KR20190044954A - Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic - Google Patents

Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic Download PDF

Info

Publication number
KR20190044954A
KR20190044954A KR1020170137603A KR20170137603A KR20190044954A KR 20190044954 A KR20190044954 A KR 20190044954A KR 1020170137603 A KR1020170137603 A KR 1020170137603A KR 20170137603 A KR20170137603 A KR 20170137603A KR 20190044954 A KR20190044954 A KR 20190044954A
Authority
KR
South Korea
Prior art keywords
biomass
saccharification
pretreatment
fungus
sulfuric acid
Prior art date
Application number
KR1020170137603A
Other languages
Korean (ko)
Other versions
KR102060862B1 (en
Inventor
윤경표
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020170137603A priority Critical patent/KR102060862B1/en
Priority to PCT/KR2018/012528 priority patent/WO2019083244A2/en
Publication of KR20190044954A publication Critical patent/KR20190044954A/en
Application granted granted Critical
Publication of KR102060862B1 publication Critical patent/KR102060862B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/02Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • C12R1/80
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/80Penicillium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a biomass preprocessing and saccharification method for producing biofuel or bioplastic. When biomass is cultured with KPYBE10 which is new cellulose decomposing mold before physical and chemical preprocessing, it is possible to manufacture a saccharification liquid having the same glucose concentration even with low sulfuric acid concentration, a low temperature, a short time, and a small amount of saccharification enzymes. Physical and chemical conditions reduce generation of fermentation inhibiting materials such as furfural, hydromethyl furfural, etc. such that a decontamination process is not needed. A preprocessing method using acid hydrolysis remarkably reduces preprocessing and saccharification costs and high-pressure steam and electricity costs which occupy more than a half (53%) of direct producing costs of conventional second generation bioethanol. A low-cost saccharification liquid manufactured by the method can be used as a microbial culture medium for industrial fermentation to produce second generation biofuel or bioplastic. Therefore, the present invention is an inexpensive and eco-friendly new method for rapidly realizing commercial scale production.

Description

바이오연료 또는 바이오플라스틱 생산을 위한 바이오매스의 전처리 및 당화 방법{Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic}TECHNICAL FIELD The present invention relates to a biomass pre-treatment and saccharification method for producing biofuels or bioplastics,

본 발명은 제2세대 바이오연료인 목질계(lignocellulosic) 바이오매스 및 신규 섬유소 분해 곰팡이를 이용하여 바이오연료 또는 바이오플라스틱 생산을 위한 간단하고 비용절감 효과가 큰 바이오매스 전처리 및 40% 이상의 당화 효율 향상 당화법에 관한 것이다.The present invention relates to a simple and cost-effective biomass pretreatment for the production of biofuels or bioplastics using lignocellulosic biomass and novel fibrinolytic fungi, which are second generation biofuels, It is about narration.

현재 수송용 바이오에탄올 및 바이오디젤은 미국과 브라질에서 상용화 중이며, 10% 바이오에탄올을 함유한 휘발유(BE10) 또한 유럽의 주유소 등에서 쉽게 구입이 가능하다. 그러나 옥수수, 밀, 사탕수수 등과 같은 식량자원을 발효하여 각국 정부의 지원 하에 제1세대 바이오에탄올을 생산하는 현재의 상용화된 방식은 식량부족 사태를 더욱 심화시키는 문제점이 있어, 옥수숫대, 사탕수수 찌꺼기(bagasse), 볏짚, 밀짚, 갈대, 스위치그라스(switchgrass), 과일껍질, 사탕무우 찌꺼기, 폐목재 톱밥 등과 같은 저렴한 농임산 부산물인 비식량 자원을 이용한 제2세대 바이오에탄올(cellulosic bioethanol)의 경제적 생산 및 상용화가 시급한 실정이다. Currently, bioethanol and biodiesel for transport are being commercialized in the US and Brazil, and gasoline (BE10) containing 10% bioethanol is also readily available in European gas stations. However, the current commercialized way of producing first-generation bio-ethanol under the support of governments by introducing food resources such as corn, wheat, sugarcane, etc. has a problem of deepening the food shortage problem, and the problem of cornstalks, sugarcane remnants economical production of cellulosic bioethanol using non-food resources such as inexpensive agricultural fuels byproducts such as bagasse, straw, straw, reed, switchgrass, fruit husks, beet residue, Commercialization is urgent.

상기 농임산 부산물은 셀룰로오스(섬유소) 38-45%, 헤미셀룰로오스(반섬유소) 22-40%, 리그닌 5-25%로 구성되어 있다. 지구상에 가장 많이 존재하는 유기물인 섬유소는 포도당이 수 천개 연결된 구조로서, 이를 당화·발효하여 바이오에탄올로 전환하여 운송용 연료로 사용하려는 노력이 지속되고 있다. 그러나 당화를 위한 여러 기술들이 존재함에도 불구하고, 아직 경제적인 전처리 공정이 입증되지 않아 상업적 생산을 실현하지 못하고 있다. 미국, 캐나다, 유럽, 일본, 중국 등에서 옥수숫대, 밀짚 등의 농산 부산물을 원료로 하여 산 가수분해(acid hydrolysis) 전처리 방법으로 제2세대 바이오에탄올 생산 시험 공장이 가동 중이나 전처리·당화에 소비되는 시간 및 비용을 대폭 절감할 수 있는 전처리 공정의 발전이 느리게 진행되어 아직 상용화와는 거리가 있는 실정이다. The agrochemical by-products consist of 38-45% cellulose, 22-40% hemicellulose, and 5-25% lignin. Fibers, which are the most abundant organic matter on the planet, are made up of thousands of glucose molecules, which are converted into bioethanol by glycosylation and fermentation. However, despite the existence of various technologies for glycosylation, commercial pretreatment processes have not yet been proved and commercial production is not realized. In the US, Canada, Europe, Japan, and China, the 2nd generation bioethanol production test plant is operating by pretreatment of acid hydrolysis using agricultural by-products such as cornstalks and straw as raw materials, but the time spent in pretreatment / The development of the pretreatment process which can reduce the cost considerably has progressed and it is not yet commercialized.

제2세대 바이오에탄올 생산 공정을 제1세대 바이오에탄올 생산 공정과 비교해 보면, 제2세대 바이오에탄올 생산 공정에는 저렴한 농산 부산물 구입 및 취급 공정과 전처리·당화 공정이 추가되며, 나머지 후속 공정(발효, 정제 등)은 제1세대 바이오에탄올 생산 공정과 동일하다. 따라서 제2세대 바이오에탄올의 직접 생산 비용은 고가의 식량자원 대신에 저렴한 옥수숫대나 사탕수수 찌꺼기 등을 이용하여 상대적으로 매우 저렴하나 전처리·당화 공정이 가격 상승의 요인이 되어 전처리·당화 비용절감과 소요시간이 단축되는 새로운 개념의 전처리·당화 공정 개발이 절실하게 필요한 시점이다.When comparing the second-generation bio-ethanol production process with the first-generation bio-ethanol production process, the second-generation bio-ethanol production process includes the purchase and handling of inexpensive agricultural by-products and the pre-treatment and saccharification processes, Etc.) is the same as the first generation bioethanol production process. Therefore, the cost of direct production of second-generation bio-ethanol is relatively low using cheap cornstalks or sugarcane remnants instead of expensive food resources. However, pretreatment and saccharification processes are costly factors, It is time to develop a new concept of pre-treatment and saccharification that shortens time.

국제 공개특허 제 2017010789호 (2017.01.19 공개)International Publication No. 2017010789 (published on Jan. 19, 2017)

본 발명의 목적은 신규 섬유소 분해 곰팡이 및 상기 신규 섬유소 분해 곰팡이를 이용한 바이오연료 또는 바이오플라스틱 생산을 위한 간단하고 비용절감 효과 큰 바이오매스의 전처리 및 당화 효율 향상방법을 제공하는 데에 있다.It is an object of the present invention to provide a simple and cost-effective biomass preprocessing and a method for enhancing saccharification efficiency for the production of biofuels or bioplastics using the novel fibrinolytic fungus and the novel fibrinolytic fungus.

상기 목적을 달성하기 위하여, 본 발명은 토양으로부터 채취한 페니실리움 속(Penicillium species) 미생물로서, 가혹 조건에서 생존가능하는 것을 특징으로 하는 신규 섬유소 분해 곰팡이를 제공한다.In order to achieve the above object, the present invention provides a novel fibrinolytic fungus, which is a penicillium species microorganism collected from soil, and is viable under severe conditions.

또한, 본 발명은 (a) 바이오매스를 분쇄하는 단계; 및 (b) 상기 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 살포하여 배양하는 단계;를 포함하는, 바이오연료 또는 바이오플라스틱 생산용 바이오매스의 전처리 및 당화 효율 향상방법을 제공한다.The present invention also provides a method for producing a biomass comprising: (a) pulverizing a biomass; And (b) a step of spraying and pulverizing the mixed solution obtained by suspending the fibrinolytic fungus in water or a sulfuric acid solution to the pulverized biomass, and culturing the biomass for biomass production. .

본 발명에 따르면, 물리·화학적 전처리에 앞서 바이오매스를 신규한 섬유소 분해 곰팡이인 KPYBE10로 배양처리하면, 낮은 황산 농도, 낮은 온도, 짧은 시간, 적은 양의 당화효소를 사용하여도 동일한 글루코오스 농도를 지닌 당화액의 제조가 가능하며, 또한, 본 발명의 물리·화학적 조건은 푸르푸랄, 하이드로메틸 푸르푸랄 등과 같은 발효저해물질의 발생을 감소시켜 제독과정이 필요 없는 부수적인 효과가 있다. According to the present invention, the biomass is cultivated with KPYBE10, a novel fibrinolytic fungus, prior to physico-chemical pretreatment, so that even with a low concentration of sulfuric acid, low temperature, short time, and a small amount of saccharifying enzyme, The physicochemical condition of the present invention has the additional effect of reducing the generation of fermentation inhibiting substances such as furfural, hydro-methylfurfural and the like, and thus eliminating the need for a detoxification process.

본 발명의 산 가수분해를 사용하는 전처리법은 종래의 제2세대 바이오에탄올 직접생산비용 중 53%로 반 이상을 차지하는 전처리·당화 비용과 고압증기·전기비용을 대폭 절감시킬 수 있으며, 상기 방법으로 제조된 저비용 당화액은 제2세대 바이오연료 및 바이오플라스틱 생산을 위한 공업발효용 미생물 배지로 사용될 수 있어, 상업적 규모의 생산을 조속히 실현시킬 수 있는 저렴하고 친환경적인 새로운 방법이다. The pretreatment method using the acid hydrolysis of the present invention can significantly reduce the cost of pretreatment / saccharification, high-pressure steam, and electricity, which accounts for more than half of the conventional second-generation bioethanol direct production cost at 53% The produced low cost saccharified liquid can be used as an industrial fermentation microorganism medium for the production of second generation biofuels and bioplastics, and is a cheap and environmentally friendly new method for realizing commercial scale production at an early stage.

도 1은 본 발명의 목질계 바이오매스 및 신규 섬유소 분해 곰팡이 KPYBE10을 이용한 바이오매스 전처리 및 당화 효율 향상방법의 개념도를 나타낸 것이다.
도 2는 KPYBE10으로 배양처리된 바이오매스를 이용한 A) 제2세대 바이오에탄올 및 B) 바이오플라스틱의 제조 공정을 단계 별로 나타낸 것이다.
도 3은 KPYBE10의 분생자두와 분생자를 현미경으로 관찰한 이미지를 나타낸 것이다.
도 4는 옥수숫대 분말이 첨가된 배지를 멸균처리하고, KPYBE10을 접종한 다음 다양한 배양 온도(28℃, 21℃, 18℃, 15℃)에서 A) 일주일 또는 B) 한달 배양 후, KPYBE10의 생육 활성을 비교한 것이다.
도 5는 톱밥이 첨가된 배지를 멸균처리하고, KPYBE10을 접종한 다음 다양한 배양 온도(28℃, 21℃, 18℃, 15℃)에서 A) 일주일 또는 B) 한달 배양 후, KPYBE10의 생육 활성을 비교한 것이다.
도 6은 옥수숫대 분말이 첨가된 배지를 멸균처리하지 않고, KPYBE10을 접종한 다음 다양한 온도(28℃, 35℃, 40℃)에서 일주일 배양 후, 바이오매스에 존재하는 내성적 균주의 생육 억제를 확인한 것이다.
도 7은 멸균처리 하지 않은 옥수숫대 분말이 첨가된 배지에 0.1% 또는 0.2%의 황산 용액을 첨가하고, KPYBE10을 접종한 다음 28℃에서 7일 동안 배양 후, 잡균의 생육 억제를 확인한 것이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of a method for improving biomass pretreatment and saccharification efficiency using the woody biomass of the present invention and the novel fibrin degrading fungus KPYBE10.
FIG. 2 is a step-by-step representation of the manufacturing process of A) second generation bio-ethanol and B) bio-plastic using biomass cultured with KPYBE10.
Fig. 3 is a microscopic image of the conidia and conidia of KPYBE10.
FIG. 4 shows the results of the cultivation of KPYBE10 after sterilization of cornstarch powder, inoculation with KPYBE10 and incubation at various culture temperatures (28 ° C, 21 ° C, 18 ° C and 15 ° C) for one week or B) .
Figure 5 shows the growth activity of KPYBE10 after sterilization of sawdust medium, inoculation with KPYBE10, and subsequent incubation at various incubation temperatures (28 ° C, 21 ° C, 18 ° C, 15 ° C) Respectively.
6 shows the inhibition of the growth of the resistant strain existing in the biomass after incubation for one week at various temperatures (28 DEG C, 35 DEG C, 40 DEG C) after inoculating KPYBE10 without sterilization of the medium containing the cornstarch powder .
FIG. 7 shows the inhibition of the growth of germs after adding 0.1% or 0.2% of sulfuric acid solution to the medium to which cornstarch powder without sterilization was added, inoculating KPYBE10 and culturing at 28 DEG C for 7 days.

본 발명의 발명자는 신규한 섬유소 분해 곰팡이인 KPYBE10을 바이오매스에 직접 배양처리하여 총 전처리 비용, 소요 시간 및 당화효소 구입비용을 대폭 절감시키고, 당화결과 생성되는 글루코오스의 농도를 대폭 증가시켜 당화 효율을 증대시키는 효과를 가지는 바이오매스 전처리 및 당화 방법을 제공함으로써, 제2세대 바이오에탄올, 바이오부탄올, 바이오플라스틱 등의 산업화에 적용이 가능함을 확인하여 본 발명을 완성하였다.The inventors of the present invention have found that a novel cellulolytic fungus, KPYBE10, is directly cultured in a biomass to significantly reduce the total pretreatment cost, the time required and the cost of purchasing the saccharification enzyme, and significantly increase the concentration of glucose produced as a result of saccharification, The present invention can be applied to the industrialization of second-generation bio-ethanol, bio-butanol, bio-plastic, etc. by providing a biomass pretreatment and saccharification method having an effect of increasing the biomass.

본 발명은 토양으로부터 채취한 페니실리움 속(Penicillium species) 미생물로서, 가혹 조건에서 생존가능하는 것을 특징으로 하는 섬유소 분해 곰팡이를 제공한다.The present invention provides a fungi degrading fungus characterized by being a Penicillium species microorganism collected from soil and capable of surviving under severe conditions.

상기 가혹 조건은 40 내지 50℃의 온도에서 처리하는 것일 수 있으나, 이에 제한되는 것은 아님을 명시한다.This harsh condition may be, but is not limited to, treating at a temperature of 40 to 50 占 폚.

상기 섬유소 분해 곰팡이는 KCTC13356BP로 기탁된 것으로, 바이오매스의 당화 효율을 향상시킬 수 있다.The fibrinolytic fungus is deposited with KCTC 13356BP, which can improve the saccharification efficiency of biomass.

또한, 본 발명은 (a) 바이오매스를 분쇄하는 단계; 및 (b) 상기 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 살포하여 배양하는 단계;를 포함하는, 바이오연료 또는 바이오플라스틱 생산용 바이오매스의 전처리 및 당화 효율 향상방법을 제공한다.The present invention also provides a method for producing a biomass comprising: (a) pulverizing a biomass; And (b) a step of spraying and pulverizing the mixed solution obtained by suspending the fibrinolytic fungus in water or a sulfuric acid solution to the pulverized biomass, and culturing the biomass for biomass production. .

상기 (b) 단계의 물, 황산용액 또는 바이오매스는 멸균 처리 없이 사용이 가능하며, 추가 영양성분의 투입 없이 신규한 섬유소 분해 곰팡이인 KPYBE10을 상기 바이오매스에서 배양할 수 있다.The water, sulfuric acid solution or biomass of step (b) can be used without sterilization treatment, and KPYBE10, a novel fibrinolytic fungus, can be cultured in the biomass without the addition of additional nutrients.

상기 바이오연료는 바이오에탄올 또는 바이오부탄올일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The biofuel may be, but is not limited to, bioethanol or biobutanol.

상기 바이오연료 또는 바이오플라스틱 생산용 바이오매스의 전처리 및 당화 효율 향상 방법은 초반에 동일한 단계(a 내지 e 단계)로 이루어진다.The method for enhancing the pretreatment and saccharification efficiency of the biomass for producing biofuels or bioplastics is the same as the first step (Steps a to e).

상기 바이오매스의 전처리 및 당화 효율 향상방법은, 바이오연료의 경우, (a) 바이오매스를 분쇄하는 단계; (b) 상기 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 접종하여 배양하는 단계; (c) 상기 배양된 배양물에 산을 처리하여 가수분해하는 단계; (d) 상기 가수분해 후 얻은 결과물을 고상 및 액상으로 분리하는 단계; (e) 상기 고상에 셀룰로오스 분해 효소를 처리하여 6탄당 당화액을 수득하거나 상기 액상에 중화제를 처리하여 5탄당 당화액을 수득하는 단계; (f) 상기 6탄당 당화액, 5탄당 당화액 또는 이의 혼합 당화액에 바이오연료 발효 미생물을 접종하고 배양하여 바이오연료 발효액을 제조하는 단계; 및 (g) 상기 발효액을 증류하여 농축된 바이오연료를 제조하는 단계;를 포함한다.The method for improving the pretreatment and saccharification efficiency of the biomass may include: (a) pulverizing the biomass; (b) inoculating and pulverizing the pulverized biomass with a mixture solution in which the fibrin degrading fungus is suspended in water or a sulfuric acid solution; (c) treating the cultured culture with an acid to hydrolyze it; (d) separating the resultant product after the hydrolysis into a solid phase and a liquid phase; (e) treating the solid phase with a cellulose degrading enzyme to obtain a saccharified saccharide per hexane or treating the liquid phase with a neutralizing agent to obtain a pentasaccharide solution; (f) preparing a biofuel fermentation broth by inoculating and culturing the biofuel fermentation microorganism in the saccharified saccharide solution, the pentasaccharide solution or the mixed saccharification solution thereof; And (g) distilling the fermentation broth to produce a concentrated biofuel.

더욱 상세하게는, 상기 (f) 단계에서 6탄당 당화액은 6탄당 발효균주(효모 등)를 이용하여 에탄올 발효하고, 5탄당 당화액은 5탄당 발효균주[피키아 스티피티스(Pichia stipitis), 파키솔렌 타노필러스(Pachysolen tannophilus), 칸디다 셰하타(Candida shehata) 등]를 이용하여 에탄올 발효하거나 6탄당 당화액과 상기 5탄당 당화액을 혼합한 혼합물을 동시에 발효시키는 균주(유전자 재조합 Zymomonas mobilis, 유전자 재조합 대장균 등)를 사용하여 동시 발효할 수 있다. 또한, 바이오부탄올의 경우에는 상기 6탄당 당화액과 5탄당 당화액의 혼합물에 크로스트리디움(Clostridium)을 접종하여 발효할 수 있다. More specifically, in step (f), the saccharified saccharide solution is subjected to ethanol fermentation using a hexose fermentation strain (such as yeast), and the pentose saccharified solution is fermented with a pentose fermentation strain (Pichia stipitis) (Pachysolen tannophilus, Candida shehata, etc.) or fermented with ethanol or a mixture of the saccharified saccharide solution and the pentasaccharide solution simultaneously (recombinant Zymomonas mobilis , Recombinant E. coli, etc.) can be used for simultaneous fermentation. In the case of biobutanol, the mixture can be fermented by inoculating Clostridium to a mixture of the saccharified saccharide and pentose saccharide.

상기 바이오매스의 전처리 및 당화 효율 향상방법은, 바이오플라스틱의 경우, (a) 바이오매스를 분쇄하는 단계; (b) 상기 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 접종하여 배양하는 단계; (c) 상기 배양된 배양물에 산을 처리하여 가수분해하는 단계; (d) 상기 가수분해 후 얻은 결과물을 고상 및 액상으로 분리하는 단계; (e) 상기 고상에 셀룰로오스 분해 효소를 처리하여 6탄당 당화액을 수득하고 상기 액상에 중화제를 처리하여 5탄당 당화액을 수득하는 단계; 및 (f) 상기 6탄당 및 5탄당 혼합 당화액에 바이오플라스틱 합성 재료를 생성하는 균주를 접종하고 배양하여 바이오플라스틱을 제조하는 단계;를 포함하는 바이오매스의 전처리 및 당화 효율 향상방법을 제공한다.The method for improving the pretreatment and saccharification efficiency of the biomass may include: (a) pulverizing the biomass; (b) inoculating and pulverizing the pulverized biomass with a mixture solution in which the fibrin degrading fungus is suspended in water or a sulfuric acid solution; (c) treating the cultured culture with an acid to hydrolyze it; (d) separating the resultant product after the hydrolysis into a solid phase and a liquid phase; (e) treating the solid phase with a cellulolytic enzyme to obtain a saccharide-saccharide solution, and treating the liquid phase with a neutralizing agent to obtain a saccharide-saccharide solution; And (f) preparing a bioplastic by inoculating and culturing a strain producing the bioplastic synthetic material in the hexagonal and pentagonal mixed saccharified liquid, and a method for enhancing the saccharification efficiency of the biomass.

상세하게는, 상기 (f) 단계에서 6탄당 당화액 및 5탄당 혼합 당화액은 바이오플라스틱의 합성 재료가 되는, 하이드록시 발러레이트(hydroxy valerate), 하이드록시부티레이트(hydroxy butyrate) 등을 합성하는 알칼리제네스 유트로퍼스(Alcaligenes eutrophus)와 같은 균주를 접종하고 배양할 수 있어, 상기 배양물은 공업용 발효배지로 사용이 가능하다.Specifically, in the step (f), the saccharified saccharified liquid and the pentasaccharide mixed saccharified liquid are mixed with an alkali to synthesize a hydroxyvalerate, hydroxy butyrate, A strain such as Alcaligenes eutrophus can be inoculated and cultured, and the culture can be used as industrial fermentation medium.

상기 섬유소 분해 곰팡이는 KCTC13356BP로 수탁된 것으로, 페니실리움 속(Penicillium species) 미생물이다.The fibrinolytic fungus is deposited with KCTC 13356BP and is a microorganism of the genus Penicillium species.

상기 바이오매스는 옥수숫대(corn stover), 옥수숫속(corn cobs), 사탕수수 찌꺼기(bagasse), 사탕무우 찌꺼기, 볏짚, 왕겨, 밀짚, 갈대, 해바라기 줄기, 스위치그라스(switchgrass), 유채대, 폐목재, 톱밥, 잔디, 면(cotten), 아마(flax) 및 과일껍질 중 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The biomass may be selected from the group consisting of corn stover, corn cobs, bagasse, beet residue, straw, chaff, straw, reed, sunflower stem, switchgrass, rapeseed, , Sawdust, grass, cotten, flax, and fruit peel, but is not limited thereto.

상기 (a) 단계 이후, 분쇄된 바이오매스를 한 변의 길이가 0.25 내지 10 mm인 그물망에 통과시키는 단계;를 더 포함할 수 있다.After the step (a), the pulverized biomass may be passed through a mesh having a length of 0.25 to 10 mm on one side.

상기 (b) 단계는 40 내지 50℃의 온도 조건 시, 섬유소 분해 곰팡이를 물에 현탁하여 분쇄된 바이오매스에 접종하고, 3 내지 14일 동안 배양할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In the step (b), the fibrinolytic fungus may be suspended in water, inoculated into the pulverized biomass, and cultured for 3 to 14 days at a temperature of 40 to 50 ° C. However, the present invention is not limited thereto.

상기 (b) 단계는 40℃ 미만의 온도 조건 시, 섬유소 분해 곰팡이를 0.1 내지 0.2%(w/v) 황산 용액에 현탁하여 분쇄된 바이오매스에 접종하고, 3 내지 14일 동안 배양할 수 있으나, 이에 제한되는 것은 아님을 명시한다. 이후, 전처리 반응 시에는 미리 추가한 황산의 양 만큼 황산을 적게 사용한다. In the step (b), the fibrinolytic fungus may be suspended in a 0.1 to 0.2% (w / v) sulfuric acid solution to inoculate the pulverized biomass and cultured for 3 to 14 days, But is not limited thereto. Thereafter, in the pretreatment reaction, sulfuric acid is used in an amount corresponding to the amount of sulfuric acid added in advance.

상기 (b) 단계에서 섬유소 분해 곰팡이의 접종량은 5일 안에 바이오매스 전체에서 활발히 증식될 수 있도록 충분한 양의 포자를 살포하는 것을 특징으로 한다. 살포용 종균조제는 전처리에 사용할 바이오매스의 규모에 따라 다단계(5-10 단계) 종균배양법을 사용하는 것으로 다음 접종에 사용할 바이오매스의 양을 순차적으로 10-50 배씩 증대시켜 종균배양하여 충분한 개수의 포자종균을 형성시킨 후 포자가 형성된 바이오매스를 물(공업용수, 40℃에서 배양시는 멸균수가 필요 없음)에 현탁하여 바이오매스 야적장에 살포한다.In the step (b), the inoculum of the fibrinolytic fungus is sprayed with a sufficient amount of spores to actively grow in the entire biomass within 5 days. (5 to 10 stages) culture method according to the scale of biomass to be used for pretreatment. The amount of biomass to be used in the next inoculation is sequentially increased by 10 to 50 times, and the seed culture is cultured to obtain a sufficient number After forming the spore bacterium, the spore-forming biomass is suspended in water (industrial water, no sterilized water is needed when cultivation is carried out at 40 ° C) and is sprayed on the biomass yard.

상기 (c) 단계의 가수분해는 0.1 내지 10%(w/v)의 산성 용액으로 130 내지 300℃의 온도 조건에서 30 내지 90분 동안 수행할 수 있으나, 이에 제한되는 것은 아님을 명시한다.The hydrolysis in step (c) may be carried out in an acidic solution of 0.1 to 10% (w / v) at a temperature of 130 to 300 ° C for 30 to 90 minutes, but it is not limited thereto.

도 1은 본 발명의 목질계 바이오매스 및 신규 섬유소 분해 곰팡이 KPYBE10을 이용한 바이오매스의 전처리 및 당화 효율 향상방법의 개념도를 나타낸 것이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of a method for improving the pretreatment and saccharification efficiency of biomass using the woody biomass of the present invention and the novel fiber decomposing fungus KPYBE10.

본 발명의 바이오매스 전처리 및 당화 효율 향상방법은 추가적인 기기설치의 필요 없이 바이오매스 야적장에서 목질계 바이오매스에 KPYBE10의 포자종균을 접종 한 후, 40℃에서 5-7일 배양함으로써 더욱 온화한 전처리 조건을 사용할 수 있고, 그 후 셀룰라제를 처리하면 글루코오스 농도를 40% 이상 증대시킬 수 있다. 이는 목질계 바이오매스로부터 같은 양의 당을 얻기 위하여 더욱 더 온화한 물리·화학적 조건(낮은 전처리 압력, 낮은 온도, 짧은 시간, 낮은 황산 농도)과 더 적은 양의 셀룰라제를 사용할 수 있다는 것을 의미하며, 제2세대 바이오연료 및 바이오플라스틱의 저렴한 대량 생산 및 상업화의 실현을 앞 당길수 있는 방법을 제공한다.The method of enhancing the biomass pretreatment and saccharification efficiency of the present invention can be carried out by inoculating KPYBE10 spore bacterium into woody biomass in a biomass yard without the need for installation of additional equipment and then cultivating it for 5-7 days at 40 ° C, , And then the cellulase treatment can increase the glucose concentration by 40% or more. This means that even milder physico-chemical conditions (lower pretreatment pressure, lower temperature, shorter time, lower sulfuric acid concentration) and lesser amounts of cellulase can be used to obtain the same amount of sugars from woody biomass, It provides a way to accelerate the realization of inexpensive mass production and commercialization of second generation biofuels and bioplastics.

또한, 본 발명은 목질계 바이오매스의 모든 물리·화학·생물학적 전처리법 [산 가수분해(acid hydrolysis), 증기 폭쇄(steam explosion), 오르가노솔브(organosolv), 아황산염 전처리(sulfite pretreatment), SO2-에탄올-물(AVAP®) 분획(SO2-ethanol-water(AVAP®) fractionation), 알칼리성 습식 산화 및 오존 전처리(alkaline wet oxidation and ozone pretreatment), 암모니아 폭쇄(ammonia fiber explosion; APEX), 암모니아 재순환 침출법(ammonia recycle percolation; ARP), 석회(lime), 음파(sonication), 방사(irradiation), 고온·고압법, 생물학적 전처리법 등]에 앞서서 바이오매스 야적장에서 매우 저렴하게 실시할 수 있는 당화 효율 향상방법을 제공하여, 제2세대 바이오에탄올, 제2세대 바이오부탄올 및 바이오플라스틱(lignocellulosic biodegradable bioplastic) 생산비용을 대폭 절감시킬 수 있어, 이들 산업의 실증적 실현을 가능하게 하는 방법을 제공한다.The present invention also relates to a process for the preparation of all woody biomass physical, chemical and biological pretreatment methods (acid hydrolysis, steam explosion, organosolv, sulfite pretreatment, SO 2 - ethanol - water (AVAP®) fraction (SO 2 -ethanol-water (AVAP® ) fractionation), alkaline wet oxidation and ozone pretreatment (alkaline wet oxidation and ozone pretreatment) , pokswae ammonia (ammonia fiber explosion; APEX), ammonia recycle Prior to the introduction of ammonia recycle percolation (ARP), lime, sonication, irradiation, high temperature / high pressure method, biological pretreatment method, etc.), the saccharification efficiency By providing improved methods, the cost of producing second-generation bio-ethanol, second-generation bio-butanol and bio-plastics (lignocellulosic biodegradable bioplastic) can be drastically reduced, enabling an empirical realization of these industries It provides a way to.

도 2는 KPYBE10으로 배양처리된 바이오매스를 이용한 A) 제2세대 바이오에탄올 및 B) 바이오플라스틱의 제조 공정을 단계 별로 나타낸 것이다.FIG. 2 is a step-by-step representation of the manufacturing process of A) second generation bio-ethanol and B) bio-plastic using biomass cultured with KPYBE10.

S100은 바이오매스 투입 단계로, 본 발명의 공급 원료로 이용되는 바이오매스는 다양한 농산 부산물을 포함하는데, 바람직하게는, 옥수숫대(corn stover), 옥수숫속(corn cobs), 사탕수수 찌꺼기(bagasse), 사탕무우 찌꺼기, 볏짚, 왕겨, 밀짚, 갈대, 스위치그라스(switchgrass), 유채대, 폐목재, 톱밥, 잔디, 면(cotten), 아마(flax), 또는 과일껍질이고, 보다 바람직하게는 옥수숫대, 옥수숫속, 사탕수수 찌꺼기, 사탕무우 찌꺼기, 볏짚, 밀짚, 갈대, 스위치그라스, 목재, 톱밥, 또는 과일껍질이며, 가장 바람직하게는 옥수숫대, 옥수숫속, 사탕수수 찌꺼기, 사탕무우 찌꺼기, 볏짚, 밀짚, 갈대, 스위치그라스, 톱밥일 수 있으나, 이에 제한되는 것은 아님을 명시한다.S100 is a biomass feeding step. The biomass used as the feedstock of the present invention includes various agricultural by-products, and preferably includes corn stover, corn cobs, bagasse, Straw, reeds, switchgrass, rapeseed, waste wood, sawdust, grass, cotten, flax, or fruit husks, more preferably cornstalks, agar Straw, reed, switchgrass, wood, sawdust, or fruit husks, and most preferably cornstalks, cornstarch, sugarcane remnants, sugar beet removers, straw straw, straw, reed straw, sugar cane residue, sugar cane residue, straw straw, , Switchgrass, sawdust, but not limited thereto.

S110은 바이오매스 분쇄 단계로, 본 발명에서 바이오매스를 분쇄하는 공정은 당업계에 공지된 다양한 방법으로 물리적으로 잘게 부수는 예컨대, 전단(shearing), 밀링(milling) 또는 그라인딩 방법을 포함하고, 밀, 나이프 커터 또는 믹서기(blender)를 이용하여 바이오매스를 분쇄할 수 있으나, 이에 제한되는 것은 아님을 명시한다.S110 is a biomass grinding step. In the present invention, the step of grinding the biomass includes a physical shredding method such as shearing, milling or grinding in various ways known in the art, , A knife cutter or a blender may be used to pulverize the biomass, but is not limited thereto.

본 발명의 바람직한 구현예에 따르면, 본 발명의 방법은 상술한 단계 이후에 분쇄된 바이오매스를 한 변의 길이가 0.25-10 mm인 그물 망에 통과시키는 단계를 추가적으로 포함할 수 있다. 보다 바람직하게는 그물망의 한 변의 길이는 0.25-3 mm이고, 가장 바람직하게는 0.25-1 mm일 수 있으나, 이에 제한되는 것은 아님을 명시한다.According to a preferred embodiment of the present invention, the method of the present invention may further comprise the step of passing the pulverized biomass after the above-mentioned step into a net having a length of 0.25 to 10 mm on one side. More preferably, the length of one side of the network may be 0.25-3 mm, and most preferably 0.25-1 mm, but is not limited thereto.

S120은 살수기로 섬유소 분해 미생물 균주를 현탁 살수하는 단계로, 상기 섬유소 분해 미생물 균주로는 셀룰라제를 분비하는 모든 미생물[곰팡이: 아스페르길루스(Aspergillus), 푸사리움(Fusarium), 휴미콜라(Humicola), 멜라노카르푸스(Melanocarpus), 페니실리움(Penicillium), 트리코데르마(Trichoderma); 세균: 에시도써무스(Acidothermus), 알칼리게네스(Alcaligenes), 아녹시바실러스(Anoxybacillus), 바실러스(Bacillus), 셀룰로모나스(Cellulomonas), 켈비브리오(Cellvibrio), 클로스트리듐(Clostridium), 사이토파가(Cytophaga), 마이크로비스포라(Microbispora), 노카르디옵시스(Nocardiopsis), 슈도모나스(Pseudomonas), 로도써무스(Rhodothermus), 스트렙토미세스(Streptomyces), 써모모노스포라(Thermomonospora) 등]의 사용이 가능하나 본 발명의 신규한 섬유소 분해 곰팡이 KPYBE10 균주를 사용 시, 저렴한 비용으로 친환경적인 목질계 바이오매스 당화 효율 향상방법을 제공한다.S120 is a step of suspending a fibrinolytic microorganism strain with a sparger, wherein the fibrinolytic microorganism strain includes all microorganisms that secrete a cellulase (fungi: Aspergillus, Fusarium, Humicola ), Melanocarpus, Penicillium, Trichoderma; Bacteria: Acidothermus, Alcaligenes, Anoxybacillus, Bacillus, Cellulomonas, Cellvibrio, Clostridium, Saito The use of Cytophaga, Microbispora, Nocardiopsis, Pseudomonas, Rhodothermus, Streptomyces, Thermomonospora, etc.) However, when the novel fibrinolytic fungal KPYBE10 strain of the present invention is used, it is possible to provide an eco-friendly method for improving the saccharification efficiency of woody biomass at low cost.

S130은 야적장에서 바이오매스 및 KPYBE10를 혼합 배양하는 단계로, 필요 시 수분유지를 위하여 물을 상부에서 추가로 살포하며, 위에는 비닐 보온 방수포를 덮어서 수분증발을 방지하고 온도 유지를 돕는다. 또한, 겨울 등의 계절적인 요인을 고려하여 야적장 바닥에 열 배관 형태로 약간의 열을 공급한다.S130 is a step of mixing cultivated biomass and KPYBE10 in a yard. If necessary, water is sprayed on the upper part to maintain moisture, and on top of it, a vinyl insulating waterproofing film is covered to prevent evaporation of water and to help maintain the temperature. In addition, considering the seasonal factors such as the winter season, some heat is supplied to the bottom of the yard in the form of heat pipes.

도면부호 10은 바이오매스 및 곰팡이의 혼합 연속 배양실로, 상기 장치는 계절적인 요인 등으로 야적장의 온도가 15℃ 이하로 유지되어 상기 곰팡이의 적절한 생육속도가 저하될 때 또는 최소한의 야적장 면적을 사용하면서 KPYBE10 배양처리 속도를 증가시킬 필요성이 있을 때 사용할 수 있는 단열재로 보온되는 단순 구조의 연속 혼합 배양실이다. 상부로부터 파쇄 후 0.25-2 mm 망으로 체질한 바이오매스를 연속적으로 투입하고, 천장에 있는 살수기(S120)를 이용하여 40℃ 배양 시에는 물에 현탁한 포자종균을 살수하고, 25-35℃ 배양 시에는 잡균의 생육을 저해하기 위하여 0.1~0.2% 황산 용액에 현탁한 포자종균을 살수하며, 배양실 내부에 설치되어 있는 교반기로 주기적으로 혼합해 주면서, 5-7일 채류시간 후에 하부 바닥으로부터 KPYBE10으로 배양처리된 바이오매스를 연속적으로 채취하여 후속 공정인 전처리·당화공정에 사용한다. 0.1~0.2% 황산 용액에 종균포자를 현탁한 경우, 전처리 반응 시에는 미리 추가한 황산의 양 만큼 황산을 적게 사용한다. Reference numeral 10 denotes a continuous mixed culture of biomass and fungi. The apparatus is designed to be used in a case where the temperature of the field is maintained at 15 ° C or less due to seasonal factors or the like, so that the proper growth rate of the fungus is lowered, KPYBE10 This is a continuous mixing chamber with a simple structure that is kept warm with an insulating material that can be used when there is a need to increase the cultivation processing speed. After crushing from the top, the biomass sieved with a 0.25-2 mm mesh is continuously introduced and spore suspension suspended in water is cultured at 40 ° C using a sprinkler (S120) on the ceiling, and cultured at 25-35 ° C In order to inhibit the growth of germs, spores were suspended in a 0.1 to 0.2% sulfuric acid solution and mixed periodically with an agitator installed in the culture room. After 5-7 days of storage, KPYBE10 The cultured biomass is continuously sampled and used for the pretreatment / saccharification process as a subsequent process. When seed spores are suspended in a 0.1 to 0.2% sulfuric acid solution, use less sulfuric acid by the amount of sulfuric acid added beforehand in the pretreatment reaction.

S140은 바이오매스의 산 가수분해 단계로, 분쇄된 바이오매스를 가수분해하기 위해서 이용되는 산은 당업계에 공지된 다양한 산을 포함하나, 바람직하게는 황산, 염산, 질산, 아세트산, 포름산 또는 인산이고, 보다 바람직하게는 황산, 염산 또는 질산이며, 가장 바람직하게는 황산일 수 있으나, 이에 제한되는 것은 아님을 명시한다.S140 is an acid hydrolysis step of the biomass. The acid used for hydrolyzing the pulverized biomass includes various acids known in the art, but preferably sulfuric acid, hydrochloric acid, nitric acid, acetic acid, formic acid or phosphoric acid, More preferably sulfuric acid, hydrochloric acid or nitric acid, most preferably sulfuric acid, but is not limited thereto.

본 발명의 다른 바람직한 구현 예에 따르면, 가수분해는 황산의 농도 0.1-80%(w/v), 온도 60-250℃에서 20-240분 동안 수행하고, 보다 바람직하게는 황산의 농도 0.1-5%(w/v), 온도 100-200℃에서 30-120분 동안 수행하며, 가장 바람직하게는 황산의 농도 0.5%(w/v), 온도 140-160℃에서 20-60분 동안 수행할 수 있으나, 이에 제한되는 것은 아님을 명시한다.According to another preferred embodiment of the present invention, the hydrolysis is carried out at a concentration of sulfuric acid of 0.1-80% (w / v) at a temperature of 60-250 ° C for 20-240 min, more preferably of 0.1-5 % (w / v), at a temperature of 100-200 ° C for 30-120 minutes, most preferably at a concentration of 0.5% (w / v) of sulfuric acid, at a temperature of 140-160 ° C for 20-60 minutes But is not limited to,

상기 공정에 사용된 저농도 황산(H2SO4)을 탄산칼슘(CaCO3) 또는 소석회[Ca(OH)2]로 중화하면 석고(CaSO4)가 형성되어 전량 친환경 석고보드를 만드는 원료로 사용할 수 있다. 또한, 비교적 낮은 온도와 짧은 처리 시간은 전처리에 필요한 총 에너지 비용을 절감시킬 수 있어, 경제적인 바이오에탄올 생산을 가능하게 한다.When the low-concentration sulfuric acid (H 2 SO 4 ) used in the above process is neutralized with calcium carbonate (CaCO 3 ) or calcium hydroxide (Ca (OH) 2 ], gypsum (CaSO 4 ) is formed and used as a raw material for making an environment- have. In addition, relatively low temperatures and short processing times can reduce the total energy costs required for the pretreatment, enabling economical bio-ethanol production.

S150은 전처리 결과물을 액상 및 고상으로 분리하는 단계로, 고액 분리 필터로서 고체(S)와 액체(L)를 분리한다. 고체는 육탄당(포도당)이 주성분인 섬유소이고, 액체는 오탄당(Xylose)이 주성분이다.Step S150 is a step of separating the pretreatment product into a liquid phase and a solid phase, and separates the solid (S) and the liquid (L) as a solid-liquid separation filter. The solids are mainly composed of hexose (glucose), and the liquid is mainly composed of xylose.

S160은 당화조에서 고상에 셀룰라제를 처리하여 육탄당 당화액을 수득하는 단계로, 첨가된 셀룰라제에 의하여 섬유소의 당화가 일어나 포도당이 형성된다.S160 is a step of treating the cellulase in the solid phase in the saccharification tank to obtain a saccharified saccharide solution of the saccharified saccharide, whereby saccharification of cellulose is caused by the added cellulase and glucose is formed.

S170은 육탄당 발효조에서 육탄당 당화액이 에탄올 생성 발효 균주에 의하여 에탄올로 발효되는 단계이다.In step S170, the saccharified liquid of the saccharified saccharide is fermented with ethanol by the ethanol-producing fermentation strain in the fermentation tank of the granulocyte.

S180은 원심분리기에서 당화가 일어나고 남은 섬유소 리그닌 등의 고형 물질을 에탄올을 함유하는 액체와 분리하는 단계이다. 고형물질은 가축사료로 사용하거나 태워서 발전용으로 또는 고압증기를 발생시켜 공장 내에서 사용하며 남는 것은 주변 공장에 판매한다.S180 is a step of separating solid matter such as fibrin lignin and the like, which is saccharified in the centrifuge, from the liquid containing ethanol. Solid materials are used in livestock feed or in the factory for power generation or high pressure steam production, and the remaining materials are sold to nearby plants.

S190은 오탄당 발효조에서 상기 S150의 액상을 탄산칼슘(CaCO3) 또는 소석회[Ca(OH)2]로 중화시켜 생성된 오탄당 당화액이 에탄올 생성 발효 균주에 의하여 에탄올로 발효되는 단계이다.S190 is a step in which an osmopolitan saccharified liquid produced by neutralizing the liquid phase of S150 with calcium carbonate (CaCO3) or calcium hydroxide (Ca (OH) 2] in a fermentation tank per ounce is fermented with ethanol by an ethanol producing fermentation strain.

S200은 오탄당 발효액으로부터 원심분리기로 중화 과정 후 생성된 석고(CaSO4, gypsum)와 다른 고형물질들을 분리하는 단계이다. 상기 석고를 분리하여 친환경 석고보드(gypsum board) 제조용으로 사용이 가능하다.S200 is a step of separating gypsum (CaSO 4 , gypsum) and other solid substances produced after the neutralization process from a fermentation broth with a centrifuge. The gypsum can be separated and used for manufacturing an environmentally friendly gypsum board.

S210은 증류 장치를 이용한 증류 단계로서 통상적 증류와 분자채(molecular sieve)를 통하여 99.9%의 바이오에탄올을 제조한다.S210 is a distillation step using a distillation apparatus to produce 99.9% of bioethanol through conventional distillation and molecular sieves.

도면부호 20은 99.9%의 바이오에탄올 저장고이다.Reference numeral 20 denotes a bioethanol storage tank of 99.9%.

S220은 육탄당 당화액과 오탄당 당화액의 혼합발효조로서 바이오플라스틱의 합성 재료가 되는, 하이드록시 발러레이트(hydroxy valerate), 하이드록시부티레이트(hydroxy butyrate) 등을 합성하는 알칼리제네스 유트로퍼스(Alcaligenes eutrophus)와 같은 균주를 접종하고 배양하는 단계로, 상기 배양물은 공업용 발효배지로 사용이 가능하다.S220 is a mixed fermentation tank of hexane saccharified liquid and pentane saccharified liquid, which is a synthetic material of bioplastics. Alcaligenes eutrophus, which synthesizes hydroxy valerate, hydroxy butyrate and the like, ), And the cultured product can be used as industrial fermentation medium.

종래 방법들 중에는 분해하기 힘든 목재를 바이오에탄올 생산용 바이오매스로 사용하기 위하여 바이오매스에 목재 부후균류[파네로케테 크리소스포리움(Phanerochaete chrysosporium; 백색 부후균), 디코미투스 스쿠알렌스(Dichomitus squalens), 표고버섯, 괭나무버섯, 느타리버섯 등]을 배양하는 방법이 있다. 상기 방법 중 파네로게테 크리소스포리움 및 디코미투스 스쿠알렌스를 사용하는 방법(한국특허 10-1055623)은 상기 목재 부후균류를 고가의 영양성분(글루코오스 3~5 g/L, 효모 추출물 3~10 g/L, KH2PO4 2.25~11 g/L 등)과 당화효소(셀룰라제 5%(v/v))들이 일정 농도로 유지되는 바이오매스 충전탑 형식의 전처리조에 긴 전처리 기간(10-30일) 동안 바이오매스와 혼합 배양하여 부분 당화를 시킨 다음, 상기 당화액을 베타-글루코시다제가 담체에 고정되어 있는 효소 당화조에 보내어 추가로 당화시켜 생성된 당화액을 바이오에탄올 발효배지로 사용하는 방법이다. Among the conventional methods, biomass is used as a wood waste fungus (Phanerochaete chrysosporium, Dichomitus squalens, etc.) for use as a biomass for bioethanol production, ), Shiitake mushroom, mushroom mushroom, oyster mushroom, etc.). (Korean Patent No. 10-1055623), a method of using panergotectosifolia and decomitus squalens (Korean Patent No. 10-1055623) is a method in which the above-mentioned woody dead fungi are mixed with high nutrients (glucose 3-5 g / L, (10 g / L, KH 2 PO 4 2.25 to 11 g / L) and a saccharification enzyme (cellulase 5% (v / v) -30 days), followed by partial saccharification. Then, the saccharified solution is further saccharified by sending the beta-glucosidase to an enzyme saccharification tank fixed to the carrier, and the resulting saccharified solution is used as a bioethanol fermentation medium .

상기 방법은 통상적인 물리·화학적 전처리 과정 없이 바이오매스를 셀룰라제 및 다양한 영양소와 함께 충전탑에 충전시켜 백색 부후균을 생육시킬 때 느리게 일어나는 백색 부후균의 생물학적 당화 과정에 의존하는 것을 특징으로 하며, 하루에 적어도 수천~수만 리터의 제2세대 바이오에탄올을 생산해야하는 산업적 규모를 고려할 때 (1) 최대 30일로 매우 긴 전처리 기간을 필요로 하고, (2) 수백~수천 리터 용량의 충전탑 형식의 전처리조와 효소 당화조에서 글루코오스, 효모 추출물, 인산, 비타민 등의 영양소와 셀룰라제 효소를 높은 농도로 일정하게 유지시키는데 많은 비용이 필요하며, (3) 잡균의 오염으로 인하여 상기 영양성분이 소모될 시에는 오염방지와 영양분의 농도 유지를 위하여 더 많은 비용을 필요로 하므로, 상기 방법을 이용한 제2세대 바이오에탄올 생산은 생산량이 적을 뿐만 아니라 원가 상승에 대한 비용 부담이 발생하여, 규모의 경제를 고려할 때 산업적 규모의 상용화에는 적합하지 않을 수 있다.This method is characterized in that biomass is charged into a packed column together with cellulase and various nutrients without a conventional physico-chemical pretreatment process, and is dependent on the biological saccharification process of white rot fungi which occurs slowly when white rot fungi are grown. Considering the industrial scale of producing at least several tens to millions of liters of second generation bio-ethanol per day, (1) a very long pretreatment period of up to 30 days is required, (2) pretreatment of a packed tower type with a capacity of hundreds to thousands of liters It is necessary to maintain a high concentration of nutrients such as glucose, yeast extract, phosphoric acid, and vitamins and cellulase enzymes at a high concentration in a glucose and enzyme saccharification tank, and (3) when the nutrients are consumed due to contamination of germs It is more costly to prevent pollution and to maintain the concentration of nutrients. Therefore, the second generation Production of bioethanol is not only low in production but also costly for rising costs, and may not be suitable for industrial scale commercialization considering economies of scale.

한편, 본 발명은 옥수숫대, 볏짚, 톱밥 등에서 쉽게 생육하는 KPYBE10 포자종균을 물에 현탁하여 야적장에서 분쇄된 바이오매스에 살수하고 비닐 보온 방수포를 5-7일 동안 덮어두는 것으로 충분하다. 본 발명에 따르면 (1) 어떠한 영양소도 추가적으로 투입할 필요가 없고, (2) 곰팡이가 생육하는데 필요한 최소한의 수분유지를 위하여 필요 시, 물만 추가적으로 소량 살수하며, (3) 계절적인 요인 등으로 온도가 40℃ 이하로 유지될 때, 야적장 바닥에 열 배관을 설치하여 배양온도를 40℃로 유지하는 것만으로도 충분하며, (4) 40℃ 이하에서 KPYBE10를 배양하여 잡균의 생육을 저해할 필요가 있을 때에는 0.1~0.2%(w/v) 황산 용액에 포자종균을 현탁하여 살수 및 배양하고 전처리 반응 시에는 바이오매스에 미리 살수한 황산만큼 적게 사용하면 되는 간편한 방법을 제공한다. Meanwhile, it is sufficient that the KPYBE10 spore bacterium easily grown in cornstalks, rice straw, sawdust, etc. is suspended in water, sprinkled on the biomass pulverized in the yard, and covered with the vinyl thermal insulation tarpaulin for 5-7 days. According to the present invention, (1) no additional nutrients need to be added, (2) an additional small amount of water is required to maintain a minimum amount of moisture necessary for growth of the mold, and (3) (4) It is necessary to cultivate KPYBE10 at 40 占 폚 or less to inhibit the growth of germs, when the temperature is kept at 40 占 폚 or less, by providing a heat pipe at the bottom of the yard and maintaining the culture temperature at 40 占 폚 , The spore suspension is suspended and cultured in a 0.1 to 0.2% (w / v) sulfuric acid solution, and in the pretreatment reaction, the biomass is used in an amount as small as that of sulfuric acid.

또한, 야적장에서 실시하는 것 외에 도 2의 도면부호 10과 같이, 간단한 구조의 바이오매스 및 곰팡이 혼합 연속 배양실을 사용할 수 있다. 상기 배양실은 상부로부터 파쇄 후 0.25-2 mm 망으로 체질한 바이오매스를 연속적으로 투입하고, 천장에 있는 살수기(S120)를 이용하여 물 또는 0.1~0.2% 황산 용액에 현탁된 포자종균을 살수하고, 배양실 안에 있는 설치되어 있는 교반기로 주기적으로 혼합해 주면서, 40℃(물에 현탁) 또는 25-35℃(0.1~0.2% 황산 용액에 현탁)에서 5-7일 배양 후, 하부 바닥으로부터 KPYBE10으로 배양처리된 바이오매스를 연속적으로 채취하여 후속 공정인 전처리·당화공정을 연속적으로 가능하게 한다. 이는 계절적인 요인 등으로 야적장의 온도가 15℃ 이하로 유지되어 상기 곰팡이의 생육속도가 저하될 때 또는 최소한의 야적장 면적을 사용하면서 곰팡이 배양 처리 속도를 증가시킬 필요성이 있을 때 사용할 수 있는 단순 구조의 저렴한 혼합 배양실이다. Further, in addition to the practice in the yard, a biomass and a fungi mixed continuous culture room having a simple structure, such as 10 in Fig. 2, can be used. After the crushing from the upper part of the culture room, the biomass sifted with a 0.25-2 mm mesh is continuously introduced, and the spore bacterium suspended in water or a 0.1 to 0.2% sulfuric acid solution is sprayed using a sprinkler (S120) The cells were cultured for 5-7 days at 40 ° C (suspended in water) or 25-35 ° C (suspended in 0.1-0.2% sulfuric acid solution), periodically mixed with the agitator installed in the culture chamber, and cultured from the bottom to KPYBE10 The processed biomass is continuously sampled to continuously perform a pretreatment and saccharification process as a subsequent process. This is because when the temperature of the field is kept below 15 ° C due to seasonal factors, the growth rate of the fungus is lowered, or when there is a need to increase the speed of the fungal culture while using a minimum yard area, It is a cheap mixed culture room.

상기와 같이, 본 발명은 바이오매스에서 곰팡이를 배양하는데 비용이 매우 적게 들며, 한 번에 수~수십톤을 야적장 또는 혼합 연속 배양실에서 신속하게 처리할 수 있는 장점이 있다. 이는 단순함과 편리성, 신속성과 경제성을 의미하며, 제2세대 바이오연료 상용화의 조속한 실현을 가능하게 한다. As described above, the present invention is very cost-effective to cultivate molds in biomass, and has the advantage that several to several tens of tons can be rapidly treated in a yard or mixed continuous culture room at a time. This means simplicity, convenience, speed and economy, and enables the rapid realization of commercialization of second-generation biofuels.

또한, 본 발명은 기존의 산 가수분해 전처리 방법보다 더 낮은 황산 농도, 더 낮은 온도, 더 짧은 시간, 더 적은 양의 셀룰라제를 사용함에도 불구하고 40% 이상 글루코오스 농도를 증가시켜 수~수십톤의 바이오매스를 한꺼번에 처리할 수 있는 새로운 방법을 제공한다. In addition, the present invention provides a method of increasing the concentration of glucose by more than 40%, even though using a lower concentration of sulfuric acid, a lower temperature, a shorter time, and a smaller amount of cellulase than the conventional acid hydrolysis pretreatment method, It provides a new way to treat biomass at once.

종래의 전처리법들 중 미국, 케나다, 유럽, 중국 등의 시험공장에서 많이 사용하는 방법은 황산을 이용하는 산 가수분해 전처리법이다. 이때 많은 경우, 고온(200℃ 이상), 고압(10 기압 이상)의 조건을 사용한다. 또한, 1% 황산으로 150℃에서 1차 전처리 후, 다시 190℃에서 2차 전처리하는 이중 전처리법(한국 공개 특허 10-2016-01211991)이 있으며, 고온(~400℃), 고압(~300 기압) 조건을 사용하여 특수 고온·고압 반응기를 필요로 하며, 고에너지 비용 및 고가 시설비용이 발생하여 대량 생산이 어려운 고온·고압 전처리법(국제 공개 특허 WO 2011/016591 A1)이 있다. 이에 더하여, 초음파 발생기 등의 고가 기기를 필요로 하는 산 가수분해 전처리법(미국특허 US 8,278,080 B2) 등 여러 방법이 있으나, 고가 장비의 사용, 높은 전처리 비용, 긴 처리 시간, 고액의 셀룰라제 구입 비용, 낮은 당화 효율 등의 이유로 상업화에는 아직 도달하지 못하고 있다.Of the conventional pretreatment methods, a method widely used in test plants in the United States, Canada, Europe, and China is acid hydrolysis pretreatment using sulfuric acid. In this case, the conditions of high temperature (200 ° C or higher) and high pressure (10 or higher) are used in many cases. Further, there is a double pretreatment method (Korean Patent Laid-open No. 10-2016-01211991) in which preliminary pretreatment is performed at 150 ° C with 1% sulfuric acid and then second pretreatment at 190 ° C. (International Patent Application No. WO 2011/016591 A1), which requires special high-temperature and high-pressure reactors under the conditions of high-temperature and high-pressure reactor, and is difficult to mass-produce due to high energy cost and high facility cost. In addition, there are various methods such as an acid hydrolysis pretreatment method (U.S. Patent No. US 8,278,080 B2) which requires expensive equipment such as an ultrasonic generator, but the use of expensive equipment, high pretreatment cost, long treatment time, , Low saccharification efficiency, and so on.

종래 문헌(Bioresource Technology. 2005. 96: 2019-2025)에 의하면 산 가수분해를 사용하는 전처리법의 경우, 제2세대 바이오에탄올 직접생산비용(바이오매스 구입 및 취급, 전처리·당화, 발효, 정제, 폐수처리, 저장, 고압증기 및 전기, 기타 공공요금 등의 총합계) 중 전처리·당화 비용이 20%, 고압증기·전기비용이 33%에 해당되며, 상기 두 항목의 총합은 53%가 되어 전체 직접생산비용중 반 이상을 차지하는 것으로 보고된 바 있다. 한편, 본 발명은 전체 직접생산비용중 반 이상을 차지하는 상기 비용을 절감시킬 수 있는 방법을 제공한다.According to the conventional literature (Bioresource Technology. 2005. 96: 2019-2025), in the case of pretreatment using acid hydrolysis, the second-generation bioethanol direct production cost (biomass purchase and handling, pretreatment, saccharification, fermentation, The total amount of the above two items corresponds to 53%, and the total amount of the above two items is 53% It has been reported that it accounts for more than half of the production cost. On the other hand, the present invention provides a method for reducing the above-mentioned costs, which accounts for more than half of the total direct production cost.

또한, 본 발명은 바이오매스 야적장에서 KPYBE10을 접종배양 후, 낮은 황산 농도(0.5%)와 낮은 온도(150℃)에서 전처리하고 고체(섬유소)를 분리하여 당화 효소 처리 시, 40% 이상 더 높은 글루코오스 농도를 얻을 수 있는 간편한 방법으로, 황산 사용량의 절감과 전처리 총 에너지 비용의 절감 효과가 있으며, 셀룰라제 구입 비용을 대폭 절감시킬 수 것을 특징으로 하는 새로운 방법이다. 또한, 본 발명은 푸르푸랄(furfural), 하이드로메틸 푸르푸랄(hydromethyl furfural; HMF)과 같은 발효저해물질이 저해 농도 이상으로 발생되지 않는 낮은 전처리 온도를 사용하므로 제독과정이 필요하지 않다.The present invention also relates to a method for producing KPYBE10, which comprises culturing KPYBE10 in a biomass yard, pretreating KPYBE10 at a low sulfuric acid concentration (0.5%) and a low temperature (150 DEG C) It is a simple method to obtain the concentration, it is a new method characterized by the reduction of sulfuric acid usage, the reduction of the total energy cost of the pretreatment, and the cost of the purchase of the celluler can be drastically reduced. In addition, the present invention does not require a detoxification process since a fermentation inhibitory substance such as furfural and hydromethyl furfural (HMF) is used at a low pretreatment temperature at which the inhibitory concentration is not exceeded.

따라서, 본 발명은 전처리·당화 비용과 고압증기·전기비용을 대폭 절감시킬 수 있어 미국, 케나다, 유럽, 중국 등 세계 여러 곳의 산 가수분해 전처리법을 사용하는 제2세대 바이오에탄올 시험공장에서 사용 시, 직접생산비용을 대폭 절감시켜 상업적 생산으로의 전환을 가능하게 한다. Therefore, the present invention can greatly reduce the costs of pretreatment, saccharification, high-pressure steam and electricity, and is used in a second-generation bioethanol test plant using acid hydrolysis pretreatment methods in various places in the US, Canada, Europe and China City, which can dramatically reduce direct production costs, enabling the transition to commercial production.

또한, 본 발명에 사용된 황산을 탄산칼슘(CaCO3) 또는 소석회[Ca(OH)2]로 중화시켜 생성되는 석고(CaSO4)를 친환경 석고보드 원료로 사용할 수 있다. 현재 지구 온난화 방지를 위한 석탄발전의 감소 추세로 화력발전 석탄재로부터의 배연 탈황 석고보드 생산이 위축되고, 인광석을 가공해 비료를 만들고 남은 부산물로부터 생산되는 인산 부산 석고보드는 라돈 방출양이 높아 폐암의 발생우려가 있다. 그러나 본 발명의 부산물로 생성되는 석고는 이러한 문제점 없이 친환경 석고보드의 원료로 저렴하게 재활용될 수 있다. 또한, 에탄올 발효 후에 잔존하는 고형 잔재물은 가축사료로 사용하거나 태워서 전기발전용과 스팀발생용으로 자체적으로 사용이 가능하며 남는 것은 판매도 가능하다.Further, gypsum (CaSO 4 ) produced by neutralizing the sulfuric acid used in the present invention with calcium carbonate (CaCO 3 ) or calcium hydroxide (Ca (OH) 2 ] can be used as an eco-friendly gypsum board raw material. As a result of reduction of coal power generation to prevent global warming, production of flue gas desulfurization gypsum board from thermal power generation coal ash production is shrunk, phosphorus gypsum board produced from fertilizer by processing phosphorus stone is high in radon release, There is a concern. However, the gypsum produced as a by-product of the present invention can be recycled at low cost as a raw material for environmentally friendly gypsum board without such a problem. In addition, the solid residues remaining after ethanol fermentation can be used as livestock feeds or used for electricity generation and steam generation, and the remaining ones can be sold.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example 1 : 신규한 섬유소 분해 미생물의 분리 1: Isolation of novel cellulose degrading microorganisms

본 발명에서는 식물 세포벽의 섬유소를 분해하여 당화 효율을 증대시킬 수 있는 미생물을 순수 분리하기 위해, 경북, 경남 전라도 지역의 강변 및 갯벌 등에서 토양시료를 채취하였다. In the present invention, soil samples were collected from riversides and tidal flats in Kyungbuk, Gyeongnam, and Jeolla provinces in order to purify microorganisms which can increase the glycosylation efficiency by decomposing the cellulose in plant cell walls.

채취한 토양시료를 1 g 씩 정량하여 100 ml의 멸균수에 넣은 다음 충분히 현탁시키고, 102, 103으로 희석한 후, CMC(carboxymethyl cellulose) 한천배지[증류수 1L 당 CMC 5 g, 펩톤 5 g, KH2PO4 5 g, 효모 추출물 0.5 g, MgSO4·7H2O 0.5 g, 한천 15 g, pH 7.0]에 도말한 다음 28℃에서 3일간 배양하였다. 배양 후, 각각의 콜로니를 새로운 CMC 한천배지에서 도말한 다음 28℃에서 3일간 순수 배양한 것을 대상으로 0.5% 콩고 레드(congo red) 시약을 1 ml을 첨가하고 30분 방치한 후 버리고, 다시 1M NaCl을 첨가하여 5분 동안 방치한 후 충분히 적신 다음 비교적 큰 황색환(yellow halo zone)이 나타난 균주들을 선별하였다.1 g of each soil sample is weighed, placed in 100 ml of sterilized water, thoroughly suspended, diluted to 10 2 and 10 3 , and then immersed in CMC (carboxymethyl cellulose) agar medium [5 g of CMC per liter of distilled water, 5 g of peptone , 5 g of KH 2 PO 4 , 0.5 g of yeast extract, 0.5 g of MgSO 4 .7H 2 O, 15 g of agar, pH 7.0] and then cultured at 28 ° C for 3 days. After culturing, each colony was plated on a fresh CMC agar medium, and then pure culture was performed at 28 ° C for 3 days. 1 ml of a 0.5% congo red reagent was added, and the mixture was allowed to stand for 30 minutes, discarded, After incubation for 5 minutes with NaCl added, the strains showing a relatively large yellow halo zone were selected.

실시예 2 : 신규한 섬유소 분해 곰팡이 KPYBE10의 순수배양 및 동정Example 2: Pure culture and identification of a novel fibrinolytic fungal KPYBE10

CMC 한천배지에서 순수 분리된 미생물들로부터 특별한 영양분의 추가 없이 바이오매스에서 잘 생육하는 미생물 균주를 분리하기 위해, 자연 건조된 옥수숫대를 믹서기로 파쇄하여 1 mm 망으로 체질한 후, 10 g 씩 정량하여 150 x 25 mm의 유리 페트리 디쉬(petri dish)에 넣고 증류수 40 ml를 첨가하였다. 그 후, 상기 미생물 균주들을 접종하고 48℃에서 일주일간 배양하였다. 농후 배양된 하나의 진균 균주를 최종적으로 선별하고, 새로운 옥수숫대 분말 페트리 디쉬의 중앙에 접종하여 순수 분리하였으며, 선정된 균주는 멸균된 바늘로 채취하여 옥수숫대 분말 30 g과 증류수 20 ml가 들어있는 250 ml 삼각 플라스크에 접종한 다음 실리 스토퍼(sili stopper)로 막아 호기성 조건을 유지시키며 48℃에서 일주일간 배양하였다. 그 후, 4℃에서 보관하여 보존 균주로 활용하였다. 상기 균주는 KPYBE10이라 명명하였으며, 한국생명공학연구원에 기탁번호 KCTC13356BP로 기탁하였다.In order to isolate the microorganism strains that grow well in the biomass without adding any special nutrients from the microorganisms isolated from the CMC agar medium, the naturally dried cornstalks were sieved with a blender and sieved with a 1 mm mesh, Was placed in a 150 x 25 mm glass petri dish and 40 ml of distilled water was added. Thereafter, the microorganism strains were inoculated and cultured at 48 DEG C for one week. The selected strain was selected by sterilization. The selected strain was collected by sterilized needle, and 30 g of cornstarch powder and 20 ml of distilled water After incubation in an Erlenmeyer flask, the cells were incubated with a sili stopper to maintain aerobic conditions at 48 ° C for one week. After that, it was stored at 4 캜 and used as a preservation strain. The strain was named KPYBE10 and deposited with the Korean Institute of Bioscience and Biotechnology under accession number KCTC13356BP.

신규한 섬유소 분해 곰팡이 KPYBE10 균주는, 상기와 동일한 방법으로 파쇄하여 1 mm 망으로 체질한 옥수숫대 분말, 톱밥, 볏짚의 페트리 디쉬에서 회녹색의 집락을 형성하였고, CMC 한천배지를 이용하여 48℃에서 7일간 배양 시, 솜모양의 평탄형 백색 집락을 형성하였으며, 도 3과 같이, 현미경으로 관찰한 원주형 분생자두와 구형의 표면이 매끈한 분생자의 형성 등의 특징에 기초하여 페니실리움 종(Penicillium sp.) 수준까지 동정하였다.A novel fibrinolytic fungal KPYBE10 strain was disrupted in the same manner as described above to form a greenish green colonies in cornstaff powder, sawdust and rice straw sieve sieved with a 1 mm mesh, and cultured in CMC agar medium at 48 ° C for 7 days On the day of culture, a cotton-like flat white colony was formed. As shown in Fig. 3, Penicillium sp. (Sp. Penicillium sp.) Was formed on the basis of characteristics such as a circumferential conidium observed with a microscope and a smooth- .).

실시예 3 : 신규한 섬유소 분해 곰팡이 KPYBE10의 최적 배양 온도Example 3: Optimal culture temperature of the novel fibrinolytic fungus KPYBE10

KPYBE10의 균사 생육 최적 온도를 확인하기 위해, 100 mm의 페트리 디쉬로 만든 CMC 한천배지 중앙에 소독된 바늘로 KPYBE10을 접종한 후, 다양한 온도(15℃, 20℃, 25℃, 30℃, 40℃, 45℃, 48℃, 50℃)에서 배양하고, 형성된 집략이 배지를 완전히 덮는데 소요되는 시간을 측정하여 KPYBE10의 생육 활성을 분석하였다. To determine the optimal temperature for mycelial growth of KPYBE10, KPYBE10 was inoculated with sterilized needles in the center of a CMC agar medium made of 100-mm Petri dishes and then incubated at various temperatures (15 ° C, 20 ° C, 25 ° C, 30 ° C, 40 ° C , 45 占 폚, 48 占 폚, 50 占 폚), and the growth time of KPYBE10 was analyzed by measuring the time taken to completely cover the medium.

그 결과, 20~25℃에서는 6일, 30~45℃에서는 3-4일, 48℃에서는 5일, 50℃에서는 7일이 소요되었으며, 15℃에서는 빠른 생육을 나타내지 않는 것을 확인하였다. 상기 결과로부터 KPYBE10은 30~45℃ 범위의 온도에서 최적의 생육을 나타내는 것을 확인할 수 있었다.As a result, it took 6 days at 20 ~ 25 ℃, 3-4 days at 30 ~ 45 ℃, 5 days at 48 ℃ and 7 days at 50 ℃, and no rapid growth was observed at 15 ℃. From the above results, it was confirmed that KPYBE10 exhibited optimal growth at temperatures ranging from 30 to 45 ° C.

바이오매스에서 온도의 변화에 따른 KPYBE10 생육 속도의 변화를 확인하기 위해, 상기와 동일한 방법으로 파쇄하여 1 mm 망으로 체질한 옥수숫대 분말, 톱밥, 볏짚을 각각 30g 씩 정량하여 증류수 20 ml가 들어있는 250 ml 삼각 플라스크에 넣고 멸균처리한 다음, 배지 중앙에 소독된 바늘로 KPYBE10을 접종하고, 일주일과 한달 동안 야적장의 예상 온도인 28℃, 21℃, 18℃, 15℃에서 배양하였다. In order to confirm the change of the growth rate of KPYBE10 according to the temperature change in the biomass, 30 g of cornstarch powder, sawdust and rice straw sifted with a 1 mm mesh were pulverized in the same manner as above, ml Erlenmeyer flasks and sterilized. KPYBE10 was inoculated with sterilized needles at the center of the culture medium and cultured at 28 ° C, 21 ° C, 18 ° C and 15 ° C, which are the expected temperatures of the yard for one week and one month.

그 결과, 도 4A(옥수숫대 분말) 및 도 5A(톱밥)를 참조하여 보면, 28℃에서 일주일 동안 배양한 경우, 옥수숫대 분말 및 톱밥 바이오매스 전 표면, 속, 아랫부분까지 왕성하게 생육한 KPYBE10 균사체가 관찰되었다. 21℃의 경우, 바이오매스 전 표면의 약 60% 면적에서 KPYBE10 균사체가 관찰되었고, 18℃의 경우, 바이오매스 전 표면의 약 5% 면적에서 KPYBE10 균사체가 관찰되었으며, 15℃의 경우에는 KPYBE10의 생육이 전혀 관찰되지 않았다. (볏짚은 유사결과로 미게재)As a result, referring to Fig. 4A (cornstarch powder) and Fig. 5A (sawdust), when cultured for one week at 28 DEG C, KPYBE10 mycelium grown vigorously all over the surface of cornstarch powder and sawdust biomass, Respectively. At 21 ℃, KPYBE10 mycelium was observed at about 60% of the whole biomass surface. At 18 ℃, KPYBE10 mycelium was observed at about 5% of the entire biomass surface. At 15 ℃, the growth of KPYBE10 Was not observed at all. (Rice straw is not shown as a similar result)

이후 계속 배양하여 한달 동안 배양한 결과, 도 4B(옥수숫대 분말) 및 도 5B(톱밥)를 참조하여 보면, 28℃와 21℃의 경우에는 옥수숫대 분말 및 톱밥 바이오매스 전 표면, 속, 아랫부분에서 왕성하게 생육한 KPYBE10 균사체가 관찰되었고, 18℃의 경우, 바이오매스 전 표면의 약 70-80%의 면적에서 KPYBE10 균사체가 관찰되었으며, 15℃의 경우, 바이오매스 전 표면의 약 50-60%의 면적에서 KPYBE10 균사체가 관찰되었다. (볏짚은 유사결과로 미게재)As shown in FIG. 4B (cornstalks powder) and FIG. 5B (sawdust), when cornstarch powder and sawdust biomass were heated at 28 ° C and 21 ° C, KPYBE10 mycelium was observed at 18 ℃, and KPYBE10 mycelium was observed at an area of about 70-80% of the whole biomass surface. At 15 ℃, the area of about 50-60% of the entire biomass surface KPYBE10 mycelium was observed. (Rice straw is not shown as a similar result)

상기 결과는 야적장에서 바이오매스를 KPYBE10로 배양 시, 28℃에서 일주일 동안 배양해야 함을 보여주며, 상기 온도 조건을 위해, 비닐 보온 방수포를 덮어주거나 겨울 등의 계절적인 요인을 고려하여 야적장 바닥에 열 배관 형태로 약간의 열을 공급해주는 방법을 필요로 할 수 있다. 또한, 최소한의 야적장 면적을 사용하면서 곰팡이 처리 속도를 증가시킬 필요성이 있을 때, 도 2의 도면부호 10과 같이, 단열재로 보온되는 단순 구조의 저렴한 혼합 연속 배양실을 사용할 수 있다. The results show that cultivation of biomass in KPYBE10 in a yard requires cultivation for one week at 28 ° C. For the above temperature conditions, considering the seasonal factors such as covering with vinyl thermal insulation tarpaulins or winter season, It may require a method of supplying a small amount of heat in the form of a pipe. In addition, when there is a need to increase the mold processing rate while using a minimum yard area, a low-cost mixed continuous culture chamber of simple structure, which is kept warm with an insulating material, as shown in Fig.

본 발명에서는 바이오매스를 멸균처리를 하지 않고 파쇄처리한 후, 바로 KPYBE10를 멸균처리되지 않은 물(공업용수)에 현탁하여 살수하는 방법으로 접종배양한다. 따라서 바이오매스에 내생적으로 존재하는 균류의 생육을 억제하는 온도를 확인하기 위해, 멸균처리되지 않은 옥수숫대 분말 3g 정량하여 100 ml 삼각플라스크에 첨가하고, 멸균처리되지 않은 수돗물을 15 ml 첨가한 다음 28℃, 35℃, 40℃에서 10일 동안 배양하였다.In the present invention, the biomass is pulverized without being subjected to the sterilization treatment, and then KPYBE10 is inoculated by suspending it in unsterilized water (industrial water) and spraying it. Therefore, to determine the temperature at which the growth of endogenous fungi in biomass is inhibited, 3 g of unsterilized cornstarch powder is added to 100 ml Erlenmeyer flask, 15 ml of untreated tap water is added, and then 28 Lt; 0 > C, 35 [deg.] C and 40 [deg.] C for 10 days.

그 결과, 도 6을 참조하여 보면, 28℃와 35℃에서 배양한 경우, 바이오매스에 내생적으로 존재하였던 검은 곰팡이와 흰 곰팡이가 생육한 반면, 40℃에서 배양한 경우, 바이오매스에 내생적으로 존재하는 오염 곰팡이의 생육이 관찰되지 않아 40℃가 내생적 오염 곰팡이의 생육을 억제 하는 온도임을 확인하였다. As a result, referring to FIG. 6, when cultured at 28 ° C and 35 ° C, black fungi and white fungi which were endogenously present in the biomass were grown, whereas when cultured at 40 ° C, The growth of pollutant fungi was not observed. Therefore, it was confirmed that the temperature of 40 ℃ inhibited the growth of endogenous pollutant fungi.

25℃-35℃에서 배양 시, 잡균의 생육이 관찰되어 잡균의 생육을 억제하고 KPYBE10만의 생육 효율을 향상시키기 위하여 황산의 사용 가능성을 검토하였다. 멸균처리되지 않은 옥수숫대 분말 10g 정량하여 150 x 25 mm 유리 페트리 디쉬에 첨가하고, 0.1% 또는 0.2%의 황산 용액 40 ml를 첨가한 다음 KPYBE10을 접종하고 28℃에서 배양하였다. The possibility of the use of sulfuric acid was investigated in order to inhibit the growth of germs and to improve the growth efficiency of KPYBE10 only by observing the growth of germs when cultured at 25 ° C -35 ° C. 10 g of cornstarch powder not sterilized was added to a 150 x 25 mm glass petri dish and 40 ml of a 0.1% or 0.2% sulfuric acid solution was added thereto, followed by inoculation with KPYBE10 and incubation at 28 ° C.

그 결과, 도 7을 참조하여 보면, 물에 현탁하고 배양한 경우, 전체 표면을 덮는데 7일이 소요되었으며, 황산 용액을 첨가하고 배양한 경우에는 9일이 소요되는 것을 확인하였다. 또한, 0.1% 및 0.2% 황산 용액은 효과적으로 잡균류의 생육을 억제하였으며, KPYBE10 균주의 생육에는 큰 영향을 미치지 않는 것을 확인하였다.As a result, referring to FIG. 7, it took 7 days to cover the entire surface when suspended and cultured in water, and it took 9 days to cultivate with sulfuric acid solution. In addition, it was confirmed that the 0.1% and 0.2% sulfuric acid solution effectively inhibited the growth of the fungus, and did not significantly affect the growth of the KPYBE10 strain.

실시예 4 : 바이오매스에서 KPYBE10의 배양Example 4: Culture of KPYBE10 in biomass

충분한 포자종균을 조제하여 바이오매스에 접종하기 위해, 옥수숫대 분말 3 g을 100 ml 삼각 플라스크에 첨가하고, 영양액(Na2HPO4·12H2O 4 g/L, MgSO4·7H2O 1 g/L. CaCl2 0.075 g/L, NaNO3 0.5 g/L, NH4Cl 1 g/L, KCl 1 g/L, FeSO4·4H2O 0.3 g/L, ZnSO4·8H2O 0.1 g/L, MnSO4·H2O 0.02 g/L, CuCl2·2H2O 0.01 g/L, Na2MoO4·2H2O 0.01 g/L, 효모 추출물 1 g/L, 맥아 추출물 1 g/L, 펩톤 1 g/L)을 증류수로 20배 희석한 용액 20 ml을 첨가한 다음, 소독된 바늘로 KPYBE10를 접종하고, 28℃에서 3-4일간 농후배양하였다. 그 후, 배양물 전체를 5 L의 물에 현탁하여 옥수숫대 분말을 10 g 씩 넣은 150 x 25 mm 유리 페트리 디쉬 72개에 각각 60 ml씩 첨가하고, 40℃에서 일주일 동안 배양하였다. 바이오매스와 현탁용 물은 멸균된 것을 사용하지 않았으므로 잡균의 증식을 억제하기 위하여 40℃에서 배양하였다.3 g of cornstal powder was added to a 100 ml Erlenmeyer flask, and the nutrient solution (Na 2 HPO 4 .12H 2 O 4 g / L, MgSO 4 .7H 2 O 1 g / L of CaCl 2 , 0.5 g / L of NaNO 3, 1 g / L of NH 4 Cl, 1 g / L of KCl, 0.3 g / L of FeSO 4 .4H 2 O, 0.1 g / L of ZnSO 4 .8H 2 O, L, MnSO 4揃 H 2 O 0.02 g / L, CuCl 2揃 2H 2 O 0.01 g / L, Na 2 MoO 4揃 2H 2 O 0.01 g / L, yeast extract 1 g / , 1 g / L of peptone) was diluted 20 times with distilled water. Then, KPYBE10 was inoculated with sterilized needles and cultured at 28 ° C for 3-4 days. Then, the whole culture was suspended in 5 L of water, and 60 ml of each of 150 x 25 mm glass petri dishes containing 10 g of cornstalks were added, and cultured at 40 캜 for one week. Biomass and suspended water were not sterilized and were cultured at 40 ° C to inhibit the growth of various bacteria.

실시예 5 : 바이오매스의 전처리 및 당화Example 5: Pretreatment and saccharification of biomass

상기와 같이 KPYBE10로 배양된 옥수숫대 분말 바이오매스를 산 가수분해(acid hydrolysis) 전처리하기 위하여, 4 L 플라스크에 첨가하고, 다양한 농도의 황산 희석액[0.2%(w/v), 0.5%(w/v), 1.0%(w/v)]을 800 ml 첨가하여 혼합한 다음, 140℃ 또는 150℃에 1시간 전처리하였다. 전처리된 바이오매스를 고체와 액체로 분리하기 위하여 진공필터를 사용하였고, 고체물은 수분함량을 측정한 후, 물과 NaOH를 첨가하여 총 고체물 7%(pH 5.0)의 슬러리를 제조하였다. 상기 슬러리를 142.8 g씩 정량하여 250 ml 삼각 플라스크에 첨가하였다. As described above, cornstarch powder biomass cultured in KPYBE10 was added to a 4 L flask for acid hydrolysis pretreatment and diluted with various concentrations of sulfuric acid dilution (0.2% (w / v), 0.5% (w / v) ), 1.0% (w / v)] were added to the mixture, and the mixture was pre-treated at 140 ° C or 150 ° C for 1 hour. A vacuum filter was used to separate the pretreated biomass into a solid and a liquid. The water content of the solid was measured, and water and NaOH were added to prepare a slurry having a total solid content of 7% (pH 5.0). 142.8 g of the slurry was quantitatively added to a 250 ml Erlenmeyer flask.

당화(saccharification)를 위한 셀룰라제(cellulase)는 Novozyme 사(Bagsvard, Denmark)의 Cellic® CTec2 및 Cellic® HTec2 효소를 ㈜엔자임텍으로부터 구입하였다. 삼각 플라스크에 Cellic® CTec2 1 ml, 또는 Cellic® CTec2와 Cellic® HTec2을 각각 1 ml씩 첨가하고, 100 rpm의 속도로 천천히 교반하면서 50℃에서 당화반응을 수행하였다. The cellulase for saccharification was purchased from Enzym Tech, Inc., Cellic® CTec2 and Cellic® HTec2 enzyme from Novozyme (Bagsvard, Denmark). Add 1 ml of Cellic® CTec2 or 1 ml of Cellic® CTec2 and Cellic® HTec2, respectively, to the Erlenmeyer flask and perform the glycation reaction at 50 ° C with slow stirring at 100 rpm.

각각의 삼각 플라스크에는 AABB형태의 번호가 주어졌고, AA가 홀수인 경우(01, 03, 05, 07, 09, 11)에는 Cellic® CTec2만 1 ml를 첨가하였고, AA가 짝수인 경우(02, 04, 06, 08, 10, 12)에는 Cellic® CTec2과 Cellic® HTec2을 각각 1ml 씩 동량 첨가하였다. BB는 당화시간(3, 5, 7, 9일)을 나타낸다. Each Erlenmeyer flask was given an AABB number, and only 1 ml of Cellic® CTec2 was added when AA was odd (01, 03, 05, 07, 09, 11) , 06, 08, 10, 12), Cellic® CTec2 and Cellic® HTec2 were added in the same volume of 1 ml each. BB represents saccharification time (3, 5, 7, 9 days).

상기와 같이, 3-9일간의 당화수행 후, 5 ml 씩 채취하고 원심분리하여 고상과 액상으로 분리하였으며, 포도당을 함유한 액상은 구멍 크기가 0.2 ㎛인 HPLC용 멤브레인 필터로 여과한 다음 HPLC 분석에 이용하였다. 글루코오스, 에탄올, 푸르푸랄(furfural) 및 자일로스(xylose)를 정량하기 위하여 HPLC(Waters 2690, USA)에서 Aminex HPX-87-H 컬럼(300 mm x 7.8 mm, BIO-RAD, USA)을 이용하여 65℃에서 5 mmol 황산을 0.5 ml/분의 유속으로 RI 검출기(refractive index detector)로 측정하였다. After the saccharification was performed for 3 to 9 days, 5 ml of each sample was collected and centrifuged to separate into a solid phase and a liquid phase. The liquid phase containing glucose was filtered with a 0.25 μm pore size membrane filter for HPLC, Lt; / RTI > (300 mm x 7.8 mm, BIO-RAD, USA) in HPLC (Waters 2690, USA) to quantify glucose, ethanol, furfural and xylose 5 mmol sulfuric acid at 65 ° C was measured with a RI detector (refractive index detector) at a flow rate of 0.5 ml / min.

에탄올 발효를 위해서는 효소처리된 시료 1 kg을 고속원심분리기(Supra 22K, 한일)와 A2505-6N 로터(한일)를 사용하여 8,000 rpm에서 15분간 회전시킴으로써, 고상과 액상으로 분리하였으며, 포도당을 함유한 액상은 0.2 ㎛ 구멍 크기의 필터가 장착된 142 mm 프레셔 필터레이션 홀더를 사용하여 여과를 하고, 글루코즈 분석 키트(GAHK-20, Sigma-Aldrich, USA)를 이용하여 글루코오스 농도를 측정한 다음, 밀봉하여 발효 시까지 냉장고에 보관하였다. For ethanol fermentation, 1 kg of the enzyme-treated sample was separated into a solid phase and a liquid phase by spinning at 8,000 rpm for 15 minutes using a high-speed centrifuge (Supra 22K, Korea) and an A2505-6N rotor (Korea) The liquid phase was filtered using a 142 mm pressure filter holder equipped with a filter having a pore size of 0.2 mu m, and the glucose concentration was measured using a glucose assay kit (GAHK-20, Sigma-Aldrich, USA) And stored in the refrigerator until fermentation.

Figure pat00001
Figure pat00001

a: 전처리 황산 농도a: pretreatment sulfuric acid concentration

b: KPYBE10 배양처리 실시 안함b: No KPYBE10 incubation treatment

c: KPYBE10 배양처리 실시함c: Cultivation treatment of KPYBE10

d: 전처리 온도d: Pretreatment temperature

e: 당화 후 글루코오스 농도 e: Glucose concentration after saccharification

상기 표 1을 참조하여 보면, 당화시간이 글루코오스의 농도에 미치는 영향을 분석한 결과, Cellic® CTec2 단독 사용 시, 5일까지 글루코오스의 농도가 증가하는 경향을 보였으나 그 이후에는 증가 속도가 미미한 것을 확인할 수 있었다. 이것으로 최적 당화일수가 5일이라는 것을 의미하며, 같은 방법으로 Cellic® CTec2와 Cellic® HTec2를 병용 사용 시, 최적 당화일수가 7일인 것을 확인하였다.As shown in Table 1, when the saccharification time was influenced on the concentration of glucose, the concentration of glucose was increased until 5 days when Cellic® CTec2 alone was used, but the rate of increase was insignificant thereafter I could confirm. This means that the optimal number of saccharification days is 5 days, and when using Cellic® CTec2 and Cellic® HTec2 in the same way, the optimal saccharification days were 7 days.

전처리시 사용하는 황산 농도가 당화에 미치는 영향을 분석하기 위하여, 16.98 g/L(0105), 25.10 g/L(0305) 및 33.35 g/L(0505)와 17.91 g/L(0705), 31.40 g/L(0905), 및 36.09 g/L(1105)를 비교한 결과, 1.0%(w/v) 황산으로 전처리하였 때 얻는 글루코오스의 농도는 0.2%(w/v) 황산으로 전처리했을 때 보다 2배 이상 높은 것을 확인하였다. 상기 결과로부터 전처리시 황산 농도가 증가함에 따라 당화 효율이 향상되는 것을 확인할 수 있었다.To investigate the effect of sulfuric acid concentration on the glycation in the pretreatment, 16.98 g / L (0105), 25.10 g / L (0305), 33.35 g / L (0505) and 17.91 g / L (0705) (W / v) sulfuric acid, the concentration of glucose obtained by pretreatment with 1.0% (w / v) sulfuric acid was 2 (w / v) Times higher. From the above results, it was confirmed that the saccharification efficiency was improved as the sulfuric acid concentration increased in the pretreatment.

바이오매스를 KPYBE10으로 배양처리할 때, 두 가지 황산 농도(0.5%, 1%) 및 두 가지 온도(140℃, 150℃)에서 전처리하고, 당화효소로 CTec2 단독 사용 시, 글루코오스 농도에 미치는 영향을 분석하였다. When biomass was cultured in KPYBE10, pretreatment was carried out at two concentrations of sulfuric acid (0.5%, 1%) and two temperatures (140 ° C and 150 ° C), and the effect of CTec2 alone on glucose concentration Respectively.

KPYBE10으로 배양처리되지 않은 바이오매스를 0.5% 황산/140℃/1시간/CTec2 조건으로 전처리·당화 수행한 경우, 글루코오스 농도가 25.10 g/L(0305)였으며, KPYBE10으로 배양처리된 바이오매스를 사용하여 상기와 동일한 조건에서 전처리·당화 수행한 경우, 31.40 g/L(0905)로 글루코오스 농도가 25% 증가하였고, 동일한 조건에서 전처리 온도만 150℃로 10℃ 상승시킨 경우, 34.11 g/L(1305)로 글루코오스 농도가 36% 대폭 증가한 것을 확인하였다. When the biomass that was not cultured with KPYBE10 was subjected to pretreatment / saccharification under the condition of 0.5% sulfuric acid / 140 ° C / 1 hour / CTec2, the glucose concentration was 25.10 g / L (0305) and the biomass cultured with KPYBE10 was used , The glucose concentration was increased by 25% to 31.40 g / L (0905) under the same conditions as above. When the pretreatment temperature was raised to 150 ° C by 10 ° C under the same conditions, 34.11 g / L (1305 ), It was confirmed that the glucose concentration was greatly increased by 36%.

또한, KPYBE10으로 배양처리되지 않은 바이오매스를 1% 황산/140℃/1시간/CTec2 조건으로 전처리·당화 수행한 경우, 글루코오스 농도가 33.35 g/L(0505)였으며, KPYBE10으로 배양처리된 바이오매스를 사용하여 상기와 동일한 조건에서 전처리·당화 수행한 경우, 36.09 g/L(1105)로 글루코오스 농도가 8.2% 증가하였고, 전처리 온도만 150℃로 10℃ 상승시킨 경우, 39.02 g/L(1505)로 글루코오스 농도가 17% 증가하였다. 또한, 0.2% 황산으로 전처리 한 경우에도 KPYBE10으로 배양처리되지 않은 바이오매스를 사용시, 글루코오스 농도가 증가한 것을 확인하였다. When the biomass that was not cultured with KPYBE10 was subjected to pretreatment / saccharification under the conditions of 1% sulfuric acid / 140 ° C / 1 hour / CTec2, the glucose concentration was 33.35 g / L (0505), and the biomass cultured with KPYBE10 The glucose concentration was increased by 8.2% at 36.09 g / L (1105), and 39.02 g / L (1505) when the pretreatment temperature was elevated by 10 ° C. at only 150 ° C., The glucose concentration was increased by 17%. Also, it was confirmed that the glucose concentration was increased when the biomass which was not cultured with KPYBE10 was used even when it was pretreated with 0.2% sulfuric acid.

상기 실험 결과로부터 KPYBE10으로 배양처리된 바이오매스를 사용하면 0.5% 황산 사용 조건에서 최고 36% 이상의 글루코오스 농도 상승 효과를 나타내었다. 즉, 본 발명은 KPYBE10으로 배양처리된 바이오매스를 사용함으로써 동량의 당화효소를 사용하면서도 당화 효율을 대폭 증가시킬 수 있는 방법을 제공한다.Using the biomass cultured with KPYBE10, the effect of increasing the glucose concentration by up to 36% was observed under the condition of 0.5% sulfuric acid. That is, the present invention provides a method of greatly increasing the saccharification efficiency by using biomass cultured with KPYBE10 using the same saccharification enzyme.

또한, 1% 황산을 사용하였을 때, 글루코오스 농도가 33.35 g/L(0505)였으며, 0.5% 황산을 사용하였을 때, 글루코오스 농도가 34.11 g/L(1305)로 글루코오스 농도가 유사하다는 것은 KPYBE10으로 배양처리된 바이오매스를 사용하면 적은 양의 황산을 사용하여도 유사한 글루코오스 농도를 얻을 수 있다는 것을 의미한다. 즉, 본 발명은 KPYBE10으로 배양처리된 바이오매스를 사용함으로써 황산 사용량을 반으로 대폭 절감하면서 당화 효율을 유사하게 유지시킬 수 있는 방법을 제공한다.When 1% sulfuric acid was used, the glucose concentration was 33.35 g / L (0505). When 0.5% sulfuric acid was used, the glucose concentration was 34.11 g / L (1305) and the glucose concentration was similar to that of KPYBE10 Using treated biomass means that a similar glucose concentration can be obtained even with a small amount of sulfuric acid. That is, the present invention provides a method for maintaining the saccharification efficiency at a similar level while drastically reducing the amount of sulfuric acid used by using biomass cultured with KPYBE10.

다음은 바이오매스를 KPYBE10으로 배양처리할 때, 두 가지 황산농도(0.5%, 1.0%)에서 CTec2 단독 사용과 CTec2 & HTec2 병용 사용 시, 글루코오스 농도에 미치는 영향을 분석하였다.Next, we analyzed the effect of CTec2 alone and CTec2 & HTec2 combination on glucose concentration in two concentrations of sulfuric acid (0.5%, 1.0%) when cultured with KPYBE10 in biomass.

KPYBE10으로 배양처리되지 않은 바이오매스를 0.5% 황산/140℃/1시간/CTec2 & HTec2 조건으로 전처리·당화 수행한 경우, 글루코오스 농도가 29.08 g/L(0407)였으며, KPYBE10으로 배양처리된 바이오매스를 상기와 동일한 조건에서 전처리·당화 수행한 경우, CTec2 단독 사용한 경우에 31.40 g/L(0905)로 CTec2 단독 사용에도 불구하고 글루코오스 농도가 오히려 8% 높았고. 또한, 전처리 온도만 150℃로 10℃ 상승시킨 경우, 34.11 g/L(1305)로 글루코오스 농도가 17.3% 증가하였다. When the biomass that was not cultured with KPYBE10 was pretreated and saccharified under conditions of 0.5% sulfuric acid / 140 ° C / 1 hour / CTec2 & HTec2, the glucose concentration was 29.08 g / L (0407), and the biomass cultured with KPYBE10 (0905) in the case of using CTec2 alone, the glucose concentration was 8% higher than that in the case of using CTec2 alone. In addition, when the pretreatment temperature was raised to 150 캜 by 10 캜, the glucose concentration was increased by 17.3% to 34.11 g / L (1305).

상기 결과로부터, KPYBE10으로 배양처리된 바이오매스를 사용하면 CTec2와 HTec2를 함께 사용하지 않고, CTec2만 단독 사용하여도 더 높은 당화 효율을 얻을 수 있음을 확인하였다. From the above results, it was confirmed that using the biomass cultured with KPYBE10, CTec2 and HTec2 were not used together but CTec2 alone could obtain higher saccharification efficiency.

또한, KPYBE10으로 배양처리되지 않은 바이오매스를 1.0% 황산/140℃/1시간/CTec2 & HTec2 조건으로 전처리·당화 수행한 경우, 글루코오스 농도가 36.63 g/L(0607)였으며, KPYBE10으로 배양처리된 바이오매스를 상기와 동일한 조건에서 전처리·당화 수행한 경우, CTec2 단독 사용한 경우인 36.42 g/L(1107)로 유사하였다. 또한, 전처리 온도만 150℃로 10℃ 상승시킨 경우, CTec2 단독 사용한 경우에 39.72 g/L(1507)로 글루코오스 농도가 8.4% 증가하였다. When the biomass that was not cultured with KPYBE10 was subjected to pretreatment / saccharification under the conditions of 1.0% sulfuric acid / 140 ° C / 1 hour / CTec2 & HTec2, the glucose concentration was 36.63 g / L (0607), and cultured with KPYBE10 When biomass was pretreated and saccharified under the same conditions as above, CTec2 alone was similar to 36.42 g / L (1107). In addition, when the pretreatment temperature was increased to 150 ° C by 10 ° C, the glucose concentration was increased by 8.4% to 39.72 g / L (1507) when CTec2 alone was used.

상기 결과로부터, KPYBE10으로 배양처리되지 않고, CTec2 & HTec2 병용 사용의 경우보다 KPYBE10으로 배양처리된 바이오매스를 사용 하면 CTec2 단독 사용하여도 더 높은 당화 효율을 얻을 수 있으며, 효소 구입 비용을 대폭 절약할 수 있음을 확인하였다. 즉, 본 발명은 CTec2 보다 구입 가격이 2.5배 비싼 HTec2를 병용 사용하지 않고도 상대적으로 매우 저렴한 CTec2만을 단독 사용하여 유사한 혹은 더 높은 당화 효율을 얻을 수 있는 방법을 제공하며, 당화효소 총 구입비용을 반 이상 절감할 수 있는 방법을 제공한다. From the above results, it can be seen that the use of the biomass cultured with KPYBE10, which is not cultured with KPYBE10 and used in combination with CTec2 & HTec2, results in higher glycation efficiency even when CTec2 alone is used, Respectively. That is, the present invention provides a method of obtaining a similar or higher saccharification efficiency by using only relatively inexpensive CTec2 alone, without using HTec2, which is 2.5 times more expensive than CTec2, Or more.

다음은 KPYBE10으로 배양처리된 바이오매스를 CTec2와 HTec2로 병용 사용 시, 글루코오스 농도에 미치는 영향을 분석하였다. Next, we analyzed the effect of biomass cultured with KPYBE10 on glucose concentration in combination with CTec2 and HTec2.

KPYBE10으로 배양처리되지 않은 바이오매스를 0.5% 황산/140℃/1시간/CTec2 & HTec2 조건으로 전처리·당화 수행한 경우, 글루코오스 농도가 29.08 g/L(0407) 였으며, KPYBE10으로 배양처리된 바이오매스를 사용하여 150℃에서 전처리한 경우, 41.29 g/L(1407)로 글루코오스 농도가 42% 증가하였다.When the biomass that was not cultured with KPYBE10 was pretreated and saccharified under conditions of 0.5% sulfuric acid / 140 ° C / 1 hour / CTec2 & HTec2, the glucose concentration was 29.08 g / L (0407), and the biomass cultured with KPYBE10 , The glucose concentration was increased by 42% at 41.29 g / L (1407) when pretreated at 150 ° C.

상기 결과로부터, KPYBE10으로 배양처리된 바이오매스를 사용하면 당화 효율을 매우 크게 증가시킬 수 있으며, 두 가지 효소의 사용량을 대폭 줄여도 여전히 유사한 당화 효율을 얻을 수 있음을 확인하였다. 즉, 본 발명은 상기 두 가지 당화 효소의 사용량을 동시에 대폭 절감하면서도 유사한 당화 효율을 얻을 수 있는 방법을 제공한다. From the above results, it was confirmed that using the biomass cultured with KPYBE10 can greatly increase the saccharification efficiency and still obtain a similar saccharification efficiency even if the amount of the two enzymes is greatly reduced. That is, the present invention provides a method for obtaining a similar saccharification efficiency while simultaneously reducing the amount of the two saccharifying enzymes.

이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

한국생명공학연구원Korea Biotechnology Research Institute KCTC13356BPKCTC13356BP 2017092020170920

Claims (16)

토양으로부터 채취한 페니실리움 속(Penicillium species) 미생물로서, 가혹 조건에서 생존가능하는 것을 특징으로 하는 섬유소 분해 곰팡이.Penicillium species microorganism collected from soil, characterized by surviving in harsh conditions. 제 1항에 있어서, 상기 가혹 조건은 40 내지 50℃의 온도에서 처리하는 것을 특징으로 하는 섬유소 분해 곰팡이.The fibrin degrading fungus according to claim 1, wherein said harsh condition is treated at a temperature of 40 to 50 ° C. 제 1항에 있어서, 상기 섬유소 분해 곰팡이는 KCTC13356BP로 기탁된 것을 특징으로 하는 섬유소 분해 곰팡이.The fibrinolytic fungus according to claim 1, wherein the fibrin degrading fungus is deposited with KCTC 13356BP. 제 1항에 있어서, 상기 섬유소 분해 곰팡이는 바이오매스의 당화 효율을 향상시키는 것을 특징으로 하는 섬유소 분해 곰팡이.The fibrin degrading fungus according to claim 1, wherein the fibrin degrading fungus improves the saccharification efficiency of the biomass. (a) 바이오매스를 분쇄하는 단계; 및
(b) 제 1항 내지 제 4항 중 어느 한 항에 따른 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 살포하여 배양하는 단계;
를 포함하는, 바이오연료 또는 바이오플라스틱 생산용 바이오매스의 전처리 및 당화 효율 향상방법.
(a) pulverizing the biomass; And
(b) a step of spraying and pulverizing the pulverized biomass with a mixture solution obtained by suspending the fibrinolytic fungus according to any one of claims 1 to 4 in water or a sulfuric acid solution;
And a method for improving the pretreatment and saccharification efficiency of biomass for producing biofuels or bioplastics.
제 5항에 있어서, 상기 (b) 단계의 물, 황산용액 또는 바이오매스는 멸균 처리 없이 사용이 가능하며, 추가 영양성분의 투입 없이 배양하는 것을 특징으로 하는, 바이오연료 또는 바이오플라스틱 생산용 바이오매스의 전처리 및 당화 효율 향상방법. The method according to claim 5, wherein the water, the sulfuric acid solution or the biomass of the step (b) can be used without sterilization treatment and is cultured without the addition of additional nutrients. And a method for improving the saccharification efficiency. 제 5항에 있어서, 상기 바이오연료는 바이오에탄올 또는 바이오부탄올인 것을 특징으로 하는, 바이오연료 또는 바이오플라스틱 생산용 바이오매스의 전처리 및 당화 효율 향상방법.6. The method of claim 5, wherein the biofuel is bioethanol or biobutanol. 5. The method of claim 1, wherein the biofuel is bioethanol or biobutanol. 제 5항에 있어서, 상기 바이오매스의 전처리 및 당화 효율 향상방법은,
(a) 바이오매스를 분쇄하는 단계;
(b) 제 1항 내지 제 4항 중 어느 한 항에 따른 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 접종하여 배양하는 단계;
(c) 상기 배양된 배양물에 산을 처리하여 가수분해하는 단계;
(d) 상기 가수분해 후 얻은 결과물을 고상 및 액상으로 분리하는 단계;
(e) 상기 고상에 셀룰로오스 분해 효소를 처리하여 6탄당 당화액을 수득하거나 상기 액상에 중화제를 처리하여 5탄당 당화액을 수득하는 단계;
(f) 상기 6탄당 당화액, 5탄당 당화액 또는 이의 혼합 당화액에 바이오연료 발효 미생물을 접종하고 배양하여 바이오연료 발효액을 제조하는 단계; 및
(g) 상기 발효액을 증류하여 농축된 바이오연료를 제조하는 단계;
를 포함하는 바이오매스의 전처리 및 당화 효율 향상방법.
6. The method of claim 5, wherein the pretreatment and saccharification efficiency of the biomass is improved,
(a) pulverizing the biomass;
(b) inoculating and pulverizing the pulverized biomass with a mixture solution obtained by suspending the fibrinolytic fungus according to any one of claims 1 to 4 in water or a sulfuric acid solution;
(c) treating the cultured culture with an acid to hydrolyze it;
(d) separating the resultant product after the hydrolysis into a solid phase and a liquid phase;
(e) treating the solid phase with a cellulose degrading enzyme to obtain a saccharified saccharide per hexane or treating the liquid phase with a neutralizing agent to obtain a pentasaccharide solution;
(f) preparing a biofuel fermentation broth by inoculating and culturing the biofuel fermentation microorganism in the saccharified saccharide solution, the pentasaccharide solution or the mixed saccharification solution thereof; And
(g) distilling the fermentation broth to produce a concentrated biofuel;
And a method for improving the pre-treatment and saccharification efficiency of the biomass.
제 5항에 있어서, 상기 바이오매스의 전처리 및 당화 효율 향상방법은,
(a) 바이오매스를 분쇄하는 단계;
(b) 제 1항 내지 제 4항 중 어느 한 항에 따른 섬유소 분해 곰팡이를 물 또는 황산용액에 현탁한 혼합액을 상기 분쇄된 바이오매스에 접종하여 배양하는 단계;
(c) 상기 배양된 배양물에 산을 처리하여 가수분해하는 단계;
(d) 상기 가수분해 후 얻은 결과물을 고상 및 액상으로 분리하는 단계;
(e) 상기 고상에 셀룰로오스 분해 효소를 처리하여 6탄당 당화액을 수득하고 상기 액상에 중화제를 처리하여 5탄당 당화액을 수득하는 단계; 및
(f) 상기 6탄당 및 5탄당 혼합 당화액에 바이오플라스틱 합성 재료를 생성하는 균주를 접종하고 배양하여 바이오플라스틱을 제조하는 단계;
를 포함하는 바이오매스의 전처리 및 당화 효율 향상방법.
6. The method of claim 5, wherein the pretreatment and saccharification efficiency of the biomass is improved,
(a) pulverizing the biomass;
(b) inoculating and pulverizing the pulverized biomass with a mixture solution obtained by suspending the fibrinolytic fungus according to any one of claims 1 to 4 in water or a sulfuric acid solution;
(c) treating the cultured culture with an acid to hydrolyze it;
(d) separating the resultant product after the hydrolysis into a solid phase and a liquid phase;
(e) treating the solid phase with a cellulolytic enzyme to obtain a saccharide-saccharide solution, and treating the liquid phase with a neutralizing agent to obtain a saccharide-saccharide solution; And
(f) preparing a bioplastic by inoculating and culturing a strain producing the bioplastic synthetic material in the mixed sugar solution of hexane and pentane;
And a method for improving the pre-treatment and saccharification efficiency of the biomass.
제 8항 또는 제 9항에 있어서, 상기 섬유소 분해 곰팡이는 KCTC13356BP로 수탁된 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법.10. The method of claim 8 or 9, wherein the fibrinolytic fungus is deposited with KCTC 13356BP to improve the pretreatment and saccharification efficiency of the biomass. 제 8항 또는 제 9항에 있어서, 상기 섬유소 분해 곰팡이는 페니실리움 속(Penicillium species) 미생물인 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법.The method of claim 8 or 9, wherein the fibrin degrading fungus is a penicillium species microorganism. 제 8항 또는 제 9항에 있어서, 상기 바이오매스는 옥수숫대(corn stover), 옥수숫속(corn cobs), 사탕수수 찌꺼기(bagasse), 사탕무우 찌꺼기, 볏짚, 왕겨, 밀짚, 갈대, 해바라기 줄기, 스위치그라스(switchgrass), 유채대, 폐목재, 톱밥, 잔디, 면(cotten), 아마(flax) 및 과일껍질 중 어느 하나 이상인 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법.10. The method of claim 8 or 9, wherein the biomass is selected from the group consisting of corn stover, corn cobs, bagasse, sugar beet residue, rice straw, chaff, straw, reed, sunflower stem, Wherein the plant is at least one selected from the group consisting of switchgrass, oilseed rape, waste wood, sawdust, grass, cotten, flax and fruit peel. 제 8항 또는 제 9항에 있어서, 상기 (a) 단계 이후, 분쇄된 바이오매스를 한 변의 길이가 0.25 내지 10 mm인 그물망에 통과시키는 단계;를 더 포함하는 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법. The method according to claim 8 or 9, further comprising: after the step (a), passing the pulverized biomass through a mesh having a length of one side of 0.25 to 10 mm. A method for improving saccharification efficiency. 제 8항 또는 제 9항에 있어서, 상기 (b) 단계는 40 내지 50℃의 온도 조건 시, 섬유소 분해 곰팡이를 물에 현탁하여 분쇄된 바이오매스에 접종하고, 3 내지 14일 동안 배양하는 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법. [9] The method according to claim 8 or 9, wherein the step (b) is characterized by suspending the fibrinolytic fungus in water at a temperature of 40 to 50 DEG C, inoculating the pulverized biomass, and culturing for 3 to 14 days A method for improving the pretreatment and saccharification efficiency of biomass. 제 8항 또는 제 9항에 있어서, 상기 (b) 단계는 40℃ 미만의 온도 조건 시, 섬유소 분해 곰팡이를 0.1 내지 0.2%(w/v) 황산 용액에 현탁하여 분쇄된 바이오매스에 접종하고, 3 내지 14일 동안 배양하는 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법.The method according to claim 8 or 9, wherein the step (b) comprises suspending the fibrinolytic fungus in a 0.1 to 0.2% (w / v) sulfuric acid solution at a temperature of less than 40 캜, inoculating the pulverized biomass, And culturing the cells for 3 to 14 days. The method for improving the pretreatment and saccharification efficiency of biomass. 제 8항 또는 제 9항에 있어서, 상기 (c) 단계의 가수분해는 0.1 내지 10%(w/v)의 산성 용액으로 130 내지 300℃의 온도 조건에서 30 내지 90분 동안 수행하는 것을 특징으로 하는 바이오매스의 전처리 및 당화 효율 향상방법. The method according to claim 8 or 9, wherein the hydrolysis in step (c) is performed in an acidic solution of 0.1 to 10% (w / v) at a temperature of 130 to 300 ° C for 30 to 90 minutes A method for improving the pretreatment and saccharification efficiency of biomass.
KR1020170137603A 2017-10-23 2017-10-23 Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic KR102060862B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170137603A KR102060862B1 (en) 2017-10-23 2017-10-23 Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic
PCT/KR2018/012528 WO2019083244A2 (en) 2017-10-23 2018-10-23 Method for pretreatment and saccharification of biomass for production of biofuels or bioplastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170137603A KR102060862B1 (en) 2017-10-23 2017-10-23 Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic

Publications (2)

Publication Number Publication Date
KR20190044954A true KR20190044954A (en) 2019-05-02
KR102060862B1 KR102060862B1 (en) 2019-12-30

Family

ID=66246677

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170137603A KR102060862B1 (en) 2017-10-23 2017-10-23 Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic

Country Status (2)

Country Link
KR (1) KR102060862B1 (en)
WO (1) WO2019083244A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213846A1 (en) 2019-04-17 2020-10-22 주식회사 엘지화학 Inspection method for crack in battery cell by using eddy current, and inspection device
KR20200141851A (en) 2019-06-11 2020-12-21 한국에너지기술연구원 Mass production method and continuous process equipment of pyrolysis oil upgraded by continuous process
CN112755560A (en) * 2020-12-25 2021-05-07 绥化象屿金谷生化科技有限公司 Device for improving energy utilization rate by liquid glucose sterilization and use method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010789A1 (en) 2015-07-14 2017-01-19 한국과학기술연구원 Biomarker for diagnosis drug addiction and kit for diagnosis of drug addiction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100205914B1 (en) * 1996-10-15 1999-07-01 이종학 Method for organic waste biosolubility
KR101037125B1 (en) * 2009-05-14 2011-05-26 계명대학교 산학협력단 Biomass Pretreatment Method for Preparing Bioethanol
KR101288314B1 (en) * 2011-06-23 2013-07-22 주식회사 젠닥스 Penicillium sp. GDX01 strain producing cellulase and uses thereof
JP6202716B2 (en) * 2012-03-21 2017-09-27 学校法人中部大学 Biomass saccharification method
KR101410719B1 (en) * 2012-05-11 2014-07-01 수원대학교 산학협력단 Fungal strain Penicillium oxalicum KL1 and production method of lignocellulose-degrading enzymes using the strain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010789A1 (en) 2015-07-14 2017-01-19 한국과학기술연구원 Biomarker for diagnosis drug addiction and kit for diagnosis of drug addiction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213846A1 (en) 2019-04-17 2020-10-22 주식회사 엘지화학 Inspection method for crack in battery cell by using eddy current, and inspection device
KR20200141851A (en) 2019-06-11 2020-12-21 한국에너지기술연구원 Mass production method and continuous process equipment of pyrolysis oil upgraded by continuous process
CN112755560A (en) * 2020-12-25 2021-05-07 绥化象屿金谷生化科技有限公司 Device for improving energy utilization rate by liquid glucose sterilization and use method

Also Published As

Publication number Publication date
WO2019083244A3 (en) 2019-07-18
WO2019083244A2 (en) 2019-05-02
KR102060862B1 (en) 2019-12-30

Similar Documents

Publication Publication Date Title
Zabed et al. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches
Bhatia et al. An economic and ecological perspective of ethanol production from renewable agro waste: a review
Chandel et al. Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498
Ma et al. Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi
Pandey et al. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse
Jain et al. Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus
Fang et al. Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants
Intasit et al. Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi
US20070231869A1 (en) Fermentation Process, Starter Culture and Growth Medium
Sheikh et al. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production
Nutongkaew et al. Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation
ES2703631T3 (en) Procedures and systems for the saccharification of biomass
Allen et al. Lignocelluloses: an economical and ecological resource for bio-ethanol production-a review
KR102060862B1 (en) Biomass pre-treatment and saccharification method for the production of biofuel or bioplastic
Kumar et al. Bioprocessing of cellulosic waste biomass for ethanol production by Chryseobacterium culicis Bp16
EP3008196B1 (en) Methods to enhance microbial conversion of cellulosic biomass with mechanical augmentation
Kumar et al. Bioethanol production from apple pomace using co-cultures with Saccharomyces cerevisiae in solid-state fermentation
Chandel et al. Simultaneous saccharification and fermentation (SSF) of aqueous ammonia pretreated Saccharum spontaneum (wild sugarcane) for second generation ethanol production
WO2007114729A1 (en) Method of lignocellulose materials saccharification using enzymes produced by penicillium fimiculosum
Abdelhamid et al. Hydrolysis of cellulose rich agricultural waste using two potent local bacterial isolates
Sharma et al. An evaluation study of different white rot fungi for degradation of pine needles under solid state fermentation
KR20120106136A (en) Efficient production of lactic acid by the simulataneous saccharification and fermentation of algal biomass
Abdullah et al. Viability of municipal solid waste as a source for bioenergy products production
Shawky et al. Conversion of rice straw to fermentable sugars and bioethanol by Mfex pretreatment and sequential fermentation
CN110438172B (en) Method for producing grease by co-utilizing starch and lignocellulose raw materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant