor device
JP3247242B2 (en) Method for manufacturing semiconductor device
JP3439657B2 (en) Method for manufacturing semiconductor device
JPH11186255A (en) Method of forming silicon oxide film
JP2002016152A (en) Manufacturing method of semiconductor device
US5866474A (en) Method for manufacturing gate oxide layers
US5854505A (en) Process for forming silicon oxide film and gate oxide film for MOS transistors
JPH09148325A (en) Method for manufacturing semiconductor device
JP3548563B2 (en) Method for manufacturing semiconductor device
JP2000068266A (en) Method for forming oxide film
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
JP4076638B2 (en) Manufacturing method of semiconductor device
JP2834344B2 (en) Method for manufacturing insulating film of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee