KR100459106B1 - Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints - Google Patents

Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints Download PDF

Info

Publication number
KR100459106B1
KR100459106B1 KR10-2002-0015277A KR20020015277A KR100459106B1 KR 100459106 B1 KR100459106 B1 KR 100459106B1 KR 20020015277 A KR20020015277 A KR 20020015277A KR 100459106 B1 KR100459106 B1 KR 100459106B1
Authority
KR
South Korea
Prior art keywords
intron
dna
clock
gene
primer
Prior art date
Application number
KR10-2002-0015277A
Other languages
Korean (ko)
Other versions
KR20030075818A (en
Inventor
이윤호
김완수
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR10-2002-0015277A priority Critical patent/KR100459106B1/en
Publication of KR20030075818A publication Critical patent/KR20030075818A/en
Application granted granted Critical
Publication of KR100459106B1 publication Critical patent/KR100459106B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2539/00Reactions characterised by analysis of gene expression or genome comparison
    • C12Q2539/10The purpose being sequence identification by analysis of gene expression or genome comparison characterised by

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 생물의 유전체에 존재하는 시간 유전자의 인트론 지역의 염기서열이 개체간, 집단간, 종간 차이가 크다는 사실에 기초하여, 이를 이용한 생물 개체, 집단, 종의 식별 방법을 제공하고자 하는 것으로, 시간 유전자 인트론 앞뒤의 보존지역 염기서열을 이용하여 인트론을 증폭시킬 수 있는 중합효소연쇄반응 프라이머 쌍을 제작하고; 제작된 프라이머를 가지고 중합효소연쇄반응을 실시하여 인트론을 증폭하고; 그리고, 증폭된 인트론 DNA 단편의 염기서열을 결정하고, 상기 인트론의 염기서열 정보에 의해 생물체를 확인하는 단계를 포함하는 것을 특징으로 하고 있으며, 각 생물 분류군마다 서로 다른 DNA지문을 사용해야 하는 선행기술의 단점을 보완하여 대부분의 생물(동물)에 공통적으로 사용될 수 있기 때문에, 피의자의 식별과 근친관계 확인 등 사람과 관련된 법의학적 용도뿐만 아니라, 각종 농수산물과 수입 동물 등 식별이 필요한 다양한 생물(동물)에 적용될 수 있다.The present invention is to provide a method for identifying a biological individual, population, or species using the same, based on the fact that the nucleotide sequence of the intron region of the time gene in the genome of the organism has a large difference between individuals, groups, and species. Preparing polymerase chain reaction primer pairs capable of amplifying introns using conserved region sequences before and after the time gene introns; Amplifying introns by polymerase chain reaction with the prepared primers; And, it characterized in that it comprises the step of determining the base sequence of the amplified intron DNA fragments, and identifying the organism by the base sequence information of the intron, each of the biological classification group of the prior art to use a different DNA fingerprint As it can be used in common with most organisms (animals) to compensate for the shortcomings, it can be used for various organisms (animals) that need to be identified as well as forensic use related to humans such as identification of the suspect and verification of intimacy. Can be applied.

Description

시간 유전자 인트론의 염기서열을 DNA 지문으로 이용한 생물체 식별 방법 {IDENTIFICATION OF AN ORGANISM BY USE OF THE INTRON DNA SEQUENCE OF THE CLOCK GENE AS DNA FINGERPRINTS}IDENTIFICATION OF AN ORGANISM BY USE OF THE INTRON DNA SEQUENCE OF THE CLOCK GENE AS DNA FINGERPRINTS}

본 발명은 생물의 유전체에 존재하는 시간 유전자의 인트론 지역의 염기서열이 개체간, 집단간, 종간 차이가 크다는 사실에 기초하여, 이를 이용한 생물 개체, 집단, 종의 식별 방법을 제공하고자 하는 것이다.An object of the present invention is to provide a method for identifying a biological individual, a population, or a species based on the fact that the nucleotide sequence of the intron region of a time gene present in the genome of the organism has a large difference between individuals, groups, and species.

사람을 포함한 생물의 각 개체를 식별하거나, 집단, 종을 식별하는 것은 사회, 경제적으로 중요한 문제로 다루어진다. 법의학에서 전통적으로 사람 각각을 식별하는 방법으로는 지문, 머리카락의 특징, 치아의 모양, 그 외 형태적 특징과 생화학적 방법인 혈액형 등을 이용하는 방법이 있다.Identifying individuals, groups, and species of living organisms, including humans, is a matter of social and economic importance. Traditionally, in forensic medicine, each person is identified by using fingerprints, hair features, tooth shapes, other morphological features, and blood types, which are biochemical methods.

1990 년대 이후 유전체 분석 기술이 발달하면서 사람 유전체에 들어있는 염기서열(DNA sequence)을 쉽게 밝힐 수 있게 되었고, 사람마다 염기서열의 차이가 있음이 알려지게 되었다. 이때부터 법의학에서도 DNA 지문(DNA fingerprint)이라 하여 사람 개인간 유전체 염기서열의 차이가 개개인의 식별에 이용되기 시작하였다.Since the 1990s, the development of genomic analysis technology has made it easier to identify DNA sequences in the human genome. From this time on, forensic science called DNA fingerprinting, and the differences in genome sequences between individuals began to be used to identify individuals.

한편, 가축이나 가금류, 농수산물에서도 개체, 집단, 종을 식별할 필요성은 존재하는데, 이들 동식물체의 식별은 지금까지도 주로 형태적 특징에 의존하고 있으며, 일부 생물에 한해서는 DNA 지문이 이용되기도 한다.On the other hand, there is a need to identify individuals, groups and species in livestock, poultry and aquatic products. The identification of these plants and animals still depends mainly on morphological features, and some organisms use DNA fingerprints.

DNA 지문의 구체적인 분석기술로서는 제한효소단편 다형성(RFLP, restriction fragments length polymorphism), 미니새틀라이트(minisatellite) 염기서열 차이, 마이크로새틀라이트(microsatellite) 염기서열 차이, 단염기 다형성(SNP, single nucleotide polymorphism) 등이 이용되고 있다.Specific analysis techniques for DNA fingerprints include restriction fragments length polymorphism (RFLP), differences in minisatellite sequences, differences in microsatellite sequences, and single nucleotide polymorphism (SNP). Etc. are used.

DNA 지문에서 제한효소단편 다형성이란, 비교 생물의 유전체 전체를 각각 제한효소로 자르고 이를 전기영동으로 분석하여 잘려진 DNA 단편들의 길이 차이를 비교하는 방법이다. 이 방법은 유전체 전체를 분석 대상으로 한다는 장점이 있으나, 잘려진 DNA 단편들의 길이가 분석자와 실험 방법에 따라 일관성이 없이 변하기도 하기 때문에(Shapiro, 1991;Naturevol. 353: 121-122) 동시에 같은 연구자에 의해 이루어지는 비교가 아니면 결과의 유의성이 떨어진다는 단점이 있다. 또한, 제한효소단편 다형성 자체가 비교 생물간 DNA 단편 길이의 차이가 생기는 원인을 명확히 보여주지 못하고 있기 때문에 비교 생물간 근원 관계를 밝히는데 확실한 증거를 제시할 수 없는 경우도 있다.Restriction fragment fragment polymorphism in DNA fingerprinting is a method of comparing the difference in length of cut DNA fragments by cutting the entire genome of a comparative organism with restriction enzymes and analyzing them by electrophoresis. This method has the advantage of analyzing the entire genome, but because the length of the cut DNA fragments varies inconsistently depending on the analyzer and the experimental method (Shapiro, 1991; Nature vol. 353: 121-122). There is a drawback that the significance of the results is poor unless the comparison is made by. In addition, since the restriction enzyme fragment polymorphism itself does not clearly show the cause of the difference in DNA fragment length between the comparative organisms, there is a case that no clear evidence can be provided to clarify the root relationship between the comparative organisms.

이밖에 미니새틀라이트 염기서열 차이, 마이크로새틀라이트 염기서열 차이, 단염기 다형성 이용법은 비교 생물간 염기서열의 차이를 직접 비교함으로써 명백한 결과를 제공한다. 그런데, 이들 방법에서는 비교되는 염기서열 뿐만 아니라 그 앞과 뒤의 염기서열이 알려져 있어야 이용할 수 있는데, 이 앞뒤의 염기서열이 생물 분류군간 서로 다른 경우가 많아 한 생물군에서 이용되는 염기서열이 다른 생물군에 적용되지 못하는, 즉 실험 대상 생물군마다 새로운 DNA 지문을 찾아야 한다는 단점이 있다.In addition, minisatellite differences, microsatellite differences, and monobasic polymorphisms provide clear results by directly comparing differences in base sequences between comparative organisms. However, in these methods, not only the base sequences to be compared but also the front and back base sequences are known and used. The base sequences before and after these are different from each other in the biological group, and thus the base sequences used in one biological group are different. The disadvantage is that it does not apply to the group, i.e., a new DNA fingerprint must be found for each biological group.

본 발명은 DNA 지문을 이용하는 기존의 생물체 식별법이 갖고 있는 문제점을 해결하기 위한 것으로, 다양한 생물에서 공통적으로 사용할 수 있는 DNA 지문 이용 기술을 제공함으로써, 이를 이용한 생물 개체, 집단, 종의 식별 방법을 제공하고자 하는 것이다.The present invention is to solve the problems of the existing biometric identification method using a DNA fingerprint, by providing a DNA fingerprint using technology that can be commonly used in a variety of organisms, to provide a method for identifying a biological individual, population, species using the same I would like to.

도 1은 시간 유전자 단백질의 보존지역 아미노산 서열간 종간 비교와 인트론의 위치를 나타낸 도면,1 is a diagram showing the comparison between species and amino acid sequence of the conserved region amino acid sequence of the time gene protein,

도 2는 뱀장어 시간 유전자 인트론의 개체간 변이를 보여주는 도면.Figure 2 shows the intersubspecies variation of the eel time gene intron.

상기 목적을 달성하기 위한 본 발명의 생물체 식별 방법은, 시간 유전자 인트론의 염기서열을 DNA 지문으로 이용하는 것을 특징으로 한다.The organism identification method of the present invention for achieving the above object is characterized by using the base sequence of the time gene intron as a DNA fingerprint.

구체적으로, 본 발명의 생물체 식별 방법은,Specifically, the organism identification method of the present invention,

시간 유전자 인트론 앞뒤의 보존지역 염기서열을 이용하여 인트론을 증폭시킬 수 있는 중합효소연쇄반응 프라이머 쌍을 제작하고;Preparing polymerase chain reaction primer pairs capable of amplifying introns using conserved region sequences before and after the time gene introns;

제작된 프라이머를 가지고 중합효소연쇄반응을 실시하여 인트론을 증폭하고;Amplifying introns by polymerase chain reaction with the prepared primers;

증폭된 인트론 DNA 단편의 염기서열을 결정하고; 그리고Determining the sequence of the amplified intron DNA fragment; And

상기 인트론의 염기서열 정보에 의해 생물체를 확인하는 단계를 포함하는 것을 특징으로 한다.And identifying the organism by the base sequence information of the intron.

본 발명은 시간 유전자(clock gene)의 인트론 염기서열에 개체간, 종간 변이가 크다는 것, 그리고 이러한 인트론의 앞뒤에 보존지역(bHLH, PAS-A, PAS-B domain 결정지역 등)이 존재하며, 보존지역의 염기서열을 보존된 아미노산 순서에 근거하여 유전자 암호에 따라 재구성할 수 있다는 유전학적 지식에 기초한다.In the present invention, there is a large variation between individuals and species in the intron sequence of a clock gene, and there are conservation regions (bHLH, PAS-A, PAS-B domain determination regions, etc.) before and after these introns. It is based on the genetic knowledge that the sequence of the conserved region can be reconstructed according to the genetic code based on the conserved amino acid sequence.

시간 유전자(clock gene)는 사람, 쥐, 어류, 초파리에서 이미 발견되었으며 대부분의 생물(동물)에 존재하는 것으로 과학계에서 받아들여지고 있다. 시간 유전자 단백질에서 bHLH, PAS-A, PAS-B라고 불리는 지역과 그 주변 일부 지역은 생물의 종류에 관계 없이 거의 동일한 아미노산을 갖고 있는 보존지역으로 알려져 있다.Clock genes are already found in humans, mice, fish and fruit flies and are accepted by the scientific community as present in most organisms. In temporal proteins, regions called bHLH, PAS-A, and PAS-B, and some of the surrounding regions, are known to be conserved regions with almost the same amino acids, regardless of species.

도 1은 시간 유전자 단백질의 보존지역 아미노산 서열간 종간 비교와 인트론의 위치(I5∼I13)를 나타낸 것으로, 박스는 보존지역(bHLH, PAS-A, PAS-B)을 의미한다. 여기에서 ①은 우럭(Sebastes schlegeli), ②는 제브라 피쉬(zebra fish), ③은 연어, ④는 쥐, 그리고 ⑤는 사람을 나타낸다.Figure 1 shows the comparison of species between the conserved region amino acid sequences of the time gene protein and the positions of introns (I5 to I13), and the box means the conserved regions (bHLH, PAS-A, PAS-B). Where ① is Sebastes schlegeli , ② is zebra fish, ③ is salmon, ④ is rat, and ⑤ is human.

이와 같은 보존지역에서 이 지역을 결정하는 시간 유전자의 DNA 단편은 유전자 암호에 따라 생물에 관계 없이 그 염기서열을 재구성할 수 있으며, 필요에 의해 이 단편을 중합효소연쇄반응(PCR, polymerase chain reaction)으로 증폭하고 그 염기서열을 확인할 수 있다.The DNA fragment of the time gene that determines this region in such a conserved region can reconstruct its nucleotide sequence irrespective of the organism according to the genetic code, and if necessary, the fragment is subjected to a polymerase chain reaction (PCR). Can be amplified and its nucleotide sequence confirmed.

시간 유전자의 이 DNA 단편에는 유전자 구조상 아미노산을 결정하지 않는 인트론(intron) 지역이 존재하는데, 본 발명은 시간 유전자 인트론의 염기서열이 개체간 및 종간 차이가 크다는 사실을 발견한 것에 기초하여 이루어진 것이다.This DNA fragment of the time gene has an intron region that does not determine amino acids in the genetic structure, and the present invention is based on the discovery that the nucleotide sequence of the time gene intron is large between individuals and species.

도 2는 뱀장어 시간 유전자 인트론의 개체간 변이를 보여주는 것으로, 박스지역은 인트론 10을 나타낸다.Figure 2 shows the inter-individual variation of the eel time gene intron, with the box region representing intron 10.

또한, 다음 표 1은 생물 분류군간 인트론 염기 길이의 차이를 보여주는 것으로, 단위는 bp이다.In addition, Table 1 shows the difference in intron base length between the bio taxa, the unit is bp.

인트론 번호Intron number 우럭Rockfish rat 뱀장어eel 연어salmon 99 586586 28212821 1010 122122 108108 518518 142142 1111 114114 20352035 374374 168168 1212 10101010 191191 439439 1313 107107 765765

이와 같은 발견에 의하면, 시간 유전자 인트론의 염기서열은 서로 다른 생물을 식별하는 DNA 지문으로 이용될 수 있으며, 본 발명은 이에 따라 이루어진 것이다.According to this finding, the nucleotide sequence of the time gene intron can be used as a DNA fingerprint for identifying different organisms, and the present invention has been made accordingly.

본 발명에 따른 시간 유전자 인트론을 이용한 DNA 지문이 종래의 DNA 지문과 다른 점은 생물의 종류에 관계없이 어느 생물(동물)에서나 사용 가능하다는 것이다. 즉, 시간 유전자는 대부분의 생물에 존재하고, 보존지역이 있어 인트론의 앞뒤 염기서열을 재구성할 수 있으므로, 이를 이용하여 인트론을 중합효소연쇄반응으로 증폭하여 그 염기서열을 확인하고 비교할 수 있는 것이다.The DNA fingerprint using the time gene intron according to the present invention differs from the conventional DNA fingerprint in that it can be used in any organism (animal) regardless of the type of organism. That is, the time gene is present in most organisms, and since there is a conserved region, it is possible to reconstruct the front and rear nucleotide sequences of the intron, so that the intron can be amplified by a polymerase chain reaction to identify and compare the nucleotide sequences.

이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명한다. 단, 다음 실시예는 본 발명의 예시일 뿐 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only examples of the present invention, and the scope of the present invention is not limited thereto.

[실시예]EXAMPLE

먼저, 시간 유전자 인트론 앞뒤의 보존지역 염기서열을 재구성하고, 이 정보를 이용하여 인트론을 증폭시킬 수 있는 중합효소연쇄반응 프라이머 쌍을 제작하였다.First, the sequences of the conserved regions before and after the time gene intron were reconstructed, and using this information, a polymerase chain reaction primer pair capable of amplifying the intron was prepared.

즉, 우럭과 뱀장어, 사람에서 개체간 혹은 종간 식별을 목적으로 시간 유전자 인트론 10(도 1에서 I10)과 인트론 11(도 1에서 I11)의 염기서열을 이용하기 위해, 인트론 10과 인트론 11의 앞 뒤 보존지역 아미노산 순서를 고려하여 염기서열을 다음과 같이 재구성하였다: 앞쪽의 보존된 아미노산, EFCCHMLRGTIDPKE; 뒤쪽의 보존된 아미노산, MCTVEEPNEEF 또는 GYDYYHVDDL > 염기서열 재구성, 앞쪽 GARTTYTGYTGYCAYATGYTNMGNGGNACNATNGAYCCNAARAGR; 뒤쪽 ATGTGYACNGTNGARGARCCNAAY GARGARTTY 또는 GGNTAYGAYTAYTAYCAYGTNGAYGAYYTN.That is, in order to use the sequences of the time genes Intron 10 (I10 in FIG. 1) and Intron 11 (I11 in FIG. 1) for the purpose of identifying individuals or species in humans, eel and humans, the front of Intron 10 and Intron 11 The sequence was reconstructed as follows, taking into account the amino acid sequence of the conserved region as follows: the former conserved amino acid, EFCCHMLRGTIDPKE; Posterior conserved amino acids, MCTVEEPNEEF or GYDYYHVDDL> sequencing reconstruction, anterior GARTTYTGYTGYCAYATGYTNMGNGGNACNATNGAYCCNAARAGR; Rear ATGTGYACNGTNGARGARCCNAAY GARGARTTY or GGNTAYGAYTAYTAYCAYGTNGAYGAYYTN.

재구성된 염기서열에서 인트론을 증폭하기 위한 중합효소연쇄반응 프라이머를 다음과 같이 제작하였다:Polymerase chain reaction primers were prepared as follows to amplify introns from the reconstituted sequence:

전위(forward) 프라이머 Clock F2: 5' GAGTTYTGYTGYCAYATGYT 3'(서열 5);Forward primer Clock F2: 5 'GAGTTYTGYTGYCAYATGYT 3' (SEQ ID NO: 5);

역위(reverse) 프라이머 HCMS23: 5' TTGGGCTCCTCCACTGTACACA 3' (서열 7);Reverse primer HCMS23: 5 'TTGGGCTCCTCCACTGTACACA 3' (SEQ ID NO: 7);

역위(reverse) 프라이머 Clock R2, 5' TCGACCTGRTARTARTCRTA 3' (서열 3).Reverse primer Clock R2, 5 'TCGACCTGRTARTARTCRTA 3' (SEQ ID NO: 3).

다음 표 2는 우럭과 뱀장어 시간 유전자의 인트론을 증폭하기 위한 중합효소연쇄반응 프라이머 쌍의 예를 나타낸 것이다.Table 2 below shows examples of polymerase chain primer pairs for amplifying introns of the eel time gene.

유전자명Gene name 프라이머 염기서열Primer Sequence 증폭되는 인트론(I)Intron Amplified ClockClock Clock F1: 5' ATACGRCARGAYTGGAARCC 3' (서열 1)Clock R1: 5' AGCATCTGRCARCARAAYTC 3' (서열 2)Clock F1: 5 'ATACGRCARGAYTGGAARCC 3' (SEQ ID NO: 1) Clock R1: 5 'AGCATCTGRCARCARAAYTC 3' (SEQ ID NO: 2) I7, I8, I9I7, I8, I9 ClockClock Clock F1: 5' ATACGRCARGAYTGGAARCC 3'Clock R2: 5' TCGACCTGRTARTARTCRTA 3' (서열 3)Clock F1: 5 'ATACGRCARGAYTGGAARCC 3'Clock R2: 5' TCGACCTGRTARTARTCRTA 3 '(SEQ ID NO: 3) I7, I8, I9, I10, I11, I12I7, I8, I9, I10, I11, I12 ClockClock Clock F1: 5' ATACGRCARGAYTGGAARCC 3'Clock R3: 5' TGGARCCATATCCAYTGYTG 3' (서열 4)Clock F1: 5 'ATACGRCARGAYTGGAARCC 3'Clock R3: 5' TGGARCCATATCCAYTGYTG 3 '(SEQ ID NO: 4) I7, I8, I9, I10, I11, I12, I13I7, I8, I9, I10, I11, I12, I13 ClockClock Clock F2: 5' GAGTTYTGYTGYCAYATGYT 3' (서열 5)Clock R2: 5' TCGACCTGRTARTARTCRTA 3'Clock F2: 5 'GAGTTYTGYTGYCAYATGYT 3' (SEQ ID NO: 5) Clock R2: 5 'TCGACCTGRTARTARTCRTA 3' I10, I11, I12I10, I11, I12 ClockClock Clock F2: 5' GAGTTYTGYTGYCAYATGYT 3'Clock R3: 5' TGGARCCATATCCAYTGYTG 3'Clock F2: 5 'GAGTTYTGYTGYCAYATGYT 3'Clock R3: 5' TGGARCCATATCCAYTGYTG 3 ' I10, I11, I12, I13I10, I11, I12, I13 ClockClock Clock F2: 5' GAGTTYTGYTGYCAYATGYT 3'HCMS1: 5' AGACCATTCCTCCCTGCATTGGG 3' (서열 6)Clock F2: 5 'GAGTTYTGYTGYCAYATGYT 3'HCMS1: 5' AGACCATTCCTCCCTGCATTGGG 3 '(SEQ ID NO: 6) I10I10 ClockClock Clock F2: 5' GAGTTYTGYTGYCAYATGYT 3'HCMS23: 5' TTGGGCTCCTCCACTGTACACA 3' (서열 7)Clock F2: 5 'GAGTTYTGYTGYCAYATGYT 3'HCMS23: 5' TTGGGCTCCTCCACTGTACACA 3 '(SEQ ID NO: 7) I10, I11I10, I11

위 표에서 F는 전위(forward), R은 역위(reverse) 프라이머를 의미하고, HCMS는 우럭의 역위 프라이머를 나타낸다.In the above table, F means forward, R means reverse primer, and HCMS indicates a reverse primer.

제작된 프라이머를 가지고 중합효소연쇄반응을 진행시켜 인트론을 증폭한다.The intron is amplified by polymerase chain reaction with the prepared primers.

구체적으로는, 먼저 중합효소연쇄반응 용액 50 ㎕을 다음과 같이 제조하였다: 게놈 DNA 약 500∼1,000 ng, 전위 프라이머(Clock F2)와 역위 프라이머(Clock R2) 각 0.5 μM, 뉴클레오티드(dATP, dTTP, dCTP, dGTP) 각 0.2 μM, HotStarTaq DNA 합성효소(Quigen, Germany) 2.5 units, 트리스(pH 8.7), KCl, (NH4)2SO4, 1.5 mM MgCl2, 이차 증류수.Specifically, 50 μl of the polymerase chain reaction solution was prepared as follows: about 500 to 1,000 ng of genomic DNA, 0.5 μM of each of the reverse primer (Clock F2) and the reverse primer (Clock R2), nucleotides (dATP, dTTP, dCTP, dGTP) 0.2 μM each, HotStarTaq DNA Synthetase (Quigen, Germany) 2.5 units, Tris pH 7.7, KCl, (NH 4 ) 2 SO 4 , 1.5 mM MgCl 2 , secondary distilled water.

이어서 다음 표 3에 나타낸 바와 같이 중합효소연쇄반응을 진행시켰다.Subsequently, the polymerase chain reaction was performed as shown in Table 3 below.

게놈 DNA 중합효소연쇄반응Genomic DNA Polymerase Chain Reaction 반복회수Repetition 반응단계Reaction step 반응온도 (℃)Reaction temperature (℃) 반응시간(분)Response time (minutes) 1One 초기활성화Initial activation 9595 1515 3535 DenaturationDenaturation 9595 1One AnnealingAnnealing 45 - 5345-53 1One ExtensionExtension 7272 1.51.5 1One Final ExtensionFinal extension 7272 1010 저장Save 44

중합효소연쇄반응이 끝난 후 결과물을 0.8 % 아가로스 젤에 전기영동(약 100 V, 1 시간)하여 계획했던 크기의 DNA 단편이 증폭되었는가를 확인하였다. 증폭된 DNA 단편을 분리하여 바로 시퀀싱하거나 클로닝후 시퀀싱하여 염기서열을 결정하였다. DMA 단편의 염기서열 결정 과정은 빅다이 터미네이터(BigDye terminator: PE Applied Biosystems, USA)를 이용한 중합효소연쇄반응, 에탄올을 이용한 반응산물 DNA의 정제, DNA 시퀀서(ABI prism 377 DNA Sequencer: PE Applied Biosystems, USA)를 이용한 DNA의 전기영동 순으로 진행하였다.After the polymerase chain reaction, the resultant was subjected to electrophoresis (about 100 V, 1 hour) on 0.8% agarose gel to confirm that the DNA fragment of the planned size was amplified. Amplified DNA fragments were isolated and sequenced immediately or cloned and sequenced to determine nucleotide sequences. Sequence determination of DMA fragments was carried out using polymerase chain reaction using BigDye terminator (PE Applied Biosystems, USA), purification of reaction product DNA using ethanol, DNA sequencer (ABI prism 377 DNA Sequencer: PE Applied Biosystems, USA) electrophoresis of DNA.

염기서열 결정을 위한 중합효소연쇄반응 용액은 다음과 같이 총 10 ㎕를 만들었다: DNA 단편 약 100 ng, 전위 프라이머(Clock F2) 또는 시퀀싱 프라이머(M13 전위 프라이머, TGTAAAACGACGGCCAGT) 1.6 p㏖, 터미네이터 레디 리액션 믹스(Terminator ready reaction mix: PE Applied Biosystems, USA) 4 ㎕, 이차 증류수.The polymerase chain reaction solution for sequencing made a total of 10 μl as follows: about 100 ng of DNA fragment, 1.6 pmol of translocation primer (Clock F2) or sequencing primer (M13 translocation primer, TGTAAAACGACGGCCAGT), terminator ready reaction mix (Terminator ready reaction mix: PE Applied Biosystems, USA) 4 μl, secondary distilled water.

이어서 다음 표 4에 나타낸 바와 같이 중합효소연쇄반응을 진행시켰다.Next, as shown in Table 4, the polymerase chain reaction was performed.

시퀀싱 중합효소연쇄반응Sequencing Polymerase Chain Reaction 반복회수Repetition 반응단계Reaction step 반응온도 (℃)Reaction temperature (℃) 반응시간Reaction time 1One 초기활성화Initial activation 9595 2 분2 mins 2525 DenaturationDenaturation 9696 10 초10 sec AnnealingAnnealing 5050 5 초5 sec ExtensionExtension 6060 4 분4 mins 저장Save 44

반응산물 DNA를 다음과 같이 에탄올 정제하였다: 즉, 반응이 끝난 후 반응 튜브에 이차 증류수 40 ㎕를 넣고 잘 섞은 다음 전체 용액을 새로운 튜브에 옮기고, 여기에 3 M 초산나트륨(NaOAc, pH 4.6) 5 ㎕와 차가운 100 % 에탄올 125 ㎕를넣고 얼음에 10 분간 두었다. 이 용액을 14,000 rpm으로 20 분간 원심분리하여 DNA를 침전시키고 차가운 70 % 에탄올로 DNA 침전물을 세척한 후, 다시 원심분리하여 DNA를 침전시키고 에탄올을 버렸다. 침전된 DNA를 상온에서 건조시키고, 포름아미드와 푸른 덱스트란이 함유된 25 mM EDTA(pH 8.0) 용액이 5 대 1의 비율로 섞인 완충액으로 DNA를 용해시켰다.The reaction product DNA was purified by ethanol as follows: after completion of the reaction, 40 μl of secondary distilled water was added to the reaction tube, mixed well, and then the whole solution was transferred to a new tube, where 3 M sodium acetate (NaOAc, pH 4.6) 5 125 μl and 125 μl of cold 100% ethanol were added and placed on ice for 10 minutes. The solution was centrifuged at 14,000 rpm for 20 minutes to precipitate DNA, and the DNA precipitate was washed with cold 70% ethanol, followed by centrifugation to precipitate DNA and discarded ethanol. Precipitated DNA was dried at room temperature, and the DNA was dissolved in a buffer in which a 25 mM EDTA (pH 8.0) solution containing formamide and blue dextran was mixed at a ratio of 5 to 1.

DNA 단편의 염기서열 결정은 최종적으로 DNA 시퀀서(ABI prism 377 DNA Sequencer: PE Applied Biosystems, USA)를 이용한 전기영동으로 이루어진다. 즉, 위에서 용해시킨 DNA를 95 ℃에서 2 분 동안 가열한 후 시퀀서에 설치된 젤 위에 넣고, 이후 DNA를 전기영동하여 DNA 각 조각이 분리되면서 염기서열이 얻어지도록 하였다.Nucleotide sequence determination is finally performed by electrophoresis using a DNA sequencer (ABI prism 377 DNA Sequencer: PE Applied Biosystems, USA). That is, the DNA dissolved in the above was heated for 2 minutes at 95 ℃ and put on the gel installed in the sequencer, and then the DNA was electrophoresed so that each fragment of the DNA was separated to obtain a base sequence.

여러 개체에서 시간 유전자의 Clock F2 프라이머와 Clock R2 프라이머 사이의 염기서열이 얻어지면, 염기서열 정렬 프로그램(예, Clustal W)을 이용하여 이들을 서로 정렬하고(도 2), 정렬된 염기서열에서 각 개체간에 변이를 보이는 염기를 확인하여 이를 각 개체를 식별하는 근거로 삼는다.Once the sequences between the Clock F2 primer and the Clock R2 primer of the time gene are obtained in several individuals, they are aligned with each other using a sequence alignment program (e.g., Clustal W) (Figure 2), and each individual in the aligned sequences Identify the bases with mutations in the liver and use this as the basis for identifying each individual.

위 표 2에서 제시한 프라이머 외에 시간 유전자 인트론을 증폭하기 위해 사용될 수 있는 프라이머 염기서열의 예를 다음 표 5에 나타낸다.In addition to the primers shown in Table 2 above, examples of primer sequences that can be used to amplify time gene introns are shown in Table 5 below.

유전자명Gene name 프라이머 염기서열Primer Sequence ClockClock 전위 프라이머(forward primers)Clock F3: 5' GAYCARTTYAANGTNYT 3' (서열 8)Clock F4: 5' AARGARYTNGGNACNATG 3' (서열 9)Clock F5: 5' ACNMGNAARATGGAYAA 3' (서열 10)Clock F6: 5' AAYGARGARTTYACNCA 3' (서열 11)Clock F7: 5' GCNATNATGACNGAYGG 3' (서열 12)Clock F8: 5' GARTTYTGYTGYCAYATG 3' (서열 13)Clock F9: 5' ACNATNGAYCCNAARGA 3' (서열 14)Clock F10: 5' TAYGARTAYGTNAARTT 3' (서열 15)Clock F11: 5' ATGTGYACNGTNGARGA 3' (서열 16)Clock F12: 5' CCNAAYGARGARTTYAC 3' (서열 17)Clock F13: 5' GARTGGAARTTYYTNTT 3' (서열 18)Forward primersClock F3: 5 'GAYCARTTYAANGTNYT 3' (SEQ ID NO: 8) Clock F4: 5 'AARGARYTNGGNACNATG 3' (SEQ ID NO: 9) Clock F5: 5 'ACNMGNAARATGGAYAA 3' (SEQ ID NO: 10) Clock F6: 5 'AAYGARGARTTYACNCA 3' (SEQ ID NO: 11) Clock F7: 5 'GCNATNATGACNGAYGG 3' (SEQ ID NO: 12) Clock F8: 5 'GARTTYTGYTGYCAYATG 3' (SEQ ID NO: 13) Clock F9: 5 'ACNATNGAYCCNAARGA 3' (SEQ ID NO: 14) Clock F10: 5 'TAYGARTAYGTNAARTT 3' Clock F11: 5 'ATGTGYACNGTNGARGA 3' (SEQ ID NO: 16) Clock F12: 5 'CCNAAYGARGARTTYAC 3' (SEQ ID NO: 17) ClockClock 역위 프라이머(reverse primers)Clock R4: 5' TGNGTRAAYTCYTCRTT 3' (서열 19)Clock R5: 5' CCRTCNGTCATNATNGC 3' (서열 20)Clock R6: 5' CATRTGRCARCARAAYTCCAT 3' (서열 21)Clock R7: 5' TCYTTNGGRTCNATNGT 3' (서열 22)Clock R8: 5' AAYTTNACRTAYTCRTA 3' (서열 23)Clock R9: 5' TCYTCNACNGTRCACAT 3' (서열 24)Clock R10: 5' GTRAAYTCYTCRTTNCC 3' (서열 25)Clock R11: 5' AANARRAAYTTCCAYTC 3' (서열 26)Clock R12: 5' ACRTGRTARTARTCRTA 3' (서열 27)Clock R13: 5' CCYTTNCCRTAYTGCAT 3' (서열 28)Clock R14: 5' AYRAANCKRTARTARCA 3' (서열 29)Clock R15: 5' AACCANATCCAYTGYTG 3' (서열 30)Reverse primersClock R4: 5 'TGNGTRAAYTCYTCRTT 3' (SEQ ID NO: 19) Clock R5: 5 'CCRTCNGTCATNATNGC 3' (SEQ ID NO: 20) Clock R6: 5 'CATRTGRCARCARAAYTCCAT 3' (SEQ ID NO: 21) Clock R7: 5 'TCYTTNGGRTCNATNGT (SEQ ID NO: 22) Clock R8: 5 'AAYTTNACRTAYTCRTA 3' (SEQ ID NO: 23) Clock R9: 5 'TCYTCNACNGTRCACAT 3' (SEQ ID NO: 24) Clock R10: 5 'GTRAAYTCYTCRTTNCC 3' (SEQ ID NO: 25) Clock R11: 5 'AANARRAAYTTCCAYTC 3' Clock R12: 5 'ACRTGRTARTARTCRTA 3' (SEQ ID NO: 27) Clock R13: 5 'CCYTTNCCRTAYTGCAT 3' (SEQ ID NO: 28) Clock R14: 5 'AYRAANCKRTARTARCA 3' (SEQ ID NO: 29) Clock R15: 5 'AACCANATCCAYTGYTG 3' (SEQ ID NO: 30)

이상의 실시예에서 살펴본 바와 같이, 시간 유전자 인트론 앞뒤의 보존지역 염기서열을 재구성하고, 이 정보를 이용하여 인트론을 증폭시킬 수 있는 중합효소연쇄반응 프라이머 쌍을 제작한 후, 증폭된 인트론 DNA 단편을 직접 시퀀싱하거나, 클로닝 과정 후 시퀀싱하여 인트론의 염기서열을 결정하고, 이를 이용하여 비교 생물간 인트론 염기서열의 유사성과 차이를 밝혀 생물 확인과 근원 관계를 결정할 수 있게 된다.따라서 본원발명의 또 다른 특징은 서열 1 내지 30의 올리고뉴클레오티드로 이루어지는 군에서 하나 이상이 선택된 것을 포함하는 생물체 식별 방법에 사용되는 올리고뉴크레오티드에 관한 것이다.As described in the above examples, the sequences of the conserved regions before and after the time gene intron were reconstructed, and polymerase chain reaction primer pairs capable of amplifying the intron were prepared using this information, and then the amplified intron DNA fragments were directly produced. By sequencing or by cloning after sequencing to determine the intron nucleotide sequence, it can be used to determine the similarity and difference of the intron sequencing between the comparative organisms to determine the biological identification and the source relationship. The present invention relates to an oligonucleotide used in a method for identifying an organism comprising at least one selected from the group consisting of oligonucleotides of SEQ ID NOs: 1 to 30.

이상 설명한 바와 같이, 본 발명에 따라 시간 유전자 인트론 염기서열을 DNA 지문으로 활용하여 생물체를 식별하는 기술은, 각 생물 분류군마다 서로 다른 DNA지문을 사용해야 하는 선행기술의 단점을 보완한 것으로 대부분의 생물(동물)에 공통적으로 사용될 수 있기 때문에, 피의자의 식별과 근친관계 확인 등 사람과 관련된 법의학적 용도뿐만 아니라, 각종 농수산물과 수입 동물 등 식별이 필요한 다양한 생물(동물)에 적용될 수 있다.As described above, the technique of identifying organisms using the time gene intron sequence as the DNA fingerprint according to the present invention complements the shortcomings of the prior art in which different DNA fingerprints should be used for each biological taxon. Since it can be used in common with animals, it can be applied to various organisms (animals) requiring identification such as various agricultural and marine products and imported animals, as well as forensic use related to humans such as identification of the suspect and confirmation of intimacy.

또한, 생물체의 식별 과정은 그 정확성을 높이기 위해 보다 많은 판단 자료를 필요로 하는데, 본 발명의 방법을 선행기술과 함께 사용할 경우, 생물체 식별 과정에 또 하나의 독립된 판단 자료를 제공함으로써 확인 판정의 신뢰성을 높이는 효과를 가져오게 된다.In addition, the identification process of the organism requires more judgment data in order to increase its accuracy. When using the method of the present invention together with the prior art, the reliability of the confirmation judgment is provided by providing another independent judgment data in the organism identification process. This will bring about an effect.

<110> KOREA OCEAN RESEARCH AND DEVELOPMENT INSTITUTE <120> IDENTIFICATION OF AN ORGANISM BY USE OF THE INTRON DNA SEQUENCE OF THE CLOCK GENE AS DNA FINGERPRINTS <130> PPC30134 <160> 30 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 1 atacgrcarg aytggaarcc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 2 agcatctgrc arcaraaytc 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 3 tcgacctgrt artartcrta 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 4 tggarccata tccaytgytg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 5 gagttytgyt gycayatgyt 20 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 6 agaccattcc tccctgcatt ggg 23 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 7 ttgggctcct ccactgtaca ca 22 <210> 8 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 8 gaycarttya angtnyt 17 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 9 aargarytng gnacnatg 18 <210> 10 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 10 acnmgnaara tggayaa 17 <210> 11 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 11 aaygargart tyacnca 17 <210> 12 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 12 gcnatnatga cngaygg 17 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 13 garttytgyt gycayatg 18 <210> 14 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 14 acnatngayc cnaarga 17 <210> 15 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 15 taygartayg tnaartt 17 <210> 16 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 16 atgtgyacng tngarga 17 <210> 17 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 17 ccnaaygarg arttyac 17 <210> 18 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 18 gartggaart tyytntt 17 <210> 19 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 19 tgngtraayt cytcrtt 17 <210> 20 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 20 ccrtcngtca tnatngc 17 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 21 catrtgrcar caraaytcca t 21 <210> 22 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 22 tcyttnggrt cnatngt 17 <210> 23 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 23 aayttnacrt aytcrta 17 <210> 24 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 24 tcytcnacng trcacat 17 <210> 25 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 25 gtraaytcyt crttncc 17 <210> 26 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 26 aanarraayt tccaytc 17 <210> 27 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 27 acrtgrtart artcrta 17 <210> 28 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 28 ccyttnccrt aytgcat 17 <210> 29 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 29 ayraanckrt artarca 17 <210> 30 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 30 aaccanatcc aytgytg 17<110> KOREA OCEAN RESEARCH AND DEVELOPMENT INSTITUTE <120> IDENTIFICATION OF AN ORGANISM BY USE OF THE INTRON DNA SEQUENCE OF THE CLOCK GENE AS DNA FINGERPRINTS <130> PPC30134 <160> 30 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 1 atacgrcarg aytggaarcc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 2 agcatctgrc arcaraaytc 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 3 tcgacctgrt artartcrta 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 4 tg garccata tccaytgytg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 5 gagttytgyt gycayatgyt 20 <210> 6 <211> 23 <212 > DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 6 agaccattcc tccctgcatt ggg 23 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223 > primer for amplifying intron of clock gene <400> 7 ttgggctcct ccactgtaca ca 22 <210> 8 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 8 gaycarttya angtnyt 17 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> p rimer for amplifying intron of clock gene <400> 9 aargarytng gnacnatg 18 <210> 10 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 10 acnmgnaara tggayaa 17 <210> 11 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 11 aaygargart tyacnca 17 <210> 12 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 12 gcnatnatga cngaygg 17 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 13 garttytgyt gycayatg 18 <210> 14 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 14 acnatngayc cnaarga 17 <210> 15 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 15 taygartayg tnaartt 17 <210> 16 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 16 atgtgyacng tngarga 17 <210> 17 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 17 ccnaaygarg arttyac 17 <210> 18 <211> 17 < 212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 18 gartggaart tyytntt 17 <210> 19 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 19 tgngtraayt cytcrtt 17 <210> 20 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 20 ccrtcngtca tnatngc 17 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 21 catrtgrcar caraaytcca t 21 <210> 22 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 22 tcyttnggrt cnatngt 17 <210> 23 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifyin g intron of clock gene <400> 23 aayttnacrt aytcrta 17 <210> 24 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 24 tcytcnacng trcacat 17 < 210> 25 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 25 gtraaytcyt crttncc 17 <210> 26 <211> 17 <212> DNA <213 > Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 26 aanarraayt tccaytc 17 <210> 27 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 27 acrtgrtart artcrta 17 <210> 28 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 28 ccyttnccrt aytgcat 17 <210> 29 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 29 ayraanckrt artarca 17 <210> 30 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplifying intron of clock gene <400> 30 aaccanatcc aytgytg 17

Claims (3)

시간 유전자 인트론의 염기서열을 DNA 지문으로 이용하는 것을 특징으로 하는 생물체 식별 방법.An organism identification method comprising using a nucleotide sequence of a time gene intron as a DNA fingerprint. 제 1 항에 있어서,The method of claim 1, 시간 유전자 인트론 앞뒤의 보존지역 염기서열을 이용하여 인트론을 증폭시킬 수 있는 중합효소연쇄반응 프라이머 쌍을 제작하고;Preparing polymerase chain reaction primer pairs capable of amplifying introns using conserved region sequences before and after the time gene introns; 제작된 프라이머를 가지고 중합효소연쇄반응을 실시하여 인트론을 증폭하고,Amplify the intron by polymerase chain reaction with the prepared primer, 증폭된 인트론 DNA 단편의 염기서열을 결정하고; 그리고Determining the sequence of the amplified intron DNA fragment; And 상기 인트론의 염기서열 정보에 의해 생물체를 확인하는 단계를 포함하는 것을 특징으로 하는 생물체 식별 방법.And identifying the organism by the base sequence information of the intron. 서열 1 내지 30의 올리고뉴클레오티드로 이루어지는 군에서 하나 이상이 선택된 것을 포함하는 생물체 식별 방법에 사용되는 올리고뉴크레오티드.Oligonucleotides for use in organism identification methods comprising at least one selected from the group consisting of oligonucleotides of SEQ ID NOs: 1-30.
KR10-2002-0015277A 2002-03-21 2002-03-21 Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints KR100459106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0015277A KR100459106B1 (en) 2002-03-21 2002-03-21 Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0015277A KR100459106B1 (en) 2002-03-21 2002-03-21 Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints

Publications (2)

Publication Number Publication Date
KR20030075818A KR20030075818A (en) 2003-09-26
KR100459106B1 true KR100459106B1 (en) 2004-12-03

Family

ID=32225633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0015277A KR100459106B1 (en) 2002-03-21 2002-03-21 Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints

Country Status (1)

Country Link
KR (1) KR100459106B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413908A (en) * 1984-11-12 1995-05-09 Lister Institute Of Preventive Medicine Method of characterizing genomic DNA by reference to a genetic variable
WO1998040514A1 (en) * 1997-03-13 1998-09-17 Northwestern University Clock gene and gene product
WO1999004034A1 (en) * 1997-07-17 1999-01-28 Procrea Biosciences Inc. Primers for obtaining highly informative dna markers
WO2001075176A2 (en) * 2000-04-04 2001-10-11 California Institute Of Technology Methods and systems for molecular fingerprinting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413908A (en) * 1984-11-12 1995-05-09 Lister Institute Of Preventive Medicine Method of characterizing genomic DNA by reference to a genetic variable
WO1998040514A1 (en) * 1997-03-13 1998-09-17 Northwestern University Clock gene and gene product
WO1999004034A1 (en) * 1997-07-17 1999-01-28 Procrea Biosciences Inc. Primers for obtaining highly informative dna markers
WO2001075176A2 (en) * 2000-04-04 2001-10-11 California Institute Of Technology Methods and systems for molecular fingerprinting

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Genomics. 1999 Apr 15;57(2):189-200 *
Korean J. Anim. Sci., 38(2) 139~144, 1996 *
과학기술부 보고서, 서울대학교, 1993, 한글초록 *

Also Published As

Publication number Publication date
KR20030075818A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
Hirono et al. Cloning and characterisation of a cDNA encoding Japanese flounder Paralichthys olivaceus IgD
Wang et al. A gene expression screen.
Fujimoto et al. Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins
Jurevic et al. Single-nucleotide polymorphisms and haplotype analysis in β-defensin genes in different ethnic populations
CA2365870A1 (en) Typing of human enteroviruses
CN111979313B (en) Specific primer, kit and application for detecting pathogenic variation of deafness gene based on multiplex PCR and high-throughput sequencing technology
CN107365840B (en) Cervidae animal rapid identification kit based on DNA bar code and application thereof
US7993882B2 (en) CRH and POMC effects on animal growth
KR100459106B1 (en) Identification of an organism by use of the intron dna sequence of the clock gene as dna fingerprints
Gaffney et al. A PCR based method to determine the Kalow allele of the cholinesterase gene: the E1k allele frequency and its significance in the normal population.
Piedrahita et al. Genetic characterization of the bovine leukaemia inhibitory factor (LIF) gene: isolation and sequencing, chromosome assignment and microsatellite analysis
KR102368835B1 (en) Primer sets for determining genotype of HSPB1 gene related to meat of Korean native cattle and uses thereof
KR20190100798A (en) Composition for predicting meat quality of pork and method for simple and rapid predicting of meat quality using thereof
TW202214874A (en) Rapid method for genotyping sting variants in human individuals
Schwerin et al. Sex determination in spotted hyena (Crocutacrocuta) by restriction fragment length polymorphism of amplified ZFX/ZFY loci
MURAKAMI et al. Reliable sex identification of dogs by modified PCR/RFLP analysis
AU2004257309B9 (en) Improving production characteristics of cattle
KR102615877B1 (en) Composition for discriminating Nanchukmacdon pork meat and use thereof
CN108517371B (en) Primer and method for identifying diploid D genome cotton seeds or tetraploid cotton seeds
Li et al. Identification of a novel HLA‐A* 11 allele, HLA‐A* 11: 333, in a Chinese individual.
JP2913035B1 (en) Individual identification method of eukaryote by PCR fingerprint using restriction primer of sequence between SINEs and primer used therefor
RU2006101561A (en) ALZHEIMER&#39;S DISEASE METHODS
Pometti et al. Development of microsatellite markers for the American species Vachellia aroma (Fabac
CA2327533A1 (en) A method for typing polymorphisms of bovine mhc class ii genes
Sandoval et al. Assessing the Taxonomic Status of the Gray Brocket Mazama simplicicornis argentina Lönnberg, 1919 (Artiodactyla: Cervidae)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121106

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141112

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee