KR100461913B1 - 하수 및 폐수 처리 방법 - Google Patents

하수 및 폐수 처리 방법 Download PDF

Info

Publication number
KR100461913B1
KR100461913B1 KR10-2003-0013632A KR20030013632A KR100461913B1 KR 100461913 B1 KR100461913 B1 KR 100461913B1 KR 20030013632 A KR20030013632 A KR 20030013632A KR 100461913 B1 KR100461913 B1 KR 100461913B1
Authority
KR
South Korea
Prior art keywords
wastewater
sewage
chemical
treatment
colloidal particles
Prior art date
Application number
KR10-2003-0013632A
Other languages
English (en)
Other versions
KR20040078776A (ko
Inventor
김상용
김탁현
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR10-2003-0013632A priority Critical patent/KR100461913B1/ko
Publication of KR20040078776A publication Critical patent/KR20040078776A/ko
Application granted granted Critical
Publication of KR100461913B1 publication Critical patent/KR100461913B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

본 발명은 하수는 물론 고농도의 유기성 산업폐수, 침출수 및 농축산폐수의 처리 등에 활용될 수 있는 하수 및 폐수 처리 방법에 관한 것이다.
특히, 염소계 화학 응집과 전기분해 반응을 결합한 고도 수처리 방법으로서, 염소 이온을 함유하는 화학 응집제를 이용한 응집단계와 전기화학적인 산화처리단계를 수처리 공정에 순차적으로 부여함으로써, 수처리 효율은 향상시키고 전해질 용액 등 화학 약품비는 경감시킨 하수 및 폐수 처리 방법에 관한 것이다.
본 발명은 하수 또는 폐수에 포함된 콜로이드의 하전을 중화시키고, 상기 콜로이드 입자를 상호결합시키기 위한 화학 응집제를 투여하여 혼화하는 혼화단계; 상기 혼화단계 후 교반기를 이용하여 콜로이드 입자간의 충돌을 촉진시킴으로써 콜로이드 입자를 응집시키는 응집단계; 상기 응집단계 후, 하수 또는 폐수에 포함된 응집 상태의 콜로이드 입자를 침전시키기 위한 침전단계; 상기 침전단계 후의 침전조 상등액을 전기화학적으로 산화처리하는 산화처리단계; 로 이행되는 것을 특징으로 한다.

Description

하수 및 폐수 처리 방법{A method for treatment of sewage and wastewater}
본 발명은 하수는 물론 고농도의 유기성 산업폐수, 침출수 및 농축산폐수의 처리 등에 활용될 수 있는 하수 및 폐수 처리 방법에 관한 것이다.
특히, 염소계 화학 응집과 전기분해 반응을 결합한 고도 수처리 방법으로서, 염소 이온을 함유하는 화학 응집제를 이용한 응집단계와 전기화학적인 산화처리단계를 수처리 공정에 순차적으로 부여함으로써, 수처리 효율은 향상시키고 전해질 용액 등 화학 약품비는 경감시킨 하수 및 폐수 처리 방법에 관한 것이다.
하수 및 폐수 처리단계에서 이용되는 화학 응집은 부유물질(Suspended Solids) 혹은 콜로이드(Colloid)성 물질을 제거 하는데 수십년 동안 사용되어 왔고 용해성 금속물질과 유기물을 침전시키는데 효과적이다. 화학 응집 처리는 수중의 오염 물질을 불용성 또는 부유성 입자의 물리적 상태를 바꾸어 중력 침전에 의해 제거하기 위하여 화학약품을 사용한다.
상기와 같은 화학적 응집을 위한 화학응집제로는 결합되는 금속성분에 따라 크게 황산알루미늄(Alum), 황산제1철, 황산제2철 등의 알루미늄염계 화학 응집제, 염화 제2철 등의 철염계 화학응집제, 그리고 PAC(Poly Aluminium Chloride),PASS(Poly Aluminium Silicate Sulfate), PACS(Poly Aluminium Chloride Silicate) 등의 고분자 응집제 등이 널리 사용된다.
전기화학(Electrochemistry)적인 산화는 전기분해(Electrolysis) 결과 생성되는 반응성이 큰 라디칼(Radical) 및 산화제에 의한 산화반응을 말하는데, 전기분해 과정중 생성되는 OHㆍ, Oㆍ, HOCl 등은 산화력이 크고 빠르게 반응하여 유기물을 직접적으로 산화시키거나, Cl2, ClO2, O3, H2O2, O2등의 다른 산화제로 분해되게 된다.
전기분해 과정중 양극에서의 산화반응에 의해 유기물, 알칼리도, 색도, COD(Chemical Oxygen Demand) 등을 처리하고 음극에서의 환원반응에 의해 산도, 중금속 등을 처리하기 때문에 유해 물질이 양극 및 음극에서 동시에 처리된다.
또한, 충분히 많은 고에너지를 가하면 반응 후 생성되는 물질은 주성분이 SOx, NOx, COx등과 H2O 그리고 저분자 물질로 완전히 산화분해될 수 있으므로 슬러지(Sludge)가 전혀 생성되지 않거나 극미량이 생성되기 때문에 부가적인 2차 처리가 요구되지 않는 장점이 있다.
전기분해방법에 의한 폐수처리는 기존의 방법들에 비해 싼 비용이 들며, 그 장점으로는 처리전에 pH(수소이온농도)를 조정할 필요가 없으며, 많은 양의 화학약품을 투입할 필요도 없고, 수처리 후에는 기존처리방법에서 문제가 되는 슬러지의 양도 현저히 줄일수 있으며 또한, 색도의 제거는 전기화학적 방법만으로도 높은 제거율을 얻을수 있는 장점이 있다.
또한, 전기분해방법에 의한 수처리시 이용되는 화학약품의 소비가 화학적 침전법에 비하여 극미하고, 폐수처리시의 조건과 반응 온도 등의 조건은 전압 전류에 따라 조정하기 쉽고 운전이 용이한 장점이 있다.
그러나, 전기화학적 산화반응은 크게 직접산화반응과 간접산화반응으로 나누어 이루어지는데, 직접산화반응은 주로 양극의 활성 및 전류밀도에 의해 좌우되지만 간접산화반응에 의한 전기분해 반응은 전극반응에 의해 생성되는 이차적인 산화제들의 영향을 받게되는 문제가 있다.
따라서, 일반적으로는 전기화학반응시 전류의 흐름을 원활하게 하기 위하여 인위적으로 전해질 용액을 첨가시켜주는데, 일반적으로는 NaCl(염화나트륨) 이나 KCl(염화칼륨) 등이 가장 널리 사용된다.
직접산화에 의한 전기분해시에는 O2, OHㆍ 등의 산화제 물질이 생성되며, 간접산화시에는 이외에도 Cl2, HOCl, OCl-등도 생성된다. 전기화학적 산화시 직접산화반응만에 의한 전기분해되는 정도는 그다지 많지 않으며, 주로 간접산화에 의해 생생되는 산화제가 함께 기여하는 정도가 높다.
참고로, 간접산화시에 발생되는 산화제 중 수산화 라디칼(OHㆍ)의 산화력은 오존(O3) 산화력의 1.4배이며, 염소(Cl2)는 오존의 약 66% 수준의 산화력을 발휘한다.
염소는 산화력이 강하고, 살균력이 있어 정수처리시에는 전처리 후에 최종적으로 수도관으로 급수하기 이전에 잔류 유기물질이나 세균의 번식을 막기 위하여염소살균을 하기도 한다.
종래기술에 따른 하수 및 폐수의 전기화학적 산화반응시 전류흐름을 향상시키고, 간접산화반응에 참여하게 되는 산화제를 생성해내고자 인위적인 전해질용액을 첨가해 준다.
일반적으로 첨가되는 전해질용액은 염소이온을 함유하면서, 저렴하고 주변에 흔한 염화나트륨(NaCl) 용액을 전해질 용액으로 사용하게 된다.
그러나, 전기화학적 산화반응에서는 처리대상 하수나 폐수중에 부유물질(Suspended Solids)이나 콜로이드(Colloid)성 물질이 공존하는 경우, 부유물질이나 콜로이드성 물질이 전기분해시 전류의 흐름을 방해할 뿐만 아니라, 전극 표면에 달라붙어 스케일(Scale)을 형성하는 문제를 야기시켜 수처리 효율을 저감시키는 단점이 있었다.
따라서, 이를 위하여 필수적으로 전기화학적인 산화반응 이전단계에서 이들 부유물질이나 콜로이드성 물질의 사전적인 처리가 수행되어야 하는 문제가 있었다.
본 발명은 상기와 같은 종래 기술의 단점을 극복하고자 창안된 것으로서, 전기화학적 산화 반응시에 필요한 염소 이온을 함유하는 전해질 용액의 첨가를 배제하고, 전체 수처리 효율은 증가시킬수 있는 하수 및 폐수 처리 방법을 제공함에 그 목적이 있다.
상기와 같은 목적을 달성하기 위해 본 발명은 하수 또는 폐수에 포함된 콜로이드의 하전을 중화시키고, 상기 콜로이드 입자를 상호결합시키기 위한 화학 응집제를 투여하여 혼화하는 혼화단계; 상기 혼화단계 후 교반기를 이용하여 콜로이드 입자간의 충돌을 촉진시킴으로써 콜로이드 입자를 응집시키는 응집단계; 상기 응집단계 후, 하수 또는 폐수에 포함된 응집 상태의 콜로이드 입자를 침전시키기 위한 침전단계; 상기 침전단계 후의 침전조 상등액을 전기화학적으로 산화처리하는 산화처리단계; 로 이행되는 것을 특징으로 하는 하수 및 폐수 처리 방법을 제공한다.
상기 화학 응집제는 염소계 화학 응집제인 것을 특징으로 한다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명의 기술적 사상은 전기화학적 산화 처리를 이용하여 하수 및 폐수를 처리함에 있어서, 염소이온을 함유하는 전해질의 첨가를 배제하고, 수처리 효율을 높일수 있도록 화학응집반응과 전기분해반응을 결합한 하수 및 폐수 처리 방법에 있다.
상기와 같은 기술적 사상을 구현하기 위한 본 발명에 따른 하수 및 폐수 처리 방법은, 처리 대상수에 화학 응집제를 투여하여 혼화하는 혼화단계, 상기 혼화단계 후의 하수 및 폐수에 포함된 콜로이드 입자를 응집시키는 응집단계, 상기 응집단계 후의 하수 또는 폐수에 포함된 응집 콜로이드 입자를 침전조에서 침전시키는 침전단계, 상기 침전단계 후의 침전조 상등액을 산화처리하는 산화처리 단계로 이행된다.
이하, 본 발명의 하수 및 폐수 처리 방법을 구성하는 각 단계별 공정을 보다 상세히 설명한다.
혼화단계
혼화단계란 급속교반이라고도 하며, 처리 대상수에 투입한 화학 응집제를 완전혼화시키기 위한 단계로서, 콜로이드 입자상에 다가의 알루미늄 수화물이 흡착하여 하전중화(Charge Neutralization)를 일으키거나(i), 수산화물이 침전물을 형성하면서 콜로이드 입자를 그 사이에 두고 침전물을 형성하는 면상 침전물(Floc) 형성의 과정(ii)에 의해 응집이 일어나는 단계이다.
참고로, 상기 (i), (ii)의 두가지 반응은 서로 경쟁적으로 일어나므로 하전중화를 위해서는 화학 응집제를 가능한한 빨리 골고루 처리 대상수에 첨가하여 수백분의 1초 사이에 만들어지는 수화물이 콜로이드에 흡착되어 중화시키도록 하는 것이 필요하다.
이와는 반대로 면상 침전물 형성에서는 수산화물의 형성이 1~7 초 사이에 일어나므로 고강도의 짧은 시간 내의 교반이 하전중화에서 처럼 결정적으로 필요하지 않기 때문에 혼화시에는 강력한 교반이 짧은 시간내에 이루어져야 한다.
응집단계
응집단계는 완속교반이라고도 하며, 본 발명에 의한 응집단계의 근본 목적은 입자간의 충돌을 촉진시킴으로써, 면상 침전물(Floc) 형성을 돕는 단계이다.
참고로, 입자간의 충돌은 브라운 운동(Brownian movement), 유체 운동입자간의 침강속도의 차이에 의해 일어나며, 입자간 접촉빈도와 그에 따른 입자의 성장은 물의 성분(수온, 점도, 밀도 등), 입자의 성분(입자농도, 크기, 밀도 등)과 교반설비의 특성(체류시간, 흐름의 형태, 교반강도) 등에 의해 영향을 받는다.
직경 1㎛ 이하인 두 입자간의 충돌은 기본적으로 브라운 운동에 의해 일어나며, 크기가 서로다른 입자들 사이의 충돌은 특히 밀도가 다른 경우 침강속도의 차이에 의해 일어난다.
이러한 두 과정에 의한 충돌은 교반강도에 의해 직접적으로 영향을 받지 않으며 이 경우의 교반은 단지 충돌이 일어날수 있도록 입자들을 현탁시켜 주는 역할만 한다.
유체운동에 의한 충돌은 입자크기와는 상관없이 모든 입자에 작용하며 브라운 운동이나 침강속도 차이에 의한 영향은 받지 않고 입자의 크기 성분(크기, 밀도 등) 영역에서 지배적으로 작용한다.
본 발명의 응집단계는 상기와 같은 기본 이론이 적용되며, 처리 대상 하수 또는 폐수의 오염부하에 따라, 교반흐름 및 교반강도를 적절히 제어할 수 있음은 당업자에게 있어 자명할 것이다.
침전단계
본 발명에 따른 침전단계는 상기 혼화단계와 응집단계를 거친 후의 하수 및 폐수를 일시 침전시키는 단계이다. 즉, 하수 또는 폐수에 포함된 응집 콜로이드 입자를 침전조에서 침전시키는 단계이다.
본 발명에서는 염소계 화학 응집제를 투여함으로 인해 화학 응집제를 이용한 처리 상등수 중에는 염소이온이 포함되어 있다.
따라서, 침전단계 후에 진행되는 산화처리단계에서는 전해질 용액의 첨가없이 바로 전류를 흘려주어 산화처리단계를 진행할 수 있다.
산화처리단계
본 단계는 상기 침전단계에서 응집침전이 일어나고, 상등수중에 잔류하게 되는 염소이온(Cl-)에 의해 인위적인 전해질 용액의 첨가없이 바로 처리 대상수에 전류를 흘려주어 전기화학(Electrochemistry)적으로 산화처리를 하는 단계이다.
본 발명에 따른 하수 및 폐수 처리 방법은 상기에 언급한 혼화단계, 응집단계, 침전단계, 산화처리단계를 순차적으로 이행하며 진행된다.
또한, 종래기술과 비교해 부각되어야 할 점은 전기화학적인 산화처리 전에 염소를 함유하는 화학 응집제에 의한 화학응집이 이루어지기 때문에 전기분해시 인위적인 전해질 용액의 첨가를 배제할 수 있는 점이다.
즉, 전기분해시 전류의 흐름을 방해하고, 전극표면에 달라붙어 스케일을 형성하는 부유물질 및 콜로이드를 본 발명에 따른 하수 및 폐수 처리 방법에서는 산화처리단계 전에 화학적 응집제를 이용하여 상기 부유물질 및 콜로이드를 화학 응집시켜, 전기화학적인 산화처리단계 전에 침전시킴으로써 오염부하를 경감시켜 준 것이다.
이하, 본 발명에 따른 실시예를 예시함으로써 본 발명을 보다 구체화하여 설명하고자 한다.
하기에 예시하는 실시예는 본 발명의 기술적 사상에 따른 일예를 보여주는 것일뿐, 본 발명의 특허청구범위를 제한하는 것으로 해석되어서는 아니될 것이다.
하기 실시예는 섬유 전처리(Preparation) 공정에서 발생된 염색 폐수를 대상 처리수로 하여 본 발명에 따라 화학 응집제를 이용하여 사전처리한 후 전기화학적인 산화처리를 하였다.
또한, 상기 화학 응집제는 염소를 포함하는 염소계 화학 응집제와 염소를 포함하지 않는 화학 응집제를 사용하고, 이에 따른 염색 폐수 처리 결과를 비교, 예시하였다.
염색 폐수의 COD 처리를 예시하는 하기 실시예도 본 발명에 따른 기술적 사상인 염소이온을 함유하는 전해질의 첨가를 배제하고, 수처리 효율을 높일수 있도록 화학응집반응과 전기분해반응을 결합한 하수 및 폐수 처리 방법을 이용함은 물론이다.
[실시예]
본 발명에 따른 염색 폐수의 COD 처리
본 실시예에서는 일반적인 화학 응집제 즉, Al2(SO4)3ㆍ18H2O(Alum, 황산알루미늄), Fe2(SO4)3(황산제2철), FeCl3(염화철) 및 PAC(폴리염화알루미늄)를 적용하여초기 COD가 395mg/l인 염색 폐수의 응집교반시험(Jar-test)을 통해 상등액의 염소이온농도를 환경공정시험법을 통해 분석하였다.
참고로, 상기 응집교반시험은 효과적이고 경제적인 응집처리를 위해서, 최적 pH나 화학 응집제량을 알기 위해 실제로 폐수 시료를 갖고 시험하는 것이다.
이때의 최적 응집조건(pH, 응집제주입량)은 아래의 표 1과 같다.
[표 1] 화학응집제별 최적 응집조건
화학응집제 Alum Fe2(SO4)3 FeCl3 PAC
수소이온농도 8 6 6 5
응집제주입량 1946mg/l 700mg/l 878mg/l 12ml/l
응집교반시험 후 응집처리 상등액 중의 각 화학 응집제별 염소이온농도는 표 2에 나타낸 바와 같다.
[표 2] 화학 응집제별 염소이온농도 및 COD 처리효율
화학응집제 Alum Fe2(SO4)3 FeCl3 PAC
염소이온농도(mg/l) 121 121 531 2655
COD 처리효율(%) 55.8 51.9 99.0 100
상기 표 2에서 보는 바와 같이, FeCl3및 PAC에서 염소이온농도가 상대적으로 높게 나타남을 알 수 있다. FeCl3및 PAC를 적용한 응집교반시험에서의 염소이온농도를 종래기술에 따라 많이 사용되는 전해질 용액인 염화나트륨(NaCl)의 양으로 환산하면 각각 875mg/l, 4,377mg/l에 해당하는 이온농도 수치이다.
참고로, Alum과 Fe2(SO4)3의 화학 응집제의 경우는 염소 이온을 포함하지 않는 화학 응집제이기 때문에 염소이온농도 수치는 원래 염색 폐수 내의 염소이온 농도 값과 동일하다.
따라서, 상기와 같은 결과는 염소를 포함하는 염소계 화학 응집제의 경우가 전기화학적인 산화처리시 중요한 역할을 하는 염소이온의 농도가 높음을 고찰할 수 있었다.
또한, 본 실시예에서는 폐수의 처리 성능을 살펴보기 위하여 염색 공단에서 발생되는 염색 폐수를 대상으로 하여 수처리 실험을 수행하였다.
먼저, 응집교반시험을 이용하여 화학 응집을 수행한 후, 다음과 같은 조건에서 전기화학적인 산화처리를 수행하였고, 산화처리 조건은 하기와 같다.
※ 전기화학적인 산화처리 조건
반응기 체적 : 1.6 Liter
양극재료 : RuO2/Ti
음극재료 : STS 재질
전극개수 : 4개(양극 2, 음극2), 양극과 음극 교차 설치
전극판 면적: 11cm ×8cm
전류: 5A의 직류 전류 공급
상기와 같은 전기화학적인 산화처리 조건하에서 120분 후의 처리 유출수 성분에 대하여 CODcr(크롬법에 의한 화학적 산소 요구량) 처리효율을 조사하여 본 결과는 표 2에 나타낸 바와 같다.
즉, 염소 이온을 함유하는 화학 응집제로 화학 응집한 후 전기분해를 수행한 경우는 2시간 후에 거의 100%에 가까운 COD 처리율을 보이지만, 염소 이온이 아닌 다른 음이온을 함유하는 화학 응집제로 화학 응집 처리후 전기 분해한 경우는 2시간 전기분해로 50% 전후의 COD 처리 효율을 보여 염소계 화학 응집후 전기분해가 비염소계 화학응집 후 전기분해보다 훨씬 더 처리효율이 우수함을 나타내고 있다.
상기와 같은 결과를 고찰해 보면, 처리 대상 하수나 폐수중에 존재하는 부유물질이나 콜로이드성 물질을 전처리함에 따라, 전류 흐름의 방해 현상 및 전극표면에 부착되어 스케일을 형성하는 문제점들을 해결할 수 있다.
따라서, 전기화학적 산화단계의 처리효율을 향상시켜주고, 근본적으로 기존에 인위적으로 첨가되던 전해질 용액의 첨가를 생략시켜 줌으로써, 약품비 등의 운전비용을 저감시켜 줄 수 있는 이득을 얻을수 있다.
상기한 바와 같이 본 발명에 따르면, 하수 및 폐수를 처리함에 있어서 염소를 함유하는 화학응집제를 채택한 화학응집 처리를 수행하고, 그 상등수 중에 잔류하는 염소 이온을 이용하여 인위적인 전해질 용액의 첨가없이 바로 전류를 흘려주어 전기화학적으로 산화 처리함으로써, 수처리 효율을 향상시킬 수 있을 뿐만 아니라 약품비 등을 절약할 수 있는 경제적인 효과가 기대된다.

Claims (2)

  1. 하수 또는 폐수에 포함된 콜로이드의 하전을 중화시키고, 상기 콜로이드 입자를 상호결합시키기 위한 화학 응집제를 투여하여 혼화하는 혼화단계;
    상기 혼화단계 후 교반기를 이용하여 콜로이드 입자간의 충돌을 촉진시킴으로써 콜로이드 입자를 응집시키는 응집단계;
    상기 응집단계 후, 하수 또는 폐수에 포함된 응집 상태의 콜로이드 입자를 침전시키기 위한 침전단계;
    상기 침전단계 후의 침전조 상등액을 전기화학적으로 산화처리하는 산화처리단계;
    로 이행되는 것을 특징으로 하는 하수 및 폐수 처리 방법.
  2. 제 1 항에 있어서,
    상기 화학 응집제는 염소계 화학 응집제인 것을 특징으로 하는 하수 및 폐수 처리 방법.
KR10-2003-0013632A 2003-03-05 2003-03-05 하수 및 폐수 처리 방법 KR100461913B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0013632A KR100461913B1 (ko) 2003-03-05 2003-03-05 하수 및 폐수 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0013632A KR100461913B1 (ko) 2003-03-05 2003-03-05 하수 및 폐수 처리 방법

Publications (2)

Publication Number Publication Date
KR20040078776A KR20040078776A (ko) 2004-09-13
KR100461913B1 true KR100461913B1 (ko) 2004-12-17

Family

ID=37363915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0013632A KR100461913B1 (ko) 2003-03-05 2003-03-05 하수 및 폐수 처리 방법

Country Status (1)

Country Link
KR (1) KR100461913B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943031B1 (ko) * 2008-08-22 2010-02-18 남건용 휴대단말기 부착용 입력장치
KR101528530B1 (ko) * 2014-09-24 2015-06-15 (주) 테크윈 폐수를 이용하여 생산된 산화제를 사용하는 자원 재이용 방식 산업폐수 처리 방법 및 장치

Also Published As

Publication number Publication date
KR20040078776A (ko) 2004-09-13

Similar Documents

Publication Publication Date Title
Garcia-Segura et al. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies
Barrera-Díaz et al. Electrocoagulation: Fundamentals and prospectives
Babu et al. Treatment of tannery wastewater by electrocoagulation
Ahmadi et al. Removal of oil from biodiesel wastewater by electrocoagulation method
Bazrafshan et al. Removal of zinc and copper from aqueous solutions by electrocoagulation technology using iron electrodes
JP5498477B2 (ja) 活性金属塩凝集剤及びその製造方法
CN112607893A (zh) 一种镀件镀镍的镀液废水处理方法
CN110015777A (zh) 一种去除电镀废水cod的方法
El-Ashtoukhy et al. Removal of heavy metal ions from aqueous solution by electrocoagulation using a horizontal expanded Al anode
KR101221565B1 (ko) 전기응집을 이용한 폐수처리장치
Dai et al. Construction of a novel integrated electrochemical oxidation-coagulation system for simultaneous removal of suspended solids and antibiotics
Hu et al. Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review
CN108409003B (zh) Pcb废水铜回收后含盐有机废水的处理方法及系统
Ahmad et al. Comparison of coagulation, electrocoagulation and biological techniques for the municipal wastewater treatment
CN111115919B (zh) 一种制药废水的预处理方法
KR100372849B1 (ko) 응집 및 전해원리를 이용한 고도 폐수처리장치
CN112520913A (zh) 一种电絮凝处理难降解有机废水预处理工艺
KR100461913B1 (ko) 하수 및 폐수 처리 방법
Kılıç et al. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions
Erkan et al. The investigation of chemical coagulation and electrocoagulation processes for tannery wastewater treatment using response surface methodology
KR101088148B1 (ko) 콜로이드 입자의 전기적인 중화속도 조절을 이용한 수처리 방법
KR20010068172A (ko) 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치 및공법
KR20020060792A (ko) 전기분해를 이용한 폐수 처리 방법
KR20050028127A (ko) 전기분해를 이용한 폐수처리방법
CN114684979A (zh) 一种高浓度难降解有机废水的处理方法及装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 19