KR100460174B1 - Fe(+3) preparation method and preparation machine - Google Patents

Fe(+3) preparation method and preparation machine Download PDF

Info

Publication number
KR100460174B1
KR100460174B1 KR10-2002-0013714A KR20020013714A KR100460174B1 KR 100460174 B1 KR100460174 B1 KR 100460174B1 KR 20020013714 A KR20020013714 A KR 20020013714A KR 100460174 B1 KR100460174 B1 KR 100460174B1
Authority
KR
South Korea
Prior art keywords
nano
catalyst
hno
air
naoh
Prior art date
Application number
KR10-2002-0013714A
Other languages
Korean (ko)
Other versions
KR20020026927A (en
Inventor
이현순
강훈
Original Assignee
동인산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동인산업(주) filed Critical 동인산업(주)
Priority to KR10-2002-0013714A priority Critical patent/KR100460174B1/en
Publication of KR20020026927A publication Critical patent/KR20020026927A/en
Application granted granted Critical
Publication of KR100460174B1 publication Critical patent/KR100460174B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 질소화합물을 촉매로 하여 Fe2+을 공기 중에서 산화시켜 Fe3+을 제조하는 방법 및 장치에 관한 것으로,The present invention relates to a method and apparatus for producing Fe 3+ by oxidizing Fe 2+ in air using a nitrogen compound as a catalyst.

하기의 반응식과 같이, NaNO2와 HNO3중에서 선택된 하나의 약품을 촉매로 하여 산용액에서 Fe2+를 공기산화시켜 Fe3+를 제조하는 방법에 있어서,In the method of preparing Fe 3+ by air oxidation of Fe 2+ in an acid solution using one chemical agent selected from NaNO 2 and HNO 3 as a catalyst,

Fe2++ H++ NaNO2 또는 (HNO3) → Fe3++ NO + H2O + 부산물Fe2++ H++ NaNO2 Or (HNO3) → Fe3++ NO + H2O + by-product

(NaNO2 가 사용된 경우에 상기 부산물은 Na2O 이며, HNO3가 사용된 경우에 상기 부산물은 H2O와 O2임)(NaNO2 Is used when the by-product is Na2Is O and HNO3Is used when the by-product is H2O and O2being)

상기 반응에서 생성된 질소산화물을 NaOH와 반응시켜 NaNO2로 환원시키고, 이때 생성된 NaNO2를 상기 Fe2+의 산화반응시 촉매로 재사용하는 것을 특징으로 하는 Fe3+의 제조방법 및 제조장치가 제공된다.The method for producing Fe 3+ and the apparatus for producing Fe 3+ , wherein the nitrogen oxide produced in the reaction is reacted with NaOH to reduce to NaNO 2 , and the produced NaNO 2 is reused as a catalyst in the oxidation reaction of Fe 2+ . Is provided.

Description

3가철의제조방법 및 제조장치{Fe(+3) preparation method and preparation machine}Manufacturing method and apparatus for trivalent iron {Fe (+3) preparation method and preparation machine}

본 발명은 질소화합물을 촉매로 하여 Fe2+을 공기 중에서 산화시켜 Fe3+을 제조하는 방법 및 장치에 관한 것으로, 유해가스인 질소산화물이 발생되지 않아 환경친화적일 뿐만 아니라 처리약품의 비용이 절감되어 경제적인 새로운 구성의 Fe3+제조방법 및 제조장치에 관한 것이다.The present invention relates to a method and apparatus for producing Fe 3+ by oxidizing Fe 2+ in the air using a nitrogen compound as a catalyst, which is environmentally friendly and does not generate harmful oxides, thereby reducing the cost of chemicals. The present invention relates to a method and apparatus for producing Fe 3+ of a new economical structure.

Fe3+는 폐수 중에 함유되어 있는 유해물질을 흡착하여 침전되므로, 폐수처리제로 흔히 사용되는데, 상당히 고가이다. 이러한 Fe3+의 생성반응 중에는 Fe2+를 공기중에서 산화시키는 방법이 있다.Fe 3+ is commonly used as a wastewater treatment agent because it precipitates by adsorbing harmful substances contained in the wastewater, which is quite expensive. Among these Fe 3+ formation reactions, there is a method of oxidizing Fe 2+ in air.

공업용 폐수 중에는 이러한 Fe2+이 함유되어 있는 것이 많은데, 특히, 황산법을 이용한 이산화티타늄의 생산시 발생되는 폐수에는 Fe2+이 다량으로 함유되어 있다. 따라서 최근에는 이러한 폐수 중의 Fe2+을 Fe3+로 산화시켜 Fe3+를 얻기도 한다.Many industrial wastewaters contain such Fe 2+ , and in particular, wastewater generated in the production of titanium dioxide using the sulfuric acid method contains a large amount of Fe 2+ . Therefore, in recent years also to obtain Fe 3+ oxidation of Fe 2+ to Fe 3+ of such waste water.

한편, Fe2+를 공기 중에서 Fe3+로 산화시키는 경우에는 산화반응을 촉진시키기 위해 NaNO2, HNO3와 같은 질소산화물을 촉매로 사용한다. 이때 촉매로 사용된 질소산화물은 Fe2+이 산화됨에 따라 NO로 환원된다. 이러한 NO는 대기 중에 그대로 방출되면 일부가 NO2나 N2O3등으로 산화되는데, 이러한 질소산화물은 인체에 흡입시 호흡기 점막을 자극하여 기관지염 등을 일으키며, 혈액 중의 헤모글로빈과 결합하여 헤모글로빈과 산소의 결합을 방해하기 때문에 빈혈을 일으키고 치매를 일으키는 원인이 되기도 하므로 별도의 처리장치를 통해 무해화시킨 다음 배출시켜야 한다.On the other hand, when Fe 2+ is oxidized to Fe 3+ in air, nitrogen oxides such as NaNO 2 and HNO 3 are used as catalysts to promote the oxidation reaction. At this time, the nitrogen oxide used as a catalyst is reduced to NO as Fe 2+ is oxidized. When the NO is released into the atmosphere, some of it is oxidized to NO 2 or N 2 O 3. Nitrogen oxides stimulate the respiratory mucosa when inhaled in the human body, causing bronchitis. Because it interferes with binding, it can cause anemia and dementia, so it must be harmed and discharged through a separate treatment device.

이와 같은 종래의 방법으로 Fe3+을 제조하는 경우에는 촉매로 사용된 질소화합물이 유해한 질소산화물로 변화되므로, 이 질소산화물을 처리하는 별도의 유해가스처리장치가 필요하며, 산화반응 중에 계속적으로 질소산화물을 투입하여야 하므로 코스트가 상승되었다.In the case of producing Fe 3+ by such a conventional method, since the nitrogen compound used as a catalyst is changed to harmful nitrogen oxide, a separate harmful gas treatment device for treating this nitrogen oxide is required, and nitrogen is continuously produced during the oxidation reaction. The cost was increased because an oxide had to be added.

본 발명은 상기의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 질소화합물을 촉매로 하여 Fe2+이 산화될 때 발생되는 유해가스인 질소산화물을 NaNO2로 환원시키고, 이 NaNO2를 촉매로 재사용하도록 구성되어, 환경친화적일 뿐만 아니라 약품비용을 절감할 수 있어서 경제적인 새로운 구성의 Fe3+의 제조방법을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to reduce the nitrogen oxide which is a harmful gas generated when Fe 2+ is oxidized by the nitrogen compound as a catalyst to NaNO 2 , this NaNO 2 as a catalyst It is designed to be reused, which is not only environmentally friendly, but also can reduce the chemical cost, thereby providing a new method for producing Fe 3+ of economical composition.

도 1은 본 발명에 의한 제조장치를 보인 개략도1 is a schematic view showing a manufacturing apparatus according to the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10. 산화반응조 20. Fe3+저장조10. Oxidation tank 20 Fe 3+ storage tank

30. 보조산화반응조 40. NaOH흡수탑30. Auxiliary Oxidation Tank 40. NaOH Absorption Tower

50. NaNO2이송라인50. NaNO 2 Transfer Line

본 발명에 따르면, 하기의 반응식과 같이, NaNO2와 HNO3중에서 선택된 하나의 약품을 촉매로 하여 산용액에서 Fe2+를 공기산화시켜 Fe3+를 제조하는 방법에 있어서,According to the present invention, in the method of preparing Fe 3+ by air oxidizing Fe 2+ in an acid solution using one chemical agent selected from NaNO 2 and HNO 3 as a catalyst,

Fe2++ H++ NaNO2 또는 (HNO3) → Fe3++ NO + H2O + 부산물(NaNO2 가 사용된 경우에 상기 부산물은 Na2O 이며, HNO3가 사용된 경우에 상기 부산물은 H2O와 O2임)Fe2++ H++ NaNO2 Or (HNO3) → Fe3++ NO + H2O + byproduct (NaNO2 Is used when the by-product is Na2Is O and HNO3Is used when the by-product is H2O and O2being)

상기 반응에서 생성된 질소산화물을 NaOH와 반응시켜 NaNO2로 환원시키고, 이때 생성된 NaNO2를 상기 Fe2+의 산화반응시 촉매로 재사용하는 것을 특징으로 하는 Fe3+의 제조방법이 제공된다.Is reacted with the nitrogen oxide generated by the reaction NaOH and reduced with NaNO 2, wherein the manufacturing method of the Fe 3+ to the NaNO 2 characterized in that recycled to the oxidation reaction when the catalyst of the Fe 2+ created is provided.

본 발명의 다른 특징에 따르면, NaNO2와 HNO3중에서 선택된 하나의 약품을 촉매로 하여 산용액에서 Fe2+을 공기로 산화시켜 Fe3+을 제조하는 장치에 있어서, 내부로 에어를 공급하는 공기공급수단(12)과, NaNO2또는 HNO3를 투입하기 위한 촉매투입수단(18)이 구비되며 일측에 형성된 투입구(14,16)를 통해 내부에 산용액과 Fe2+이 공급되어 상기 Fe2+이 공기에 의해 Fe3+로 산화되는 산화반응조(10)와; 상기 산화반응조(10)에서 산화된 Fe3+가 저장되는 Fe3+저장조(20)와; NaOH가 저장되어 상기 촉매가 분해되어 생성되는 질소산화물이 NaNO2로 환원되는 NaOH흡수탑(40)을 포함하여 이루어지며, 상기 NaOH흡수탑(40)에는 질소산화물이 환원되어 생성된 NaNO2를 상기 촉매투입수단(18) 또는 산화반응조(10)로 이송시키는 NaNO2이송라인(50)이 마련되어, 상기 질소산화물에 의해 생성되는 NaNO2를 촉매로 재사용하도록 된 것을 특징으로 하는 Fe3+제조장치가 제공된다.According to another feature of the present invention, in the apparatus for producing Fe 3+ by oxidizing Fe 2+ to air in an acid solution using one of the drugs selected from NaNO 2 and HNO 3 as a catalyst, air to supply air to the inside A supply means 12 and a catalyst input means 18 for injecting NaNO 2 or HNO 3 are provided, and an acid solution and Fe 2+ are supplied therein through the inlets 14 and 16 formed at one side thereof, so that the Fe 2 oxidation reactor 10 in which + is oxidized to Fe 3+ by the air; And Fe 3+ reservoir 20, in which the Fe 3+ oxidation in the oxidizing tank 10 is stored; Is NaOH is stored is made, including the NaOH absorber 40 which nitrogen oxides are reduced with NaNO 2 produced the catalyst is decomposed, the NaOH absorption tower 40, are reduced to nitrogen oxides wherein the generated NaNO 2 An apparatus for producing Fe 3+ , comprising a NaNO 2 transfer line 50 for feeding the catalyst input means 18 or the oxidation reactor 10 to reuse NaNO 2 generated by the nitrogen oxide as a catalyst. Is provided.

이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의거하여 설명하면 다음과 같다. 도 1은 본 발명이 이루어지는 장치를 보인 개략도이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a schematic view showing an apparatus in which the present invention is made.

본 발명은 도 1에 도시된 바와 같이, 내부로 공기를 공급하는 콤프레셔와 같은 공기공급수단(12)과, 산용액과 Fe2+가 공급되는 공급구(14,16)와 촉매인 NaNO2를 투입하기 위한 NaNO2투입수단(18)이 구비되어 Fe2+가 공기에 의해 Fe3+로 산화되는 산화반응조(10)와; 상기 산화반응조(10)에 연결되어 Fe3+가 저장되는 Fe3+저장조(20)와; NaOH가 저장되어 상기 촉매가 분해되어 생성되는 NO(g), NO2(g) 및 N2O3(g) 등의 질소산화물이 NaNO2로 환원되는 NaOH흡수탑(40)과; 상기 NaOH흡수탑(40)과 촉매투입수단(18) 사이에 구비되어 상기 질소산화물에 의해 생성된 NaNO2를 NaNO2투입수단(18)으로 이송시키는 NaNO2이송라인(50)이 마련된 장치에서 이루어진다.The present invention, as shown in Figure 1, the air supply means 12, such as a compressor for supplying air to the inside, the supply port (14, 16) to which the acid solution and Fe 2+ is supplied and the catalyst NaNO 2 An oxidation reaction tank 10 provided with NaNO 2 input means 18 for injecting the Fe 2+ into Fe 3+ by air; And Fe 3+ reservoir 20 is connected to the oxidation reactor 10 in which Fe 3+ is stored; A NaOH absorption tower 40 in which nitrogen oxides such as NO (g), NO 2 (g) and N 2 O 3 (g) generated by NaOH are stored and decomposed by the catalyst are reduced to NaNO 2 ; The apparatus is provided between the NaOH absorption tower 40 and the catalyst input means 18 to provide a NaNO 2 transfer line 50 for transferring NaNO 2 generated by the nitrogen oxide to the NaNO 2 input means 18. .

이와 같은 장치에서 본 발명은 다음과 같이 이루어진다. 먼저, 황산제일철용액이 혼합된 황산용액을 상기 산화반응조(10)로 유입시키고, 촉매로 NaNO2를 산화반응조(10)에 투입한다. 이때 산화반응조(10)로 투입된 NaNO2는 반응식(1-1)과 같이 산소에 의해 N2O3(g)로 분해된다.The present invention in such a device is made as follows. First, the sulfuric acid solution mixed with the ferrous sulfate solution is introduced into the oxidation reaction tank 10, and NaNO 2 is introduced into the oxidation reaction tank 10 as a catalyst. At this time, NaNO 2 introduced into the oxidation reaction tank 10 is decomposed into N 2 O 3 (g) by oxygen as in Scheme (1-1).

2NaNO2→ N2O3(g) + Na2O반응식(1-1)2NaNO 2 → N 2 O 3 (g) + Na 2 O Scheme (1-1)

그리고 상기 콤프레셔(12)를 작동시켜 산화반응조(10) 내부로 공기를 공급시키면 황산제일철용액 중의 Fe2+는 공기에 의해 산화되어 Fe3+가 되는데, 이때 상기 NaNO2가 분해되어 발생된 N2O3(g)가 실제 Fe2+를 산화시키는 촉매역할을 한다. 그 반응식은 다음과 같다.When the compressor 12 is operated to supply air into the oxidation reaction tank 10, Fe 2+ in the ferrous sulfate solution is oxidized by air to form Fe 3+ , wherein the NaNO 2 is decomposed to generate N 2. O 3 (g) actually acts as a catalyst to oxidize Fe 2+ . The scheme is as follows.

2FeSO4+ H2SO4+ N2O3(g) → Fe2(SO4)3+ 2NO(g) + H2O 반응식(2-1)2FeSO 4 + H 2 SO 4 + N 2 O 3 (g) → Fe 2 (SO 4 ) 3 + 2NO (g) + H 2 O Scheme (2-1)

이와 같이 Fe2+가 산화됨에 따라 발생되는 NO(g)의 대부분은 산화반응조(10)에서 N2O3(g)로 산화된다. 그리고 이 N2O3(g)는 NaOH흡수탑(40)으로 공급되어 NaNO2로 환원된다. 이 반응식은 다음과 같다 .As such, most of the NO (g) generated as the Fe 2+ is oxidized to N 2 O 3 (g) in the oxidation tank 10. This N 2 O 3 (g) is supplied to the NaOH absorption tower 40 is reduced to NaNO 2 . This scheme is as follows.

N2O3(g) + 2NaOH → 2NaNO2+ H2O 반응식(3-1)N 2 O 3 (g) + 2NaOH → 2NaNO 2 + H 2 O Scheme (3-1)

물론, 이때 NO(g)의 대부분은 N2O3(g)로 변화되지만, 일부는 NO(g)로 남아있고, 나머지 일부는 NO2(g)로 산화되기도 하는데, 이 NO(g)와 NO2(g)도 상기 NaOH흡수탑(40)으로 공급되어 NaNO2로 환원된다.Of course, most of the NO (g) is changed to N 2 O 3 (g), but some remain as NO (g), and some are oxidized to NO 2 (g), and this NO (g) and NO 2 (g) is also supplied to the NaOH absorption tower 40 is reduced to NaNO 2 .

이와 같이 본 발명에서는 Fe2+가 Fe3+로 산화됨에 따라 발생되는 NO, NO2,N2O3등의 질소산화물을 NaNO2로 환원시켜 최종적으로 무해한 물과 NaN02를 얻는다. 그리고 이러한 반응에 의해 NaOH흡수탑(40)의 NaOH가 NaN02로 변화되면 NaOH흡수탑(40) 내의 NaN02를 NaN02이송라인(50)을 통해 NaN02투입수단(18)으로 이송시킨다. 필요에 따라서는 NaN02가 산화반응조(10)로 직접 투입되도록 NaN02이송라인(50)을 산화반응조(10)에 직접 연결할 수도 있다. 이와 같이 하면 NaN02가 자체 생산되므로 약품비용이 절감된다. 물론 이때 발생되는 질소산화물을 전량회수하기 곤란하므로, 손실될 양만큼 NaN02를 보충해 줄 필요가 있다.As described above, in the present invention, nitrogen oxides such as NO, NO 2 and N 2 O 3 generated as Fe 2+ is oxidized to Fe 3+ are reduced to NaNO 2 to finally obtain harmless water and NaN0 2 . And then transferred to NaN0 2 In means 18 a NaN0 2 in NaOH absorber 40 via NaN0 2 transport line 50 when the NaOH in the NaOH absorber 40 is changed to NaN0 2 by such a reaction. If necessary, NaN0 2 is may be directly connected to the feed line NaN0 2 oxidation reactor (10) to (50) to be directly fed to the oxidation reactor (10). In this way, since NaN0 2 is produced by itself, chemical cost is reduced. Of course, since it is difficult to recover the total amount of nitrogen oxides generated at this time, it is necessary to replenish NaN0 2 by the amount to be lost.

한편, 상기 산화반응조(10)에서 발생되는 가스성분 중에는 반응에 관여하지 못한 N2O3(g) 또는 NO(g)가 산화되어 얻어진 N2O3(g)가 존재하므로 도시된 바와 같이, 산화반응조(10)의 후단에 산용액과 Fe2+이 공급되는 보조산화반응조(30)를 설치하고, 상기 산화반응조(10)에서 발생되는 가스성분을 이 보조산화반응조(30)로 유입시킨다. 이와 같이 하면 보조산화반응조(30)에 별도의 촉매를 투입하지 않고도 보조산화반응조(30)로 유입되는 가스성분 중의 N2O3(g)에 의해 Fe2+가 산화되므로,촉매효율을 높일 수 있다.On the other hand, as the N 2 O 3 (g) was unable to participate in the reaction N 2 O 3 (g) or NO (g) during the gas component obtained is oxidized and generated in the oxidation reaction vessel 10 is present, so shown, At the rear end of the oxidation reaction tank 10, an auxiliary oxidation reaction tank 30 to which an acid solution and Fe 2+ are supplied is installed, and the gas component generated in the oxidation reaction tank 10 is introduced into the auxiliary oxidation reaction tank 30. In this case, since Fe 2+ is oxidized by N 2 O 3 (g) in the gas component flowing into the auxiliary oxidation reactor 30, without adding a separate catalyst to the auxiliary oxidation reactor 30, the catalyst efficiency can be increased. have.

이상에서는 촉매로 NaNO2를 사용한 것을 예로 들었으나, 촉매로 HNO3를 사용할 수도 있다. 이때 반응은 NaNO2를 사용한 경우와 동일한데, 이때 HNO3는 반응식 (5-1),(5-1)과 같이 분해되어 N2O3가 된다.In the above, NaNO 2 was used as the catalyst, but HNO 3 may be used as the catalyst. At this time, the reaction is the same as when using NaNO 2 , wherein HNO 3 is decomposed as in reaction formula (5-1), (5-1) to be N 2 O 3 .

2HNO3→ 2NO + H2O +3/2O2반응식(5-1)2HNO 3 → 2NO + H 2 O + 3 / 2O 2 Scheme (5-1)

2NO + 1/2O2→ N2O3반응식(5-2)2NO + 1 / 2O 2 → N 2 O 3 scheme (5-2)

또한, 이상에서는 Fe2+의 공급원으로 황산제일철용액을 사용하였으나, 염산제일철용액을 사용할 수도 있다. 이때에는 염산용액에서 반응시키는데, 그 반응식은 다음과 같다.In addition, although the ferrous sulfate solution was used as a source of Fe2 +, the ferrous hydrochloride solution can also be used. At this time, the reaction in hydrochloric acid solution, the reaction formula is as follows.

2FeCl2+ 2HCl + N2O3→ 2FeCl3+ 2NO(g) + H2O 반응식(6-1)2FeCl 2 + 2HCl + N 2 O 3 → 2FeCl 3 + 2NO (g) + H 2 O Scheme (6-1)

이상과 같은 본 발명은 촉매에 의해 생성된 질소산화물을 NaNO2로 변화시킴으로써, 유독가스의 배출을 없애고, 촉매인 NaNO2를 자체 생산하여 사용하므로 약품구입비용이 절감된다. 필요에 따라 본 발명에서 사용되는 황산이나 염산으로 폐황산이나 폐염산을 사용하면 비용면에서도 경제적이며 폐황산이나 폐염산에 의한 환경오염을 줄일 수 있어서 경제적이다. 이와 같은 본 발명에서 얻어진 Fe3+는 황산제이철이나 염산제이철과 같은 제이철염의 형태로 회수되어 출고된다.In the present invention as described above by changing the nitrogen oxide produced by the catalyst to NaNO 2 , eliminating the emission of toxic gas, and because the production of the catalyst NaNO 2 itself used to reduce the drug purchase cost. If necessary, the use of waste sulfuric acid or hydrochloric acid as sulfuric acid or hydrochloric acid used in the present invention is economical in terms of cost and economical because it can reduce the environmental pollution caused by waste sulfuric acid or waste hydrochloric acid. The Fe 3+ obtained in the present invention is recovered and shipped in the form of ferric salt such as ferric sulfate or ferric hydrochloride.

이상에서와 같이 본 발명에 의하면, 질소화합물을 촉매로 하여 Fe2+를 공기중에서 산화시켜 Fe3+를 제조하는 방법에서 질소화합물에 의해 발생되는 유해가스인 NO, NO2,N2O3등의 질소산화물을 Fe2+를 산화시키는 촉매로 사용될 수 있는 NaNO2로 변화시킴으로써, 약품구입비가 절감되어 경제적이면서도, 유해가스가 배출되지 않아 환경친화적인 새로운 구성의 Fe3+제조방법 및 제조장치가 제공된다.As described above, according to the present invention, NO, NO 2, N 2 O 3, and the like , which are harmful gases generated by nitrogen compounds in a method of producing Fe 3+ by oxidizing Fe 2+ in the air using nitrogen as a catalyst by the change in the NOx NaNO 2, which can be used as catalyst for oxidizing Fe 2+, is the purchase of drugs reduce economical and, do not harmful gas is discharged way Fe 3+ producing a new configuration, the device is environmentally-friendly and production Is provided.

Claims (2)

하기의 반응식과 같이, NaNO2와 HNO3중에서 선택된 하나의 약품을 촉매로 하여 산용액에서 Fe2+를 공기산화시켜 Fe3+를 제조하는 방법에 있어서,In the method of preparing Fe 3+ by air oxidation of Fe 2+ in an acid solution using one chemical agent selected from NaNO 2 and HNO 3 as a catalyst, Fe2++ H++ NaNO2 또는 (HNO3) → Fe3++ NO + H2O + 부산물Fe2++ H++ NaNO2 Or (HNO3) → Fe3++ NO + H2O + by-product (NaNO2 가 사용된 경우에 상기 부산물은 Na2O 이며, HNO3가 사용된 경우에 상기 부산물은 H2O와 O2임)(NaNO2 Is used when the by-product is Na2Is O and HNO3Is used when the by-product is H2O and O2being) 상기 반응에서 생성된 질소산화물을 NaOH와 반응시켜 NaNO2로 환원시키고, 이때 생성된 NaNO2를 상기 Fe2+의 산화반응시 촉매로 재사용하는 것을 특징으로 하는 Fe3+의 제조방법.Is reacted with the nitrogen oxide generated by the reaction NaOH and reduced with NaNO 2, The method of manufacturing a Fe 3+ to the generated NaNO 2 characterized in that recycled to the oxidation reaction when the catalyst of the Fe 2+. NaNO2와 HNO3중에서 선택된 하나의 약품을 촉매로 하여 산용액에서 Fe2+을 공기로 산화시켜 Fe3+을 제조하는 장치에 있어서, 내부로 공기를 공급하는 공기공급수단(12)과, NaNO2또는 HNO3를 투입하기 위한 촉매투입수단(18)이 구비되며 일측에 형성된 투입구(14,16)를 통해 내부에 산용액과 Fe2+이 공급되어 상기 Fe2+이 공기에 의해 Fe3+로 산화되는 산화반응조(10)와; 상기 산화반응조(10)에서 산화된 Fe3+가 저장되는 Fe3+저장조(20)와; NaOH가 저장되어 상기 촉매가 분해되어 생성되는 질소산화물이 NaNO2로 환원되는 NaOH흡수탑(40)을 포함하여 이루어지며, 상기 NaOH흡수탑(40)에는 질소산화물이 환원되어 생성된 NaNO2를 상기 촉매투입수단(18) 또는 산화반응조(10)로 이송시키는 NaNO2이송라인(50)이 마련되어, 상기 질소산화물에 의해 생성되는 NaNO2를 촉매로 재사용하도록 된 것을 특징으로 하는 Fe3+제조장치.An apparatus for producing Fe 3+ by oxidizing Fe 2+ with air in an acid solution using one chemical agent selected from NaNO 2 and HNO 3 as a catalyst, comprising: an air supply unit 12 for supplying air to the inside, and NaNO 2 or HNO 3 catalyst for introducing the injection means 18 are provided and the through slot (14, 16) formed on a side supplied with an acid solution and Fe 2+ to the inside of the Fe 2+ a Fe 3+ by air An oxidation reaction tank 10 which is oxidized to; And Fe 3+ reservoir 20, in which the Fe 3+ oxidation in the oxidizing tank 10 is stored; Is NaOH is stored is made, including the NaOH absorber 40 which nitrogen oxides are reduced with NaNO 2 produced the catalyst is decomposed, the NaOH absorption tower 40, are reduced to nitrogen oxides wherein the generated NaNO 2 NaNO 2 transfer line (50) is provided to transfer to the catalyst input means (18) or the oxidation reaction tank (10), Fe 3+ production apparatus characterized in that to reuse the NaNO 2 generated by the nitrogen oxides as a catalyst.
KR10-2002-0013714A 2002-03-14 2002-03-14 Fe(+3) preparation method and preparation machine KR100460174B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0013714A KR100460174B1 (en) 2002-03-14 2002-03-14 Fe(+3) preparation method and preparation machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0013714A KR100460174B1 (en) 2002-03-14 2002-03-14 Fe(+3) preparation method and preparation machine

Publications (2)

Publication Number Publication Date
KR20020026927A KR20020026927A (en) 2002-04-12
KR100460174B1 true KR100460174B1 (en) 2004-12-04

Family

ID=19719810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0013714A KR100460174B1 (en) 2002-03-14 2002-03-14 Fe(+3) preparation method and preparation machine

Country Status (1)

Country Link
KR (1) KR100460174B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032844A (en) * 2001-10-17 2003-04-26 삼성전자주식회사 Process for preparing 3-hydroxyesters from epoxide derivatives
US7306715B2 (en) * 2002-08-05 2007-12-11 Denso Corporation Pump module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650124A (en) * 1979-10-02 1981-05-07 Tdk Corp Manufacture of iron oxide hydrate
JPS58145624A (en) * 1982-02-24 1983-08-30 Osamu Kimura Preparation of iron oxide from aqueous solution of iron chloride
JPS63216986A (en) * 1987-03-03 1988-09-09 Sumitomo Metal Ind Ltd High-speed pickling method for low cr steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650124A (en) * 1979-10-02 1981-05-07 Tdk Corp Manufacture of iron oxide hydrate
JPS58145624A (en) * 1982-02-24 1983-08-30 Osamu Kimura Preparation of iron oxide from aqueous solution of iron chloride
JPS63216986A (en) * 1987-03-03 1988-09-09 Sumitomo Metal Ind Ltd High-speed pickling method for low cr steel

Also Published As

Publication number Publication date
KR20020026927A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
EP2347816A1 (en) Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
WO2005100243A1 (en) A process for the removal of thiocyanate from effluent
EP2808074B1 (en) Hydrogen chloride removal process with ferrous compounds
CN103663666A (en) Method for carrying out cooperative oxidation treatment on organic wastewater by potassium permanganate and potassium hydrogen persulfate
CN101259376A (en) Method for purifying reducing inorganic waste gases
CN101602536A (en) A kind of preparation method who is used for the compound oxidant of catalytic oxidation treatment of high concentration waste water
CN101259375A (en) Method for purifying reducing organic waste gases
KR100460174B1 (en) Fe(+3) preparation method and preparation machine
CN113164901A (en) Nitrogen enrichment in organic fertilizers using nitrate and air plasma
CN110526380A (en) A method of processing uns-dimethylhydrazine waste water
JP6440958B2 (en) Method for treating harmful substance-containing liquid, method for producing ultrafine particles of transition metal-containing oxide used in the method, and treatment apparatus
CN112169573B (en) Flue gas desulfurization and denitrification process
CN108137359B (en) Method for purifying hazardous substance-containing liquid and hazardous substance-containing liquid purification apparatus for carrying out the method
CN111450784B (en) Electrochemical treatment system suitable for carbide slag alkaline slurry and application thereof
CN104941413A (en) Denitration device and method
CN105879608B (en) Ferrous oxalate based on flue gas ammonia method desulfurizing synchronizes denitrating technique
CN104941430B (en) Equipment for denitrifying flue gas and method
JP4051202B2 (en) Method and apparatus for removing nitrogen oxides in exhaust gas
CN109019823A (en) Activate persulfate, the method for degradation of contaminant, EDTA-VC application
JP3686446B2 (en) Ferric sulfate solution and method for producing basic ferric sulfate solution
JP2010099626A (en) Apparatus and method for reducing and fixing carbon dioxide
KR100478206B1 (en) The removing method of the hard-to-remove chemical ooxygen demand components from flew gas desulfurization waste water by palladium-based bimetal
CN105854558A (en) Sintering flue gas simultaneous desulfurization and denitration process
CN106552499A (en) A kind of swirling flow atomizing ultrasonic wave desulphurization and denitration, the method for dedusting
JP2000167570A (en) Treatment of waste water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111125

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee