JP3439657B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3439657B2
JP3439657B2 JP14361098A JP14361098A JP3439657B2 JP 3439657 B2 JP3439657 B2 JP 3439657B2 JP 14361098 A JP14361098 A JP 14361098A JP 14361098 A JP14361098 A JP 14361098A JP 3439657 B2 JP3439657 B2 JP 3439657B2
Authority
JP
Japan
Prior art keywords
dielectric layer
atmosphere
oxygen
nitrogen
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14361098A
Other languages
Japanese (ja)
Other versions
JPH11340224A (en
Inventor
信之 大南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14361098A priority Critical patent/JP3439657B2/en
Publication of JPH11340224A publication Critical patent/JPH11340224A/en
Application granted granted Critical
Publication of JP3439657B2 publication Critical patent/JP3439657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に、半導体基板の表面に形成される窒素
含有誘電体層を備えた半導体装置の製造方法に関するも
のである。 【0002】 【従来の技術】MOSトランジスタのゲート誘電体層に
は絶縁膜として安定な熱酸化膜を用いるが、超LSIの
高密度化、高集積化、及び動作の高速化のため、薄膜化
が要求される。薄膜化に伴い、初期絶縁耐圧(TZD
B)、絶縁破壊電荷量(Qbd)、ホットキャリア耐性
が低下するため、これらの特性向上が重要な課題とな
る。 【0003】また、P+ゲートを用いる際のボロンの突
き抜けによるしきい値(Vth)シフトの制御も重要な
課題である。亜酸化窒素(N2O)を用いて成長させた
窒素含有の誘電体層は、熱酸化膜に比べてこれらの特性
が優れており、ゲート誘電体層の形成を亜酸化窒素雰囲
気で行っている。 【0004】 【発明が解決しようとする課題】しかしながら、亜酸化
窒素雰囲気で形成した誘電体層は、別の好ましくない特
性を呈することが判明している。例えば、亜酸化窒素雰
囲気で形成した誘電体層は高い界面準位密度を有するこ
とが指摘されている。この特性は、モビリティ低下の原
因となり、トランジスタ素子のドライブ電流の低下に帰
結する。 【0005】このような特性が発生する原因は、窒素含
有誘電体層と半導体基板との界面に結合した窒素の濃度
が高いことにあると考えられている。亜酸化窒素を用い
て成長させた誘電体層の有効な特性及び熱酸化により形
成した窒素を含まない誘電体層の有効な特性の両方を得
るために、図8に示すように、亜酸化窒素雰囲気で誘電
体層を形成した後に、酸化雰囲気にて再酸化し、基板と
誘電体層との界面に存在する窒素と基板との間にさらに
熱酸化膜を成長させる。その結果として、初期絶縁耐圧
(TZDB)、絶縁破壊電荷量(Qbd)、ホットキャ
リア耐性が向上し、且つ、界面準位密度の低い誘電体層
を得ることができる。尚、図8は従来の窒素含有誘電体
層と半導体基板との間に酸化膜を形成する工程を示す図
である。 【0006】しかし、再酸化で誘電体の膜厚が増加し、
誘電体層の容量が減少し、トランジスタのドライブ電流
が低下してしまう。 【0007】また、界面準位を低減する方法として、ハ
ロゲン含有雰囲気にて熱処理し、シリコン−ハロゲン結
合を形成する方法があるが、結合が進行するとともに解
離も起こるため、基板−酸化膜界面の準位を低減するに
は充分ではなく、さらにハロゲン含有雰囲気はエッチン
グ作用があり、逆に基板−酸化膜界面を荒らしてしまう
という問題点があった。 【0008】 【課題を解決するための手段】請求項1に記載の本発明
の半導体装置の製造方法は、半導体基板上に窒素含有の
第1の誘電体層を形成する工程を有する半導体装置の製
造方法において、酸素と窒素の雰囲気で半導体基板を酸
化することで熱酸化膜を形成し、上記窒素含有の第1の
誘電体層を半導体基板上に形成した後、酸素と塩酸の酸
化性雰囲気中で半導体基板と第1の誘電体層との間に第
2の誘電体層を形成することを特徴とするものである。 【0009】 【0010】 【0011】 【発明の実施の形態】以下、一実施の形態に基づいて、
本発明について詳細に説明する。 【0012】図1は、本発明の窒素含有誘電体層と半導
体基板との間に酸化膜を形成する工程を示す図、図2は
窒素含有誘電体層と半導体基板との間に酸化膜を形成し
た際の構成断面図である。 【0013】以下、図1及び図2を用いて、本発明の半
導体装置の製造工程を説明する。 【0014】まず、第1温度状態(室温〜900℃、例
えば700℃)の反応器内に半導体基板であるシリコン
基板1をロードする。次に、反応器内を酸素と窒素との
混合雰囲気(例えば酸素0.5%)で満たし、第2温度
状態(500〜1000℃、例えば750℃)まで昇温
し、一定時間(例えば10分間)保持する。ここで、第
2温度状態で保持するのは、シリコン基板1表面にわず
かに熱酸化膜(図示せず。)を成長させ、ロード時や温
度時のシリコン基板表面の窒化や荒れを防ぐためであ
る。具体的には、0.1〜3.0nmの膜厚の熱酸化膜
を形成する。この熱酸化膜は厚いほど界面準位が低下す
るが、3.0nm以上ではその効果が飽和する。本実施
の形態では1.0nmの熱酸化膜を形成する。 【0015】次に、反応器内を窒素雰囲気中として第3
温度状態(600〜1200℃、例えば900℃)まで
昇温する。第3温度状態で反応器内を亜酸化窒素雰囲気
として一定時間(例えば10分間)保持し、窒素含有の
第1の誘電体層2を形成する。第1の誘電体層2の厚さ
は薄いほど良いが、適用するデバイスに必要となる窒素
の導入量によって亜酸化窒素中での保持時間、及び温度
が決定される。具体的には、1.0〜20.0nm、例
えば3.0nmの膜厚の第1の誘電体層2を形成する
(図2(a))。 【0016】その後、第3温度状態での反応器内を酸素
と塩酸との混合雰囲気(例えば、混合雰囲気全体に対し
て塩酸3%))として、基板と第1の誘電体層2との界
面に存在する)と基板との間にシリコン酸化膜からなる
第2の誘電体層3を成長させる(図2(b))。 【0017】第2の誘電体層3の膜厚はトランジスタの
チャネルの電流量と絶縁特性とから決定される。ここ
で、例えば、塩酸雰囲気のみでアニールを行い、第2の
誘電体層3の成長がなければ、塩素によるエッチングで
基板を荒らしてしまい特性の劣化につながるため、酸化
性雰囲気にて第2の誘電体層3をわずかに(約0.1n
m以上)、例えば0.6nm成長させながらアニールを
行う。界面準位密度を低減するためには、第2の誘電体
層3は厚いほど効果があるが、膜厚が厚くなるほど、ボ
ロンの突き抜けが起こりやすくなり、しきい値シフトに
帰結する。このため、用いるデバイスによって、最適膜
厚は異なる。 【0018】このとき、水素雰囲気中であれば基板を荒
らすことはなく、膜厚の増加もないが、シリコン−水素
の結合が進むと同時に解離も起こる、すなわち平衡状態
になるため、充分に界面準位を低減できない。よって、
界面準位を充分に低減するためには、基板−誘電体層界
面にさらにシリコン酸化膜を成長させて窒素を界面から
離す方法を組み合わせることが効果的であるので、水素
と酸素との混合雰囲気、又は、湿式酸化雰囲気が望まし
い。 【0019】その後、上述の工程で形成した、第1の誘
電体層及び第2の誘電体層をゲート絶縁膜として用い、
従来技術を用いて、MOSトランジスタを作製する。 【0020】また、湿式酸化雰囲気で第2の誘電体層の
形成を行う際には、以下の条件で行う。例えば、水素の
体積を1としたとき、酸素の体積を1として、装置内で
水を発生させ、600〜1200℃、例えば900℃で
湿式酸化する。 【0021】次に、反応器内を窒素雰囲気として第4温
度状態(例えば700℃)まで降温し、基板をアンロー
ドする。 【0022】この酸化方法を用いてMOSキャパシタを
作製し、誘電体層全体の膜厚に対する界面準位密度、少
数キャリアライフタイムの評価を行った結果をそれぞれ
図3及び図4に、また、絶縁破壊電荷量と故障率との関
係を図5、図6に示す。また、再酸化時間と誘電体層の
全体膜厚及び第2の誘電体層の膜厚との関係を図7に示
す。 【0023】図3及び図4とも再酸化で増加した分の膜
厚を括弧内に示したが、図3より誘電体層の厚さを同じ
にして酸素雰囲気、及び酸素と塩酸との混合雰囲気を比
較すると、酸素雰囲気に比べて酸素と塩酸との混合雰囲
気の方法が界面準位密度が低いことがわかる。また、図
4より酸素雰囲気に比べて、酸素と塩酸との混合雰囲気
の方が少数キャリアライフタイムが大きいことがわか
る。 【0024】また、図3及び図4の結果は再酸化の雰囲
気を酸素雰囲気から酸素と塩酸との混合雰囲気に変えた
ことで、基板中や基板−誘電体層界面の欠陥が水素基で
終端されたことによると考えられる。よって、酸化時に
水素含有雰囲気を加えることで、従来より薄い再酸化膜
厚で良好な特性を得ることができるため、誘電体層の薄
膜化に非常に有効であるといえる。 【0025】図5はQbdの評価結果である。亜酸化窒
素中での保持時間を一定として、再酸化膜厚及び再酸化
を行わない試料に関しては亜酸化窒素に曝す前の酸化膜
厚を制御して、誘電体層の全体の膜厚を4.5nmとし
た。再酸化雰囲気を酸素・塩酸の混合雰囲気とした場合
のQbd値が、再酸化なし、及び酸素による再酸化より
やや大きいことが分かる。 【0026】これは、図3及び図4の場合と同じ理由に
加えて、酸素による酸化に比べて、塩酸混合雰囲気での
酸化の方が、絶縁特性がシリコン酸化膜より悪い、シリ
コン基板から酸化膜に遷移する膜が薄く、誘電体層全体
として、従来より絶縁特性に優れたものである。 【0027】また、再酸化を酸素雰囲気と湿式酸化雰囲
気とで比較した結果を図6に示す。誘電体層の膜厚が図
5の場合より薄膜化しているが、湿式酸化では良好な結
果を得ている。再酸化を湿式酸化にすることによって
も、酸化膜構造が良好となり、同様の効果が得られるこ
とがわかる。よって、この酸化方法を用いることで、従
来の酸化より優れた絶縁破壊特性を持ちながら界面準位
密度の低い誘電体層を得ることができる。 【0028】また、図7に酸素及び酸素と塩酸との混合
雰囲気の再酸化レートを示す。酸素及び酸素と塩酸との
混合雰囲気とを比較すると、膜厚の基板面内ばらつきは
同程度で、且つ、酸素と塩酸との混合雰囲気の方が酸素
雰囲気に比べて、酸化レートが速く処理時間の短縮を図
ることができる。尚、図7において、実線は誘電体層の
全体膜厚を示し、点線は第2の誘電体層の膜厚を示す。 【0029】 【発明の効果】以上、詳細に説明したように、本発明に
よれば、界面準位密度が低く、絶縁特性に優れた窒素含
有誘電体層を得ることができ、デバイスの信頼性及び生
産性を向上させることができる。 【0030】また、熱酸化膜を酸素と窒素の雰囲気で半
導体基板を酸化して形成することで、第1の誘電体層を
形成する前の基板表面の窒化や荒れを防ぐことができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a nitrogen-containing dielectric layer formed on a surface of a semiconductor substrate. It is about the method. 2. Description of the Related Art A stable thermal oxide film is used as an insulating film for a gate dielectric layer of a MOS transistor. However, in order to increase the density and integration of an VLSI and to increase the operation speed, the thickness of the thin film is reduced. Is required. As the film becomes thinner, the initial withstand voltage (TZD
B), the amount of dielectric breakdown charge (Qbd), and the resistance to hot carriers are reduced. Therefore, it is important to improve these characteristics. Another important issue is the control of the threshold (Vth) shift due to boron penetration when using a P + gate. A nitrogen-containing dielectric layer grown using nitrous oxide (N 2 O) has these characteristics better than a thermal oxide film, and the gate dielectric layer is formed in a nitrous oxide atmosphere. I have. However, it has been found that dielectric layers formed in a nitrous oxide atmosphere exhibit other undesirable characteristics. For example, it has been pointed out that a dielectric layer formed in a nitrous oxide atmosphere has a high interface state density. This characteristic causes a reduction in mobility and results in a reduction in drive current of the transistor element. [0005] It is considered that such characteristics are caused by the high concentration of nitrogen bonded to the interface between the nitrogen-containing dielectric layer and the semiconductor substrate. To obtain both the effective properties of a dielectric layer grown with nitrous oxide and the effective properties of a nitrogen-free dielectric layer formed by thermal oxidation, as shown in FIG. After forming the dielectric layer in an atmosphere, the substrate is re-oxidized in an oxidizing atmosphere, and a thermal oxide film is further grown between the substrate and nitrogen existing at the interface between the substrate and the dielectric layer. As a result, a dielectric layer having improved initial dielectric strength (TZDB), dielectric breakdown charge (Qbd), and hot carrier resistance and having a low interface state density can be obtained. FIG. 8 is a view showing a conventional process of forming an oxide film between a nitrogen-containing dielectric layer and a semiconductor substrate. However, reoxidation increases the thickness of the dielectric,
The capacitance of the dielectric layer decreases, and the drive current of the transistor decreases. As a method of reducing the interface state, there is a method of forming a silicon-halogen bond by performing a heat treatment in a halogen-containing atmosphere. This is not enough to reduce the level, and furthermore, there is a problem that the atmosphere containing halogen has an etching effect and conversely roughens the interface between the substrate and the oxide film. According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the step of forming a nitrogen-containing first dielectric layer on a semiconductor substrate. In the manufacturing method, a thermal oxide film is formed by oxidizing a semiconductor substrate in an atmosphere of oxygen and nitrogen, and after forming the nitrogen-containing first dielectric layer on the semiconductor substrate, an oxidizing atmosphere of oxygen and hydrochloric acid is formed. Wherein a second dielectric layer is formed between the semiconductor substrate and the first dielectric layer. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, based on one embodiment,
The present invention will be described in detail. FIG. 1 is a view showing a process of forming an oxide film between a nitrogen-containing dielectric layer of the present invention and a semiconductor substrate, and FIG. 2 is a diagram showing an oxide film formed between the nitrogen-containing dielectric layer and the semiconductor substrate. FIG. 3 is a cross-sectional view of the configuration when formed. Hereinafter, a manufacturing process of the semiconductor device of the present invention will be described with reference to FIGS. First, a silicon substrate 1 as a semiconductor substrate is loaded into a reactor in a first temperature state (room temperature to 900 ° C., for example, 700 ° C.). Next, the inside of the reactor is filled with a mixed atmosphere of oxygen and nitrogen (for example, oxygen 0.5%), the temperature is raised to a second temperature state (500 to 1000 ° C., for example, 750 ° C.), and the reactor is heated for a certain time (for example, 10 minutes). )Hold. Here, the holding at the second temperature state is to grow a thermal oxide film (not shown) slightly on the surface of the silicon substrate 1 and to prevent nitriding and roughening of the silicon substrate surface at the time of loading and at the time of temperature. is there. Specifically, a thermal oxide film having a thickness of 0.1 to 3.0 nm is formed. The interface level decreases as the thickness of the thermal oxide film increases, but the effect is saturated at a thickness of 3.0 nm or more. In this embodiment mode, a thermal oxide film having a thickness of 1.0 nm is formed. Next, the reactor is placed in a nitrogen atmosphere,
The temperature is raised to a temperature state (600 to 1200 ° C., for example, 900 ° C.). In the third temperature state, the inside of the reactor is kept in a nitrous oxide atmosphere for a certain period of time (for example, 10 minutes) to form the first dielectric layer 2 containing nitrogen. Although the thickness of the first dielectric layer 2 is preferably as small as possible, the holding time in nitrous oxide and the temperature are determined by the amount of nitrogen introduced necessary for the device to be applied. Specifically, the first dielectric layer 2 having a thickness of 1.0 to 20.0 nm, for example, 3.0 nm is formed (FIG. 2A). Thereafter, the interior of the reactor at the third temperature is set to a mixed atmosphere of oxygen and hydrochloric acid (for example, 3% of hydrochloric acid with respect to the whole mixed atmosphere), and an interface between the substrate and the first dielectric layer 2 is formed. 2) and a substrate, and a second dielectric layer 3 made of a silicon oxide film is grown (FIG. 2B). The thickness of the second dielectric layer 3 is determined from the amount of current in the channel of the transistor and the insulating characteristics. Here, for example, annealing is performed only in a hydrochloric acid atmosphere, and if the second dielectric layer 3 is not grown, the substrate is roughened by etching with chlorine, leading to deterioration of characteristics. Dielectric layer 3 is slightly (about 0.1 n
m or more), for example, annealing is performed while growing 0.6 nm. In order to reduce the interface state density, the thicker the second dielectric layer 3 is, the more effective it is. However, as the thickness of the second dielectric layer 3 is larger, the penetration of boron is more likely to occur, resulting in a threshold shift. Therefore, the optimum film thickness differs depending on the device used. At this time, in a hydrogen atmosphere, the substrate is not roughened and the film thickness does not increase. However, dissociation occurs at the same time as the silicon-hydrogen bond progresses, that is, an equilibrium state is established. The level cannot be reduced. Therefore,
In order to sufficiently reduce the interface state, it is effective to combine a method in which a silicon oxide film is further grown on the interface between the substrate and the dielectric layer and nitrogen is separated from the interface. Therefore, a mixed atmosphere of hydrogen and oxygen is effective. Alternatively, a wet oxidation atmosphere is desirable. Thereafter, the first dielectric layer and the second dielectric layer formed in the above steps are used as a gate insulating film,
A MOS transistor is manufactured using a conventional technique. The formation of the second dielectric layer in a wet oxidation atmosphere is performed under the following conditions. For example, when the volume of hydrogen is 1, the volume of oxygen is 1, water is generated in the apparatus, and wet oxidation is performed at 600 to 1200C, for example, 900C. Next, the inside of the reactor is cooled to a fourth temperature state (for example, 700 ° C.) in a nitrogen atmosphere, and the substrate is unloaded. FIGS. 3 and 4 show the results of the evaluation of the interface state density and the minority carrier lifetime with respect to the film thickness of the entire dielectric layer, respectively. 5 and 6 show the relationship between the breakdown charge amount and the failure rate. FIG. 7 shows the relationship between the reoxidation time, the overall thickness of the dielectric layer, and the thickness of the second dielectric layer. In FIGS. 3 and 4, the film thickness increased by the re-oxidation is shown in parentheses. From FIG. 3, the thickness of the dielectric layer is the same, and the oxygen atmosphere and the mixed atmosphere of oxygen and hydrochloric acid are used. Can be seen that the interface state density is lower in the mixed atmosphere method of oxygen and hydrochloric acid than in the oxygen atmosphere. FIG. 4 also shows that the minority carrier lifetime is longer in the mixed atmosphere of oxygen and hydrochloric acid than in the oxygen atmosphere. 3 and 4 show that the reoxidation atmosphere was changed from an oxygen atmosphere to a mixed atmosphere of oxygen and hydrochloric acid, so that defects in the substrate and at the interface between the substrate and the dielectric layer were terminated with hydrogen groups. Probably because it was done. Therefore, by adding a hydrogen-containing atmosphere at the time of oxidation, good characteristics can be obtained with a re-oxidized film thickness smaller than before, and it can be said that this is very effective for thinning the dielectric layer. FIG. 5 shows the evaluation results of Qbd. With the retention time in nitrous oxide kept constant, the thickness of the re-oxidized film and that of the sample not subjected to re-oxidation were controlled by controlling the thickness of the oxide film before exposure to nitrous oxide so that the total thickness of the dielectric layer was 4%. 0.5 nm. It can be seen that the Qbd value when the reoxidation atmosphere is a mixed atmosphere of oxygen and hydrochloric acid is slightly larger than that without reoxidation and with oxygen. This is because, in addition to the same reason as in FIGS. 3 and 4, oxidation in a hydrochloric acid mixed atmosphere is more insulative than in the case of oxidation with oxygen. The film that transitions to a film is thin, and the dielectric layer as a whole has better insulating properties than before. FIG. 6 shows the result of comparison of reoxidation between an oxygen atmosphere and a wet oxidation atmosphere. Although the thickness of the dielectric layer is thinner than that of FIG. 5, good results are obtained by wet oxidation. It can be seen that the oxide film structure is also improved and the same effect can be obtained by performing wet oxidation for re-oxidation. Therefore, by using this oxidation method, a dielectric layer having a lower interface state density while having better dielectric breakdown characteristics than conventional oxidation can be obtained. FIG. 7 shows the re-oxidation rate in oxygen and a mixed atmosphere of oxygen and hydrochloric acid. Compared with oxygen and a mixed atmosphere of oxygen and hydrochloric acid, the variation in film thickness within the substrate surface is almost the same, and the oxidation rate of the mixed atmosphere of oxygen and hydrochloric acid is faster than that of the oxygen atmosphere, and the processing time is shorter. Can be reduced. In FIG. 7, the solid line indicates the entire thickness of the dielectric layer, and the dotted line indicates the thickness of the second dielectric layer. As described in detail above, according to the present invention, a nitrogen-containing dielectric layer having a low interface state density and excellent insulating properties can be obtained, and the reliability of the device can be improved. And productivity can be improved. Further, the thermal oxide film is partially cut in an atmosphere of oxygen and nitrogen.
By oxidizing the conductive substrate, nitridation and roughening of the substrate surface before forming the first dielectric layer can be prevented.

【図面の簡単な説明】 【図1】本発明の窒素含有誘電体層と半導体基板との間
に酸化膜を形成する工程を示す図である。 【図2】窒素含有誘電体層と半導体基板との間に酸化膜
を形成した際の構成断面図である。 【図3】誘電体層全体の膜厚に対する界面準位密度の評
価を行った結果を示す図である。 【図4】誘電体層全体の膜厚に対する少数キャリアライ
フタイムの評価を行った結果を示す図である。 【図5】第1の絶縁破壊電荷量と故障率との関係を示す
図である。 【図6】第2の絶縁破壊電荷量と故障率との関係を示す
図である。 【図7】再酸化時間と誘電体層の全体膜厚及び第2の誘
電体層の膜厚との関係を示す図である。 【図8】従来の窒素含有誘電体層と半導体基板との間に
酸化膜を形成する工程を示す図である。 【符号の説明】 1 シリコン基板 2 第1の誘電体層 3 第2の誘電体層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a step of forming an oxide film between a nitrogen-containing dielectric layer of the present invention and a semiconductor substrate. FIG. 2 is a cross-sectional view illustrating a configuration when an oxide film is formed between a nitrogen-containing dielectric layer and a semiconductor substrate. FIG. 3 is a diagram showing the results of evaluation of interface state density with respect to the thickness of the entire dielectric layer. FIG. 4 is a diagram showing a result of evaluating a minority carrier lifetime with respect to a film thickness of an entire dielectric layer. FIG. 5 is a diagram illustrating a relationship between a first breakdown charge amount and a failure rate. FIG. 6 is a diagram showing a relationship between a second breakdown charge amount and a failure rate. FIG. 7 is a diagram showing the relationship between the reoxidation time and the total thickness of a dielectric layer and the thickness of a second dielectric layer. FIG. 8 is a view showing a conventional process of forming an oxide film between a nitrogen-containing dielectric layer and a semiconductor substrate. [Description of Signs] 1 Silicon substrate 2 First dielectric layer 3 Second dielectric layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/318 H01L 29/78 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/318 H01L 29/78

Claims (1)

(57)【特許請求の範囲】 【請求項1】 半導体基板上に窒素含有の第1の誘電体
層を形成する工程を有する半導体装置の製造方法におい
て、 酸素と窒素の雰囲気で半導体基板を酸化することで熱酸
化膜を形成し、上記窒素含有の第1の誘電体層を半導体
基板上に形成した後、酸素と塩酸の酸化性雰囲気中で半
導体基板と第1の誘電体層との間に第2の誘電体層を形
成することを特徴とする、半導体装置の製造方法。
(57) A method of manufacturing a semiconductor device having a step of forming a nitrogen-containing first dielectric layer on a semiconductor substrate, wherein the semiconductor substrate is oxidized in an atmosphere of oxygen and nitrogen. After forming a thermal oxide film and forming the nitrogen-containing first dielectric layer on the semiconductor substrate, a thermal oxide film is formed between the semiconductor substrate and the first dielectric layer in an oxidizing atmosphere of oxygen and hydrochloric acid. Forming a second dielectric layer on the substrate.
JP14361098A 1998-05-26 1998-05-26 Method for manufacturing semiconductor device Expired - Lifetime JP3439657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14361098A JP3439657B2 (en) 1998-05-26 1998-05-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14361098A JP3439657B2 (en) 1998-05-26 1998-05-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH11340224A JPH11340224A (en) 1999-12-10
JP3439657B2 true JP3439657B2 (en) 2003-08-25

Family

ID=15342745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14361098A Expired - Lifetime JP3439657B2 (en) 1998-05-26 1998-05-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3439657B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232222A (en) 1999-02-10 2000-08-22 Nec Corp Manufacture of semiconductor device
US7358198B2 (en) 2002-03-08 2008-04-15 Kabushiki Kaisha Toshiba Semiconductor device and method for fabricating same
KR100809685B1 (en) 2005-09-13 2008-03-06 삼성전자주식회사 Dielectric film, Method of manufacturing the dielectric film and method of manufacturing capacitor using the same
JP2007288069A (en) * 2006-04-19 2007-11-01 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device
JP6088804B2 (en) * 2012-11-16 2017-03-01 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JPH11340224A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP3976282B2 (en) A novel process for reliable ultra-thin oxynitride formation
US5851892A (en) Fabrication sequence employing an oxide formed with minimized inducted charge and/or maximized breakdown voltage
JP2871530B2 (en) Method for manufacturing semiconductor device
US5891809A (en) Manufacturable dielectric formed using multiple oxidation and anneal steps
US7569502B2 (en) Method of forming a silicon oxynitride layer
US20080233692A1 (en) Method and System for Forming a Controllable Gate Oxide
JP3887364B2 (en) Manufacturing method of semiconductor device
Hori et al. Excellent charge-trapping properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing
JP3593340B2 (en) Manufacturing method of integrated circuit device
JP3439657B2 (en) Method for manufacturing semiconductor device
EP1320127A2 (en) Oxynitride device and method using non-stoichiometric silicon oxide
JP2001135735A (en) Method for manufacturing nonvolatile semiconductor device
US6569781B1 (en) Method of forming an ultra-thin oxide layer on a silicon substrate by implantation of nitrogen through a sacrificial layer and subsequent annealing prior to oxide formation
EP1308995A2 (en) Semiconductor Device Having A Dielectric Layer With A Uniform Nitrogen Profile
JP3647785B2 (en) Manufacturing method of semiconductor device
JP2636783B2 (en) Method for manufacturing semiconductor device
JP3054422B2 (en) Method for manufacturing semiconductor device
US6509230B1 (en) Non-volatile memory semiconductor device including a graded, grown, high quality oxide layer and associated methods
JPH0574762A (en) Formation of insulating film
JP4076638B2 (en) Manufacturing method of semiconductor device
US6407008B1 (en) Method of forming an oxide layer
JP3429567B2 (en) Method for manufacturing MOS semiconductor device
JP2004146665A (en) Manufacturing method of semiconductor device
US6521496B1 (en) Non-volatile memory semiconductor device including a graded, grown, high quality control gate oxide layer and associated methods
JP3232008B2 (en) Method for forming nitrided oxide film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term