KR100465829B1 - Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes - Google Patents

Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes Download PDF

Info

Publication number
KR100465829B1
KR100465829B1 KR10-2002-0066367A KR20020066367A KR100465829B1 KR 100465829 B1 KR100465829 B1 KR 100465829B1 KR 20020066367 A KR20020066367 A KR 20020066367A KR 100465829 B1 KR100465829 B1 KR 100465829B1
Authority
KR
South Korea
Prior art keywords
enzyme
bacterial cellulose
waste
production
culture
Prior art date
Application number
KR10-2002-0066367A
Other languages
Korean (ko)
Other versions
KR20040037748A (en
Inventor
김성준
김우
김경철
Original Assignee
김성준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김성준 filed Critical 김성준
Priority to KR10-2002-0066367A priority Critical patent/KR100465829B1/en
Publication of KR20040037748A publication Critical patent/KR20040037748A/en
Application granted granted Critical
Publication of KR100465829B1 publication Critical patent/KR100465829B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 음식물쓰레기 효소당화액을 이용한 박테리얼 셀룰로오스의 생산방법에 관한 것으로서, 더욱 구체적으로는 생물반응기에서의 섬유소분해효소 생산 공정(ⓐ); 상기 섬유소 분해효소 생산공정에 의해 생산되어진 섬유소분해효소에 음식물 쓰레기를 주입하여 당화반응기(ⓑ)에서 가수분해하여 환원당으로 전환하는 당화반응기에서의 당화액 생산공정(ⓑ); 당화잔사물이 제거된 당화액이 생물반응기(ⓒ)에서 박테리얼 셀룰로오스를 생산하도록 배양하는 박테리얼 셀룰로오스 생산공정(ⓒ); 당화잔사물을 기능성 소재로 전환하는 고형화공정(ⓓ)을 포함하여 이루어지는 것을 특징으로 하여, 다른 영양원의 첨가 없이 음식물쓰레기 효소당화액을 이용하여 저렴하게 고부가가치의 박테리얼 셀룰로오스를 대량생산할 수 있어 산업화가 크게 기대되고, 당화잔사물을 고형화공정을 통해 기능성 소재로 전환할 수 있고, 박테리얼 셀룰로오스(BC) 생산공정에서 발생하는 배양잔액을 빈부하 하·폐수 처리장의 영양원으로 사용함으로서 폐기물 발생이 거의 없는 효과를 갖는다.The present invention relates to a method for producing bacterial cellulose using food waste enzyme saccharification liquid, and more specifically, to a fibrinolytic enzyme production step (ⓐ) in a bioreactor; A glycation solution production step (ⓑ) in the saccharification reactor in which food waste is injected into the fibrinolytic enzyme produced by the fibrinase production process and hydrolyzed in the saccharification reactor (ⓑ) to convert to reducing sugars; Bacterial cellulose production process (ⓒ) in which the saccharified liquid from which the saccharified residue was removed is cultured to produce bacterial cellulose in a bioreactor (ⓒ); It comprises a solidification process (ⓓ) for converting the saccharified residue into a functional material, can be mass-produced high value-added bacterial cellulose inexpensively using food waste enzyme saccharification liquid without the addition of other nutrients Is expected to be greatly converted, and the saccharified residue can be converted into a functional material through a solidification process, and the waste generated by using the culture residue generated in the production process of the bacterial cellulose (BC) as a nutrient source for the poor load and wastewater treatment plant is almost eliminated. Has no effect.

Description

음식물 쓰레기 효소당화액을 이용한 박테리얼 셀룰로오스의 생산방법{Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes}Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes

본 발명은 음식물쓰레기 효소당화액을 이용한 박테리얼 셀룰로오스의 생산방법에 관한 것으로서, 더욱 구체적으로는 섬유소분해효소 생산 공정(ⓐ); 당화액 생산공정(ⓑ); 박테리얼 셀룰로오스를 생산하도록 배양하는 박테리얼 셀룰로오스(BC)생산공정(ⓒ); 고형화공정(ⓓ)을 포함하여 이루어짐으로서 다른 영양원의 첨가 없이 음식물쓰레기 효소당화액을 이용하여 저렴하게 고부가가치의 박테리얼 셀룰로오스(Bacterial cellulose, 이하 'BC'라 함)를 대량으로 생산할 수 있어 산업화가 크게 기대되고, 당화잔사물을 고형화공정을 통해 기능성 소재로 전환할 수 있고, 박테리얼 셀룰로오스(BC) 생산공정에서 발생하는 배양잔액을 빈부하 하·폐수 처리장의 영양원으로 사용함으로서 폐기물 발생이 거의 없는 음식물쓰레기 효소당화액을 이용한 박테리얼 셀룰로오스의 생산방법에 관한 것이다.The present invention relates to a method for producing bacterial cellulose using food waste enzyme saccharification liquid, and more specifically, fibrinase production process (ⓐ); Saccharification solution production process (ⓑ); Bacterial cellulose (BC) production process (©) for culturing to produce bacterial cellulose; Including the solidification process (ⓓ), it is possible to produce a large amount of high value-added bacterial cellulose (BC) inexpensively using food waste enzyme saccharification liquid without adding other nutrients. It is highly expected, and the saccharified residue can be converted into a functional material through the solidification process, and the culture residue generated in the bacterial cellulose (BC) production process is used as a nutrient source for poor load and wastewater treatment plant, so that there is little waste. It relates to a method for producing bacterial cellulose using food waste enzyme saccharification liquid.

일반적으로 셀룰로오스는 지구상에서 가장 풍부하게 존재하는 천연고분자 중에 하나로서 대략 1011톤의 셀룰로오스가 생합성되고 있는 것으로 추산되고 있으며 대부분은 고등식물의 세포벽 섬유질 성분을 합성한다.In general, cellulose is one of the most abundant natural polymers on earth, and it is estimated that approximately 10 11 tonnes of cellulose are biosynthesized, and most of them synthesize cell wall fiber components of higher plants.

상기 셀룰로오스의 분자들은 14,000 단위의 글루코오스(glucose) 단위체로 구성되어 있으며, 사슬이나 혹은 미세섬유로 이것들이 수소결합으로 유지되는 비틀린 밧줄형 묶음을 이루고 있다. 이런 셀룰로오스의 풍부한 물량과 다른 천연고분자와는 다른 물성으로 인해 재생자원으로서 다양한 산업적 활용을 위한 많은 연구가 이루어지고 있다.The molecules of cellulose are composed of 14,000 units of glucose units, and form a twisted rope bundle in which they are maintained by hydrogen bonds in chains or microfibers. Due to the rich amount of cellulose and other physical properties different from other natural polymers, a lot of research has been conducted for various industrial applications as renewable resources.

한편, 1886년 브라운(A. J. Brown)에 의해 초산균이 셀룰로오스를 생산한다는 사실이 보고된 이래, 미생물에 의해 생산되는 셀룰로오스(Bacterial Cellulose; 이하 'BC'라 함)는 신소재로서 끊임없는 연구 대상이 되어 왔다. 도 1 및 도 2는 각각 식물 유래의 셀룰로오스와 박테리얼 셀룰로오스(BC)의 SEM사진으로서 구조적으로 커다란 차이를 나타내고 있다. 즉, 미생물 유래의 박테리얼 셀룰로오스(BC)는 리본형 섬유(ribbin-like bundles)로 구성되는 반면, 식물 유래의 셀룰로오스는 미세섬유(microfibrils)의 묶음(bundles)형태로 구성된다.On the other hand, since the fact that acetic acid produced cellulose by AJ Brown in 1886 was reported, cellulose produced by microorganisms (Bacterial Cellulose, hereinafter referred to as BC) has been a subject of constant research as a new material. . 1 and 2 are SEM images of plant-derived cellulose and bacterial cellulose (BC), respectively, showing a large structural difference. That is, microbial-derived bacterial cellulose (BC) is composed of ribbon-like bundles, while plant-derived cellulose is composed of bundles of microfibrils.

상기 리본형 섬유(ribbin-like bundles)로 구성되는 미생물 유래의 박테리얼 셀룰로오스(BC)는 미세섬유(microfibrils)의 묶음(bundles)형태로 구성되는 식물 유래의 셀룰로오스와는 달리 리그닌이나 헤미셀룰로오스가 전혀 포함되지 않은 순수상태로 생산되며, 높은 기계적 강도와 고보습성, 고결정성, 생분해성 등의 박테리얼 셀룰로오스(BC)만이 가지는 독특한 장점때문에 다양한 산업분야에서 여러가지 용도로 개발되고 있다.Bacterial cellulose (BC) derived from microorganisms composed of the ribbon-like bundles does not contain any lignin or hemicellulose, unlike cellulose derived from plants composed of bundles of microfibrils. It is produced in a pure state, and has been developed for various uses in various industries because of its unique advantages such as high mechanical strength, high moisture retention, high crystallinity, and biodegradability.

예를 들어, 최근 일본에서는 박테리얼 셀룰로오스(BC)의 영 모듈(Young's modules)이 크기 때문에 음속도가 빠르고 자연음 재생이 탁월하며 잡음이 적은 장점을 이용해 고급 오디오 헤드폰이나 스피커의 진동판으로 사용하고 있고, 밀도가 높고 절단 길이(breaking length)가 길며 중합도가 크기 때문에 고급 및 고강도 종이의 첨가제로 사용되고 있으며, 3차원 망상구조를 이루고 있어 함수율이 높기 때문에 화상 치료제 등에 사용되고 있으며, 최근에는 난소화성과 고점성을 이용해 식이섬유로도 이용되고 있다.For example, in Japan, the young's modules of bacterial cellulose (BC) are large, so they are used as vibrators for high-end audio headphones or speakers using the advantages of fast sound speed, excellent sound reproduction, and low noise. Because of its high density, long breaking length and high degree of polymerization, it is used as an additive of high-grade and high-strength paper.It has a three-dimensional network structure and is used for burn treatment because of its high water content. It is also used as a dietary fiber.

하지만 현재까지는 글루코스(glucose)와 같은 상업용 물질을 이용하여 박테리얼 셀룰로오스를 생산하고 있어서 박테리얼 셀룰로오스(BC) 가격이 대략 킬로그램 당 100,000 엔(100,000 Yen/kg)으로 고가의 제품들에만 한정되어 사용되고 있는 문제점이 있었고 나아가 음식물 쓰레기의 효소당화액을 이용한 박테리얼 셀룰로오스 생산에 관한 보고는 전무한 문제점이 있었다.However, until now, the production of bacterial cellulose using commercial materials such as glucose has limited the cost of bacterial cellulose (BC) at about 100,000 yen per kilogram (100,000 Yen / kg). There was a problem and there was no report on the production of bacterial cellulose using enzyme saccharification of food waste.

본 발명은 상기한 바와 같은 문제점들을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 다른 영양원의 첨가 없이 음식물쓰레기 효소당화액을 이용하여 저렴하게 고부가가치의 박테리얼 셀룰로오스(BC)를 대량으로 생산할 수 있어 산업화가 크게 기대되고, 당화잔사물을 고형화공정을 통해 기능성 소재로 전환할 수 있고, 박테리얼 셀룰로오스(BC) 생산공정에서 발생하는 배양잔액을 빈부하 하·폐수 처리장의 영양원으로 사용함으로서 페기물 발생이 거의 없는 음식물쓰레기 효소당화액을 이용한 박테리얼 셀룰로오스의 생산방법을 제공하는 데에 있다.The present invention has been made to solve the above problems, an object of the present invention is to produce a large amount of high value-added bacterial cellulose (BC) inexpensively using food waste enzyme saccharification without the addition of other nutrients. The industrialization is expected to be greatly expected, and the saccharified residue can be converted into a functional material through a solidification process, and the waste generated by using the culture residue generated in the bacterial cellulose (BC) production process as a nutrient source for poor load and wastewater treatment plants. The present invention provides a method for producing bacterial cellulose using almost no food waste enzyme saccharification solution.

상기한 목적을 달성하기 위하여 본 발명은 섬유소폐기물인 볏짚, 폐지를 분쇄한 다음, 잘게 분쇄된 섬유소폐기물을 사용기질로 하여 액체상태배양 또는 섬유소폐기물인 주정박, 볏짚, 콩비지를 분쇄한 다음, 잘게 분쇄된 섬유소폐기물을 사용기질로 하여 고체상태배양함을 이용하여 생물반응기(ⓐ)에서 에프피아제(FPase), 씨엠씨아제(CMCase), 자일란아제(xylanase), 베타-글루코시다아제(β-glucosidase), 아비셀라아제(Avicelase), 아밀라아제(amylase)의 섬유소분해효소들을 생산하는 생물반응기에서의 섬유소분해효소 생산공정(ⓐ); 상기 섬유소분해효소 생산공정에 의해 생산되어진 에프피아제(FPase), 씨엠씨아제(CMCase), 자일란아제(xylanase), 베타-글루코시다아제(β-glucosidase), 아비셀라아제(Avicelase), 아밀라아제(amylase)의 섬유소분해효소들의 복합물에 사전에 선별 및 분쇄되어진 음식물 쓰레기를 건조기질 무게 기준 10~20 중량%로 주입하여 당화반응기(ⓑ)에서 음식물쓰레기를 당화하여 단당 및 2당류로 전환하는 당화반응기에서의 당화액 생산공정(ⓑ); 상기 당화액 생산공정에서 전환되어진 당화액이 원심분리되어 당화잔사물이 제거되고, 상기 당화잔사물이 제거된 당화액이 생물반응기(ⓒ)에서 박테리얼 셀룰로오스를 생산하도록 배양하는 박테리얼 셀룰로오스(BC) 생산공정(ⓒ); 상기 당화액 생산공정에서 발생된 당화액이 상기 박테리얼 셀룰로오스 생산공정에 투입되기 전에 원심분리되고, 상기 원심분리후 남은 당화잔사물을 기능성 소재로 전환하는 고형화공정(ⓓ)을 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention is to crush rice waste straw, waste paper, and then pulverized liquor, rice straw, soybean crushed liquid culture or fiber waste using finely pulverized fiber waste waste, and then finely FPase, CMCase, xylanase, and β-glucosidase in a bioreactor (ⓐ) using a solid state culture vessel using ground fiber waste as a substrate. Fibrinase production process (ⓐ) in a bioreactor for producing fibrinase of avicelase, amylase; Fpiaase (FPase), CMCase (CMCase), xylanase, beta-glucosidase, β-glucosidase, avicelase, amylase produced by the fibrinase production process In the saccharification reactor converting the food waste, which has been selected and pulverized into the complex of fibrinolytic enzymes of 10 to 20% by weight based on the dry weight of the fibrinolytic enzyme, saccharifies food waste in the saccharification reactor (ⓑ) and converts it into monosaccharides and disaccharides. Saccharification solution production process (ⓑ); The saccharified liquid converted in the saccharified liquid production process is centrifuged to remove saccharified residue, and the saccharified liquid from which the saccharified residue is removed is cultured to produce bacterial cellulose in a bioreactor ⓒ (BC). ) Production process (ⓒ); The saccharified liquid generated in the saccharified liquid production process is centrifuged before being introduced into the bacterial cellulose production process, and comprises a solidification process (ⓓ) for converting the remaining saccharified residue after the centrifugation into a functional material. It is done.

도 1은 식물 유래의 셀룰로오스의 SEM사진,1 is a SEM photograph of plant-derived cellulose,

도 2는 박테리얼 셀룰로오스(BC)의 SEM사진,2 is a SEM photograph of the bacterial cellulose (BC),

도 3은 본 발명의 전체 생산방법을 개략적으로 나타낸 도면,3 is a view schematically showing the entire production method of the present invention,

도 4는 액체 배양에서 섬유소폐기물의 혼합조건에 따른 섬유소분해효소 생산성을 나타내는 도면,4 is a diagram showing the fibrinase productivity according to the mixing conditions of fiber waste in liquid culture,

도 5는 최적의 섬유소폐기물 조합인 볏짚과 폐지의 2%와 peptone 0.1%의 배지에서의 섬유소분해효소 생산 특성을 나타내는 도면(액체배양),FIG. 5 is a diagram showing the fibrinolytic production characteristics in a medium of 2% of rice straw and waste paper and 0.1% peptone, which is an optimal fiber waste waste combination (liquid culture),

도 6은 효소 생산성을 높이기 위해 섬유소폐기물을 이용한 고체 배양에서의 섬유소분해효소 생산 특성을 나타내는 도면,Figure 6 is a view showing the fibrinase production characteristics in solid culture using fiber waste to increase enzyme productivity,

도 7은 주정박, 볏짚, 콩비지의 혼합비율에 따른 효소활성을 나타내는 도면(고체배양),7 is a view showing the enzyme activity according to the mixing ratio of alcoholic beverage, rice straw, soybeans (solid culture),

도 8은 음식물 쓰레기의 효소학적 가수분해에서 시간에 따른 환원당 농도를 나타내는 도면,8 is a diagram showing reducing sugar concentration with time in enzymatic hydrolysis of food waste,

도 9는 효소당화액을 이용한 박테리얼 셀룰로오스(BC) 생산에서 배양시간에 따른 환원당, 글루코오스 및 박테리얼 셀룰로오스(BC) 량의 변화를 나타내는 도면이다.9 is a view showing the amount of reducing sugar, glucose and bacterial cellulose (BC) with the incubation time in the production of bacterial cellulose (BC) using the enzyme saccharification solution.

※ 도면의 주요 부분에 대한 부호 설명 ※※ Explanation of main parts of drawing ※

ⓐ : 생물반응기(효소 생산공정)Ⓐ: Bioreactor (enzyme production process)

ⓑ : 당화반응기(당화액 생산공정)Ⓑ: saccharification reactor (glycosylation process)

ⓒ : 생물반응기(박테리얼 셀룰로오스(BC) 생산 공정)Ⓒ: Bioreactor (Bacterial Cellulose (BC) Production Process)

ⓓ : 고형화 공정Ⓓ: solidification process

① : 선별과정 ② : 분쇄과정①: Selection process ②: Grinding process

③ : 스팀보일러 ④ : 원심분리과정③: Steam boiler ④: Centrifugal separation process

⑤ : 여과과정 ⑥ : 세정과정⑤: Filtration process ⑥: Cleaning process

⑦ : pH 조절 장치 ⑧ : 청수 공급 장치⑦: pH adjusting device ⑧: Fresh water supply device

이하, 첨부된 도면을 참조하여 본 발명에 따른 생산방법을 더욱 상세히 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the production method according to the present invention.

도 3은 본 발명의 전체 방법을 개략적으로 나타낸 도면이다.Figure 3 is a schematic representation of the overall method of the present invention.

도시된 바와 같이, 본 발명의 생산방법은 대체적으로 생물반응기에서의 섬유소분해효소 생산 공정(ⓐ); 음식물 쓰레기를 주입하여 당화반응기(ⓑ)에서 가수분해하여 환원당으로 전환하는 당화반응기에서의 당화액 생산공정(ⓑ); 당화잔사물이 제거된 당화액이 생물반응기(ⓒ)에서 박테리얼 셀룰로오스를 생산하도록 배양하는 박테리얼 셀룰로오스(BC) 생산공정(ⓒ); 당화잔사물을 기능성 소재로 전환하는 고형화공정(ⓓ)을 포함하여 이루어져 있다.As shown, the production method of the present invention is generally a fibrinolytic production process (ⓐ) in a bioreactor; Saccharification liquid production process (ⓑ) in the saccharification reactor in which food waste is injected and hydrolyzed in the saccharification reactor (ⓑ) to be converted into reducing sugars; Bacterial cellulose (BC) production process (©) in which the saccharified liquid from which the saccharified residue was removed is cultured to produce bacterial cellulose in a bioreactor (ⓒ); It comprises a solidification process (ⓓ) for converting the saccharified residue into a functional material.

이하, 구체적으로 살펴본다.Hereinafter, look at in detail.

ⓐ 생물반응기(ⓐ)에서의 섬유소분해효소 생산공정Ⓐ process for producing fibrinase in bioreactor (ⓐ)

원료인 섬유소폐기물을 분쇄한 다음, 잘게 분쇄된 섬유소폐기물을 이용하여 생물반응기(ⓐ)에서 섬유소분해효소(FPase, CMCase, xylanase, Avicelase, β-glucosidase, amylase)를 생산하는 공정으로서, 체류시간은 약 5일 정도 소요된다.The process of producing fibrinase (FPase, CMCase, xylanase, Avicelase, β-glucosidase, amylase) in a bioreactor (ⓐ) using pulverized fiber waste, which is a raw material, It takes about 5 days.

상기 섬유소분해효소 생산공정은 효소생산별(배양형태 및 사용기질)에 따라이하의 표 1과 같이 공정 ㉮ 또는 공정 ㉯로 이루어질 수 있다.The fibrinase production process may be made of process ㉮ or process 과 as shown in Table 1 below, depending on the enzyme production (culture form and substrate used).

- 공정 ㉮ : 액체상태배양을 통한 섬유소분해효소 생산공정-Process ㉮: Fibrinase production process through liquid culture

- 공정 ㉯ : 고체상태배양을 통한 섬유소분해효소 생산공정-Process ㉯: Fibrinase production process through solid state culture

각 효소생산별에 따른 효소생산성Enzyme productivity according to each enzyme production 사용균주Use strain 배양형태Culture type 사용기질Substrate 효소농도 (U/ml)Enzyme Concentration (U / ml) Trichodermasp. Trichoderma sp. 액체상태배양공정 ㉮Liquid Culture Process ㉮ 볏짚, 폐지Rice straw, waste paper FPase : 0.25-1.0FPase: 0.25-1.0 Amylase : 1.0-5.0Amylase: 1.0-5.0 고체상태배양 공정㉯Solid State Culture Process 주정박, 볏짚, 콩비지Berth, rice straw, bean curd FPase : 0.2 이상FPase: 0.2 or more Amylase : 1.0 이상Amylase: above 1.0

ⓑ 당화반응기에서의 당화액 생산공정Ⓑ Saccharification liquid production process in the saccharification reactor

상기 ⓐ의 섬유소분해효소 생산공정에 의해 생산되어진 섬유소분해효소로 당화반응기(ⓑ)에서 음식물 쓰레기를 가수분해하여 환원당(단당 및 2당류)으로 전환하는 공정으로서, 체류시간은 약 1일 정도 소요된다.It is a process of hydrolyzing food waste into reducing sugars (monosaccharides and disaccharides) in the saccharification reactor (ⓑ) with fibrinase produced by the fibrinase production process of ⓐ, and the residence time is about 1 day. .

상기 당화반응기(ⓑ)에 투입되는 음식물 쓰레기는 후술하는 선별 및 분쇄과정을 거침으로서 투입 전에 이미 금속류가 제거되고 잘게 부서진 음식물 쓰레기로서, 당화공정으로 유입되는 음식물 쓰레기(함수율 : 80∼85 중량%)는 건조기질 무게로서 10∼20 중량%로 주입한다.Food waste to be added to the saccharification reactor (ⓑ) is a food waste that is already removed and finely broken food waste prior to addition by going through the sorting and grinding process described below, food waste introduced into the saccharification process (water content: 80 to 85% by weight) Is injected into the dry weight of 10 to 20% by weight.

상기 당화액 생산공정에 필요한 에프피아제(FPase) 및 아밀라아제(amylase)의 효소 농도는 에프피아제(FPase)(0.25U/ml)와 아밀라아제(1.0U/ml)로서, 상기 농도의 효소액이 효소생산공정이 이루어지는 생물반응기(ⓐ)에서 당화액 생산공정이 이루어지는 당화반응기(ⓑ)로 유입된다. 단, 효소생산공정에서 생산된 효소액의 농도가 당화액 생산공정에서 필요한 농도보다 높게 생산될 경우에는 효소액을 희석사용함이 가능하다.The enzyme concentrations of FPase and amylase required for the saccharification solution production process are FPase (0.25U / ml) and amylase (1.0U / ml). This bioreactor (ⓐ) is introduced into the saccharification reactor (ⓑ) is a saccharification liquid production process. However, when the concentration of the enzyme solution produced in the enzyme production process is higher than the concentration required in the saccharification solution production process, it is possible to dilute the enzyme solution.

ⓒ 박테리얼 셀룰로오스(BC) 생산 공정Ⓒ Bacterial Cellulose Production Process

상기 당화액 생산공정에서 전환되어진 당화액이 원심분리되어 당화잔사물이 제거되고, 상기 당화잔사물이 제거된 당화액이 생물반응기(ⓒ)에서 박테리얼 셀룰로오스(BC)를 생산하는 생물 공정으로서, 체류시간은 배양형태에 따라 약 3∼5일 정도 소요된다.(정치배양에서의 BC 생산 소요시간은 약 5일, 교반배양에서의 BC 생산 소요시간은 약 3일 소요됨) 본 공정에서의 생물반응기(ⓒ)는 효소액 생산을 위한 상기 ⓐ의 생물반응기와는 별도로 존재한다.The saccharified liquid converted in the saccharified liquid production process is centrifuged to remove saccharified residue, and the saccharified liquid from which the saccharified residue is removed is a biological process for producing bacterial cellulose (BC) in a bioreactor (ⓒ), The residence time is about 3 to 5 days depending on the culture type. (The BC production time in political culture is about 5 days, BC production time in stirred culture is about 3 days.) Bioreactor in this process (Ⓒ) is separate from the bioreactor of ⓐ for enzyme solution production.

상기 ⓒ 공정에서 생산되어진 박테리얼 셀룰로오스(BC)는 곧 바로 쓰여질 수는 없고 후술하는 여과 및 세정 과정을 거쳐야 한다.Bacterial cellulose (BC) produced in the step ⓒ can not be used immediately, but must be subjected to the filtration and cleaning process described later.

ⓓ 고형화 공정Ⓓ solidification process

상기 당화액 생산공정에서 발생된 당화액이 상기 ⓒ의 박테리얼 셀룰로오스(BC) 생산공정에 투입되기 전에 원심분리되고, 상기 원심분리후 남은 당화잔사물을 기능성 소재(보습제, 미생물 담체, 환경 비오톱 식재)로 전환하는 공정이다.The saccharified liquid generated in the saccharified liquid production process is centrifuged before being introduced into the ⓒ bacterial cellulose production process, and the remaining saccharified residue after the centrifugal separation is separated into functional material (humidant, microbial carrier, environmental biotope planting material). ) Process.

이하, 상기한 공정을 수행하기 위한 부가적인 장치 및 과정을 순서에 따라구체적으로 살펴본다.Hereinafter, an additional apparatus and process for performing the above process will be described in detail.

① 선별과정 : 도 3에 ①로 표시된 선별과정은 음식물 쓰레기에 혼입되어질 수 있는 금속류를 미리 제거하여 후술하는 분쇄공정의 기계장치를 보호하기 위한 과정으로서, 기본적으로 자석 등에 의해 철이 함유된 금속류를 제거함은 물론 무게차이, 밀도차이 등을 이용하여 철이 함유되어 있지 않은 금속류도 가급적 최대한 제거한다.① Sorting process: The sorting process indicated by ① in FIG. 3 is a process for protecting the mechanism of the grinding process described later by removing metals that may be mixed in food waste in advance, and basically removing metals containing iron by a magnet or the like. Of course, metals that do not contain iron are removed as much as possible using weight differences and density differences.

② 분쇄: 도 3에 ②로 표시된 분쇄과정은 섬유소분해효소 생산용 배지원으로서 섬유소폐기물(볏짚, 폐지, 주정박, 콩비지)의 분쇄와 효소당화액 생산을 위해 음식물 쓰레기를 필요로 하는 크기에 따라 잘게 분쇄하는 과정이다.② Grinding: The grinding process indicated by ② in Fig. 3 is a source of cellulose enzyme production medium according to the size of the food waste required for the grinding of the fiber waste (straw straw, waste paper, ethanol, soybeans) and enzyme saccharification liquid production. It is a fine grinding process.

③ 스팀보일러 : 도 3에 ③으로 표시된 스팀보일러는 섬유소분해효소 생산을 위한 생물반응기(ⓐ) 및 박테리얼 셀룰로오스(BC) 생산의 생물반응기(ⓒ)에 고온의 스팀(steam)을 공급하여, 배지 멸균을 통한 타 미생물의 오염을 방지하기 위한 장치이다.③ Steam boiler: Steam boiler shown in ③ in FIG. 3 is supplied with a high temperature steam to the bioreactor (ⓐ) and the bioreactor (ⓒ) of bacterial cellulose (BC) production for fibrinase production, medium It is a device for preventing the contamination of other microorganisms through sterilization.

④ 원심분리 : 도 3에 ④로 표시된 원심분리과정은 당화반응기(ⓑ)로부터 생산된 당화액 중에 함유된 고형물을 분리하기 위한 과정으로서, 상기 생물반응기(ⓒ)에서 반응 효율을 증대시키는 것외에도 상술한 기능성 소재 개발이라는 목적을 위해서도 필요하다.④ Centrifugation: The centrifugation process indicated by ④ in FIG. 3 is a process for separating the solids contained in the saccharification solution produced from the saccharification reactor (ⓑ), in addition to increasing the reaction efficiency in the bioreactor (ⓒ). It is also necessary for the purpose of developing a functional material.

⑤ 여과 : 도 3에 ⑤로 표시된 여과과정은 상기 생물반응기(ⓒ)에서 생산되어진 박테리얼 셀룰로오스(BC)를 회수하기 위해서 배양액을 여과하기 위한 과정이다.⑤ Filtration: Filtration process indicated by ⑤ in Figure 3 is a process for filtering the culture solution to recover the bacterial cellulose (BC) produced in the bioreactor (ⓒ).

⑥ 세정 : 도 3에서 ⑥으로 표시된 세정과정은 상기 ⑤의 여과과정에서 여과되어진 박테리얼 셀룰로오스(BC)를 세정하는 과정이다.⑥ Cleaning: The cleaning process indicated by ⑥ in FIG. 3 is a process of cleaning the bacterial cellulose (BC) filtered during the filtration process of ⑤.

⑦ pH 조절 장치 : 도 3에서 ⑦로 표시된 pH 조절장치는 효소 생산, 당화액 생산공정 및 박테리얼 셀룰로오스(BC) 생산공정의 pH를 조절하는 장치이다.⑦ pH control device: pH control device shown in ⑦ in Figure 3 is a device for adjusting the pH of the enzyme production, saccharification solution production process and bacterial cellulose (BC) production process.

⑧ 청수 공급 장치 : 도 3에서 ⑧로 표시된 청수 공급장치는 상기 생물반응기(ⓐ), 당화반응기(ⓑ), 생물반응기(ⓒ), 스팀보일러(③) 및 세정 과정(⑥) 의 단위조작에 청수를 공급하기 위한 장치이다.⑧ Fresh water supply device: Fresh water supply device indicated by ⑧ in Fig. 3 is a fresh water in the unit operation of the bioreactor (ⓐ), saccharification reactor (ⓑ), bioreactor (ⓒ), steam boiler (③) and washing process (⑥) It is a device for supplying.

상기 pH 조절 장치, 청수 공급장치, 스팀보일러 등의 장치 및 과정은 효소 생산, 당화액 생산공정 및 박테리얼 셀룰로오스(BC) 생산공정의 효율성에 있어 pH, 기질량, 반응온도, 교반조건, 효소농도 등은 중요한 결정인데 이러한 효율성을 증진시키기 위한 장치 및 과정의 일환이다.(후술하는 트리코데르마 균주의 경우를 토대로 한 실시예 참조)Devices and processes such as the pH control device, fresh water supply device, steam boiler, etc. are pH, base mass, reaction temperature, stirring conditions, enzyme concentration in the efficiency of enzyme production, saccharification solution production process and bacterial cellulose (BC) production process. Is an important decision and is part of the device and process for enhancing this efficiency (see Examples based on Trichoderma strains described below).

이하, 첨부된 도면을 참조하여 본 발명의 생산방법을 트리코데르마 균주(Trichoderma sp.)를 통해 검토하는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이하의 실시예에 의해 본 발명의 범위를 한정하여 해석하여서는 아니되며, 본 발명의 사상의 범위내에서 당업자에 의해 통상의 변화가 가능함은 물론이다.Hereinafter, with reference to the accompanying drawings will be described in more detail the present invention through an embodiment of examining the production method of the present invention Trichoderma strain (Trichoderma sp.). However, the following examples should not be construed as limiting the scope of the present invention, and ordinary changes may be made by those skilled in the art within the scope of the present invention.

상기 트리코데르마 균주는 대한민국 대전광역시 유성구 어은동 52번지에 소재하는 한국생명공학연구원 유전자원센터 유전자은행(Korean Collection for TypeCultures, KCTC)을 통해 당업자가 손쉽게 구입할 수 있거나, 1967년 학계와 산업계의 과학자 및 관련 종사자들에 의해 비영리 사단법인체로 발족된 한국종균협회(Korean Federation of Culture Collections, KFCC)의 부설기관으로서 1989년 8월에 설립된 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM, http://www.kccm.or.kr)를 통해서도 손쉽게 얻을 수 있다.The Tricorderma strain can be easily purchased by those skilled in the art through the Korea Biotechnology Research Institute Genetic Center Genetic Bank (KCTC), located at 52, Eeun-dong, Yuseong-gu, Daejeon, Korea. Korean Culture Center of Microorganisms, KCCM, established in August 1989 as an affiliated organization of the Korean Federation of Culture Collections (KFCC), established by non-profit corporations. /www.kccm.or.kr) can be obtained easily.

상기 유전자은행(Korean Collection for Type Cultures, KCTC)은 1985년에 정부로부터 정식사업승인을 받았으며, 표준미생물균주. 동식물세포주. 유전자 라이브러리 등의 유전자 재조합 자원을 국내 및 국외로부터 체계적이고도 지속적으로 수집, 보존하며 일반에게 분양하고, 이들로부터 화학분류학적 정보, 계통분류학적 정보, 분자생물학적 정보 등을 직접 생산하고 새로운 유용자원의 분류학적 연구 및 탐색에 활용하고 있으며 데이타베이스화하여 일반에게 공개하고 있고 또한 미생물 특허를 위한 국제적인 균주기탁기관의 효율적 관리를 위한 뱅크 시스템을 운영하고 있고, 유전자은행의 균주 목록을 포함하는 각종 정보는 http://kctc.kribb.re.kr을 통하여 인터넷상에서 제공이 되고 있으며, 전산망을 통한 균주의 신청도 가능하다.The Gene Bank (Korean Collection for Type Cultures, KCTC) was officially approved by the government in 1985 and is a standard microbial strain. Animal and plant cell lines. Collect and preserve gene recombination resources such as gene libraries systematically and continuously from home and abroad, and distribute them to the general public, and directly produce chemical taxonomic information, phylogenetic information, molecular biological information, etc., and classify new useful resources. It is used for scientific research and exploration, is open to the public through databases, and it operates a bank system for efficient management of international strain depositing institutions for microbial patents. It is provided on the Internet through //kctc.kribb.re.kr, it is also possible to apply for strains through the computer network.

실시예 1Example 1

트리코데르마 균주를 이용한 섬유소분해효소의 생산Production of Fibrinase Using Trichoderma Strains

(1) 효소활성도 분석(1) enzyme activity analysis

① 씨엠씨아제(CMCase)① CMCase

씨엠씨아제(CMCase) 효소활성도 측정은 2 중량%의 CMC(Sodium Carboxy methyl Cellulose; Aldrich, U.S.A.)용액 0.5㎖에 버퍼(buffer)로 적당히 희석한 효소액 0.5㎖을 혼합한 반응물을 50℃, 30분간 반응시켜 생성된 환원당을 DNS방법으로 측정하였다. 2 중량% CMC 용액 조제 및 효소액 희석에 사용되어진 버퍼(buffer)는 50mM citric acid(pH 4.8)을 사용하였다. 효소활성도는 표준반응조건에서 1 μ㏖ min-1의 글루코오스(glucose)에 상응하는 환원당을 생성하는데 필요한 효소량을 1 unit로 정의하였다.CMCase enzyme activity was measured by reacting a reaction mixture of 0.5 ml of 2 wt% CMC (Sodium Carboxy methyl Cellulose; Aldrich, USA) solution with 0.5 ml of an enzyme solution appropriately diluted with a buffer at 50 ° C for 30 minutes. The reducing sugar produced by the measurement was measured by the DNS method. 50 mM citric acid (pH 4.8) was used as a buffer used to prepare a 2 wt% CMC solution and dilute the enzyme solution. Enzyme activity was defined as 1 unit of enzyme required to produce reducing sugars corresponding to 1 μmol min −1 glucose under standard reaction conditions.

② 자일란아제(Xylanase)② Xylanase

자일란아제(Xylanase) 효소활성도 측정은 2 중량%의 Xylan(Sigma, U.S.A.)용액 0.5㎖에 buffer로 적당히 희석한 효소액 0.5㎖을 혼합하여 반응물을 50℃, 30분간 반응시켜 생성된 환원당을 DNS방법으로 측정하였다. 2 중량%의 xylan 용액은 50mM citric acid(pH 4.8)에 24시간 교반하여 용해시킨 후, 이 용액을 원심분리(7,000rpm, 30분)하여 상등액을 사용하였다. 효소활성도는 표준반응조건에서 1 μ㏖ min-1의 자일로오스(xylose)에 상응하는 환원당을 생성하는데 필요한 효소량을 1 unit로 정의하였다.Xylanase enzyme activity was measured by mixing 0.5 ml of 2% by weight of Xylan (Sigma, USA) solution with 0.5 ml of an appropriately diluted enzyme solution and reacting the reactants at 50 ° C for 30 minutes. Measured. 2% by weight of xylan solution was dissolved in 50 mM citric acid (pH 4.8) by stirring for 24 hours, and then the solution was centrifuged (7,000 rpm, 30 minutes) to use a supernatant. Enzyme activity was defined as 1 unit of the amount of enzyme required to produce a reducing sugar corresponding to 1 μmol min-1 xylose under standard reaction conditions.

③ 베타-글루코시다아제(β-glucosidase)③ beta-glucosidase (β-glucosidase)

베타-글루코시다아제(β-glucosidase) 효소활성도 측정은 0.1M sodium acetate buffer(pH 4.8) 1.8 ㎖과 5 mM PNPG(p-nitrophenyl-β-D-glucoside; Sigma, U.S.A.)용액 1㎖에, 버퍼(buffer)로 적당히 희석한 효소액 0.2㎖을 혼합하여 50℃, 30분간 반응시킨 후 0.4M glycine buffer(pH 10.8) 4㎖를 넣어 반응을 종결시킨 다음, 이 때 생성되는р-nitrophenol을 430nm에서 정량 하였다. β-glucosidase 1unit는 위의 반응조건에서 1μ㏖ min-1의р-nitrophenol을 생성하는 데 필요한 효소량으로 정의하였다.Beta-glucosidase enzyme activity was measured in 1.8 ml of 0.1 M sodium acetate buffer (pH 4.8) and 1 ml of 5 mM PNPG ( p- nitrophenyl-β-D-glucoside; Sigma, USA) buffer. (0.2 ml of enzyme solution diluted appropriately with a buffer) were mixed and reacted for 30 minutes at 50 ° C. Then, 4 ml of 0.4M glycine buffer (pH 10.8) was added to terminate the reaction. The resulting р- nitrophenol was quantitated at 430 nm. It was. β-glucosidase 1unit was defined as the amount of enzyme required to produce 1μmol min-1 of р -nitrophenol under the above reaction conditions.

④ 아비셀라아제(Avicelase)④ Avicelase

아비셀라아제(Avicelase) 활성도 측정은 1 중량%의 Avicel(Merck, Germany) 1㎖와 buffer로 적당히 희석한 효소액 1㎖을 혼합한 반응물을 50℃, 120분간 반응시켜 Somogyi-Nelson방법으로 환원당을 측정하였다. 효소 활성도는 표준반응조건에서 1μ㏖ min-1 의 cellobiose에 상응하는 환원당을 생성하는데 필요한 효소량을 1unit로 정의하였다.Avicelase activity was measured by reacting a 1% by weight of Avicel (Merck, Germany) with 1 ml of an appropriately diluted enzyme solution in buffer and 1 ml of enzyme solution at 50 ° C for 120 minutes to measure reducing sugars using the Somogyi-Nelson method. It was. Enzyme activity was defined as 1 unit of the amount of enzyme required to produce a reducing sugar corresponding to 1μmol min-1 cellobiose under standard reaction conditions.

⑤ 에프피아제(FPase)⑤ FPase

Filter paper 활성은 에프피아제(FPase)로 나타내었는데, 이는 50mg (1 × 5㎝)의 filter paper(Watman No. 1)를 buffer로 적당히 희석한 효소액 1.0ml와 혼합하여 50℃, 60분간 반응시켜 생성된 환원당을 DNS법으로 측정하였다. 1μ㏖ min-1 의 glucose에 상응하는 환원당을 생성하는데 필요한 효소량을 1 unit으로 정의하였다.Filter paper activity was expressed as FPase, which was produced by mixing 50 mg (1 × 5 cm) of filter paper (Watman No. 1) with 1.0 ml of enzyme solution diluted appropriately with buffer and reacting at 50 ° C for 60 minutes. The reduced sugar was measured by the DNS method. The amount of enzyme required to produce a reducing sugar corresponding to 1 μmol min −1 glucose was defined as 1 unit.

⑥ 총 아밀라아제(Total amylase)⑥ Total amylase

아밀라아제(Amylase) 효소 활성은 DNS 법에 의하여 측정하였다. 즉, 시험관에 먼저 buffer(50mM citric acid, pH 5.0)로 적당히 희석되어진 효소용액 0.5ml을 가하고 50℃의 항온수조에서 2% 가용성 전분용액을 0.5ml 가하여 30분간 반응시킨 다음, DNS 시약 3ml을 넣어 반응을 종결시켰다. 반응물은 끓는 물에서 5분간 가열하고 증류수를 20ml를 첨가한 후, 540nm에서 흡광도를 측정하였다. 표준물질로는 glucose을 이용하였으며, 효소 활성도는 위의 반응조건에서 1분 동안 1μmol의 환원당을 생산하는 효소의 양을 1uint으로 정의하였다.Amylase enzyme activity was measured by DNS method. In other words, first add 0.5 ml of enzyme solution properly diluted with buffer (50mM citric acid, pH 5.0) to the test tube, add 0.5 ml of 2% soluble starch solution in a 50 ℃ constant temperature water bath, and react for 30 minutes, and then add 3 ml of DNS reagent. The reaction was terminated. The reaction was heated in boiling water for 5 minutes, 20 ml of distilled water was added, and the absorbance was measured at 540 nm. Glucose was used as a standard, and the enzyme activity was defined as 1 uint of the enzyme producing 1 μmol of reducing sugar for 1 minute under the above reaction conditions.

(2) 트리코데르마 균주(Trichoderma sp.)의 효소 생산 특성(2) Enzyme Production Characteristics of Trichoderma sp.

① 배양조건① Culture condition

보존 및 포자생산용 배지로는 Yeast Malt Extract Agar (YMEA; malt extract 10.0g, yeast extract 4.0g, glucose 4.0g, agar 15g, distilled water 1.0L)를 사용하였고, 포자 현탁액은 YMEA배지에 30℃, 5일간 배양한 균체를 백금이로 긁어 수집하여 멸균수에 현탁한 후 cotten wool plug로 여과시켜 조제하였다.Yeast Malt Extract Agar (YMEA; malt extract 10.0g, yeast extract 4.0g, glucose 4.0g, agar 15g, distilled water 1.0L) was used as a medium for preservation and spore production. The cells incubated for 5 days were collected by scraping with platinum and suspended in sterile water, and then filtered by cotten wool plug.

효소 생산의 기본 배지는 만델 배지(Mandel's medium)을 이용하였으며, 배지 조성은 이하의 표 2와 같다. 효소 생산에 관한 실험은 500ml 플라스크에 100ml 배지를 사용하였으며, 포자현탁액을 2% 접종하여 30℃, 100rpm, 5일간 배양하였다. 효소액은 배양액을 원심분리(10,000rpm, 10분)하여 상등액을 이용하였다.Mandel's medium was used as a basic medium for enzyme production, and the medium composition is shown in Table 2 below. In the experiment of enzyme production, 100 ml medium was used in 500 ml flask, and 2% inoculation of spore suspension was incubated at 30 ° C., 100 rpm, for 5 days. Enzyme solution was centrifuged (10,000 rpm, 10 minutes) to the supernatant was used.

맨델(Mandel's) 배지의 구성Composition of Mandel's Badge Trace element solutionTrace element solution AvicelAvicel 5.0g5.0 g FeSO4·7H2OFeSO 4 7H 2 O 5.0g5.0 g CMCCMC 5.0g5.0 g ZnSO4·7H2OZnSO 4 · 7H 2 O 1.4g1.4 g KH2PO4 KH 2 PO 4 2.0g2.0 g MnSO4·7H2OMnSO 4 7H 2 O 1.6g1.6 g (NH4)2SO4 (NH 4 ) 2 SO 4 1.4g1.4 g CoCl2 CoCl 2 2.0g2.0 g PeptoneEptone 1.0g1.0 g Distilled waterDistilled water 1.0ℓ1.0ℓ MgSO4·7H2OMgSO 4 7 H 2 O 0.3g0.3 g CaCl2·7H2OCaCl 2 · 7H 2 O 0.3g0.3 g UreaUrea 0.3g0.3 g Trace element solutionTrace element solution 1.0㎖1.0 ml Distilled waterDistilled water 1.0ℓ1.0ℓ

② 효소생산성 비교② Comparison of enzyme productivity

트리코데르마 균주(Trichoderma sp.)의 효소 생산에 관한 최적의 배양조건은 25-30℃, 100rpm, pH 6.0∼7.0, 배양시간 5일이었다. Mandel's 배지와 수정된 Mandel's 배지에서 섬유소 분해효소 생산성은 이하의 표 3에서 보여주고 있다.Optimal culture conditions for the enzyme production of Trichoderma sp. (Trichoderma sp.) Was 25-30 ℃, 100rpm, pH 6.0-7.0, incubation time 5 days. Fibrinase productivity in Mandel's medium and in modified Mandel's medium is shown in Table 3 below.

수정된 멘델 배지에서 트리코데르마 균주의 효소생산성Enzyme Production of Trichoderma Strains in Modified Mendel Medium 배지badge 배양조건Culture condition 효소활성도(U/ml)Enzyme Activity (U / ml) Mandel's 배지Mandel's Badge 배양온도 : 30℃초기pH : 6.0교반조건 : 100rpm,배양시간 : 5일Incubation temperature: 30 ℃ Initial pH: 6.0 Stirring condition: 100rpm, Culture time: 5 days CMCase : 9.1Xylanase(4일) : 12.6β-glucosidase : 0.54Avicelase : 0.21CMCase: 9.1Xylanase (4 days): 12.6β-glucosidase: 0.54 Avicelase: 0.21 수정된 Mandel's 배지(Avicel + CMC : 2.5%Peptone : 0.5)Modified Mandel's Medium (Avicel + CMC: 2.5% Peptone: 0.5) 배양온도 : 30℃초기pH : 6.0교반조건 : 100rpm,배양시간 : 7일Incubation temperature: 30 ℃ Initial pH: 6.0 Stirring condition: 100rpm, Culture time: 7 days CMCase : 41.2Xylanase : 65.6β-glucosidase : 2.25Avicelase : 4.72CMCase: 41.2 Xylanase: 65.6β-glucosidase: 2.25 Avicelase: 4.72

(3) 액체상태배양에서 섬유소폐기물을 이용한 섬유소 분해효소 생산(3) Production of Fibrinolytic Enzyme Using Fibrin Waste in Liquid Culture

① 배양조건① Culture condition

앞서 (2) 트리코데르마 균주(Trichoderma sp.)의 효소 생산 특성의 ① 배양조건의 방법으로 효소생산성을 검토하였으며, Mandel's 배지의 탄소원인 Avicel 및 CMC을 섬유소 폐기물로 대체하여 실험하였다. 여기에서 사용되어진 섬유소 폐기물은 볏짚(전남 장성; Rice Straw(RS)), 톱밥(참나무, 광주 무등산; Sawdust(SD)), 폐지(박스용지; Paper Waste(PW))로서, 80℃에서 24시간 건조시킨 후 30mesh로 분쇄하였다.The enzyme production of the enzyme production characteristics of (2) Trichoderma sp. (Trichoderma sp.) Was examined by the method of culturing conditions, and the experiment was performed by replacing Avicel and CMC, which are carbon sources of Mandel's medium, with fibrin waste. The fiber waste used here is rice straw (Chunnam Jangseong; Rice Straw (RS)), sawdust (oak, Gwangju Mudeungsan; Sawdust (SD)), waste paper (box waste) (Paper Waste (PW)), which is 24 hours at 80 ℃. After drying, it was ground to 30mesh.

② 섬유소 폐기물을 이용한 효소 생산성 검토② Enzyme productivity review using fiber waste

도 4는 액체 배양에서 섬유소폐기물의 혼합 조건에 따른 섬유소분해효소 생산성을 나타내는 도면이고, 도 5는 최적의 섬유소폐기물 조합인 볏짚과 폐지의 2%와 펩톤(peptone) 0.1%의 배지에서의 섬유소분해효소 생산 특성(액체배양)을 나타내는 도면이다. 도 4에서 MS는 Mixture Substrate(볏짚+톱밥+폐지)를 의미한다.Figure 4 is a diagram showing the fibrinolytic enzyme productivity according to the mixing conditions of the fiber waste in the liquid culture, Figure 5 is a fibrinolysis in the medium of 2% of rice straw and waste paper and 0.1% peptone of the optimal fiber waste combination It is a figure which shows the enzyme production characteristic (liquid culture). In Figure 4, MS means Mixture Substrate (straw straw + sawdust + waste paper).

도시된 바와 같이, 섬유소분해효소를 생산하기 위해 볏짚과 톱밥, 볏짚과 폐지, 톱밥과 폐지, 볏짚과 톱밥과 폐지의 조합으로 한 혼합농도 1%에서 효소생산성을 비교하였다. 섬유소폐기물을 이용한 효소 생산에 실험은 500ml 플라스크에 100ml의 섬유소폐기물을 이용한 배지를 사용하였고, 포자현탁액을 2% 접종하여 30℃, 100rpm, 5일간 배양하였다. 그 결과 볏짚과 폐지를 사용하였을 때 섬유소분해효소의 활성도가 높았다. 이때의 씨엠씨아제(CMCase), 자일란아제(xylanase), 베타-글루코시다아제(β-glucosidase), 아비셀라아제(Avicelase)는 각각 24.3, 38.7, 1.5, 0.6 U/ml이었다(도 4 참조). 최적의 섬유소폐기물 조합인 볏짚과 폐지의 2%와 펩톤(peptone) 0.1%의 배지에서의 효소 생산 특성은 에프프아제(FPase)가 배양 5일째 0.75U/ml까지 얻어졌다(도 5 참조).As shown in the drawing, enzyme productivity was compared at a mixed concentration of 1% in combination with rice straw and sawdust, rice straw and waste paper, sawdust and waste paper, rice straw and sawdust and waste paper to produce fibrinolytic enzymes. In the experiment for enzyme production using fiber waste, a medium using 100 ml of fiber waste was used in a 500 ml flask, and 2% inoculation of spore suspension was incubated at 30 ° C., 100 rpm, for 5 days. As a result, the activity of fibrinase was high when rice straw and waste paper were used. At this time, the CMCase (CMCase), xylanase (xylanase), beta-glucosidase (β-glucosidase), avicelase (Avicelase) were 24.3, 38.7, 1.5, 0.6 U / ml, respectively (see Figure 4). Enzyme production characteristics in the media of 2% of rice straw and waste paper and 0.1% peptone, which is the optimal fiber waste combination, were obtained up to 0.75 U / ml on the fifth day of culture of FPase (see FIG. 5).

(4) 고체상태배양에서 섬유소폐기물을 이용한 섬유소 분해 효소 생산(4) Production of fibrinolytic enzymes using fiber waste in solid state culture

① 배양조건① Culture condition

고체상태배양에 사용된 섬유소 폐기물은 주정박(보해양조, 전남 순천; Wine Waste, WW), 볏짚(전남 장성; Rice Straw, RS), 톱밥(참나무, 광주 무등산; Sawdust; SD), 폐지(박스용지; Paper Waste; PW), 콩비지(자연과 사람들, 전남담양; Soybean Flour, SF), 음식물쓰레기(구내식당, 전남대학교; Food Waste; FW)로서, 80℃에서 24시간 건조시킨 후 30메시(mesh)로 분쇄하였다.Fibrous wastes used for solid state culture were made from alcoholic beverages (Bohae Brewery, Jeonnam Suncheon; Wine Waste, WW), rice straw (Chunnam Jangseong; Rice Straw, RS), sawdust (oak, Gwangju Mudeungsan; Sawdust; SD), waste paper (boxes). Paper Waste; PW), Soybean Flour (Nature and People, Jeonnam Damyang; Soybean Flour, SF) mesh).

효소생산을 위한 고체상태배양은 각각의 기질 적당량을 100ml 삼각플라스크에 넣은 후, 멸균(121℃, 15min)하여 실험에 사용하였다. 배양조건은 섬유소 폐기물을 멸균(121℃, 15분)시킨 후, 함수율 70%로 조절하기 위해 적당량의 50mM citric acid buffer (pH 5.0)를 첨가하였고, YMEA 배지에 성장시킨 균체를 위의 완충용액에 현탁시켜 조제된 포자현탁액 1ml을 접종하여, 30℃, 5일간 정치배양 하였다.Solid state culture for enzyme production was put into a 100ml Erlenmeyer flask with the appropriate amount of each substrate, followed by sterilization (121 ℃, 15min) was used in the experiment. Culture conditions were sterilized (121 ℃, 15 minutes) of the fibrous waste, and then added to the appropriate amount of 50mM citric acid buffer (pH 5.0) in order to adjust to 70% water content, the cells grown in YMEA medium to the above buffer solution 1 ml of the spore suspension prepared by suspension was inoculated and incubated at 30 ° C. for 5 days.

배양후의 효소액 추출은 기질 1g 당 10ml 완충용액을 첨가하여 30℃, 100 rpm에서 1시간 교반한 후, 원심분리(10,000 rpm, 10분)하여 상등액을 효소액으로 하였다.After the incubation, the enzyme solution was extracted, and 10 ml of buffer solution was added per 1 g of the substrate, stirred at 30 ° C. and 100 rpm for 1 hour, followed by centrifugation (10,000 rpm, 10 minutes) to prepare the supernatant as the enzyme solution.

② 효소활성도 분석② Enzyme Activity Analysis

앞서 (1) 효소활성도 분석 ⑤ 에프피아제(FPase) 및 ⑥ 아밀라아제(amylase) 방법에 준하여 실험하였고, 효소 활성도는 전체 효소활성도를 건조기질무게(SDW, substrate dry weight)로 나누어 에프피아제(FPase)(FPA/g-SDW)와 아밀라아제(amylase)(U/g-SDW)로 표기하였다.Previously, (1) enzyme activity analysis was carried out according to the method of ⑤ FPase and ⑥ amylase, and the enzyme activity was divided by total dry enzyme (SDW, substrate dry weight) and FPase (FPase) ( FPA / g-SDW) and amylase (U / g-SDW).

③ 섬유소분해효소 생산③ Production of fibrinase

섬유소분해효소 생산은 배양 배지내의 탄소원의 사용에 의존되어진다. 기질로서 주정박, 볏짚, 톱밥, 폐지, 콩비지, 음식물쓰레기를 사용하여 고체상태배양을 통한 섬유소분해효소 생산성을 검토하였다. 본 실험에서는 함수율을 70%(w/w)로 선정한 후 100ml 삼각플라스크에서 5일 배양을 통해 고체상태배양을 통한 효소생산에 적합한 기질조사를 수행하였다. 함수율을 조절하기 위해 50 mM citric acid buffer(pH 5.0)을 사용하였고 다른 영양물질은 전혀 첨가하지 않았다. 5일 배양 후 섬유소분해효소의 생산성을 측정한 결과, 주정박을 기질로 사용하였을 때 1.1 FPA/g-SDW로 가장 높은 효소생산을 보였다. 이는 주정박이 고체상태배양에 적합한 탄소원임을 알 수 있었다.Fibrinase production is dependent on the use of carbon sources in the culture medium. Fibrinase productivity through solid-state culture was investigated using alcohol, rice straw, sawdust, waste paper, soybean waste, and food waste as substrates. In this experiment, the water content was selected as 70% (w / w), and then the substrate was investigated for the enzyme production through solid state culture through 5 days culture in 100ml Erlenmeyer flask. 50 mM citric acid buffer (pH 5.0) was used to control the water content and no other nutrients were added. As a result of measuring the fibrinase productivity after 5 days incubation, 1.1 FPA / g-SDW showed the highest enzyme production when the berth was used as a substrate. This suggests that berth is a suitable carbon source for solid state culture.

도 6은 효소 생산성을 높이기 위해 섬유소폐기물을 이용한 고체배양에서의 섬유소분해효소 생산 특성을 나타내는 도면이다. 효소 생산성을 높이기 위해 주정박과 다른 섬유소폐기물을 혼합하여 실험을 수행하였다. 각각의 기질을 단독으로 사용할 경우 기질에 함유된 성분이 균주의 성장과 효소 생산에 적합하지 않을 수 있으므로 2 성분계의 기질혼합을 검토하였다. 효소생산성이 가장 좋은 주정박을 기준으로 각각의 섬유소 폐기물을 혼합하여 5일 배양하였다. 그 결과 주정박과 볏짚을 각각 1g씩 혼합하여 배양한 결과 섬유소분해효소의 생산이 주정박을 단독으로사용했을 때 보다 약 13배 이상의 효소생산을 나타내었고, 이때의 효소활성은 14.0 FPA/g-SDW 이었다(도 6 참조).Figure 6 is a view showing the fibrinase production characteristics in solid culture using fiber waste to increase enzyme productivity. Experiments were carried out by mixing berths and other fibrous wastes to increase enzyme productivity. When each substrate is used alone, the components contained in the substrate may not be suitable for the growth of the strain and the enzyme production. Each fiber waste was incubated for 5 days on the basis of the best marinated enzyme. As a result, 1g of ethanol and rice straw were mixed and cultured, and the production of fibrinase was about 13 times higher than that of ethanol alone. The enzyme activity was 14.0 FPA / g- SDW (see FIG. 6).

도 7은 주정박, 볏짚, 콩비지의 혼합비율에 따른 효소활성을 나타내는 도면(고체배양)이다. 섬유소분해효소 생산에는 미미하나, 균체성장에 유리한 작용을 하는 콩비지를 사용하여 주정박과 볏짚에 혼합하여 배양하였다. 그 결과 콩비지의 혼합비율이 높아질수록 효소생산도 높아지는 것을 확인할 수 있었다. 주정박과 볏짚과 콩비지가 1 : 1 : 1의 비율로 혼합하였을 때 효소 활성이 16.7 FPA/g-SDW 이었다(도 7 참조).7 is a view showing the enzyme activity according to the mixing ratio of ethanol, rice straw, soybeans (solid culture). The production of fibrinase was insignificant, but the soybeans, which had a favorable effect on cell growth, were mixed and cultivated in marinated rice and straw. As a result, the higher the mixing ratio of soybeans, the higher the enzyme production was confirmed. When marinated, rice straw and soybeans were mixed at a ratio of 1: 1: 1, the enzyme activity was 16.7 FPA / g-SDW (see FIG. 7).

실시예 2Example 2

음식물 쓰레기의 효소학적 당화Enzymatic Saccharification of Food Waste

① 트리코테르마 균주(Trichoderma sp.)가 생산하는 효소의 특성① Characteristics of Enzyme Produced by Trichoderma sp.

트리코테르마 균주(Trichoderma sp.)가 생산하는 효소의 특성을 파악하기 위해 최적 온도 및 pH, 열안정성을 검사하였다. 에프피아제(FPase), 씨엠씨아제(CMCase), 아비셀라아제(Avicelase), 자일란아제(Xylanase), 베타-글루코시다아제(β-glucosidase), 아밀라아제(amylase)의 최적 온도, pH 및 열안정성을 이하의 표 4에 나타내었다.Optimum temperature, pH, and thermal stability were examined to characterize the enzymes produced by Trichoderma sp. Optimal temperature, pH and thermal stability of FPase, CMCase, Avicelase, Xylanase, β-glucosidase, amylase It is shown in Table 4.

트리코데르마 균주가 생산하는 효소 특성Enzyme Properties Produced by Trichoderma Strains 효소enzyme 최적온도(℃)Optimum temperature (℃) 최적 pHOptimal pH 열안전성Thermal safety FPaseFPase 6060 5.05.0 95%95% CMCaseCMCase 6060 5.05.0 80%80% XylanaseXylanase 5050 5.05.0 20%20% β-glucosidaseβ-glucosidase 7070 5.05.0 20%20% AvicelaseAvicelase 6060 5.05.0 60%60% AmylaseAmylase 6060 4.54.5 90%90%

* 열안정성은 50℃에서 2일 후 잔여효소 활성도를 표현하였음* Thermal stability expressed residual enzyme activity after 2 days at 50 ℃

* 모든 효소는 40℃에서 2일 후 잔여 효소 활성도는 100%이었음* All enzymes had 100% residual enzyme activity after 2 days at 40 ℃

② 음식물쓰레기의 효소학적 가수분해② Enzymatic hydrolysis of food waste

음식물쓰레기의 효소학적 가수분해는 고체 또는 액체 상태 배양 효소액을 이용하여 음식물쓰레기 농도를 5-20%(w/v) 달리하여 수행하였다. 음식물쓰레기(전남대학교 구내식당)는 80℃에서 24시간 건조시킨 후 30mesh로 분쇄하여 사용하였다. 효소액 50ml와 50mM citric acid(pH 5.0) 50ml에 각각의 농도를 첨가하여, 50℃, 100rpm으로 반응시켜 생성되는 환원당을 정량하였다.Enzymatic hydrolysis of food waste was performed by varying the food waste concentration by 5-20% (w / v) using a solid or liquid culture enzyme solution. Food waste (Chonnam National University cafeteria) was used after being dried at 80 ℃ for 24 hours and crushed into 30mesh. Each concentration was added to 50 ml of enzyme solution and 50 ml of 50 mM citric acid (pH 5.0), and the reducing sugars produced by reaction at 50 ° C. and 100 rpm were quantified.

도 8은 음식물 쓰레기의 효소학적 가수분해에서 시간에 따른 환원당 농도를 나타내는 도면이다. 효소학적 당화에는 효소농도 및 기질량, 반응온도, pH, 교반조건에 크게 영향을 받았으며, 건조된 음식물쓰레기 20%(w/v) 농도에서 에프피아제(FPase) (0.25 U/ml)와 아밀라아제(amylase) (1.0 U/ml)의 효소, 50℃, 100rpm, pH 5.0에서 24시간에 67g/L의 환원당을 얻었으며, 48시간에 73g/L의 환원당을 얻을 수 있었다.8 is a view showing the reducing sugar concentration over time in the enzymatic hydrolysis of food waste. Enzymatic saccharification was greatly influenced by enzyme concentration, base mass, reaction temperature, pH, and agitation conditions.FFPase (0.25 U / ml) and amylase (20% (w / v)) of dried food waste amylase) (1.0 U / ml), at 67 ° C, 100 rpm, pH 5.0, 67g / L of reducing sugar was obtained at 24 hours, and 73g / L of reducing sugar was obtained at 48 hours.

실시예 3Example 3

음식물 쓰레기 당화액을 이용한 박테리얼 셀룰로오스(BC)의 생산Production of Bacterial Cellulose (BC) Using Food Waste Saccharification Solution

(1) 박테리얼 셀룰로오스(BC) 생산에 사용된 아세토박터 자일리늄(Acetobactor xylinum)의 특성(1) Characteristics of Acetobacter xylinum used to produce bacterial cellulose (BC)

① 박테리얼 셀룰로오스(BC) 분석① Bacterial Cellulose (BC) Analysis

생성된 박테리얼 셀룰로오스 막(BC pellicle)을 10,000rpm에서 30분간 원심분리한 후, 상등액은 버리고 박테리얼 셀룰로오스 막(BC pellicle)만 0.1N 수산화나트륨(NaOH) 용액에 넣고 80℃에서 20∼30분간 처리하여 균체를 용해시킨 후 필터(filter paper)에 여과시켰다. 이후, 박테리얼 셀룰로오스(BC)를 중화시키기 위해 증류수로 여러 번 세척한 후 80℃ 8시간 건조하고, 테시케이터에서 30분 방냉하여 건조 중량을 측정하여 박테리얼 셀룰로오스(BC) 생성량을 측정하였다. The resulting bacterial cellulose membrane (BC pellicle) was centrifuged at 10,000 rpm for 30 minutes, then the supernatant was discarded and only the bacterial cellulose membrane (BC pellicle) was placed in 0.1 N sodium hydroxide (NaOH) solution for 20-30 minutes at 80 ° C. The cells were treated to dissolve the cells, and then filtered through a filter paper. Subsequently, the mixture was washed several times with distilled water to neutralize the bacterial cellulose (BC), followed by drying at 80 ° C. for 8 hours, and allowed to cool for 30 minutes in a tessitizer to measure the dry weight to determine the amount of the bacterial cellulose (BC).

② 최적화된 GFC배지에서 BC 생산② BC production in optimized GFC medium

박테리얼 셀룰로오스(BC) 생산을 위한 전 배양은 500ml 삼각플라스크에 100ml의 HS 배지(표 5 참조)에 균체를 1% 접종하여 3일간 정치 배양한 후 접종액으로 사용하였다. BC 생산을 위한 정치배양 및 교반배양은 500ml slant baffled 플라스크에 100ml BC 생산용의 HS배지 또는 GFC배지 100ml를 이용하였고, 전 배양된 균주 배양액을 1% 접종하여 30℃에서 5일간 배양하였다. 교반배양의 조건은 교반속도를 150rpm으로 조절하였다. GFC배지 구성은 이하의 표 6에 나타내었다.The pre-culture for the production of bacterial cellulose (BC) was inoculated with 1% of cells in 100 ml of HS medium (see Table 5) in a 500 ml Erlenmeyer flask and used as an inoculum after incubation for 3 days. Stationary culture and stirred culture for BC production was used 100ml HS medium or 100ml GFC medium for 100ml BC production in 500ml slant baffled flask, incubated for 5 days at 30 ℃ by inoculating 1% pre-cultured strain culture. Condition of the stirring culture was adjusted to 150rpm stirring speed. The GFC medium composition is shown in Table 6 below.

생물반응기 최적 운전에서의 BC 생산 전배양은 HS 배지 100ml가 들어 있는 500ml 플라스크에 균체를 접종하여 3일간 정치배양 하였다. 본 배양은 10L jar fermentor(BioG, Hanil R&D Co., Korea)에 배지 5L를 넣고, 접종액으로 정치배양에서 얻어진 상등액 1%를 접종하여 30℃에서 80시간 배양하였다. 배양조건은 위의 GFC 배지에서 탄소원 농도를 4%, CSL 농도를 6%으로 조절하였고, 산소 공급은 0.28atm(0.3vvm), 교반속도 460rpm으로 조절하여 배양하였다. 배양액의 pH 조절은 2N NaOH/HCl을 이용하여 5.0으로 조절하였다.BC production pre-culture in the optimal operation of the bioreactor was incubated for 3 days by inoculating cells into a 500 ml flask containing 100 ml of HS medium. In this culture, 5L of medium was added to a 10L jar fermentor (BioG, Hanil R & D Co., Korea), and 1% of the supernatant obtained from the stationary culture was inoculated with the inoculum, followed by incubation at 30 ° C for 80 hours. Culture conditions were adjusted to the carbon source concentration of 4%, CSL concentration of 6% in the above GFC medium, oxygen supply was 0.28atm (0.3vvm), agitation rate was adjusted to 460rpm. PH control of the culture was adjusted to 5.0 using 2N NaOH / HCl.

이하의 표 7은 아세토박터 자일리늄(Acetobactor xylinum)을 이용한 BC 생산성을 검토한 결과를 보여주고 있다. 정치배양에서는 HS를 사용하였을 경우 3.2g/L의 BC을 생산하였으며, 교반배양에서는 수정된 GFC배지에서 7.2g/L의 BC를 생산하였다. 생물반응기의 최적의 배양조건에서는 11.7g/L의 BC가 생산되었다.Table 7 below shows the results of examining the BC productivity using acetobacter xylinum (Acetobactor xylinum). In the culture culture, when the HS was used, 3.2 g / L of BC was produced, and in the stirred culture, the modified GFC medium produced 7.2 g / L of BC. Under optimum culture conditions of the bioreactor, 11.7 g / L of BC was produced.

HS(Hestrin & Schramm) 배지의 조성Composition of HS (Hestrin & Schramm) Medium GlucoseGlucose 20g20 g Bacto peptoneBacto peptone 5g5 g Yeast extractYeast extract 5g5 g Na2HPO4 Na 2 HPO 4 2.7g2.7 g Citric acid monohydrateCitric acid monohydrate 1.15g1.15 g Distilled waterDistilled water 1.0L1.0L pHpH 5.255.25

BC 생산을 위한 GFC 배지 조성Composition of GFC medium for BC production GlucoseGlucose 5g5 g FructoseFructose 15g15 g CSL(corn steep liquor)Corn steep liquor (CSL) 20g20 g Na2HPO4 Na 2 HPO 4 2.7g2.7 g Citric acid monohydrateCitric acid monohydrate 1.15g1.15 g Distilled waterDistilled water 1.0L1.0L pHpH 5.255.25

아세토박터 자일리넘(Acetobactor xylinum)을 이용한 BC 생산성 검토 결과BC productivity review using Acetobacter xylinum 배양 상태Culture 사용배지Used badge BC농도(g/L)BC concentration (g / L) BC 수율(g/g)BC yield (g / g) 플라스크flask 정치배양Political Culture HS 배지(표 5)HS medium (Table 5) 3.23.2 0.160.16 교반배양Stirring Culture GFC 배지(표 6)GFC Badge (Table 6) 7.27.2 0.360.36 생물반응기Bioreactor 수정된 GFC 배지(탄소원 : 4%, CSL : 6%)Modified GFC medium (carbon source: 4%, CSL: 6%) 11.711.7 0.290.29

(2) 음식물쓰레기 효소당화액을 이용한 BC 생산(2) BC production using food waste enzyme saccharification liquid

① 사용된 음식물쓰레기의 종류 및 조건① Types and Conditions of Used Food Waste

효소학적 당화에 사용된 효소들의 활성은 각각 에프피아제(FPase), 씨엠씨아제(CMCase), 자일란아제(xylanase), 베타-글루코시다아제(β-glucosidase), 아비셀라아제(Avicelase), 아밀라아제(amylase)가 0.38, 10.04, 17.92, 0.32, 0.06, 2.0 U/ml이었다.The enzymes used for enzymatic glycosylation were FPase, CMCase, xylanase, beta-glucosidase, avicelase and amylase, respectively. ) Were 0.38, 10.04, 17.92, 0.32, 0.06, 2.0 U / ml.

음식물쓰레기를 발생원별로 이하의 표 8과 같이 표본 수집하였다. 수집된 음식물쓰레기는 자연상태 하에서 간이 탈수된 다음, 분쇄하여 습윤상태로 직접 사용하거나, 건조기에서 80℃, 2일 건조시킨 후 사용하였다.Food wastes were collected by source as shown in Table 8 below. The collected food waste was dehydrated in the liver under natural conditions, and then ground and used directly in a wet state, or after drying at 80 ° C. for 2 days in a drier.

효소학적 당화 조건은 pH 5.0으로 조절하여, 50℃, 100rpm, 2일간 수행하였다.Enzymatic saccharification conditions were adjusted to pH 5.0, 50 ℃, 100rpm, was performed for 2 days.

음식물 쓰레기의 표본(습윤상태 함수율은 약 80-85%임)Samples of food waste (wet moisture content is about 80-85%) Sampling siteSampling site 표 기Mark 습윤상태(W)Wet state (W) 건조상태(D)Dry state (D) 아파트 지역Apartment area WAWA DADA 전남대학교 구내식당Chonnam National University Cafeteria WBWB DBDB 일반음식점Restaurant WCWC DCDC 음식물쓰레기퇴비화사업소Food Waste Composting Office DDDD

* 습윤상태 함수율은 약 80-85%임* Wet state moisture content is about 80-85%

② 효소당화액을 이용한 BC 생산 방법② BC production method using enzyme saccharification

- 플라스크(정치·교반)배양에서 BC 생산-BC production in flask culture

전남대학교 구내식당의 건조된 음식물쓰레기(DB)를 효소학적 당화를 수행하여 환원당의 22g/L을 얻었다.Dried food waste (DB) of Chonnam National University cafeteria was subjected to enzymatic saccharification to obtain 22 g / L of reducing sugar.

500ml 삼각플라스크에 당화액 100ml씩 분주하고, 2.0N HCl/NaOH을 이용하여 pH 5.25로 조절한다. 배지를 멸균(121℃, 15min)하고 균주를 1% 접종한다. 5일 배양 후 BC농도를 정량하였다. 효소당화액의 BC 생산성을 비교하기 위해서 HS 배지나 타 영양분을 첨가하여 검토하였다.Dispense 100 ml of saccharification solution into a 500 ml Erlenmeyer flask and adjust the pH to 5.25 using 2.0 N HCl / NaOH. The medium is sterilized (121 ° C., 15 min) and inoculated with the strain 1%. BC concentration was quantified after 5 days of culture. In order to compare BC productivity of enzyme saccharification liquid, HS medium or other nutrients were added and examined.

이하의 표 9에서 보여주는 바와 같이 당화액 만을 이용하였을 경우, 정치배양에서 9.3g/L로서 가장 종은 BC 생산성을 나타냈었다. 또한 정치배양이 교반배양 보다 높은 BC 생산성을 보여주고 있다.As shown in Table 9 below, when only the saccharified solution was used, most species showed BC productivity as 9.3 g / L in political culture. In addition, static culture shows higher BC productivity than stirred culture.

음식물 쓰레기 효소당화액을 이용한 BC 생산성 비교(플라스크 배양)Comparison of BC Productivity Using Food Waste Enzyme Saccharification Solution (Flask Culture) 배지형태Badge type 플라스크 배양Flask culture 정치배양Political Culture 교반배양(150rpm)Stirring Culture (150rpm) 당화액Saccharification 9.39.3 3.63.6 당화액+HS배지(glucose 제외)Saccharified solution + HS medium (excluding glucose) 8.48.4 2.92.9 당화액+Peptone(0.1%)Saccharified solution + Peptone (0.1%) 7.07.0 3.63.6 당화액+Corn steep Liquor(0.1%)Saccharified solution + Corn steep Liquor (0.1%) 8.08.0 7.07.0 당화액+Yeast extract(0.1%)Saccharified solution + Yeast extract (0.1%) 9.29.2 4.04.0

- 음식물쓰레기 발생원별 BC 생산-BC production by food waste origin

수집된 음식물쓰레기를 건조하여 발생원에 따른 BC 생산성을 검토하였다. 효소학적 당화 및 BC 생산은 위의 ①과 ②의 방법에 따라 수행하였다.The collected food waste was dried to examine BC productivity according to the source. Enzymatic saccharification and BC production were performed according to the method of ① and ② above.

음식물쓰레기 발생원별 BC 생산성을 살펴보면, DB와 DC에서는 8.0, 7.9g/L의BC를 생산하였고, DA에서는 4.8g/L의 BC 생산하였다(표 10 참조). DD의 낮은 BC 생산성은 광주 시내 음식물쓰레기가 집하되는 곳으로서 대량으로 운반 및 보관하여 퇴비화하는 시료이므로, 신선한 음식물쓰레기가 아닌 수일 동안 방치된(부패된) 음식물쓰레기와 혼합된 상태로서 건조된 것을 사용하였기 때문이다. 따라서, 음식물쓰레기의 방치 또는 경과시간에 대한 BC 생산성을 검토하여야 한다.Looking at BC productivity by food waste sources, DB and DC produced 8.0 and 7.9 g / L of BC, and DA produced 4.8 g / L of BC (see Table 10). DD's low BC productivity is the place where food waste is collected in Gwangju, which is transported, stored, and composted. Therefore, it is dried and mixed with food waste that has been left for a few days instead of fresh food. Because Therefore, BC productivity should be reviewed for food waste or elapsed time.

음식물 쓰레기 발생원별 BC 생산성 비교(플라스크 정치배양)Comparison of BC Productivity by Food Waste Source (Plask Culture) 발생원별By occurrence 환원당 농도 (g/L)Reducing Sugar Concentration (g / L) BC 농도(g/L)BC concentration (g / L) BC 수율(g/g)BC yield (g / g) 아파트(DA)Apartment (DA) 18.518.5 4.84.8 0.260.26 전남대학교구내식당(DB)Chonnam National University Cafeteria (DB) 36.136.1 8.08.0 0.220.22 일반음식점(DC)Restaurant (DC) 37.137.1 7.97.9 0.210.21 음식물쓰레기퇴비화사업소(DD)Food Waste Composting Office (DD) 16.516.5 3.33.3 0.200.20

- 음식물쓰레기 방치 상태에 따른 BC 생산-BC production according to food waste

습윤상태 및 건조상태의 음식물쓰레기와 수일 방치후의 음식물쓰레기의 효소당화액을 이용하여 BC 생산성을 검토하였다. 효소학적 당화 및 BC 생산은 위의 ①과 ②의 방법에 따라 수행하였다.BC productivity was examined using wet and dry food waste and enzyme saccharification solution of food waste after several days of standing. Enzymatic saccharification and BC production were performed according to the method of ① and ② above.

전남대학교 구내식당 및 일반음식점의 음식물쓰레기의 처리상태에 따른 BC 생산성을 검토한 결과를 이하의 표 11에 나타내었다. 건조상태 및 습윤상태의 음식물쓰레기에서의 BC 생산성 차이를 보여주고 있다. 전남대학교 구내식당의 음식물쓰레기의 BC 생산을 살펴보면, DB(8.0g/L)가 WB(6.1g/L)보다 높은 BC 생산하였다. 그러나, 일반음식점의 WC(11.8g/L)와 DC(7.9g/L)의 BC 생산량은 WC가 높게 생산하였다.Table 11 shows the results of examining the BC productivity according to the treatment status of food waste at Chonnam National University cafeteria and general restaurant. BC productivity differences between dry and wet food waste are shown. Looking at BC production of food waste at Chonnam National University cafeteria, DB (8.0g / L) produced BC higher than WB (6.1g / L). However, the BC production of WC (11.8 g / L) and DC (7.9 g / L) was higher in WC than in restaurants.

음식물쓰레기를 3일 자연상태하에서 방치하면 환원당의 생성이 감소하였고, 또한 BC 생산도 감소함을 알 수 있다. 이는 자연상태 방치하는 동안 혐기성 미생물의 증식으로 인한 음식물쓰레기의 부패로 인해 혐기성 대사산물이 당화반응과 BC 생산 반응을 억제하였다고 사료된다.When the food wastes were left in the natural state for 3 days, the production of reducing sugars was reduced and BC production was also reduced. It is believed that anaerobic metabolites inhibited glycation and BC production due to the decay of food wastes caused by the growth of anaerobic microorganisms during natural neglect.

음식물 쓰레기 상태별 BC 생산성 비교(플라스크 정치배양)Comparison of BC Productivity by Food Waste Status (Plask Culture) 전남대학교 구내식당Chonnam National University Cafeteria 일반음식점Restaurant WBWB 3일방치3 days left DBDB WCWC 3일방치3 days left DCDC 환원당 농도(g/L)Reducing sugar concentration (g / L) 26.026.0 17.417.4 36.136.1 33.433.4 25.625.6 37.137.1 BC 농도(g/L)BC concentration (g / L) 6.16.1 4.94.9 8.08.0 11.811.8 5.05.0 7.97.9 BC 수율(g/g)BC yield (g / g) 0.240.24 0.280.28 0.220.22 0.350.35 0.200.20 0.210.21

④ 생물반응기를 이용한 BC 생산④ BC production using bioreactor

도 9는 효소당화액을 이용한 박테리얼 셀룰로오스(BC) 생산에서 배양시간에 따른 환원당, 글루코오스 및 박테리얼 셀룰로오스(BC) 량의 변화를 나타내는 도면이다. 전배양은 HS 배지 100ml가 들어 있는 500ml 플라스크에 균체를 접종하여 3일간 정치배양 하였다. 본 배양은 10L jar fermentor(BioG, Hanil R&D Co., Korea)에 음식물쓰레기 당화액 5L에, 전배양에서 얻어진 상등액 1%를 접종하여 30℃에서 80시간 배양하였다. 최적 배양 조건은 산소분압(공기량) 0.28atm(0.3vvm),교반속도 460rpm, pH 5.0으로 조절하였다. 배양결과 80시간에 7.1g/L의 BC 생산량을 얻을 수 있었다(도 9 참조).9 is a view showing the amount of reducing sugar, glucose and bacterial cellulose (BC) with the incubation time in the production of bacterial cellulose (BC) using the enzyme saccharification solution. The preculture was incubated for 3 days by inoculating cells into a 500 ml flask containing 100 ml of HS medium. This culture was inoculated with 5L of food waste saccharification solution in 10L jar fermentor (BioG, Hanil R & D Co., Korea) and 1% of the supernatant obtained from the preculture and incubated at 30 ° C for 80 hours. Optimum culture conditions were adjusted to oxygen partial pressure (air volume) 0.28atm (0.3vvm), stirring speed 460rpm, pH 5.0. As a result of the culture, BC production of 7.1 g / L was obtained at 80 hours (see FIG. 9).

실시예 4Example 4

음식물 쓰레기 당화 잔사물의 고형화를 통한 기능성 소재 개발Development of functional material by solidifying food waste saccharification residue

효소당화를 거친 음식물쓰레기는 고분자의 섬유소구조가 분해되었으므로, 미세하고 많은 공극을 갖는 구조로 변화되어 큰 비표면적을 가지고 있다. 그리고 생물분해가 더 이상 진행되기 힘든 안정한 물질만 남아 있기 때문에 구조적으로 장기간 안정하다. 이러한 물적 특성 때문에 흡습성, 흡착성이 뛰어나서 보습제, 미생물 담체. 비오톱 재료로의 전환이 가능하다. 또한 타 영양분을 첨가하여 비료나 퇴비료의 전환도 가능하다.Food waste, which has undergone enzymatic saccharification, has a large specific surface area since it is decomposed into a fibrous structure of the polymer and is changed into a structure having a large number of pores. It is structurally stable for a long time because only a stable substance remains difficult for biodegradation to proceed any further. Due to these physical properties, it is excellent in hygroscopicity and adsorption, so it is a moisturizer and microbial carrier. Conversion to biotope materials is possible. It is also possible to convert fertilizers or compost by adding other nutrients.

상기한 바와 같이, 본 발명은 다른 영양원의 첨가 없이 음식물쓰레기 효소당화액을 이용하여 저렴하게 고부가가치의 박테리얼 셀룰로오스(BC)를 대량으로 생산할 수 있어 산업화가 크게 기대되고, 당화잔사물을 고형화 공정을 통해 기능성 소재로 전환할 수 있고, 박테리얼 셀룰로오스(BC) 생산공정에서 발생하는 배양잔액을 빈부하 하·폐수 처리장의 영양원으로 사용함으로서 폐기물 발생이 거의 없는 효과를 갖는다.As described above, the present invention can produce a large amount of high value-added bacterial cellulose (BC) at low cost by using food waste enzyme saccharification liquid without adding other nutrients, and industrialization is expected to be greatly expected, and the solidification process of saccharified residues is expected. It can be converted into a functional material through, and by using the culture balance generated in the production process of the bacterial cellulose (BC) as a nutrient source of poor load, wastewater treatment plant has the effect of generating little waste.

구체적으로 살펴보면Specifically,

첫째, 현재 미국이나 일본에서는 상업용 물질(glucose등)을 이용한 BC 생산하기 때문에 원료비가 높은 반면, 본 BC 생산 공정에서는 음식물쓰레기를 이용하므로 원료비가 거의 들지 않으며,First, in the United States and Japan, raw material costs are high due to the production of BC using commercial materials (glucose, etc.).

둘째, 당화잔사물은 고형화 공정을 통해 기능성 소재로 전환되어지고, BC 생산공정에서 발생하는 배양잔액은 빈부하 하·폐수 처리장의 영양원으로 사용되어지므로, 공정에서 페기물 발생이 거의 없으며,Second, since the saccharified residue is converted to functional material through solidification process, and the culture residue generated in BC production process is used as a nutrient source for poor load and wastewater treatment plant, there is almost no waste generation in the process.

셋째, 당화액을 이용한 BC 생산은 다른 양양원의 첨가 없이 BC를 생산하여도 기존의 최적화 복합배지에서 생산된 수준이 달성되어 산업화가 크게 기대되며,Third, BC production using saccharified liquid is expected to be industrialized as the level produced by the existing optimized complex medium is achieved even if BC is produced without the addition of other nursing homes.

넷째, 현재, 음식물쓰레기 처리방법으로 소각, 사료화, 퇴비화 등이 있는데, 많은 에너지 비용을 통한 저부가의 생산품(사료, 퇴비, 메탄 생산 등)으로 전환이었다. 그러나 본 전환공정은 BC와 같은 고부가가치의 생산품(100만원/kg-BC)을 생산할 수 있으며,Fourth, food waste treatment methods include incineration, feed, and composting, which have been converted to low-value products (food, compost, methane production, etc.) through large energy costs. However, this conversion process can produce high value products (1 million won / kg-BC) such as BC,

다섯째, 효소 당화에 사용되는 효소 또한 폐섬유소를 이용하여 생산하기 때문에 효소생산비용이 타 상업용 기질을 이용한 효소생산 보다 낮으며, 효소학적 당화는 산 가수분해에 비해 장치의 부식성, 높은 에너지 비용, 중화제 등의 화학제의 비용이 아주 낮은 효과를 갖는다.Fifth, because the enzyme used for enzyme saccharification is also produced using waste fiber, the cost of enzyme production is lower than that of other commercial substrates. Enzymatic saccharification is more corrosive, higher energy cost, and neutralizing agent than acid hydrolysis. The cost of such chemicals has a very low effect.

Claims (3)

섬유소폐기물인 볏짚, 폐지를 분쇄한 다음, 잘게 분쇄된 섬유소폐기물을 사용기질로 하여 액체상태배양 또는 섬유소폐기물인 주정박, 볏짚, 콩비지를 분쇄한 다음, 잘게 분쇄된 섬유소폐기물을 사용기질로 하여 고체상태배양함을 이용하여 생물반응기(ⓐ)에서 에프피아제(FPase), 씨엠씨아제(CMCase), 자일란아제(xylanase), 베타-글루코시다아제(β-glucosidase), 아비셀라아제(Avicelase), 아밀라아제(amylase)의 섬유소분해효소들을 생산하는 생물반응기에서의 섬유소분해효소 생산공정(ⓐ);Crushed rice straw, waste paper, waste paper, and then crushed liquid culture or ethanol, rice straw, bean waste, which are finely crushed fiber waste, and then crushed fiber waste. Using state culture in the bioreactor (ⓐ) Fpase (FPase), CMCase (CMCase), xylanase (beta) -glucosidase (β-glucosidase), avicelase (Avicelase), amylase ( fibrinase production process (ⓐ) in a bioreactor producing fibrinase of amylase); 상기 섬유소분해효소 생산공정에 의해 생산되어진 에프피아제(FPase), 씨엠씨아제(CMCase), 자일란아제(xylanase), 베타-글루코시다아제(β-glucosidase), 아비셀라아제(Avicelase), 아밀라아제(amylase)의 섬유소분해효소들의 복합물에 사전에 선별 및 분쇄되어진 음식물 쓰레기를 건조기질 무게 기준 10~20 중량%로 주입하여 당화반응기(ⓑ)에서 음식물쓰레기를 당화하여 단당 및 2당류로 전환하는 당화반응기에서의 당화액 생산공정(ⓑ);Fpiaase (FPase), CMCase (CMCase), xylanase, beta-glucosidase, β-glucosidase, avicelase, amylase produced by the fibrinase production process In the saccharification reactor converting the food waste, which has been selected and pulverized into the complex of fibrinolytic enzymes of 10 to 20% by weight based on the dry weight of the fibrinolytic enzyme, saccharifies food waste in the saccharification reactor (ⓑ) and converts it into monosaccharides and disaccharides. Saccharification solution production process (ⓑ); 상기 당화액 생산공정에서 전환되어진 당화액이 원심분리되어 당화잔사물이 제거되고, 상기 당화잔사물이 제거된 당화액이 생물반응기(ⓒ)에서 박테리얼 셀룰로오스를 생산하도록 배양하는 박테리얼 셀룰로오스(BC) 생산공정(ⓒ);The saccharified liquid converted in the saccharified liquid production process is centrifuged to remove saccharified residue, and the saccharified liquid from which the saccharified residue is removed is cultured to produce bacterial cellulose in a bioreactor ⓒ (BC). ) Production process (ⓒ); 상기 당화액 생산공정에서 발생된 당화액이 상기 박테리얼 셀룰로오스 생산공정에 투입되기 전에 원심분리되고, 상기 원심분리후 남은 당화잔사물을 기능성 소재로 전환하는 고형화공정(ⓓ)을 포함하여 이루어지는 것을 특징으로 하는 음식물쓰레기 효소당화액을 이용한 박테리얼 셀룰로오스의 생산방법.The saccharified liquid generated in the saccharified liquid production process is centrifuged before being introduced into the bacterial cellulose production process, and comprises a solidification process (ⓓ) for converting the remaining saccharified residue after the centrifugation into a functional material. Method for producing bacterial cellulose using food waste enzyme saccharification liquid. 삭제delete 삭제delete
KR10-2002-0066367A 2002-10-30 2002-10-30 Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes KR100465829B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0066367A KR100465829B1 (en) 2002-10-30 2002-10-30 Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0066367A KR100465829B1 (en) 2002-10-30 2002-10-30 Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes

Publications (2)

Publication Number Publication Date
KR20040037748A KR20040037748A (en) 2004-05-07
KR100465829B1 true KR100465829B1 (en) 2005-01-13

Family

ID=37336030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0066367A KR100465829B1 (en) 2002-10-30 2002-10-30 Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes

Country Status (1)

Country Link
KR (1) KR100465829B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122726B (en) * 2019-12-20 2024-02-23 上海市农业科学院 Edible fungus culture medium lignocellulose component testing equipment and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348871A (en) * 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
JPH0834802A (en) * 1994-07-21 1996-02-06 Gun Ei Chem Ind Co Ltd Bacterial cellulose, production thereof and processed product made therefrom
US5506123A (en) * 1994-12-07 1996-04-09 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial lactic acid production process
KR19990022975A (en) * 1996-05-21 1999-03-25 마에다토츠토시 Method for continuous production of bacterial cellulosic
KR20010064832A (en) * 1999-12-20 2001-07-11 손재익 method of simultaneous saccharification-fermentation using helical ribbon mixer from high concentration slurry of waste paper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348871A (en) * 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
JPH0834802A (en) * 1994-07-21 1996-02-06 Gun Ei Chem Ind Co Ltd Bacterial cellulose, production thereof and processed product made therefrom
US5506123A (en) * 1994-12-07 1996-04-09 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial lactic acid production process
KR19990022975A (en) * 1996-05-21 1999-03-25 마에다토츠토시 Method for continuous production of bacterial cellulosic
KR20010064832A (en) * 1999-12-20 2001-07-11 손재익 method of simultaneous saccharification-fermentation using helical ribbon mixer from high concentration slurry of waste paper

Also Published As

Publication number Publication date
KR20040037748A (en) 2004-05-07

Similar Documents

Publication Publication Date Title
Khatiwada et al. Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes
Chandra et al. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger
US8304219B2 (en) Kluyveromyces strains metabolizing cellulosic and hemicellulosic materials
Lakshmidevi et al. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production
Nandimath et al. Optimization of cellulase production for Bacillus sp. and Pseudomonas sp. soil isolates
Lo et al. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy
Saratale et al. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU
Ram et al. Screening isolation and characterization of cellulase producing microorganisms from soil
JP2011514806A (en) A method for the conversion of plant materials into fuels and chemicals by the continuous action of two microorganisms
KR101150280B1 (en) Cellulase producing Nectria cinnabarina and its use for saccharification
CN104830910B (en) The method for preparing microbial flocculant using the fine bacterium of fibrosis fiber
Ren et al. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures
Kumar et al. Bioprocessing of cellulosic waste biomass for ethanol production by Chryseobacterium culicis Bp16
KR20190044954A (en) Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic
JP5629876B2 (en) Lactic acid production method by non-sterile fermentation
KR100465829B1 (en) Production method of Bacterial cellulose using enzymatic saccharification solution of Food wastes
CN102286572A (en) Method for preparing fermentable sugar solution from straws
Sadhu et al. Characterization of a Bosea sp. strain SF5 (MTCC 10045) isolated from compost soil capable of producing cellulase
Patel et al. Study of cellulase by isolated fungal culture from natural resources and application in bio-ethanol production
CN116987598B (en) Composite microbial agent for efficiently degrading lignocellulose and application thereof
JP5461026B2 (en) β-glucosidase-producing bacterium and method for producing β-glucosidase
Shyaula et al. Research Article Characterization of Thermostable Cellulase from Bacillus licheniformis PANG L Isolated from the Himalayan Soil
Reddy et al. Biotechnological Applications for Coir and Other Coconut Tree By-products
McCarthy et al. Actinomycete enzymes and activities involved in straw saccharification
CHINNADURAI et al. Production of Inulinase by Bacillus sp–recycling of agro waste using Banana peel, Garlic and Corn cob

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091111

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee