KR100467706B1 - Human antibodies against the surface antigen of HBV - Google Patents
Human antibodies against the surface antigen of HBV Download PDFInfo
- Publication number
- KR100467706B1 KR100467706B1 KR10-2002-0002190A KR20020002190A KR100467706B1 KR 100467706 B1 KR100467706 B1 KR 100467706B1 KR 20020002190 A KR20020002190 A KR 20020002190A KR 100467706 B1 KR100467706 B1 KR 100467706B1
- Authority
- KR
- South Korea
- Prior art keywords
- chain
- human antibody
- antibody
- hepatitis
- surface antigen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/081—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
- C07K16/082—Hepadnaviridae, e.g. hepatitis B virus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 B형 간염 바이러스 (Hepatitis B virus, HBV)의 표면 항원 (HBsAg)에 대한 인간항체 유전자 (DNA)의 염기서열, 동물세포 발현 벡터, 상기 발현 벡터로 형질전환 된 세포주 및 이들로부터 인간항체를 제조하는 방법에 관한 것이다.The present invention relates to a nucleotide sequence of the human antibody gene (DNA) against the surface antigen (HBsAg) of hepatitis B virus (HBV), an animal cell expression vector, a cell line transformed with the expression vector, and a human antibody therefrom. It relates to a method of manufacturing.
Description
본 발명은 B형 간염 바이러스 (Hepatitis B virus, HBV)의 표면 항원에 대한 인간항체에 관한 발명으로 더욱 상세하게는 B형 간염 바이러스 표면항원에 대한 인간항체 유전자 (DNA)의 염기서열, 동물세포 발현 벡터, 상기 발현 벡터로 형질전환 된 세포주 및 이들로부터 인간항체를 제조하는 방법에 관한 것이다.The present invention relates to a human antibody against the surface antigen of Hepatitis B virus (HBV), and more particularly to the hepatitis B virus surface antigen. The present invention relates to a nucleotide sequence of a human antibody gene (DNA), an animal cell expression vector, a cell line transformed with the expression vector, and a method for producing a human antibody from the same.
일반적으로, B형 간염 바이러스는 간염과 간암의 주된 병원균으로 전세계적으로는 약 3억 인구, 한국 내에는 약 400만 명이 감염된, 인류의 건강을 위협하는 중요한 감염성 질환인데, 더욱 악화될 경우 간경화와 간암으로 진행된다. 현재는 백신의 개발로 예방이 가능해 졌지만 아직도 B형 간염 바이러스에 의한 만성 간염 환자가 상당수 존재하고 있는 현실이다.In general, the hepatitis B virus is a major pathogen of hepatitis and liver cancer, which infects about 300 million people worldwide and about 4 million people in Korea. It is an important infectious disease that threatens human health. Progresses to liver cancer. Although vaccines are now preventable, there are still a large number of patients with chronic hepatitis caused by the hepatitis B virus.
B형 간염 항체 제제는 HBV를 포함하고 있는 혈액에 노출되었을 경우나 HBV 보균자 어머니에게서 태어난 신생아의 수직감염 예방을 위해 투여하고 있으며, 간이식 수술시의 HBV의 감염예방을 위해 최근에 그 사용량이 증가하고 있고 또한 만성간염환자의 치료 목적으로 항체의 투여가 시도되고 있다.Hepatitis B antibody preparations are administered to prevent vertical infection of newborns born to mothers of HBV carriers when exposed to blood containing HBV, and have recently been used to prevent HBV infection during liver transplantation. In addition, administration of antibodies has been attempted for the treatment of chronic hepatitis patients.
지금까지 사용되어온 B형 간염 항체제제는 항체를 보유하고 있는 사람의 혈액을 수거하여 이로부터 고도의 정제기술과 바이러스 불활화 기술을 사용하여 생산하고 있으나 원료혈장의 구입이 어렵고 그 비용이 타 혈액제재에 비해 상당히 높아 증가하는 수요에 탄력적으로 대처할 수 없는 문제가 있다. 또한 사람 혈장으로부터 유래하는 바이러스로부터의 오염을 제거하기 위한 많은 시간과 비용이 소요되는 단점이 있다.Hepatitis B antibody preparations that have been used so far are collected by the blood of people who carry them and are produced using advanced purification technology and virus inactivation technology, but the purchase of raw plasma is difficult and costly. Compared to this, there is a problem that it is not possible to flexibly cope with the increasing demand. There is also a disadvantage that it takes a lot of time and money to remove contamination from viruses derived from human plasma.
1975년 Kohler and Milstein에 의해 모노클로날 항체(monoclonal antibody;MAb) 제조기법이 확립된 이후 현재 주로 사용되고 있는 항체들은 마우스에서 만들어진 MAb가 진단용 및 일부 치료용으로 이용되고 있다. 그러나 마우스 항체를 치료 목적으로 인체에 적용할 경우 인체 내에서 마우스 항체에 대한 인간 항체 (human anti-mouse Ab: HAMA) 가 생성되는 문제가 있어 치료목적으로 연속 투여하지 못하는 문제가 발생한다. 이를 극복하기 위한 방편으로 마우스 항체의 아미노산 잔기를 줄이고 인간항체의 아미노산 잔기로 대체 시켜 나가는 방법으로 카이메릭 항체 (chimeric Ab)와 인간화 항체 (humanized Ab)가 개발되고 있으나 HAMA 문제를 해결하지 못하고 있다. 카이메릭 항체는 약 70%의 인간 염기서열을 갖고 있고, 인간화 항체는 90 - 95%의 인간 염기서열을 갖고 있다. 그러나 만성간염 치료 및 간이식 수술을 위해서는 장기간에 걸쳐 반복적으로 항체의 투여가 요구되는데 이럴 경우 반복 투여의 부작용을 줄이기 위해 카이메릭 항체 혹은 인간화 항체의 사용보다는 인간항체의 사용이 절대적으로 요구되고 있다.Since the monoclonal antibody (MAb) manufacturing method was established by Kohler and Milstein in 1975, the main antibody used is the MAb made in the mouse for diagnosis and some treatment. However, when a mouse antibody is applied to a human body for therapeutic purposes, there is a problem in that a human antibody to a mouse antibody (human anti-mouse Ab: HAMA) is generated in the human body, thereby causing a problem of continuous administration for therapeutic purposes. In order to overcome this problem, chimeric and humanized antibodies have been developed by reducing the amino acid residues of mouse antibodies and replacing them with amino acid residues of human antibodies. However, the HAMA problem has not been solved. Chimeric antibodies have about 70% human nucleotide sequences and humanized antibodies have 90-95% human nucleotide sequences. However, chronic hepatitis treatment and liver transplantation are required to repeatedly administer the antibody over a long period of time, in which case the use of human antibodies rather than the use of chimeric or humanized antibody is absolutely required to reduce the side effects of repeated administration.
본 발명은 상기한 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서, 본 발명의 목적은 HBV 감염의 예방 및 치료용 인간항체를 제공하는 것이다.The present invention solves the above problems, and the object of the present invention is to provide a human antibody for the prevention and treatment of HBV infection.
도 1은 본 발명에서 사용된 항체의 H chain의 Fd절편 및 L chain이 삽입된 파아지-display 벡터 pFAB73에 대한 그림.1 is an illustration of the phage-display vector pFAB73 into which the F chain and the L chain of an H chain of an antibody used in the present invention are inserted.
도 2는 PCR에 의해 합성된 항체 Fd 및 L chain DNA를 1.2% agarose gel에서 전기영동한 사진.Figure 2 is a picture of the electrophoresis of the antibody Fd and L chain DNA synthesized by PCR in 1.2% agarose gel.
도 3은 항체 라이브러리로부터 항체를 선별하는 방법 (panning)을 나타내는 그림.FIG. 3 shows a panning of antibodies from an antibody library. FIG.
도 4는 항체 라이브러리로부터 선별된 항체 (Fab)의 HBsAg에 대한 친화도 (affinity)를 측정한 그래프.4 is a graph measuring the affinity of HBsAg of antibodies (Fab) selected from antibody libraries.
도 5는 항체의 H chain 동물세포 발현 벡터 pRC13-Hpa를 나타내는 그림.Figure 5 shows the H chain animal cell expression vector pRC13-Hpa of the antibody.
도 6은 항체의 L chain 동물세포 발현 벡터 pKC12-BH를 나타내는 그림.Fig. 6 shows the L chain animal cell expression vector pKC12-BH of an antibody.
도 7은 동물세포주에서 발현된 항체를 정제한 후의 SDS-PAGE 분석 사진.Figure 7 is a photograph of the SDS-PAGE analysis of purified antibody expressed in animal cell line.
도 8은 동물세포주에서 발현된 항체의 HBsAg에 대한 친화도를 측정한 그래프.8 is a graph measuring the affinity for HBsAg of antibodies expressed in animal cell lines.
상기의 목적을 달성하기 위하여, 본 발명은 B형 간염 바이러스의 표면항원에 대한 인간항체 H chain의 가변영역을 암호화하는 서열정보 1의 아미노산 서열 (HBAb-H4); 및In order to achieve the above object, the present invention provides an amino acid sequence of SEQ ID NO: 1 encoding the variable region of the human antibody H chain to the surface antigen of hepatitis B virus (HBAb-H4); And
B형 간염 바이러스의 표면항원에 대한 인간항체 L chain의 가변영역을 암호화하는 서열정보 2의 아미노산서열 (HBAb-L9)을 포함하는 B형 간염 바이러스의 표면 항원에 대한 인간항체 단백질을 제공한다.Provided is a human antibody protein against the surface antigen of hepatitis B virus comprising the amino acid sequence of SEQ ID NO: 2 (HBAb-L9) encoding the variable region of the human antibody L chain against the surface antigen of hepatitis B virus.
또 본 발명은 상기의 H chain의 가변영역을 암호화하는 서열정보 3의 염기서열 (baseHBAb-H4)을 포함하는 B형 간염 바이러스의 표면항원에 대한 인간항체 DNA 및 L chain의 가변영역을 암호화하는 서열정보 4의 염기서열 (baseHBAb-L9)을 포함하는 B형 간염 바이러스의 표면 항원에 대한 인간항체 DNA을 제공한다.In another aspect, the present invention is a sequence encoding a variable region of human antibody DNA and L chain to the surface antigen of hepatitis B virus comprising the base sequence (baseHBAb-H4) of SEQ ID NO: 3 encoding the variable region of the H chain Human antibody DNA to the surface antigen of hepatitis B virus containing the base sequence of information 4 (baseHBAb-L9) is provided.
또 본 발명은 상기의 인간항체의 H chain의 가변영역을 용이하게 삽입할 수 있는 동물세포에서의 항체 H chain발현 플라스미드 pRC13-Hpa 및 인간항체의 L chain의 가변영역을 용이하게 삽입할 수 있는 동물세포에서의 항체 L chain발현 플라스미드 pKC12-BH을 제공한다.In addition, the present invention is an animal that can easily insert the antibody H chain expression plasmid pRC13-Hpa and the L chain variable region of the human antibody in the animal cell that can easily insert the variable region of the H chain of the human antibody Antibody L chain expression plasmid pKC12-BH in cells is provided.
또한 본 발명은 상기 인간항체의 H chain의 가변영역을 암호화하는 서열정보 3의 염기서열 (baseHBAb-H4)을 포함하는 플라스미드 pRC13-Hpa-HB-H4 및 인간항체의 L chain의 가변영역을 암호화하는 서열정보 4의 염기서열 (baseHBAb-L9)을 포함하는 플라스미드 pKC12-BH-HB-L9을 제공한다.The present invention also encodes the variable region of the plasmid pRC13-Hpa-HB-H4 and the L chain of a human antibody, including the nucleotide sequence of base information 3 (baseHBAb-H4) encoding the variable region of the H chain of the human antibody. It provides a plasmid pKC12-BH-HB-L9 comprising the nucleotide sequence of SEQ ID NO: 4 (baseHBAb-L9).
또한 본 발명은 상기의 플라스미드 pRC13-Hpa-HB-H4; 및 상기의 플라스미드 pKC12-BH-HB-L9로 형질 전환된 chinese hamster ovary (CHO) 세포주 HBAb-49 (KCLRF-BP-00054)을 제공한다.In addition, the present invention is the above plasmid pRC13-Hpa-HB-H4; And the Chinese hamster ovary (CHO) cell line HBAb-49 (KCLRF-BP-00054) transformed with the plasmid pKC12-BH-HB-L9.
본 발명의 세포주는 대한민국 서울시 종로구 서울대학교 의과대학에 위치한 한국 세포주 연구재단에 2001년 11월 30일 균주 기탁 번호 KCLRF-BP-00054로 기탁되었다.The cell line of the present invention was deposited with the strain accession number KCLRF-BP-00054 on November 30, 2001 to the Korea Cell Line Research Foundation located at Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
또한 본 발명은 제 8항의 세포를 배양하는 단계; 상기의 배양된 세포를 이용하여 B형 간염 바이러스의 표면 항원에 대한 인간항체단백질을 발현하는 단계; 및 상기의 발현된 단백질을 정제하는 단계를 포함하는 B형 간염 바이러스의 표면 항원에 대한 인간항체 제조방법 및 상기의 제조방법으로 제조된 HBV 표면항원에 대한 인간항체 단백질을 제공한다.The present invention also comprises the steps of culturing the cells of claim 8; Expressing a human antibody protein against the surface antigen of hepatitis B virus using the cultured cells; And it provides a human antibody method for the surface antigen of hepatitis B virus comprising the step of purifying the expressed protein and human antibody protein for HBV surface antigen prepared by the above method.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에서는 HBsAg에 대한 인간 항체 유전자를 선별하고 인간항체를 발현하는 동물 세포주를 확립하여 HBV의 감염예방 및 만성간염의 치료, 간이식 수술 보조제 등에 이용할 수 있는, 안전성이 증가된 인간항체를 개발하였다.In the present invention, human antibody genes for HBsAg were selected and animal cell lines expressing human antibodies were established to develop human antibodies with increased safety, which can be used for the prevention of HBV infection, treatment of chronic hepatitis, and liver transplantation aids. .
특히 본 발명에서는 HBsAg에 대한 인간항체를 선별하기 위해 파아지-display 기술을 사용하였다. 이 파아지-display 기술 (Smith, Science, 228, 1315-1317, 1985; Hoogenboom & Chames, Immunol Today, 21, 371-378, 2000)은 filamentous 파아지 (M13, Fd, F1)은 표피 단백질을 발현하는 유전자 (gene III) 에 목적하는 항체를 발현하는 유전자를 융합시켜, 박테리오파아지 particle의 표면에 융합된 항체가 노출된 항체-파아지 형태의 바이러스 입자를 생성시켜 노출된 항체의 높은 특이도 및 친화도와 파아지의 높은 감염성을 이용해, biopanning 기법을 이용, 파아지 라이브러리로부터 원하는 항체를 선별할 수 있는 항체공학의 연구에 광범위하게 이용되고 있는 최신의 분자 생물학 기술이다 (Burton & Barbas, Adv Immunol., 57, 191-280, 1994; Winter et al., Annu Rev Immunol., 12, 433-455, 1994); Hoogenboom et al., Immunotechnology, 4, 1-20, 1998).In particular, in the present invention, phage-display technology was used to select human antibodies against HBsAg. This phage-display technology (Smith, Science, 228, 1315-1317, 1985; Hoogenboom & Chames, Immunol Today, 21, 371-378, 2000) is a filamentous phage (M13, Fd, F1) gene that expresses epidermal protein. The gene expressing the antibody of interest is fused to (gene III) to generate antibody-phage virus particles exposed to the surface of the bacteriophage particle, thereby exposing the high specificity and affinity and phage of the exposed antibody. It is a state-of-the-art molecular biology technology widely used in the study of antibody engineering that allows high infectivity to select desired antibodies from phage libraries using biopanning techniques (Burton & Barbas, Adv Immunol., 57, 191-280). , 1994; Winter et al., Annu Rev Immunol., 12, 433-455, 1994); Hoogenboom et al., Immunotechnology, 4, 1-20, 1998).
본 발명에서 사용된 파아지-display 벡터 pFAB73은 Dr. Jan Engberg로부터 제공받아 사용하였다 (Engberg et al., Mol Biotechnol., 6, 287-310, 1996) (도 1 참조)The phage-display vector pFAB73 used in the present invention is Dr. Used from Jan Engberg (Engberg et al., Mol Biotechnol., 6, 287-310, 1996) (see FIG. 1).
또 본 발명에서 사용된 인간항체 DNA의 클로닝에 사용된 프라이머들은 표 1과 같다.In addition, the primers used for cloning the human antibody DNA used in the present invention are shown in Table 1.
[표 1] 인간항체 DNA의 클로닝 및 sequencing에 사용된 프라이머TABLE 1 Primers used for cloning and sequencing of human antibody DNA
이하, 비 한정적인 실시 예를 통하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to non-limiting examples.
실시 예 1 : RNA의 분리Example 1: Isolation of RNA
본 발명에서는 B형 간염 항체의 유전자를 확보하기 위해 B형 간염 백신 (Hepavax-Gene; 녹십자 백신, 한국)을 10명의 사람에게 4주 간격으로 2회 주사한후 7일 후에 10ml씩 채혈을 하였다. 채혈한 것을 모두 합하여 Hank's balanced salt solution (HBSS; Sigma사, 미국) 100 ml과 희석해서 보관한 후 50 ml tube에 Histoprep (Sigma사) 10 ml을 넣고 그 위에 HBSS와 희석된 혈액 20 ml을 중첩시키고 3000 rpm으로 원심분리하여 백혈구 층을 분리하였다. 이렇게 분리된 백혈구를 모아서 6 ml의 HBSS와 2 ml의 백혈구를 섞어서 1000 rpm으로 원심분리 하여 백혈구를 수거하였다. 100 μl의 백혈구를 1 ml의 TRIZOL (Life Technology사, 미국)과 섞어서 RNA를 분리하였다. 이렇게 분리한 RNA를 증류수로 희석하여 260 nm에서 흡광도를 측정하여 그 양을 계산하였다 (1.8 μg/μl). 보다 자세한 과정은 다음과 같다.In the present invention, hepatitis B vaccine (Hepavax-Gene; Green Cross vaccine, Korea) was injected into 10 persons twice at 4 week intervals and blood was collected by 10 ml after 7 days to secure the gene of the hepatitis B antibody. The collected blood was collected and diluted with 100 ml of Hank's balanced salt solution (HBSS; Sigma, USA), 10 ml of Histoprep (Sigma) was added to a 50 ml tube, and 20 ml of HBSS and diluted blood were superimposed thereon. The leukocyte layer was separated by centrifugation at 3000 rpm. The white blood cells thus collected were collected, and 6 ml of HBSS and 2 ml of white blood cells were mixed and centrifuged at 1000 rpm to collect white blood cells. RNA was isolated by mixing 100 μl of white blood cells with 1 ml of TRIZOL (Life Technology, USA). The RNA thus separated was diluted with distilled water and the absorbance was measured at 260 nm to calculate the amount thereof (1.8 μg / μl). The detailed process is as follows.
백혈구 100 μl당 trizol 1ml을 넣고 피펫으로 세포를 잘 풀어준 후, 실온(15℃∼ 30℃)에서 5분 동안 기다렸다. 다음으로, Trizol 1ml당 클로로포름 200μl를 넣어 잘 섞고, 뚜껑을 닫고 손으로 15초 동안 세게 흔들어준 후 실온에서 3분 동안 기다렸다. 그 후, 2∼8℃에서 15분 동안 15,000rpm으로 원심분리 하고, 상층액만 새 튜브에 옮겼다. Trizol 1ml당 이소프로필 알콜 500μl를 넣고 잘 섞어 준 다음, 실온에서 10분 동안 기다렸다. 그 후, 2∼8℃에서 10분 동안 15,000rpm으로 원심분리하고, 상층액을 제거하였다. Trizol 1ml당 75% 에탄올 1ml을 넣고 2℃∼8℃에서 5분 동안 15,000rpm으로 원심분리하고, 에탄올은 따라 버리고 RNA 펠렛은 잠깐 말렸다. 증류수를 150μl 넣고 RNA를 잘 녹인 후, 260nm에서 흡광도를 측정하여 정량 하였다. 그 후, -20℃에서 보관하였다.1 ml of trizol per 100 μl of leukocytes were added to the cells, followed by pipetting, followed by waiting at room temperature (15 ° C. to 30 ° C.) for 5 minutes. Next, 200 μl of chloroform per 1 ml of Trizol was mixed well, the lid was closed and shaken vigorously for 15 seconds by hand, and then waited at room temperature for 3 minutes. Thereafter, the mixture was centrifuged at 15,000 rpm for 15 minutes at 2 to 8 ° C, and only the supernatant was transferred to a new tube. 500 μl of isopropyl alcohol was added per 1 ml of Trizol, mixed well, and then waited at room temperature for 10 minutes. Thereafter, the mixture was centrifuged at 15,000 rpm for 10 minutes at 2 to 8 ° C, and the supernatant was removed. 1 ml of 75% ethanol was added per 1 ml of Trizol, and centrifuged at 15,000 rpm for 5 minutes at 2 ° C. to 8 ° C., the ethanol was discarded, and the RNA pellet was dried briefly. 150 μl of distilled water was dissolved in the RNA, and then the absorbance was measured and measured at 260 nm. It was then stored at -20 ° C.
실시 예 2: 항체 유전자 증폭Example 2: Antibody Gene Amplification
실시예 1에서 분리한 RNA 5μl, pd(T)12-18(0.5μg/μl) 1μl, 총 부피가 40 μl가 되도록 증류수 34 μl를 넣고 섞어주었다. 이 혼합물을 65 ℃에서 5분간 반응시킨 후 45분간 서서히 식혀서 25 ℃가 되도록 하였다. 여기에 Ready-To-Go RT-PCR Bead (Amersham Pharmacia Biotech사, 미국)를 첨가한 후 42 ℃에서 30분간 반응시켜 cDNA를 합성하였다. 그리고 나서 95 ℃에서 5분간 두었다가 즉시 얼음에서 식혔다. 이 Bead에는 Taq DNA polymerase, dNTP, Moloney Murine Leukemia Virus Reverse Transcriptase, RNAguard Ribonuclease inhibitor와 stabilizer 등을 포함하고 있다. 식혀진 혼합물에 Fd, kappa, lambda 체인에 맞게 고안된 5' 프라이머 2 μl (25 pmol/μl), 3' 프라이머 2 μl (25 pmol/μl), 증류수 6 μl를 넣고 PCR 반응을 실시하였다. PCR반응은 95 ℃에서 5분 동안 반응시킨 후, 95 ℃에서 1분, 56 ℃에서 2분, 72 ℃에서 2분으로 40회 반응시킨 후, 마지막으로 72 ℃에서 15분 동안 반응시킴으로써 이루어졌다.5 μl of RNA isolated in Example 1, 1 μl of pd (T) 12-18 (0.5 μg / μl), and 34 μl of distilled water were added and mixed so that the total volume was 40 μl. The mixture was reacted at 65 ° C. for 5 minutes and then cooled slowly to 45 ° C. for 25 minutes. Ready-To-Go RT-PCR Bead (Amersham Pharmacia Biotech, USA) was added thereto and reacted at 42 ° C. for 30 minutes to synthesize cDNA. It was then left at 95 ° C for 5 minutes and immediately cooled on ice. The beads include Taq DNA polymerase, dNTP, Moloney Murine Leukemia Virus Reverse Transcriptase, RNAguard Ribonuclease inhibitors and stabilizers. In the cooled mixture, 2 μl (25 pmol / μl) of 5 'primer, 2 μl (25 pmol / μl) of 3' primer and 6 μl of distilled water were added to the Fd, kappa, and lambda chains. The PCR reaction was carried out for 5 minutes at 95 ° C., for 1 minute at 95 ° C., 2 minutes at 56 ° C., and 2 times at 72 ° C., and finally at 72 ° C. for 15 minutes.
프라이머 VH1 ∼ VH4를 같은 비율로 혼합하여 프라이머 CH1과 PCR을 실시하고, 여기에서 얻어진 PCR DNA 2μl를 사용하여 다시 프라이머 VH.EXT와 프라이머 CH1으로 PCR을 실시하여 Fd DNA를 클로닝 하였다.Primers VH1 to VH4 were mixed in the same ratio, and PCR was performed with primer CH1. PCR was performed using primers VH.EXT and primer CH1 again to clone Fd DNA using 2 μl of the PCR DNA obtained here.
프라이머 VLK 와 VLL을 같은 양으로 섞고 또 프라이머 CLK와 CLL도 같은 양으로 섞어 PCR을 시행하여 light chain DNA를 클로닝 하였다.The primers VLK and VLL were mixed in the same amount, and the primers CLK and CLL were also mixed in the same amount and PCR was performed to clone the light chain DNA.
이렇게 합성된 항체 DNA를 1.2% agarose gel에서 전기영동으로 확인(도 2 참조)하고, 각 DNA를 Qiagen kit (Qiagen사, 독일)로 정제하였다. 도 2에서 나타난바와 같이, PCR에서 Fd 및 L chain에 특이한 약 700 base pair의 DNA 밴드를 얻었다. 도 2에서 M은 DNA 크기 표지이고, H는 Fd의 PCR결과이고, L 은 light chain의 PCR결과이다.The antibody DNA thus synthesized was confirmed by electrophoresis on 1.2% agarose gel (see FIG. 2), and each DNA was purified by a Qiagen kit (Qiagen, Germany). As shown in Figure 2, PCR obtained about 700 base pairs of DNA bands specific for the Fd and L chain. In FIG. 2, M is a DNA size label, H is a PCR result of Fd, and L is a PCR result of light chain.
실시 예 3 : 항체 DNA의 제한효소 절단Example 3: Restriction Enzyme Cleavage of Antibody DNA
실시 예 2에서 준비된 DNA중 Fd는 제한효소 NheI/NotI, kappa 및 lambda는 제한효소 SfiI/AscI을 사용하여 절단하고 이렇게 제한효소로 절단한 각각의 체인을 1.2% agarose gel을 사용한 전기영동으로 분리하고, 분리한 DNA를 Qiagen kit로 정제하였다.In the DNA prepared in Example 2, Fd was cut using restriction enzymes NheI / NotI, kappa and lambda using restriction enzyme SfiI / AscI, and each chain cut with restriction enzyme was separated by electrophoresis using 1.2% agarose gel. The isolated DNA was purified by Qiagen kit.
실시 예 4: 항체 DNA의 ligation과 라이브러리 제조Example 4: ligation and library preparation of antibody DNA
파아지-display 벡터 pFAB73을 restriction enzyme NheI/NotI을 사용하여 절단하고, 1.2% agarose gel 전기영동과 Qiagen kit로 정제하였다. 실시 예 3에서 준비된 180 ng의 Fd 와 600 ng의 pFAB73 (모두 NheI/NotI으로 절단)을 섞어주고 T4 DNA ligase (New England BioLabs, 미국)를 넣어 실온에서 overnight 동안 반응시켰다. 이 ligation mixture를 Qiagen kit로 정제하여E. coli XL1-bluecell에 electroporation으로 형질전환 시켜 총 100 ml의 배지에 overnight 동안 키워 여기에서 plasmid를 분리하였고 이를 HB-ΔL-Fd-pFAB73로 명명하였다.Phage-display vector pFAB73 was digested with restriction enzyme NheI / NotI and purified by 1.2% agarose gel electrophoresis and Qiagen kit. 180 ng of Fd prepared in Example 3 and 600 ng of pFAB73 (all cut with NheI / NotI) were mixed, and T4 DNA ligase (New England BioLabs, USA) was added and reacted at room temperature overnight. The ligation mixture was purified by Qiagen kit, transformed into E. coli XL1-blue cells by electroporation, grown in 100 ml of medium overnight for isolation of plasmids, and named HB-ΔL-Fd-pFAB73.
이 HB-ΔL-Fd-pFAB73 plasmid를 제한효소 SfiI/AscI으로 절단하여 위에서와 같이 정제하였고, 1.4 μg의 HB-ΔL-Fd-pFAB73 plasmid와 300 ng의 L chain PCR DNA (모두 SfiI/AscI으로 절단)를 섞어주고 T4 DNA ligase (New England BioLabs, 미국)를 넣어 실온에서 overnight 동안 반응시켰다. 이 ligation mixture를 Qiagenkit로 정제하여E. coli XL1-bluecell에 electroporation으로 형질전환 시켜 총 100 ml의 배지에 carbenicillin 및 tetracyclin을 넣고 37℃에서 2 시간 동안 키운 후 M13 helper 파아지 (Stratagene사, 미국)를 접종시켜 16시간 배양하여 보고된 바와 같이 (Engberg et al., Mol Biotechnol., 6, 287-310, 1996) 파아지 라이브러리를 만들었다. 배양된 E. coli로부터 plasmid를 분리하였고 이를 HB-Fab-pFAB73으로 명명하였다.The HB-ΔL-Fd-pFAB73 plasmid was digested with restriction enzyme SfiI / AscI and purified as above, and 1.4 μg of HB-ΔL-Fd-pFAB73 plasmid and 300 ng of L chain PCR DNA (all were cut with SfiI / AscI). ) And T4 DNA ligase (New England BioLabs, USA) was added and allowed to react overnight at room temperature. The ligation mixture was purified by Qiagenkit and transformed into E. coli XL1-blue cells by electroporation. Carbenicillin and tetracyclin were added to 100 ml of medium and grown at 37 ° C for 2 hours, followed by M13 helper phage (Stratagene, USA). Phage libraries were made by inoculation for 16 hours and reported (Engberg et al., Mol Biotechnol., 6, 287-310, 1996). Plasmids were isolated from cultured E. coli and named HB-Fab-pFAB73.
실시 예 5: HBsAg에 결합하는 항체 선별Example 5: Antibody Screening for HBsAg
HBsAg에 결합하는 항체는 panning 기법 (Engberg et al., Mol Biotechnol., 6, 287-310, 1996; Kim et al., Gene, 241, 19-25, 2000)을 사용하여 선별하였다. 그 방법은 HBsAg (녹십자 백신 제공)를 PBS buffer로 5μg/ml이 되게 희석하여 1 ml씩 Immunotube (NUNC사, 덴마크)에 coating하고 위에서 만들어진 파아지 라이브러리 1ml을 37??에서 2시간 반응시키고 PBS buffer로 washing한 후 1% BSA가 들어있는 0.1M Glycine Buffer (pH 2.0)로 HBsAg에 붙어있는 파아지를 떼어내고 이를 1M Tris 용액으로 중화시킨 후 다시E. coli XL1-bluecell에 감염시키고 helper 파아지를 넣어주어 100 ml의 배지에 overnight 동안 키우고 polyethylen glycol (PEG) 용액 (20% PEG 8,000 및 15% NaCl을 함유하는 용액)을 1/5 부피로 더하고 얼음에서 30분간 보관하여 파아지 particle을 침전시켜 파아지를 모으고 이를 다시 HBsAg가 coating된 Immunotube에 반응시켜 위의 과정을 5회 반복하였다. 파아지-display 라이브러리를 이용한 항체 선별의 과정을 도 3에 나타내었다.Antibodies that bind HBsAg were selected using panning techniques (Engberg et al., Mol Biotechnol., 6, 287-310, 1996; Kim et al., Gene, 241, 19-25, 2000). The method is diluted HBsAg (provided with green cross vaccine) to 5μg / ml with PBS buffer and coated in 1 ml each time on Immunotube (NUNC, Denmark), 1ml of the phage library prepared above was reacted for 2 hours at 37 ?? After washing, remove the phages attached to HBsAg with 0.1M Glycine Buffer (pH 2.0) containing 1% BSA, neutralize them with 1M Tris solution, and then infect E. coli XL1-blue cells and add helper phages. Incubate overnight in 100 ml of medium, add 1/5 volume of polyethylen glycol (PEG) solution (solution containing 20% PEG 8,000 and 15% NaCl) and store on ice for 30 minutes to precipitate phage particles to collect phage. The above process was repeated five times by reacting the HBsAg coated Immunotube. The process of antibody screening using phage-display library is shown in FIG. 3.
5회의 panning이 끝난 라이브러리의 각 colony를 공지의 방법 (Kim et al.,Gene, 241, 19-25, 2000)에 따라 2 ml의 배지에 키워 IPTG를 처리하여 항체 발현을 유도하였다.Each colony of five panning libraries was grown in 2 ml of medium according to known methods (Kim et al., Gene, 241, 19-25, 2000) to induce antibody expression by treatment with IPTG.
항체 발현 여부는 HBsAg가 coating된 96 웰 plate를 사용하여 ELISA 법으로 측정하였다.Antibody expression was measured by ELISA using a 96 well plate coated with HBsAg.
실시 예 6: 선별된 항체의 sequencingExample 6: Sequencing of Selected Antibodies
상기 실시예 5에서 선별한 항체분비 colony를 50μg/ml 카베니실린(carbenicillin)이 들어있는 LB 배지 10ml에서 밤새 배양한 다음, Qiagen plasmid mini kit (Qiagen, Valencia, CA, 미국)를 이용하여 재조합 플라스미드를 분리하여 각각의 제한효소 (Fd: NheI/NotI; L: SfiI/AscI)로 절단하여 agarose gel에서의 전기영동을 실시하여 각 항체의 fragment가 올바르게 삽입되어 있는 것이 확인된 plasmid의 Fd 와 L 체인의 DNA 염기서열을 확인하였다.The antibody secreting colony selected in Example 5 was incubated overnight in 10 ml of LB medium containing 50 μg / ml carbenicillin, followed by recombinant plasmid using a Qiagen plasmid mini kit (Qiagen, Valencia, CA, USA). Was isolated and cleaved with each restriction enzyme (Fd: NheI / NotI; L: SfiI / AscI) and subjected to electrophoresis on an agarose gel to confirm that the fragments of each antibody were correctly inserted into the Fd and L chains of the plasmid. DNA sequencing was confirmed.
염기서열 결정에 사용된 프라이머는 표 1에 예시된 sequencing primer를 사용하였고, 염기서열 결정은 공지의 방법에 따라 Macrogen사(서울, 대한민국)에 의뢰하여 분석하였다.The sequencing primer exemplified in Table 1 was used as the primer for sequencing, and the sequencing primer was analyzed by Macrogen (Seoul, Korea) according to a known method.
실시 예 7: 선별된 항체의 affinity 측정Example 7: Affinity Measurement of Selected Antibodies
선별된 항체의 HBsAg에 대한 친화도 (affinity)를 알아보기 위해 competetion ELISA법(Kim et al., Hybridoma, 20, 265-272, 2001) 을 사용하여 affinity를 측정하였다. 선별된 항체들의 친화도를 측정한 결과를 도 4에 나타내었다.To determine the affinity of the selected antibodies for HBsAg, affinity was measured using a competetion ELISA method (Kim et al., Hybridoma, 20, 265-272, 2001). The results of measuring the affinity of the selected antibodies are shown in FIG. 4.
자세한 과정은 다음과 같다.The detailed process is as follows.
(1) 적정 항체농도의 결정(1) Determination of Proper Antibody Concentration
A. 플레이트의 준비A. Preparation of Plates
HBsAg (녹십자 백신 제공)를 PBS 버퍼로 10μg/ml로 희석하여μl씩 분주하고, 4℃에서 밤새 동안 배양하였다. 플레이트를 PBST로 1회 세척한 다음, 1% BSA-PBS 용액을 200μl씩 분주하고 실온에서 1시간 보관하였다.HBsAg (provided with green cross vaccine) was diluted to 10 μg / ml in PBS buffer, aliquoted by μl and incubated at 4 ° C. overnight. The plate was washed once with PBST, then 200 μl of 1% BSA-PBS solution was stored and stored at room temperature for 1 hour.
B. 1차 반응B. First Reaction
발현된 항체가 들어있는E.coli배양액을 PBS로 여러 단계로 희석하여 플레이트의 각 웰에 100 μl씩 넣고, 실온에서 2시간 반응시킨 후 PBST로 5회 세척하였다.The E. coli culture containing the expressed antibody was diluted with PBS in several steps, 100 μl of each well of the plate was reacted at room temperature for 2 hours, and washed 5 times with PBST.
C. 2차 반응C. Secondary Reaction
Goat anti-human IgG (Fab specific)-peroxidase 접합체 (Sigma)를 1% BSA-PBS 용액으로 5,000배 희석하여 각 웰에 100μl씩 첨가한 다음, 실온에서 1시간 반응시킨 후 PBST로 5회 세척하였다.Goat anti-human IgG (Fab specific) -peroxidase conjugate (Sigma) was diluted 5,000-fold with 1% BSA-PBS solution, added to 100 μl of each well, and then reacted at room temperature for 1 hour and washed 5 times with PBST.
D. 기질반응D. Substrate Reaction
ABTS(KPL, MD, 미국) 용액 100μl씩을 각 웰에 첨가한 다음, 405nm에서 O.D.를 측정하였다. 최대결합치(Maximum binding)를 나타내는 항체 농도의 1/2 농도를 적정 항체 농도로 결정하였다.100 μl of ABTS (KPL, MD, USA) solution was added to each well, and O.D. was measured at 405 nm. A half concentration of the antibody concentration showing the maximum binding value was determined as an appropriate antibody concentration.
(2) 경쟁 ELISA(2) competitive ELISA
A. 플레이트의 준비A. Preparation of Plates
HBsAg (녹십자 백신 제공)를 PBS 버퍼로 10μg/ml로 희석한 다음, 각 웰에100μl씩 분주하고 4℃에서 밤새 동안 배양하였다. 플레이트를 PBST로 1회 세척한 다음, 1% BSA-PBS 용액을 각 웰에 200μl씩 분주하고, 실온에서 1시간 보관하였다.HBsAg (provided with green cross vaccine) was diluted to 10 μg / ml with PBS buffer, then 100 μl was dispensed into each well and incubated at 4 ° C. overnight. The plates were washed once with PBST, then 200 μl of 1% BSA-PBS solution was dispensed into each well and stored at room temperature for 1 hour.
B. 1차 반응B. First Reaction
HBsAg를 500 μg/ml ∼ 1 ng/ml로 희석하여 10μl씩 준비된 플레이트에 넣은 다음, 항체를 (1)에서 결정된 적정 항체 농도로 희석하여 90μl씩 넣고 실온에서 2시간 반응시킨 후 PBST로 5회 세척하였다.Dilute HBsAg to 500 μg / ml-1 ng / ml and place it in the plate prepared in 10μl, and then dilute the antibody to the appropriate antibody concentration determined in (1), add 90μl each, react for 2 hours at room temperature, and wash 5 times with PBST. It was.
C. 2차 반응C. Secondary Reaction
Goat anti-human IgG (Fab specific)-peroxidase 접합체 (Sigma) 1% BSA-PBS 용액으로 5,000배 희석하여 각 웰에 100μl씩 첨가하고, 실온에서 1시간 반응시킨 다음, PBST로 5회 세척하였다.Goat anti-human IgG (Fab specific) -peroxidase conjugate (Sigma) diluted 5,000-fold with 1% BSA-PBS solution was added to each well 100μl, reacted for 1 hour at room temperature, and then washed 5 times with PBST.
D. 기질반응D. Substrate Reaction
ABTS (KPL, MD, 미국) 용액 100μl씩을 각 웰에 첨가한 다음, 405nm에서 O.D.를 측정하였다. 최대 결합치(경쟁하는 HBsAg가 없는 상태의 ELISA O.D 값)의 50%를 저해하는 HBsAg 농도를 친화도(affinity)(Kd)로 산정 하였다.100 μl of ABTS (KPL, MD, USA) solution was added to each well, and O.D. was measured at 405 nm. The HBsAg concentration that inhibits 50% of the maximum binding value (ELISA O.D value without competing HBsAg) was calculated as affinity (Kd).
실시 예 8 : 동물세포 발현 벡터 제조Example 8 Preparation of Animal Cell Expression Vector
선별된 항체 fragment를 완전한 형태의 immunoglobulin을 생산하기 위한 형태로 전환하기 위해 녹십자사의 항체발현 벡터 [(pRC/CMV-HC-huS 및 pKC-dhfr-huS: "B형 간염 S에 대한 인간화 항체" 특허 (대한민국 특허번호 191900)]를 사용하였다. 그러나 이 벡터들을 다른 항체의 발현 벡터로 이용하기 위해서는 SOE (splicing by overlap extension PCR; Horton et al., Gene, 15, 77, 61-68, 1989)법과 같은 여러 단계의 PCR과 primer의 합성 등이 각각의 항체마다 요구되는 등 그 사용상의 불편함이 있다. 따라서 본 발명에서는 항체의 가변영역을 공지의 발현 벡터에 간편하게 삽입할 수 있도록 pRC/CMV-HC-huS 및 pKC-dhfr-huS를 변형하였다.In order to convert the selected antibody fragments into a form for producing a complete form of immunoglobulin, the antibody expression vectors of Green Cross [(pRC / CMV-HC-huS and pKC-dhfr-huS: "humanized antibodies against hepatitis B S" patent (Korean Patent No. 191900)] However, in order to use these vectors as expression vectors of other antibodies, the method of splicing by overlap extension PCR (Horton et al., Gene, 15, 77, 61-68, 1989) and There are inconveniences in using the PCR, primers, etc. for each antibody, such as several steps, etc. Therefore, in the present invention, the variable region of the antibody can be easily inserted into a well-known expression vector. -huS and pKC-dhfr-huS were modified.
즉 도 5에 예시 된 바와 같이, H 체인 발현 벡터 pRC/CMV-HC-huS의 C terminal에 존재하는 ApaI site를 primer-Nhe (CAG GTC GAC TAG AGC TAG CTA TTC TAT AGT G)를 사용하여 NheI site로 변환하고 벡터의 N terminal에 존재하지 않았던 HpaI site를 primer-Hpa (CAG AGT GAG GTT AAC CTG GTG CAA TCT GG)를 사용하여 새로 만들어 넣었고 이렇게 만들어진 벡터를 pRC13-Hpa로 명명하였다. 이러한 site-directed mutagenesis는 GeneEditor in vitro Site-Directed Mutagenesis System (Promega사, 미국)을 사용하여 제시된 방법에 따라 시행하였다. 따라서 중간 부분에 존재하는 ApaI site이용하여 PCR을 통해 만들어진 항체 fragment를 HpaI/ApaI site에 쉽게 삽입할 수 있게 된다. 실험 방법은 다음과 같다. 벡터 pRC/CMV-HC-huS 0.05 pmol, phosphorylated selection oligonucleotide 0.25 pmol, phosphorylated primer-Nhe 1.25 pmol, phosphorylated primer-Hpa 1.25 pmol, annealing 10 x buffer 2 μl, 그리고 총 부피가 20 μl가 되도록 증류수를 넣고 섞어주었다. 이 혼합물을 끓는 물에 5분, 얼음에 5분 그리고 나서 상온에서 30분간 반응시켰다. 반응이 끝난 혼합물에 증류수 5 μl, systhesis 10 x buffer 3 μl, T4 DNA polymerase 1 μl, T4 DNA ligase 1 μl를 넣고 섞어준 후 37 ℃에서 90분간 반응시켰다. 반응이 끝난 혼합물을XLmutsKanrcompetent cell (Stratagene사, 미국)에 heat-shock방법을 통하여 형질전환하였다. 형질전환된 cell로부터 plasmid를 분리하였고 이 plasmid를 다시JM109 competent cell에 heat-shock방법을 통하여 형질전환하였다. 형질전환된JM109 competent cell로부터 plasmid를 분리하고 제한효소 HpaI/ApaI으로 자르고 agarose gel에서 전기영동하였다. 알맞은 크기의 fragment가 나온 plasmid를 pRC13-Hpa라 명명하였다. 본 발명에서는 HBAb-H4의 DNA를 primer (GCC ATG GCC CAG GTT AAC CTG CTC GAG TCG) 와 primer (GGG AAG ACC GAT GGG CCC TTG GTG GAG GCT G)를 사용하여 PCR을 실시하여 만들어진 DNA를 pRC13-Hpa에 삽입하여 pRC13-Hpa-HB-H4로 명명하였다.That is, as illustrated in Figure 5, the Npa site using primer-Nhe (CAG GTC GAC TAG AGC TAG CTA TTC TAT AGT G) for the ApaI site present in the C terminal of the H chain expression vector pRC / CMV-HC-huS The HpaI site, which was not converted to the N terminal of the vector, was newly created using primer-Hpa (CAG AGT GAG GTT AAC CTG GTG CAA TCT GG), and the resulting vector was named pRC13-Hpa. These site-directed mutagenesis were performed according to the method presented using the GeneEditor in vitro Site-Directed Mutagenesis System (Promega, USA). Therefore, by using the ApaI site present in the middle portion, the antibody fragments produced by PCR can be easily inserted into the HpaI / ApaI site. The experimental method is as follows. Vector pRC / CMV-HC-huS 0.05 pmol, phosphorylated selection oligonucleotide 0.25 pmol, phosphorylated primer-Nhe 1.25 pmol, phosphorylated primer-Hpa 1.25 pmol, annealing 10 x buffer 2 μl, and distilled water to a total volume of 20 μl gave. The mixture was reacted with boiling water for 5 minutes, ice for 5 minutes and then at room temperature for 30 minutes. 5 μl of distilled water, 3 μl of systhesis 10 x buffer, 1 μl of T4 DNA polymerase, and 1 μl of T4 DNA ligase were added to the mixture, followed by reaction at 37 ° C. for 90 minutes. The reaction mixture was transformed into XLmuts Kan r competent cells (Stratagene, USA) by heat-shock method. Plasmids were isolated from the transformed cells, and the plasmids were transformed into JM 109 competent cells by heat-shock method. Plasmids were isolated from transformed JM 109 competent cells, cut with restriction enzymes HpaI / ApaI and electrophoresed on agarose gel. The plasmid with the appropriate size fragment was named pRC13-Hpa. In the present invention, pRC13-Hpa is prepared by PCR using a primer of DNA (GCC ATG GCC CAG GTT AAC CTG CTC GAG TCG) and primer (GGG AAG ACC GAT GGG CCC TTG GTG GAG GCT G). And inserted into the pRC13-Hpa-HB-H4.
도 6에 예시 된 바와 같이, L 체인 발현 벡터 pKC-dhfr-huS의 경우 N terminal에 존재하는 HindIII site를 NheI site로 primer-reHind (CTC ACT ATA GGG AGA CCC GCT AGC GGA AGC AAG ATG G)를 사용하여 치환하고 벡터의 N terminal에 BstEII site [primer-BstE (GGG GAC ATT GTG GTG ACC CAA TCT CCA GC) 사용] 와 중간부분에 HindIII site [primer-Hind (GGA GGG GGG ACC AAG CTT GAA ATA AAA CGG) 사용]를 새로 만들어 넣어 이렇게 만들어진 벡터를 pKC12-BH로 명명하였다. 따라서 PCR을 통해 만들어진 항체 fragment를 BstEII/HindIII site에 쉽게 삽입할 수 있게 된다. pKC12-BH를 만든 방법은 pRC13-Hpa를 만든 방법과 같으나 phosphorylated primer-Nhe 1.25 pmol, phosphorylated primer-Hpa 1.25 pmol 대신에 phosphorlyated primer-reHind 1.25 pmol, phosphorlyated primer-BstE 1.25 pmol, phosphorlyated primer-Hind 1.25 pmol을 썼다는 점이 다르다. 본 발명에서는 HBAb-L9의 DNA를 primer (GAG CTC GTG GTG ACC CAG TCT CCA)와 primer (TCG TTT GAT TTC AAG CTT GGT CCC TTG)를 사용하여 PCR을 실시하여 만들어진 DNA를 pKC12-HB에 삽입하여 pKC12-BH-HB-L9로 명명하였다.As illustrated in FIG. 6, for the L chain expression vector pKC-dhfr-huS, a primer-reHind (CTC ACT ATA GGG AGA CCC GCT AGC GGA AGC AAG ATG G) was used as the NheI site for the HindIII site present in the N terminal. Substitute the BstEII site [primer-BstE (GGG GAC ATT GTG GTG ACC CAA TCT CCA GC)] on the N terminal of the vector and the HindIII site [primer-Hind (GGA GGG GGG ACC AAG CTT GAA ATA AAA CGG) Used, and the resulting vector was named pKC12-BH. Therefore, the antibody fragment produced by PCR can be easily inserted into the BstEII / HindIII site. pKC12-BH was prepared in the same manner as pRC13-Hpa, but instead of 1.25 pmol phosphorylated primer-Nhe and 1.25 pmol phosphorylated primer-Hpa, 1.25 pmol, phosphorlyated primer-BstE 1.25 pmol, phosphorlyated primer-Hind 1.25 pmol The difference is that I wrote. In the present invention, the DNA of the HBAb-L9 by PCR using a primer (GAG CTC GTG GTG ACC CAG TCT CCA) and a primer (TCG TTT GAT TTC AAG CTT GGT CCC TTG) is inserted into pKC12-HB. It was named -BH-HB-L9.
실시 예 9: 항체분비 동물세포주 제조Example 9: Preparation of Antibody-releasing Animal Cell Line
실시 예 8에서 제조한 pRC13-Hpa-HB-H4와 pKC12-BH-HB-L9를 도입하기 24시간 전에 2*105개의 chinese hamster overy (CHO) cells을 10 %의 FBS (Life Technologies사, 미국) 를 포함하는 Alpha-MEM (Life Technologies사, 미국)배지가 든 T-25 (NUNC사, 덴마크)플라스크에서 배양한다. CHO cell의 배양은 5 % CO2그리고 37 ℃ 배양기에서 이루어진다. 다음날 세포의 confluency가 50 % 정도임을 확인하고, 30 μg의 lipofectin (Life Technologies사, 미국)을 1.5 ml의 Opti-MEM (Life Technologies사, 미국)배지에 넣고 상온에 90분간 놓아둔다. 그리고 동시에 pRC13-Hpa-HB-H4 8 μg과 pKC12-BH-HB-L9 7 μg을 혼합하여 1.5 ml의 Opti-MEM배지에 넣고 상온에 90분간 놓아둔다. 90분 경과 후, lipofectin이 들어있는 배지와 pRC13-Hpa-HB-H4와 pKC12-BH-HB-L9이 들어있는 배지를 섞은 다음 15분간 상온에서 반응시킨다. 반응시키는 동안 도입될 세포가 자란 플라스크 안에 들어있는 배지를 제거하고 PBS로 3회 세척한다. 세척된 세포에 15분간 반응시킨 혼합액을 넣어주고 배양한다. 6시간이 지나면 혼합액을 제거하고 Alpha-MEM배지를 넣고 48시간 배양한다. 48시간 배양이 끝난 세포를 trypsin (Life Technologies사, 미국)을 처리하여 플라스크에서 떼어낸 후 Alpha-MEM배지로 희석한 후 96 웰 plate (NUNC사, 덴마크)에 계대하였다. 이때 Alpha-MEM배지에는 ribonucleosides와 deoxyribonucleosides가 포함되어 있지 않고 10 %의 dialyzed FBS (Life Technologies사, 미국)를 포함하고 550 μg/ml의 G418 (Sigma사, 미국)을 포함한다. 2일마다 배지를 교환해주며 colony가 형성된 웰의 배양 상청을 회수하여 ELISA를 하고 선별된 세포는 12 웰로 옮겨준다. 12 웰에서 잘 자라면 6 웰로 옮겨주고 6 웰에서도 잘 자라면 MTX(중외제약, 한국)를 처리한다. 처음에는 20 nM에서 시작하고 잘 자라면 80 nM을 처리하고 차츰 MTX농도를 320 nM, 1 μM로 높여준다. 1 μM에서 생존하면서 항체 분비량이 많은 세포주를 선별하여 대량 배양한다. 대량 배양은 spinner 플라스크와 무혈청배지를 사용하며 조건은 65 rpm, 5 % CO2, 37 ℃ 배양기에서 이루어진다. 250 ml spinner 플라스크에 무혈청 배지 100 ml에 108cells을 넣고 키우며 세포수가 두 배가 되면 배양액을 1000 rpm 5분간 원심분리하여 배양 상청과 세포를 따로 분리하여 모은다. 분리한 세포를 200 ml의 배지가 든 500 ml spinner 플라스크에서 배양한다. 세포수가 두 배가 되면 원심분리하여 배양 상청과 세포를 분리하고 분리한 세포를 400 ml배지가 든 1 liter spinner 플라스크에서 배양한다. 두 배가 되면 역시 세포를 분리하여 1 liter의 배지가 든 3 liter spinner 플라스크로 옮겨준다. Sodium butyrate (Aldrich사, 미국)를 최종 농도가 2 mM이 되도록 넣고 5일간 배양하고 배양 상청을 회수한다. spinner 플라스크에서 배양하여 회수한 모든 배양 상청으로부터 protein A-agarose 컬럼 (Amersham Pharmacia Biotech사, 미국)을 사용하여 항체를 정제했고 SDS-PAGE에서의 band확인 (도 7), affinity 측정 (8도) 등을 시행하였다.24 hours prior to the introduction of pRC13-Hpa-HB-H4 and pKC12-BH-HB-L9 prepared in Example 8, 2 * 10 5 chinese hamster overy (CHO) cells were added with 10% FBS (Life Technologies, USA). Culture in a T-25 (NUNC, Denmark) flask containing Alpha-MEM (Life Technologies, USA). CHO cells are cultured in 5% CO 2 and 37 ° C incubators. The next day, the cell confluency is about 50%, and 30 μg of lipofectin (Life Technologies, USA) is placed in 1.5 ml Opti-MEM (Life Technologies, USA) medium and left at room temperature for 90 minutes. At the same time, 8 μg of pRC13-Hpa-HB-H4 and 7 μg of pKC12-BH-HB-L9 are mixed and placed in 1.5 ml of Opti-MEM medium and left at room temperature for 90 minutes. After 90 minutes, the medium containing lipofectin and the medium containing pRC13-Hpa-HB-H4 and pKC12-BH-HB-L9 are mixed and allowed to react at room temperature for 15 minutes. During the reaction, the medium in the flask in which the cells to be introduced are grown is removed and washed three times with PBS. Put the mixed solution reacted for 15 minutes to the washed cells and incubate. After 6 hours, remove the mixed solution, add Alpha-MEM medium and incubate for 48 hours. After 48 hours of incubation, the cells were treated with trypsin (Life Technologies, USA), removed from the flask, diluted with Alpha-MEM medium, and passaged to a 96 well plate (NUNC, Denmark). Alpha-MEM medium does not contain ribonucleosides and deoxyribonucleosides and contains 10% dialyzed FBS (Life Technologies, USA) and 550 μg / ml G418 (Sigma, USA). The medium is changed every 2 days, the culture supernatant of the colony-formed wells is recovered and subjected to ELISA, and the selected cells are transferred to 12 wells. If you sleep well in 12 wells, transfer to 6 wells. If you sleep well in 6 wells, treat MTX (Sino-Pharma). Start at 20 nM and treat 80 nM if you sleep well, then gradually increase the MTX concentration to 320 nM, 1 μM. Cell lines with high antibody secretion are selected and survived at 1 μM and cultured in large quantities. Mass cultivation uses spinner flasks and serum-free media and conditions are performed at 65 rpm, 5% CO 2 , 37 ° C. incubator. In a 250 ml spinner flask, put 10 8 cells in 100 ml of serum-free medium and grow. When the number of cells is doubled, the culture solution is centrifuged at 1000 rpm for 5 minutes to separate the culture supernatant and the cells separately. The isolated cells are incubated in a 500 ml spinner flask containing 200 ml of medium. When the number of cells doubled, centrifuge to separate the culture supernatant and cells, and incubate the separated cells in a 1 liter spinner flask containing 400 ml medium. When doubled, the cells are also separated and transferred to a 3 liter spinner flask containing 1 liter of medium. Sodium butyrate (Aldrich, USA) is added to a final concentration of 2 mM and incubated for 5 days and the culture supernatant is recovered. Antibodies were purified using protein A-agarose column (Amersham Pharmacia Biotech, USA) from all culture supernatants recovered by incubation in spinner flasks, band identification on SDS-PAGE (FIG. 7), affinity measurement (8 degrees), etc. Was implemented.
도 7에 나타난바와 같이, SDS-PAGE결과 환원조건에서 50 kd 정도의 중쇄와25 kd정도의 경쇄 밴드가 관찰되었으며 이 사실로부터 항체가 정확하게 합성되어 생산되고 있음을 알 수 있다. 도 8에서 비교한 바와 같이, affinity를 측정한 결과 녹십자사의 인간화 항체 [("B형 간염 S에 대한 인간화 항체" 특허 (대한민국 특허번호 191900)]보다 친화도가 9배 정도가 더 높은 것으로 확인되었다.As shown in Figure 7, SDS-PAGE results in the heavy chain of about 50 kd and light chain band of about 25 kd was observed under reducing conditions, it can be seen that the antibody is synthesized correctly produced. As compared with FIG. 8, the affinity was measured to confirm that the affinity was about 9 times higher than that of the humanized antibody of Green Cross [(“humanized antibody against hepatitis B” patent ”(Korean Patent No. 191900)). .
본 발명은 B형 간염 바이러스의 표면항원에 대한 인간항체를 생산할 수 있는 방법을 확립하였다. 혈액에서 분리한 항체의 원료수급의 어려움, 인체유래 바이러스 감염의 우려를 극복할 수 있고, HBV에 의한 만성간염의 치료제로 개발할 수 있다.The present invention has established a method for producing human antibodies against surface antigens of hepatitis B virus. It can overcome the difficulty of supplying raw materials of antibodies isolated from blood and the fear of human-derived virus infection, and can be developed as a treatment for chronic hepatitis caused by HBV.
이렇게 생산된 인간 항체는 마우스 항체로부터 출발한 카이메릭 항체 및 인간화 항체의 HAMA (human anti-mouse antibody) 반응에 의한 부작용을 줄일 수 있어 항체의 치료효과를 훨씬 향상시킨 안정성이 우수한 항체제제의 개발이 가능하다.The human antibodies produced in this way can reduce side effects caused by human anti-mouse antibody (HAMA) reactions of chimeric and humanized antibodies from mouse antibodies. It is possible.
아울러 본 발명을 통해 확립한 항체의 파아지 라이브러리 제조 및 항체 선별 기술, 항체발현 벡터 제조, 동물세포주 구축 및 선별기술 등은 다른 치료용 항체 및 단백질 의약품의 개발에 응용할 수 있다.In addition, the phage library production and antibody screening technology, antibody expression vector production, animal cell line construction and screening technology and the like established through the present invention can be applied to the development of other therapeutic antibodies and protein medicines.
<110> KOREA GREEN CROSS CORPORATION <120> Human antibodies against the surface antigen of HBV <160> 26 <170> KopatentIn 1.71 <210> 1 <211> 129 <212> PRT <213> Artificial Sequence <220> <223> Variable region of human antibody H chain <400> 1 Gln Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Ser Leu Thr Lys Tyr 20 25 30 Lys Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Ser Ile Ser Ser Thr Ser Arg Asp Ile Asp Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Phe 65 70 75 80 Leu Gln Met Ser Ser Leu Arg Val Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Thr Arg Asp Gly Trp Leu Trp Gly Trp Asp Val Arg Ser Asn Tyr Tyr 100 105 110 Tyr Asn Ala Leu Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 115 120 125 Ser <210> 2 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Variable region of human antibody L chain <400> 2 Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Tyr Asn Ser 20 25 30 Ile Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Leu 35 40 45 Tyr Ser Thr Ser Thr Leu Leu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Thr Asn Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Phe Val Thr Pro Glu 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100 105 <210> 3 <211> 387 <212> DNA <213> Artificial Sequence <220> <223> Base sequence encoding variable region of H chain <400> 3 caggtgaaac tgctcgagtc ggggggaggc ctggtcaagc cgggggggtc cctgagactc 60 tcctgttcag cctctggatt cagcctcact aaatataaga tgacctgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcatcc attagtagta caagtagaga catcgactac 180 gcagactcag tgaagggccg attcaccatc tccagagaca acgccaagaa ctcgctcttt 240 ctccaaatga gcagcctgag agtcgacgac acggctgttt attactgtac cagagacggg 300 tggctctggg gctgggacgt caggtccaac tactattaca acgctttgga cgtctggggc 360 caagggacca cggtcaccgt ctcctca 387 <210> 4 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> Base sequence encoding variable region of L chain <400> 4 gagctcgtga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcgagtca gggcatttac aactctatag cctggtatca gcagaaacca 120 gggaaagccc ccaaactcct gctctattct acatccacat tgcttagtgg ggtcccatcc 180 aggttcagtg gcagtggctc tgggacggat tacactctca ccatcaccaa cctgcagcct 240 gaagattttg caacttatta ttgtcaacag tactttgtta ccccggagac gttcggccaa 300 gggaccaagg tggaaatcaa acga 324 <210> 5 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH1 primer of Fd chain <400> 5 cagccagcaa tggcacaggt gcagctgctc gagtctgg 38 <210> 6 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH2 primer of Fd chain <400> 6 cagccagcaa tggcacaggt gcagctgctc gagtcggg 38 <210> 7 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH3 primer of Fd chain <400> 7 cagccagcaa tggcacaggt gcaactgctc gagtctgg 38 <210> 8 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH4 primer of Fd chain <400> 8 cagccagcaa tggcacaggt gcaactgctc gagtcggg 38 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CH1 primer of Fd chain <400> 9 ggtgcatgcg gccgcacaag atttgggctc 30 <210> 10 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> VH.EXT primer of Fd chain <400> 10 gctggattgt tattgctagc agcacagcca gcaatggca 39 <210> 11 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> VLK primer of Kappa chain <400> 11 cgcgaattgg cccagccggc catggccgag ctcgtgatga cccagtctcc a 51 <210> 12 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> CLK primer of Kappa chain <400> 12 gtctccttct cgaggcgcgc ctcattaaca ctctcccctg ttgaagct 48 <210> 13 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> VLL primer of Lambda chain <400> 13 cgcgaattgg cccagccggc catggccgag ctcgtggtga ctcagcc 47 <210> 14 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> CLL primer of Lambda chain <400> 14 gtctccttct cgaggcgcgc ctcattatga acattctgta ggggc 45 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Fd primer for sequencing <400> 15 gtgcccccag aggtgctctt gg 22 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kappa primer for sequencing <400> 16 ggcagttcca gatttcaact g 21 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Lambda primer for sequencing <400> 17 gcggataaca atttcacaca g 21 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer-Nhe <400> 18 caggtcgact agagctagct attctatagt g 31 <210> 19 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer-Hpa <400> 19 cagagtgagg ttaacctggt gcaatctgg 29 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-H4 <400> 20 gccatggccc aggttaacct gctcgagtcg 30 <210> 21 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-H4 <400> 21 gggaagaccg atgggccctt ggtggaggct g 31 <210> 22 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer-reHind <400> 22 ctcactatag ggagacccgc tagcggaagc aagatgg 37 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer-BstE <400> 23 ggggacattg tggtgaccca atctccagc 29 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer-Hind <400> 24 ggagggggga ccaagcttga aataaaacgg 30 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-L9 <400> 25 gagctcgtgg tgacccagtc tcca 24 <210> 26 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-L9 <400> 26 tcgtttgatt tcaagcttgg tcccttg 27<110> KOREA GREEN CROSS CORPORATION <120> Human antibodies against the surface antigen of HBV <160> 26 <170> KopatentIn 1.71 <210> 1 <211> 129 <212> PRT <213> Artificial Sequence <220> <223> Variable region of human antibody H chain <400> 1 Gln Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Ser Leu Thr Lys Tyr 20 25 30 Lys Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Ser Ile Ser Ser Thr Ser Arg Asp Ile Asp Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Phe 65 70 75 80 Leu Gln Met Ser Ser Leu Arg Val Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Thr Arg Asp Gly Trp Leu Trp Gly Trp Asp Val Arg Ser Asn Tyr 100 105 110 Tyr Asn Ala Leu Asp Val Trp Gly Gln Gly Thr Thr Val Val Val Val Ser 115 120 125 Ser <210> 2 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Variable region of human antibody L chain <400> 2 Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Tyr Asn Ser 20 25 30 Ile Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Leu 35 40 45 Tyr Ser Thr Ser Thr Leu Leu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Thr Asn Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Th r Tyr Tyr Cys Gln Gln Tyr Phe Val Thr Pro Glu 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100 105 <210> 3 <211> 387 <212> DNA <213> Artificial Sequence <220> < 223> Base sequence encoding variable region of H chain <400> 3 caggtgaaac tgctcgagtc ggggggaggc ctggtcaagc cgggggggtc cctgagactc 60 tcctgttcag cctctggatt cagcctcact aaatataaga tgacctgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcatcc attagtagta caagtagaga catcgactac 180 gcagactcag tgaagggccg attcaccatc tccagagaca acgccaagaa ctcgctcttt 240 ctccaaatga gcagcctgag agtcgacgac acggctgttt attactgtac cagagacggg 300 tggctctggg gctgggacgt caggtccaac tactattaca acgctttgga cgtctggggc 360 caagggacca cggtcaccgt ctcctca 387 <210> 4 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> Base sequence encoding variable reg ion of L chain <400> 4 gagctcgtga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcgagtca gggcatttac aactctatag cctggtatca gcagaaacca 120 gggaaagccc ccaaactcct gctctattct acatccacat tgcttagtgg ggtcccatcc 180 aggttcagtg gcagtggctc tgggacggat tacactctca ccatcaccaa cctgcagcct 240 gaagattttg caacttatta ttgtcaacag tactttgtta ccccggagac gttcggccaa 300 gggaccaagg tggaaatcaa acga 324 <210> 5 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH1 primer of Fd chain <400> 5 cagccagcaa tggcacaggt gcagctgctc gagtctgg 38 <210> 6 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH2 primer of Fd chain <400> 6 cagccagcaa tggcacaggt gcagctgctc gagtcggg 38 <210> 7 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH3 primer of Fd chain < 400> 7 cagccagcaa tggca caggt gcaactgctc gagtctgg 38 <210> 8 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> VH4 primer of Fd chain <400> 8 cagccagcaa tggcacaggt gcaactgctc gagtcggg 38 <210> 9 <211> 30 < 212> DNA <213> Artificial Sequence <220> <223> CH1 primer of Fd chain <400> 9 ggtgcatgcg gccgcacaag atttgggctc 30 <210> 10 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> VH.EXT primer of Fd chain <400> 10 gctggattgt tattgctagc agcacagcca gcaatggca 39 <210> 11 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> VLK primer of Kappa chain <400> 11 cgcgaattgg cccagccggc catggccgag ctcgtgatga cccagtctcc a 51 <210> 12 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> CLK primer of Kappa chain <400> 12 gtctccttct cgaggcgcgc ctcattaaca ctctcccctg tt gaagct 48 <210> 13 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> VLL primer of Lambda chain <400> 13 cgcgaattgg cccagccggc catggccgag ctcgtggtga ctcagcc 47 <210> 14 <211> 45 <212 > DNA <213> Artificial Sequence <220> <223> CLL primer of Lambda chain <400> 14 gtctccttct cgaggcgcgc ctcattatga acattctgta ggggc 45 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223 > Fd primer for sequencing <400> 15 gtgcccccag aggtgctctt gg 22 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kappa primer for sequencing <400> 16 ggcagttcca gatttcaact g 21 <210 > 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Lambda primer for sequencing <400> 17 gcggataaca atttcacaca g 21 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer-Nhe <400> 18 caggtcgact agagctagct attctatagt g 31 <210> 19 <211> 29 <212> DNA <213 Artificial Sequence <220> <223> Primer-Hpa <400> 19 cagagtgagg ttaacctggt gcaatctgg 29 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-H4 < 400> 20 gccatggccc aggttaacct gctcgagtcg 30 <210> 21 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-H4 <400> 21 gggaagaccg atgggccctt ggtggaggct g 31 <210> 22 < 211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer-reHind <400> 22 ctcactatag ggagacccgc tagcggaagc aagatgg 37 <210> 23 <211> 29 <212> DNA <213> Artific ial Sequence <220> <223> Primer-BstE <400> 23 ggggacattg tggtgaccca atctccagc 29 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer-Hind <400> 24 ggagggggga ccaagcttga aataaaacgg 30 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-L9 <400> 25 gagctcgtgg tgacccagtc tcca 24 <210> 26 <211> 27 <212 > DNA <213> Artificial Sequence <220> <223> PCR primer of HBAb-L9 <400> 26 tcgtttgatt tcaagcttgg tcccttg 27
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0002190A KR100467706B1 (en) | 2002-01-15 | 2002-01-15 | Human antibodies against the surface antigen of HBV |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0002190A KR100467706B1 (en) | 2002-01-15 | 2002-01-15 | Human antibodies against the surface antigen of HBV |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2004-0067720A Division KR100523732B1 (en) | 2004-08-27 | 2004-08-27 | Plasmid to be inserted with variable region of human antibodies against the surface antigen of HBV |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030061568A KR20030061568A (en) | 2003-07-22 |
KR100467706B1 true KR100467706B1 (en) | 2005-01-24 |
Family
ID=32218044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0002190A KR100467706B1 (en) | 2002-01-15 | 2002-01-15 | Human antibodies against the surface antigen of HBV |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100467706B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075833A1 (en) | 2006-12-21 | 2008-06-26 | Mogam Biotechnology Research Institute | Fusion protein of immunoglobulin fc and human apolipoprotein(a) kringle fragment |
WO2011078456A1 (en) * | 2009-12-24 | 2011-06-30 | Green Cross Corporation | Human antibodies specifically binding to the hepatitis b virus surface antigen |
KR20170011863A (en) | 2015-07-24 | 2017-02-02 | 재단법인 목암생명과학연구소 | PHARMACEUTICAL COMPOSITION FOR PREVENTING cccDNA FORMATION OF HEPATITIS B VIRUS |
US10444246B2 (en) | 2014-09-30 | 2019-10-15 | Green Cross Corporation | Kit for measuring titer of a protein comprising human Fc using indirect ELISA and method for measuring titer of a protein comprising human Fc using the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090056537A (en) * | 2007-11-30 | 2009-06-03 | 주식회사 녹십자 | Composition comprising a human antibody capable of neutralizing hepatitis b virus for preventing or treating hepatitis b virus infection |
EP2858674B1 (en) * | 2012-07-10 | 2019-01-30 | Green Cross Corporation | An antibody composition for prevention or treatment of mutant hepatitis b virus infection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997047654A1 (en) * | 1996-06-11 | 1997-12-18 | Yeda Research And Development Co. Ltd. | Human monoclonal antibodies to the hepatitis b surface antigen |
WO1997047653A1 (en) * | 1996-06-11 | 1997-12-18 | Xtl Biopharmaceuticals Limited | Human monoclonal antibody against hepatitis b virus surface antigen (hbvsag) |
-
2002
- 2002-01-15 KR KR10-2002-0002190A patent/KR100467706B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997047654A1 (en) * | 1996-06-11 | 1997-12-18 | Yeda Research And Development Co. Ltd. | Human monoclonal antibodies to the hepatitis b surface antigen |
WO1997047653A1 (en) * | 1996-06-11 | 1997-12-18 | Xtl Biopharmaceuticals Limited | Human monoclonal antibody against hepatitis b virus surface antigen (hbvsag) |
Non-Patent Citations (2)
Title |
---|
"""B형간염바이러스 표면항원에 대한 인간항체 B7 Fd의 대량생산 및 특성 연구"" 대한미생물학회지 34권,3호,시작쪽수265쪽,전체11쪽,요약" * |
Expression of human anti-HBsAg-interferon fusion protein in CHO cellsZhonghua Gan Zang Bing Za Zhi.2001Apr;9(2)114-6.초록 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075833A1 (en) | 2006-12-21 | 2008-06-26 | Mogam Biotechnology Research Institute | Fusion protein of immunoglobulin fc and human apolipoprotein(a) kringle fragment |
WO2011078456A1 (en) * | 2009-12-24 | 2011-06-30 | Green Cross Corporation | Human antibodies specifically binding to the hepatitis b virus surface antigen |
KR101072895B1 (en) | 2009-12-24 | 2011-10-17 | 주식회사 녹십자 | Human antibodies specifically binding to the Hepatitis B virus surface antigen |
US8840895B2 (en) | 2009-12-24 | 2014-09-23 | Green Cross Corporation | Human antibodies specifically binding to the hepatitis B virus surface antigen |
US9200062B2 (en) | 2009-12-24 | 2015-12-01 | Green Cross Corporation | Human antibodies specifically binding to the hepatitis B virus surface antigen |
US10444246B2 (en) | 2014-09-30 | 2019-10-15 | Green Cross Corporation | Kit for measuring titer of a protein comprising human Fc using indirect ELISA and method for measuring titer of a protein comprising human Fc using the same |
EP3667320A1 (en) | 2014-09-30 | 2020-06-17 | Green Cross Corporation | Kit for measuring titer of a protein comprising human fc using indirect elisa and method for measuring titer of a protein comprising human fc using the same |
KR20170011863A (en) | 2015-07-24 | 2017-02-02 | 재단법인 목암생명과학연구소 | PHARMACEUTICAL COMPOSITION FOR PREVENTING cccDNA FORMATION OF HEPATITIS B VIRUS |
Also Published As
Publication number | Publication date |
---|---|
KR20030061568A (en) | 2003-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2334184T3 (en) | METHOD OF IDENTIFICATION OF DOMAINS OF UNION SITES THAT KEEP THE CAPACITY OF JOINING AN EPITHOPE. | |
ES2322324T3 (en) | IMMUMOGLOBULINS DESPROVISTAS OF LIGHT CHAINS. | |
WO2017197667A1 (en) | Anti-human pd-l1 humanized monoclonal antibody and application thereof | |
KR101072895B1 (en) | Human antibodies specifically binding to the Hepatitis B virus surface antigen | |
CN111542343B (en) | anti-BCMA single domain antibodies and uses thereof | |
CN113045647B (en) | Neutralizing antibody of novel coronavirus SARS-CoV-2 and application thereof | |
JP2011024581A (en) | SINGLE DOMAIN ANTIBODY DIRECTED TO TUMOUR NECROSIS FACTOR-alpha AND USE THEREFOR | |
KR101108642B1 (en) | Antibodies specifically binding to the epidermal growth factor receptor | |
CN110317267B (en) | Bispecific antibodies against rabies virus and uses thereof | |
CN112500485B (en) | anti-B7-H3 antibody and application thereof | |
CN113354729A (en) | Monoclonal antibody for resisting novel coronavirus and application thereof | |
CN113354730B (en) | Monoclonal antibody for resisting novel coronavirus and application thereof | |
KR100467706B1 (en) | Human antibodies against the surface antigen of HBV | |
WO2020019222A2 (en) | Anti-h7n9 fully human monoclonal antibody hig311, preparation method therefor, and application | |
CN114805581B (en) | Antibodies targeting IL13RA2, chimeric antigen receptors and uses thereof | |
JP2001510329A (en) | Human monoclonal antibody | |
KR20040084875A (en) | Plasmid to be inserted with variable region of human antibodies against the surface antigen of HBV | |
CN105061596B (en) | The monoclonal antibody and its application of human B lymphocyte stimulating factor | |
JP2001299360A (en) | Human-type anti-tetanus toxin single-stranded recombinant antibody fragment | |
KR100476343B1 (en) | Neutralizing human monoclonal antibody specific to hepatitis A virus | |
JPH10155489A (en) | Recombinant antibody and nucleic acid coding for the same | |
EP4201961A1 (en) | Antibody specifically bound to glycosylated ceacam5 | |
TWI804099B (en) | Antibody specifically binding to glycosylated CEACAM5 and preparation method thereof | |
WO2001023431A1 (en) | Derivatives of antibody against ganglioside gm2 | |
WO2022063100A1 (en) | Anti-tigit antibody and double antibody and their application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130111 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20131204 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20141217 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20151229 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170105 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20171227 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20190107 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20200113 Year of fee payment: 16 |