KR100462781B1 - Lithium battery without anode active material and process for preparing the same - Google Patents

Lithium battery without anode active material and process for preparing the same Download PDF

Info

Publication number
KR100462781B1
KR100462781B1 KR10-2002-0032852A KR20020032852A KR100462781B1 KR 100462781 B1 KR100462781 B1 KR 100462781B1 KR 20020032852 A KR20020032852 A KR 20020032852A KR 100462781 B1 KR100462781 B1 KR 100462781B1
Authority
KR
South Korea
Prior art keywords
negative electrode
battery
lithium
electrode plate
lithium battery
Prior art date
Application number
KR10-2002-0032852A
Other languages
Korean (ko)
Other versions
KR20030095578A (en
Inventor
장영철
김창호
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-2002-0032852A priority Critical patent/KR100462781B1/en
Publication of KR20030095578A publication Critical patent/KR20030095578A/en
Application granted granted Critical
Publication of KR100462781B1 publication Critical patent/KR100462781B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 음극 활물질을 포함하지 않는 리튬 전지 및 그의 제조방법에 관한 것으로서, 보다 구체적으로는 음극활물질을 사용하지 않으면서도 무게당 에너지 밀도가 가장 높은 금속 리튬을 생성시켜 에너지 밀도가 향상되고 제조비용적인 측면에서 경제성이 개선된 리튬전지 및 그의 제조방법에 관한 것이다.The present invention relates to a lithium battery that does not include a negative electrode active material and a method for manufacturing the same, and more specifically, to produce a metal lithium having the highest energy density per weight without using a negative electrode active material to improve the energy density and manufacturing cost The present invention relates to a lithium battery having improved economics and a method of manufacturing the same.

Description

음극 활물질이 없는 리튬 전지 및 그의 제조 방법{Lithium battery without anode active material and process for preparing the same}Lithium battery without anode active material and manufacturing method thereof {Lithium battery without anode active material and process for preparing the same}

본 발명은 음극 활물질을 포함하지 않는 리튬 전지 및 그의 제조방법에 관한 것으로서, 보다 구체적으로는 음극활물질을 사용하지 않으면서도 무게당 에너지 밀도가 가장 높은 금속 리튬을 생성시켜 에너지 밀도가 향상되고 제조비용적인 측면에서 경제성이 개선된 리튬전지 및 그의 제조방법에 관한 것이다.The present invention relates to a lithium battery that does not include a negative electrode active material and a method for manufacturing the same, and more specifically, to produce a metal lithium having the highest energy density per weight without using a negative electrode active material to improve the energy density and manufacturing cost The present invention relates to a lithium battery having improved economics and a method of manufacturing the same.

통상적으로 충방전이 가능한 2차 전지는 셀룰러 폰, 노트북 컴퓨터, 컴퓨터 캠코드 등 휴대용 전자기기의 개발로 활발한 연구가 진행되고 있다. 특히 이러한 2차 전지는 니켈-카드뮴 전지, 납축전지, 니켈 수소 전지, 리튬 이온 전지, 리튬 폴리머 전지, 금속 리튬 2차 전지, 공기 아연 축전지 등 종류가 다양하다. 상기 전지들 중 리튬 2차 전지는 작동 전압이 3.6 V로서, 전자 기기의 전원으로 많이 사용되는 니켈-카드뮴 전지나 니켈-수소 전지에 비해 수명이 약 3배이며, 단위 중량당 에너지 밀도가 우수하다는 점에서 그 수요가 급속도로 신장되고 있다.In general, rechargeable batteries capable of charging and discharging are being actively researched by the development of portable electronic devices such as cellular phones, notebook computers, and computer cam codes. In particular, such a secondary battery is a variety of types such as nickel-cadmium battery, lead acid battery, nickel hydrogen battery, lithium ion battery, lithium polymer battery, metal lithium secondary battery, air zinc storage battery. Among the batteries, the lithium secondary battery has an operating voltage of 3.6 V, which is about three times longer than a nickel-cadmium battery or nickel-hydrogen battery, which is widely used as a power source for electronic devices, and has an excellent energy density per unit weight. The demand is growing rapidly.

이러한 리튬 2차 전지는 전해질의 종류에 따라 액체 전해질 전지와 고분자 전해질 전지로 분류할 수 있으며, 일반적으로 액체 전해질을 사용하는 전지를 리튬이온 전지, 고분자 전해질을 사용하는 전지를 리튬 폴리머 전지라고 한다.The lithium secondary battery may be classified into a liquid electrolyte battery and a polymer electrolyte battery according to the type of electrolyte. Generally, a battery using a liquid electrolyte is a lithium ion battery and a battery using a polymer electrolyte is called a lithium polymer battery.

일반적으로 리튬 2차 전지를 제조함에 있어서, 먼저 활물질과 결합제 및 가소제를 혼합한 물질을 양극 집전체 및 음극 집전체에 도포하여 양극판과 음극판을 제조하고, 이를 세퍼레이터의 양측에 적층하여 소정 형상의 전지셀을 형성하고, 이 전지셀을 전지 케이스에 삽입하고 전해액을 주입하여 전지 팩을 완성한다.In general, in manufacturing a lithium secondary battery, first, a material in which an active material, a binder, and a plasticizer are mixed is applied to a positive electrode current collector and a negative electrode current collector to prepare a positive electrode plate and a negative electrode plate, and laminated on both sides of a separator to form a battery having a predetermined shape. A cell is formed, the battery cell is inserted into a battery case, and an electrolyte solution is injected to complete a battery pack.

리튬 2차 전지는 일반적으로 전지 제조를 완성한 후 화성 공정 및 에이징 공정을 거쳐 제품으로 완성된다. 상기 화성 공정은 전지 조립 후에 충방전을 반복하여 전지를 활성화하는 것이다. 이 공정에서, 충전시 양극활물질로 사용되는 리튬 금속 산화물로부터 나온 리튬 이온이 음극활물질로 사용되는 카본전극으로 이동하여 삽입된다.Lithium secondary batteries are generally finished into products after completion of battery manufacturing and chemical conversion and aging processes. The chemical conversion process is to activate the battery by repeating charging and discharging after battery assembly. In this process, lithium ions from the lithium metal oxide used as the cathode active material during charging are moved to and inserted into the carbon electrode used as the cathode active material.

리튬 2차 전지는 방식에 따라 다시 두가지 형태로 나눌 수 있다. 즉 음극에 초기 리튬의 공급원을 갖고 있는 물질, 예를 들면 리튬금속이나 리튬화합물 등을 사용하고, 리튬이온를 받아들일 수 있는 구조를 갖는 양극 물질로 구성되는 전지와, 양극에 리튬의 공급원을 갖고 있는 물질을 사용하고 음극에 리튬이온을 저장할수 있는 물질로 구성되는 전지로 나뉘어 진다. 후자의 전지를 리튬 이온 2차 전지라 부른다.Lithium secondary batteries can be divided into two types according to the method. That is, a battery composed of a positive electrode material having a structure capable of accepting lithium ions, using a material having an initial lithium supply source at the negative electrode, for example, a lithium metal or a lithium compound, and a lithium supply source at the positive electrode. It is divided into batteries that use materials and consist of materials that can store lithium ions on the negative electrode. The latter battery is called a lithium ion secondary battery.

상기 전자의 리튬전지는 전지를 조립하는 즉시 전지로서 작동을 하기 때문에 화성공정이라는 전지 활성화 공정이 필요가 없고, 높은 에너지 밀도를 갖는 등 장점이 있지만 반응성이 높은 음극 물질을 직접 다루기 때문에 위험하며 전지제조가 힘들 뿐만 아니라 수명과 안전성 등에 많은 문제를 갖고 있어 현재 상품화되어 사용되지 않고 있는 실정이다.The former lithium battery operates as a battery immediately after assembling the battery, thus eliminating the need for a battery activation process called a chemical conversion process and having a high energy density. However, the lithium battery is dangerous because it directly deals with highly reactive negative electrode materials. Not only is it difficult to use, but also has many problems such as lifespan and safety.

상기 후자의 전지는 안전한 양/음극 물질을 사용하고 수명 등의 성능이 우수하고 안전하기 때문에 많이 사용되고 있다. 하지만 음극활물질의 제한된 용량 등으로 인하여 에너지 밀도 차원에서 전자의 전지보다 낮다는 문제가 있다.The latter battery is widely used because it uses a safe positive / cathode material and has excellent safety and performance. However, due to the limited capacity of the negative electrode active material, there is a problem that it is lower than the cell of the electron in terms of energy density.

따라서 전자 및 후자의 장점만을 갖추어, 높은 에너지 밀도를 갖추고 수명 등의 성능이 우수하면서도 안전한 리튬 전지가 여전히 요구되고 있다.Accordingly, there is still a need for a lithium battery having only the former and the latter advantages, having a high energy density and excellent performance such as a lifetime.

본 발명이 이루고자 하는 기술적 과제는 안전한 양극 활물질을 사용하고 음극의 경우는 음극 활물질이 없는 집전체만으로 구성된 리튬 전지의 제조방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a method for manufacturing a lithium battery using a positive electrode active material and the negative electrode is composed of a current collector only without a negative electrode active material.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 제조방법을 채용하여 얻어지는 리튬전지를 제공하는 것이다.Another object of the present invention is to provide a lithium battery obtained by employing the above manufacturing method.

상기 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the above technical problem,

활물질 및 결합제를 포함하는 양극 도포용 물질을 양극 집전체에 도포하여 양극판을 제조하는 단계;Preparing a positive electrode plate by applying a positive electrode coating material including an active material and a binder to a positive electrode current collector;

결합제를 포함하는 음극 도포용 물질을 음극 집전체에 도포하여 음극판을 제조하는 단계로서 상기 결합제는 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물을 포함하는 단계;A process for preparing a negative electrode plate by applying a negative electrode coating material including a binder to a negative electrode current collector, wherein the binder is vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl meta Comprising acrylate, polytetrafluoroethylene and mixtures thereof;

상기 양극판과 음극판을 적층하여 전지셀을 형성하는 단계; 및Stacking the positive electrode plate and the negative electrode plate to form a battery cell; And

전지셀을 전지 케이스에 수납하고 고분자 전해질 형성용 조성물을 주입하는단계;Storing the battery cell in a battery case and injecting a composition for forming a polymer electrolyte;

를 포함하는 것을 특징으로 하는 리튬 전지의 제조방법을 제공한다.It provides a method for producing a lithium battery comprising a.

상기 제조방법에서, 상기 양극판과 음극판 사이에 절연성 수지로 된 세퍼레이타를 더 개재시킬 수 있다.In the above production method, a separator made of an insulating resin may be further interposed between the positive electrode plate and the negative electrode plate.

상기 제조방법에서 리튬 전지의 형상은 적층형인 것이 바람직하다.In the manufacturing method, the shape of the lithium battery is preferably laminated.

상기 제조방법에서 음극 집전체에 두께 5㎛ 이하의 전도성 물질을 더 도포하는 것이 바람직하다.In the above method, it is preferable to further apply a conductive material having a thickness of 5 μm or less to the negative electrode current collector.

상기 제조방법에서 양극 도포용 물질은 가소제를 더 포함할 수 있다.In the manufacturing method, the material for applying the positive electrode may further include a plasticizer.

상기 제조방법에서 양극 도포용 물질은 도전제를 더 포함할 수 있다.In the manufacturing method, the material for applying the positive electrode may further include a conductive agent.

상기 제조방법에서 음극 도포용 물질은 가소제를 더 포함할 수 있다.In the manufacturing method, the material for applying the negative electrode may further include a plasticizer.

상기 제조방법에서 음극 도포용 물질은 도전제를 더 포함할 수 있다.In the manufacturing method, the negative electrode coating material may further include a conductive agent.

상기 가소제는 디부틸프탈레이트가 바람직하다.The plasticizer is preferably dibutyl phthalate.

상기 도전제는 카본 블랙이 바람직하다.The conductive agent is preferably carbon black.

상기 제조방법에서 고분자 전해질 형성용 조성물을 주입 후 열처리 또는 자외선 조사처리를 더 수행할 수 있다.After the injection of the composition for forming a polymer electrolyte in the manufacturing method may be further performed heat treatment or ultraviolet irradiation treatment.

상기 제조방법에서 고분자 전해질 형성용 조성물은 고분자 수지, 중합개시제 및 전해액을 포함하는 것을 특징으로 한다.The composition for forming a polymer electrolyte in the production method is characterized in that it comprises a polymer resin, a polymerization initiator and an electrolyte solution.

상기 중합개시제는 탄소수 6 내지 40의 과산화물이 바람직하다.The polymerization initiator is preferably a peroxide having 6 to 40 carbon atoms.

상기 전해액은 유기용매 및 리튬염을 포함할 수 있다.The electrolyte may include an organic solvent and a lithium salt.

상기 본 발명의 다른 기술적 과제를 달성하기 위하여 본 발명은 상기 제조방법으로 제조된 리튬 전지를 제공한다.The present invention provides a lithium battery manufactured by the above manufacturing method in order to achieve another technical problem of the present invention.

일반적으로 리튬 전지는, 전극 활물질, 용매, 결합제, 가소제, 및 경우에 따라서는 도전제를 혼합한 활물질 조성물을 전극 집전체상에 도포 및 건조하여 극판을 제조한다. 이렇게 제조된 음극 극판과 양극 극판 사이에 세퍼레이터를 삽입하여 소정 형상의 전지셀을 형성하고, 이 전지셀을 케이스에 수납한 후, 전해액을 주입하고 밀봉하여 전지팩을 완성한다.In general, a lithium battery is coated with an electrode active material, a solvent, a binder, a plasticizer, and, optionally, a conductive material, on an electrode current collector to prepare an electrode plate. A separator is inserted between the negative electrode plate and the positive electrode plate thus manufactured to form a battery cell having a predetermined shape. The battery cell is stored in a case, and then the electrolyte is injected and sealed to complete the battery pack.

본 발명의 리튬 전지는 음극 활물질 없는 음극판 (집전체 또는 전처리된 집전체)과 통상 사용되는 리튬 전지의 양극 극판을 세파레이터를 사이에 두고 물리적으로 붙인 전지, 특히 양/음극이 평행하게 구성이 되는 적층형 전지를 특징으로 한다.In the lithium battery of the present invention, a battery in which a negative electrode plate (a current collector or a pretreated current collector) without a negative electrode active material and a positive electrode plate of a conventional lithium battery is physically pasted with a separator therebetween, in particular, a positive / negative electrode It is characterized by a stacked battery.

상기 본 발명의 리튬 전지는 전지의 제조시 반응성이 높은 리튬 금속을 직접 다루지 않아 안전성이 향상되며, 종래 음극 활물질을 사용하는 리튬 전지가 음극활물질의 제한된 용량 등으로 인하여 에너지 밀도가 저하되는 문제점을 해결할 수 있게 된다.The lithium battery of the present invention does not directly handle a highly reactive lithium metal when manufacturing the battery, the safety is improved, the lithium battery using a conventional negative electrode active material to solve the problem that the energy density is reduced due to the limited capacity of the negative electrode active material, etc. It becomes possible.

즉, 기존의 리튬이온전지가 에너지를 갖는 리튬이온을 음극 활물질 내에 저장을 시키는 방식과 달리 본 발명의 리튬 전지는 음극 활물질을 사용하지 않으면서 음극 집전체에 균일하게 리튬금속을 생성시켜 에너지를 저장하는 방식을 사용하고있다.That is, unlike the conventional lithium ion battery in which lithium ions having energy are stored in the negative electrode active material, the lithium battery of the present invention stores energy by uniformly generating lithium metal in the negative electrode current collector without using the negative electrode active material. Is using the way.

본 발명의 리튬 전지와 같이 양극/음극이 평행하게 구성되어 있는 경우 전지 조립후 화성 공정에서 균일한 리튬 금속이 음극 극판 상에 생성되며, 이는 수명 등 성능 유지에 필수적인 요소로서 작용을 하게 된다.In the case where the anode / cathode is configured in parallel as in the lithium battery of the present invention, a uniform lithium metal is formed on the cathode electrode plate in the chemical conversion process after battery assembly, which acts as an essential element for maintaining performance such as life.

종래 리튬금속이 갖는 문제점 중의 하나는 수지상(Dendrite) 형성으로 안전성에 문제를 일으켰지만, 본 발명의 리튬 전지는 수지상 형성을 억제하기 위한 방법중의 하나로 표면장력이 높은 전해액 시스템을 적용할 수 있다. 특히 고체 폴리머 전해질 또는 겔 폴리머 전해액 시스템을 적용할 수 있다.One of the problems of the conventional lithium metal has been a problem of safety due to dendrite formation, but the lithium battery of the present invention can be applied to an electrolyte system having a high surface tension as one of methods for suppressing dendritic formation. In particular, a solid polymer electrolyte or a gel polymer electrolyte system can be applied.

따라서 본 발명의 리튬 전지는 수지상 형성이 없고 치밀한 리튬금속 생성으로 안전성이 우수한 전지를 제조할 수 있으며, 한편 음극활물질을 사용하지 않고 무게당 에너지 밀도가 가장 높은 금속리튬을 생성시켜 사용하므로 높은 에너질 밀도를 갖는 전지를 제조할 수 있게 되며, 또한 음극 활물질을 사용할 필요가 없어 원가를 절감하고 공정을 단축할 수 있게 된다.Therefore, the lithium battery of the present invention can produce a battery having excellent safety by forming densely formed lithium metal without forming a dendritic metal, and on the other hand, it generates high energy density by using metal lithium having the highest energy density per weight without using a negative electrode active material. It is possible to manufacture a battery having a density, and also there is no need to use a negative electrode active material, thereby reducing the cost and shortening the process.

본 발명의 리튬 전지에 사용되는 음극 극판은 양극/음극이 세파레이터를 사이에 두고 물리적 또는 기계적으로 결합되므로, 음극 집전체에 두께 5㎛ 이내의 전도성 물질을 더 도포시킬 수 있으며, 또한 세파레이터와의 결착력 향상을 위하여 결합제를 도포할 수 있다.In the negative electrode plate used in the lithium battery of the present invention, since the positive electrode / negative electrode is physically or mechanically coupled with the separator interposed therebetween, a conductive material having a thickness of 5 μm or more can be applied to the negative electrode current collector. In order to improve the binding power of the binder can be applied.

본 발명에 따른 고분자 전해질 형성용 조성물은 고분자 수지, 중합개시제 및 전해액을 포함하며, 상기 고분자 수지로서는 특별히 한정되는 것은 아니며 전극판의 결합제로 사용되는 물질 모두 가능하다. 그 예로는 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 그 혼합물을 사용할 수 있다. 상기 중합개시제는 탄소수 6 내지 40의 유기 과산화물이 바람직하며, 상기 전해액은 리튬염과 유기용매로 이루어진다.The composition for forming a polymer electrolyte according to the present invention includes a polymer resin, a polymerization initiator, and an electrolyte solution, and the polymer resin is not particularly limited, and any material used as a binder of an electrode plate may be used. Examples thereof include vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate and mixtures thereof. The polymerization initiator is preferably an organic peroxide having 6 to 40 carbon atoms, and the electrolyte solution comprises a lithium salt and an organic solvent.

이어서, 상기 고분자 전해질 형성용 조성물을 전극에 함침 내지는 코팅시킨다. 경우에 따라서는 상기 결과물을 열처리 또는 UV 조사에 의해 중합반응을 실시한다. 여기에서 열처리온도는 사용되는 라디칼반응의 개시제의 반감기에 따라 차이가 있으나 40 내지 110℃가 적당하나 보다 바람직하게는 60 내지는 85℃가 적당하다. 만약 열중합의 온도가 너무 낮게 되면, 미반응 모노머가 많이 잔류하거나 반응시간이 길어지게 되어 제조공정의 비용이 발생하게 된다. 또한, 반응온도가 너무 높게 되면 리튬염이 분해량이 크게 증가하는 문제점이 발생된다.Subsequently, the composition for forming a polymer electrolyte is impregnated or coated on an electrode. In some cases, the resultant is subjected to a polymerization reaction by heat treatment or UV irradiation. Here, the heat treatment temperature is different depending on the half-life of the initiator of the radical reaction used, but 40 to 110 ℃ is suitable but more preferably 60 to 85 ℃. If the temperature of the thermal polymerization is too low, a large amount of unreacted monomer remains or the reaction time becomes long, resulting in the cost of the manufacturing process. In addition, when the reaction temperature is too high, there is a problem that the amount of decomposition of the lithium salt significantly increases.

상기 고분자 전해질 형성용 조성물에 있어서, 중합개시제의 함량은 고분자 수지 100 중량부를 기준으로 하여 0.3 내지 5 중량부인 것이 바람직하다. 만약 중합개시제의 함량이 0.3 중량부 미만인 경우에는 중합반응성이 저하되며, 5 중량부를 초과하는 경우에는 중합체의 분자량이 크게 성장되어 질 수 없기 때문에 고분자 전해질로서의 기계적 물성이 나빠지게 된다.In the polymer electrolyte formation composition, the content of the polymerization initiator is preferably 0.3 to 5 parts by weight based on 100 parts by weight of the polymer resin. If the content of the polymerization initiator is less than 0.3 parts by weight, the polymerization reactivity is lowered. If the content of the polymerization initiator is more than 5 parts by weight, the molecular weight of the polymer cannot be largely grown, resulting in poor mechanical properties as the polymer electrolyte.

상기 고분자 전해질에서 고분자 수지와 전해액과의 혼합중량비는 1:2 내지 1:35이다. 만약 전해액에 대하여 중합체의 함량이 상기 범위를 초과하는 경우에는 고분자 전해질의 이온의 전도성이 저하되고 상기 범위 미만인 경우에는 겔 형성이 되지 않아 바람직하지 못하다.The mixed weight ratio of the polymer resin and the electrolyte in the polymer electrolyte is 1: 2 to 1:35. If the content of the polymer with respect to the electrolyte exceeds the above range, the conductivity of the ions of the polymer electrolyte is lowered, if it is less than the above range is not preferable because the gel is not formed.

또한, 본 발명의 고분자 전해질 형성용 조성물을 구성하는 전해액은 리튬염과 유기용매로 구성되는데, 이 때 유기용매로는 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트, 벤조니트릴, 아세토니트릴, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, γ-부틸로락톤, 디옥솔란, 4-메틸디옥솔란, N,N-디메틸포름아미드, 디메틸아세트아미도, 디메틸설폭사이드, 디옥시산, 1, 2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸부틸카보네이트, 디프로필카보네이트, 디이소프로필카보네이트, 디부틸카보네이트, 디에틸렌글리콜, 디메틸에테르 등의 비수계 용매, 또는 이들 용매중의 2종 이상을 혼합한 혼합 용매를 예시할 수 있고, 특히 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트 중 어느 하나를 반드시 포함함과 동시에 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 중 어느 하나를 반드시 포함하는 것이 바람직하다. 그리고 리튬염과 유기용매로 구성된 전해액의 농도는 0.6 내지 1.5M인 것이 바람직하다.In addition, the electrolyte constituting the composition for forming a polymer electrolyte of the present invention is composed of a lithium salt and an organic solvent, wherein the organic solvent is propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butylolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamido, dimethyl sulfoxide, dioxy acid, 1, 2-dimethoxyethane , Sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, Non-aqueous solvents, such as diethylene glycol and dimethyl ether, or the mixed solvent which mixed 2 or more types in these solvents To when and, in particular, propylene carbonate, ethylene carbonate, butylene is any of the preferable be contained, and at the same time to be included in the dimethyl carbonate, which is one of the methyl ethyl carbonate, diethyl carbonate of the carbonate. And it is preferable that the density | concentration of the electrolyte solution which consists of a lithium salt and an organic solvent is 0.6-1.5M.

본 발명에서는 상기 유기용매로서 불소화된 방향족 탄화수소 화합물을 더 포함할 수 있다. 이와 같이 불소화된 방향족 탄화수소 화합물을 더 포함하는 경우 저온 특성이 개선된다는 장점이 있다. 이 불소화된 방향족 탄화수소 화합물의 함량은 에틸렌 카보네이트와 불소화된 방향족 탄화수소 화합물간의 혼합중량비가 99:1 내지 70:30인 것이 바람직하다. 이 때 상기 불소화된 방향족 탄화수소 화합물은 2-플루오로톨루엔, 3-플루오로톨루엔, 4-플루오로톨루엔, 2-플루오로벤젠, 3-플루오로벤젠 및 4-플루오로벤젠으로 이루어진 군으로부터 선택된 하나 이상이다. 그리고 불소화된 방향족 탄화수소 화합물이 상기 범위를 초과하는 경우에는 리튬염의 용해도가 저하되고, 상기 범위 미만인 경우에는 저온 개선 효과가 미미하므로 바람직하지 못하다.In the present invention, the organic solvent may further include a fluorinated aromatic hydrocarbon compound. When the fluorinated aromatic hydrocarbon compound is further included, there is an advantage that the low temperature property is improved. The content of this fluorinated aromatic hydrocarbon compound is preferably a mixing weight ratio of ethylene carbonate and fluorinated aromatic hydrocarbon compound of 99: 1 to 70:30. In this case, the fluorinated aromatic hydrocarbon compound is one selected from the group consisting of 2-fluorotoluene, 3-fluorotoluene, 4-fluorotoluene, 2-fluorobenzene, 3-fluorobenzene, and 4-fluorobenzene That's it. When the fluorinated aromatic hydrocarbon compound exceeds the above range, the solubility of the lithium salt is lowered, and when the fluorinated aromatic hydrocarbon compound is below the above range, the low temperature improvement effect is insignificant, which is not preferable.

상술한 고분자 전해질을 이용하여 본 발명의 리튬 전지를 제조하는 방법을 살펴보면 다음과 같다.Looking at the method for producing a lithium battery of the present invention using the above-described polymer electrolyte is as follows.

본 발명의 리튬 전지는 고분자 전해질을 하기 방법에 따라 제조할 수 있다.The lithium battery of the present invention can be produced according to the following method of the polymer electrolyte.

먼저 상기 고분자 수지, 중합개시제 및 전해액을 혼합하여 고분자 전해질 형성용 조성물을 얻는다.First, the polymer resin, a polymerization initiator, and an electrolyte are mixed to obtain a composition for forming a polymer electrolyte.

이와 별도로, 리튬 전지 제조시 사용되는 통상적인 방법에 따라 양극판을 제조한다. 이와 같은 양극판은 용매에 용해시킨 활물질 및 결합제를 포함하며, 가소제 또는 도전제를 더 포함할 수 있는 양극 도포용 물질을 알루미늄 호일에 캐스팅하고 건조하여 얻어진다. 이 때 캐소드 활물질로는 리튬 금속 복합 산화물, 전이금속 화합물, 설퍼 화합물 등을 사용한다.Separately, a positive electrode plate is manufactured according to a conventional method used in manufacturing a lithium battery. Such a positive electrode plate includes an active material and a binder dissolved in a solvent, and is obtained by casting and drying an anode coating material on aluminum foil, which may further include a plasticizer or a conductive agent. In this case, a lithium metal composite oxide, a transition metal compound, a sulfur compound, or the like is used as the cathode active material.

또한 본 발명에 따르는 음극판을 제조할 수 있으며, 음극판은 결합제를 포함하며, 가소제 또는 도전제를 더 포함할 수 있는 음극 도포용 물질을 구리 호일에 캐시팅하고 건조하여 얻어지며, 이 경우 음극활물질은 사용하지 않는다.In addition, a negative electrode plate according to the present invention may be prepared, and the negative electrode plate may include a binder, and may be obtained by casting and drying a negative electrode coating material which may further include a plasticizer or a conductive agent in a copper foil and dried, in which case the negative electrode active material is Do not use.

그 후 상기 양극판과 음극판 사이에 망목구조를 갖는 절연성 수지로 된 세퍼레이타를 필요시 삽입하고, 이를 적층하여 전극구조체를 형성한 다음, 이를 전지 케이스에 넣어 전지를 조립한다.Then, when necessary, a separator made of an insulating resin having a network structure is inserted between the positive electrode plate and the negative electrode plate, and stacked to form an electrode structure, and then put into a battery case to assemble a battery.

이후 전극 구조체가 수납된 전지 케이스 내에, 상기 고분자 전해질 형성용 조성물을 주입한 다음, 선택적으로 열처리 또는 자외선 조사 처리하여 전지내 중합반응을 실시함으로써 본 발명의 리튬 전지가 완성된다.Then, the lithium battery of the present invention is completed by injecting the composition for forming the polymer electrolyte into the battery case in which the electrode structure is stored, and then performing an in-polymerization reaction by selectively heat treatment or ultraviolet irradiation.

상기 절연성 수지로 된 세퍼레이타의 구체적인 예로는, 폴리에틸렌 세퍼레이타, 폴리프로필렌 세퍼레이타, 폴리에틸렌/폴리프로필렌 2층 세퍼레이타, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이타 또는 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이타를 사용한다.Specific examples of the separator made of the insulating resin include polyethylene separator, polypropylene separator, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator or polypropylene / polyethylene Use a polypropylene three-layer separator.

상기 제조방법에 있어서, 열처리온도는 40 내지 110℃, 특히 60 내지 85℃ 에서 실시하여 겔 형태의 고분자 전해질이 형성된다. 상기 고분자 전해질의 두께 5 내지 90㎛인 것이 바람직하며, 이 범위일 때 고분자 전해질의 이온 전도도 등의 특성이 우수하다.In the above production method, the heat treatment temperature is carried out at 40 to 110 ℃, especially 60 to 85 ℃ to form a gel polymer electrolyte. It is preferable that the thickness of the polymer electrolyte is 5 to 90 μm, and in this range, it is excellent in characteristics such as ionic conductivity of the polymer electrolyte.

상술한 방법에 따라 제조된 본 발명의 리튬 전지는 리튬 1차 전지 및 리튬 2차 전지 모두가 가능하다.The lithium battery of the present invention prepared according to the method described above may be both a lithium primary battery and a lithium secondary battery.

이하, 본 발명을 하기 실시예를 들어 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the following examples, but the present invention is not limited only to the following examples.

<실시예 1><Example 1>

1.3mol/L의 LiPF6가 용해된 EC와 DEC의 혼합용매(중량비는 3:7임) 30g에 폴리비닐리덴플루오라이드 1g과 라우릴 퍼옥사이드 10mg을 부가하여 고분자 전해질 형성용 조성물을 얻었다.1 g of polyvinylidene fluoride and 10 mg of lauryl peroxide were added to 30 g of a mixed solvent of 1.3 mol / L of LiPF 6 in which EC and DEC were dissolved (weight ratio is 3: 7), thereby obtaining a composition for forming a polymer electrolyte.

N-메틸피롤리돈(NMP) 50g에 폴리비닐리덴플루오라이드 3g과 C-10(일본 화학사) 94 중량부와 슈퍼피 3 중량부를 혼합하여 슬러리를 제조한 다음, 이 슬러리를 알루미늄 기재상에 150㎛ 두께로 코팅하여 캐소드를 제조하였다.A slurry was prepared by mixing 3 g of polyvinylidene fluoride, 94 parts by weight of C-10 (Japan Chemical Co., Ltd.), and 3 parts by weight of superpey to 50 g of N-methylpyrrolidone (NMP). The cathode was prepared by coating to a μm thickness.

메조카본파이버(Petoca사) 9g을 N-메틸피롤리돈 10ml에 용해하고, 이를 구리 기재상에 170㎛ 두께로 코팅하여 애노드를 제조하였다.An anode was prepared by dissolving 9 g of mesocarbon fiber (Petoca Co., Ltd.) in 10 ml of N-methylpyrrolidone and coating it on a copper substrate to a thickness of 170 μm.

상기 캐소드와 애노드 사이에 폴리에틸렌 세퍼레이타를 삽입시키고 이를 적층하여 전지 케이스내에 수납하였다. 이어서, 상기 전지 케이스내에 상술한 고분자 전해질 형성용 조성물을 적정량 주입하고 이를 약 70℃의 온도에서 약 2시간동안 가열하여 전지내 열중합을 실시함으로써 리튬 2차 전지를 완성하였다.A polyethylene separator was inserted between the cathode and the anode and stacked and stored in the battery case. Subsequently, a suitable amount of the above-described composition for forming a polymer electrolyte was injected into the battery case, and the resultant was heated at a temperature of about 70 ° C. for about 2 hours to perform thermal polymerization in the battery to complete a lithium secondary battery.

<비교예 1>Comparative Example 1

1.3mol/L의 LiPF6가 용해된 EC와 DEC의 혼합용매(중량비는 3:7임) 30g에 폴리비닐리덴플루오라이드 1g과 라우릴 퍼옥사이드 10mg을 부가하여 고분자 전해질 형성용 조성물을 얻었다.1 g of polyvinylidene fluoride and 10 mg of lauryl peroxide were added to 30 g of a mixed solvent of 1.3 mol / L of LiPF 6 in which EC and DEC were dissolved (weight ratio is 3: 7), thereby obtaining a composition for forming a polymer electrolyte.

N-메틸피롤리돈(NMP) 50g에 폴리비닐리덴플루오라이드 3g과 C-10(일본 화학사) 94 중량부와 슈퍼피 3 중량부를 혼합하여 슬러리를 제조한 다음, 이 슬러리를 알루미늄 기재상에 150㎛ 두께로 코팅하여 캐소드를 제조하였다.A slurry was prepared by mixing 3 g of polyvinylidene fluoride, 94 parts by weight of C-10 (Japan Chemical Co., Ltd.), and 3 parts by weight of superpey to 50 g of N-methylpyrrolidone (NMP). The cathode was prepared by coating to a μm thickness.

메조카본파이버(Petoca사) 9g과 폴리비닐리덴플루오라이드 1g을 N-메틸피롤리돈 10ml에 용해하고, 이를 구리 기재상에 170㎛ 두께로 코팅하여 애노드를 제조하였다.An anode was prepared by dissolving 9 g of mesocarbon fiber (Petoca) and 1 g of polyvinylidene fluoride in 10 ml of N-methylpyrrolidone, which was coated on a copper substrate to a thickness of 170 μm.

상기 캐소드와 애노드 사이에 폴리에틸렌 세퍼레이타를 삽입시키고 이를 적층하여 전지 케이스내에 수납하였다. 이어서, 상기 전지 케이스내에 상술한 고분자전해질 형성용 조성물을 적정량 주입하고 이를 약 70℃의 온도에서 약 2시간동안 가열하여 전지내 열중합을 실시함으로써 리튬 2차 전지를 완성하였다.A polyethylene separator was inserted between the cathode and the anode and stacked and stored in the battery case. Subsequently, an appropriate amount of the above-described composition for forming a polymer electrolyte was injected into the battery case, and the resultant was heated at a temperature of about 70 ° C. for about 2 hours to perform thermal polymerization in the battery to complete a lithium secondary battery.

상기 실시예 1 및 비교예 1에 따라 제조된 리튬 2차 전지에 있어서, 본 발명에서 제안한 음극활물질을 사용하지 않은 실시예 1의 경우 무게당 에너지 밀도가 향상되고 제조비용적인 측면에서 경제성이 개선된 리튬 전지를 제공할 수 있게 된다.In the lithium secondary battery prepared according to Example 1 and Comparative Example 1, in the case of Example 1 not using the negative electrode active material proposed in the present invention the energy density per weight is improved and the economical efficiency in terms of manufacturing cost It is possible to provide a lithium battery.

Claims (16)

활물질 및 결합제를 포함하는 양극 도포용 물질을 양극 집전체에 도포하여 양극판을 제조하는 단계;Preparing a positive electrode plate by applying a positive electrode coating material including an active material and a binder to a positive electrode current collector; 결합제를 포함하는 음극 도포용 물질을 음극 집전체에 도포하여 음극판을 제조하는 단계로서, 상기 결합제가 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 또는 그 혼합물을 포함하는 단계;The negative electrode coating material comprising a binder is applied to a negative electrode current collector to prepare a negative electrode plate, wherein the binder is vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl Methacrylate, polytetrafluoroethylene or mixtures thereof; 상기 양극판과 음극판을 적층하여 전지셀을 형성하는 단계; 및Stacking the positive electrode plate and the negative electrode plate to form a battery cell; And 전지셀을 전지 케이스에 수납하고 고분자 전해질 형성용 조성물을 주입하는 단계;Storing the battery cell in a battery case and injecting a composition for forming a polymer electrolyte; 를 포함하는 것을 특징으로 하는 리튬 전지의 제조방법.Method for producing a lithium battery comprising a. 제1항에 있어서, 상기 양극판과 음극판 사이에 절연성 수지로 된 세퍼레이타를 더 개재시키는 것을 특징으로 하는 리튬 전지의 제조방법.The method of manufacturing a lithium battery according to claim 1, further comprising a separator made of an insulating resin interposed between the positive electrode plate and the negative electrode plate. 제1항에 있어서, 상기 리튬 전지의 형상이 적층형인 것을 특징으로 하는 제조방법.The manufacturing method according to claim 1, wherein the lithium battery has a laminated shape. 제1항에 있어서, 상기 음극 집전체에 두께 5㎛ 이하의 전도성 물질을 더 도포하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein a conductive material having a thickness of 5 μm or less is further applied to the negative electrode current collector. 제1항에 있어서, 상기 양극 도포용 물질이 가소제를 더 포함하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the cathode coating material further comprises a plasticizer. 제1항에 있어서, 상기 양극 도포용 물질이 도전제를 더 포함하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the anode coating material further comprises a conductive agent. 제1항에 있어서, 상기 음극 도포용 물질이 가소제를 더 포함하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the negative electrode coating material further comprises a plasticizer. 제1항에 있어서, 상기 음극 도포용 물질이 도전제를 더 포함하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the negative electrode coating material further comprises a conductive agent. 제5항 또는 제7항에 있어서, 상기 가소제가 디부틸프탈레이트인 것을 특징으로 하는 제조방법.The production method according to claim 5 or 7, wherein the plasticizer is dibutyl phthalate. 제6항 또는 제8항에 있어서, 상기 도전제가 카본 블랙인 것을 특징으로 하는 제조방법.The manufacturing method according to claim 6 or 8, wherein the conductive agent is carbon black. 제1항에 있어서, 상기 고분자 전해질 형성용 조성물을 주입 후 열처리 또는 자외선 조사처리를 더 실시하는 것을 특징으로 하는 제조방법.The method according to claim 1, further comprising heat treatment or ultraviolet irradiation after the injection of the composition for forming the polymer electrolyte. 삭제delete 제1항에 있어서, 상기 고분자 전해질 형성용 조성물은 고분자 수지, 중합개시제 및 전해액을 포함하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the composition for forming a polymer electrolyte comprises a polymer resin, a polymerization initiator, and an electrolyte solution. 제13항에 있어서, 중합개시제는 탄소수 6 내지 40의 과산화물인 것을 특징으로 하는 제조방법.The method of claim 13, wherein the polymerization initiator is a peroxide having 6 to 40 carbon atoms. 제13항에 있어서, 상기 전해액이 유기용매 및 리튬염을 포함하는 것을 특징으로 하는 제조방법.The production method according to claim 13, wherein the electrolyte solution contains an organic solvent and a lithium salt. 제1항 내지 제15항 중 어느 한 항의 방법으로 제조된 것을 특징으로 하는 리튬 전지.A lithium battery produced by the method of any one of claims 1 to 15.
KR10-2002-0032852A 2002-06-12 2002-06-12 Lithium battery without anode active material and process for preparing the same KR100462781B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0032852A KR100462781B1 (en) 2002-06-12 2002-06-12 Lithium battery without anode active material and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0032852A KR100462781B1 (en) 2002-06-12 2002-06-12 Lithium battery without anode active material and process for preparing the same

Publications (2)

Publication Number Publication Date
KR20030095578A KR20030095578A (en) 2003-12-24
KR100462781B1 true KR100462781B1 (en) 2004-12-20

Family

ID=32386788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0032852A KR100462781B1 (en) 2002-06-12 2002-06-12 Lithium battery without anode active material and process for preparing the same

Country Status (1)

Country Link
KR (1) KR100462781B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004229A1 (en) * 2016-07-01 2018-01-04 이창규 Electrochemical energy device having high energy density and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268176B1 (en) 2017-08-28 2021-06-22 주식회사 엘지에너지솔루션 Lithium Secondary Battery
KR102566406B1 (en) 2018-01-05 2023-08-14 삼성전자주식회사 Anodeless lithium metal battery and preparing method thereof
KR102568793B1 (en) 2018-01-05 2023-08-22 삼성전자주식회사 Anodeless lithium metal battery and preparing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136476A (en) * 1986-11-28 1988-06-08 Hitachi Ltd Manufacture of conductive polymer battery
US5576119A (en) * 1994-06-01 1996-11-19 Tadiran Ltd. Rechargeable electrochemical alkali-metal cells
KR19990025888A (en) * 1997-09-19 1999-04-06 손욱 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
JP2000228185A (en) * 1999-02-08 2000-08-15 Toyota Motor Corp Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136476A (en) * 1986-11-28 1988-06-08 Hitachi Ltd Manufacture of conductive polymer battery
US5576119A (en) * 1994-06-01 1996-11-19 Tadiran Ltd. Rechargeable electrochemical alkali-metal cells
KR19990025888A (en) * 1997-09-19 1999-04-06 손욱 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
JP2000228185A (en) * 1999-02-08 2000-08-15 Toyota Motor Corp Lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004229A1 (en) * 2016-07-01 2018-01-04 이창규 Electrochemical energy device having high energy density and method for manufacturing same

Also Published As

Publication number Publication date
KR20030095578A (en) 2003-12-24

Similar Documents

Publication Publication Date Title
US7883554B2 (en) Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
JP5148477B2 (en) Electrode improved in safety by introduction of cross-linked polymer, and electrochemical element including the same
KR100399788B1 (en) Polymeric sol electrolyte and lithium battery employing the same
US8993174B2 (en) Electrode assembly having novel structure and secondary battery using the same
KR100357959B1 (en) Lithium secondary battery
US7387852B2 (en) Polymer electrolyte and lithium battery using the same
EP2149172A1 (en) Secondary battery and manufacturing method of the same
JP2002289255A (en) Polymer electrolyte and lithium secondary battery containing the same
KR102367371B1 (en) Anode and Lithium Secondary Battery Comprising the Same
JP2009070606A (en) Lithium polymer battery
KR100462781B1 (en) Lithium battery without anode active material and process for preparing the same
JP7442660B2 (en) Method for producing a gel polymer electrolyte secondary battery, and a gel polymer electrolyte secondary battery produced thereby
KR101013534B1 (en) Graft mesoporous separator with anion recepting compounds, a method for preparation thereof and lithium secondary batteries using the same
CN113193235A (en) Self-repairing polymer electrolyte membrane, preparation method thereof and battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JP2005235683A (en) Gel polymer electrolyte and lithium secondary battery
KR100395817B1 (en) Lithium battery having improved high-temperature resistance
KR100408514B1 (en) Polymer solid electrolyte and lithium secondary battery employing the same
JP4054925B2 (en) Lithium battery
KR101323153B1 (en) Electrode Assembly Having Novel Structure and Secondary Battery Using the Same
KR20030058407A (en) Lithium polymer battery containing seperator chemically bonded to polymer electrolyte and manufacturing method thereof
KR100424261B1 (en) Lithium secondary battery having improved high-rate and low-temperature characteristics and manufacturing method thereof
KR100467695B1 (en) Electrolyte matrix composition comprising activator for polymerizing monomer based on acrylate having multifunctionality and lithium battery employing the same
CN117673458A (en) In-situ preparation method of solid-state lithium battery with reaction selectivity and all-solid-state battery
KR100393043B1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121123

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee