KR100449427B1 - Method for fabricating of gas sensing device - Google Patents

Method for fabricating of gas sensing device Download PDF

Info

Publication number
KR100449427B1
KR100449427B1 KR10-2001-0059533A KR20010059533A KR100449427B1 KR 100449427 B1 KR100449427 B1 KR 100449427B1 KR 20010059533 A KR20010059533 A KR 20010059533A KR 100449427 B1 KR100449427 B1 KR 100449427B1
Authority
KR
South Korea
Prior art keywords
powder
tungsten oxide
nickel oxide
oxide
gas
Prior art date
Application number
KR10-2001-0059533A
Other languages
Korean (ko)
Other versions
KR20030026516A (en
Inventor
박진성
배인수
박보석
이강
Original Assignee
박진성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박진성 filed Critical 박진성
Priority to KR10-2001-0059533A priority Critical patent/KR100449427B1/en
Publication of KR20030026516A publication Critical patent/KR20030026516A/en
Application granted granted Critical
Publication of KR100449427B1 publication Critical patent/KR100449427B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명은 가스센싱 소자의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a gas sensing element.

이와 같은 본 발명 가스센싱 소자의 제조 방법은, 기판상의 소정 형상으로 센서전극 및 히터를 형성하고, 상기 소정형상의 영역에 산화텅스텐(WO3)에 산화니켈(NiO)을 혼합한 감지막을 형성하는 가스센서 제조방법에 있어서, 상기 산화텅스텐에 산화니켈을 0.1 ∼ 10mol% 첨가하여 혼합하고, 상기 산화텅스텐과 산화니켈 혼합물을 지르코니아 볼(Zirconia Balls)을 사용하여 12시간 볼밀링하는 단계와, 상기 볼밀링된 혼합물을 120℃로 오븐(oven)에서 건조한 후 분말로 형성하는 단계와, 상기 건조된 분말을 알루미나(Al2O3) 유발(Pestle or Grinding Mixer)을 이용하여 미립화하는 단계와, 상기 미립화한 분말을 전기로에서 850 ∼ 950℃로 2시간 동안 소결하여 벌크시편을 감지물질을 완성하는 단계와, 상기 벌크시편을 상기 소정의 기판영역에 페이스트를 사용하여 프린팅하는 단계를 포함하여 이루어진다.According to the method of manufacturing the gas sensing device of the present invention, a sensor electrode and a heater are formed in a predetermined shape on a substrate, and a sensing film in which nickel oxide (NiO) is mixed with tungsten oxide (WO 3 ) is formed in a region of the predetermined shape. In the gas sensor manufacturing method, 0.1-10 mol% of nickel oxide is added to the tungsten oxide and mixed, and the tungsten oxide and nickel oxide mixture is ball milled for 12 hours using zirconia balls, and the ball Drying the milled mixture in an oven at 120 ° C. and then forming a powder, atomizing the dried powder using an alumina (Al 2 O 3 ) pestle (Pestle or Grinding Mixer), and atomizing the powder. A powder was sintered at an electric furnace at 850 to 950 ° C. for 2 hours to complete a bulk specimen sensing material, and the bulk specimen was printed using a paste on the predetermined substrate area. It may comprise the steps:

Description

가스센싱 소자의 제조 방법{Method for fabricating of gas sensing device}Method for fabricating a gas sensing device {Method for fabricating of gas sensing device}

본 발명은 가스센서 소자에 관한 것으로, 특히 유해 가스인 질소산화물(NOx) 가스를 감지하기에 적당한 가스센싱 소자의 제조 방법에 관한 것이다.The present invention relates to a gas sensor device, and more particularly to a method for manufacturing a gas sensing device suitable for detecting a nitrogen oxide (NOx) gas that is a harmful gas.

센서 기술은 검지량에 따라 광, 전기, 자기, 열, 초음파, 역학 등을 정밀 측정 감지하기 위한 물리량 검지 센서 기술과, 습도, 가스, 이온, 냄새, 맛 등을 검출하기 위한 화학량 검지 센서 기술, 그리고 생· 화학 그리고 효소 반응을 검지 하기 위한 바이오센서 기술로 분리 할 수 있고 이를 구현하기 위한 다양한 기술이 요구되고 있다.The sensor technology includes physical quantity detection sensor technology for precisely detecting and detecting light, electricity, magnetic, heat, ultrasonic waves, and dynamics according to the detected amount, and chemical quantity detection sensor technology for detecting humidity, gas, ions, smells, and tastes, In addition, biosensor technology for detecting biochemical and enzymatic reactions can be separated, and various techniques for realizing this are required.

그리고 가스센싱 소자, 그 중에서도 가스를 감지하는 가스 센서는 감도(sensitivity), 선택성(selectivity), 안정성(stability), 신속성(speed), 재현성(reversibility), 신뢰성(reliability) 등이 요구되고 있다. 이러한 기능을 나타내기 위해서는 적절한 열에너지를 가해주어 기체를 감지하는 물질을 활성화시켜 주어야 한다.In addition, gas sensing devices, particularly gas sensors that sense gas, require sensitivity, selectivity, stability, speed, reversibility, reliability, and the like. To demonstrate this function, appropriate heat energy must be applied to activate the gas-sensitive material.

이와 같은 종래의 센서 중 유해가스를 검출하기 위한 센서 제조방법의 일예로는 수용액을 이용한 분말 합성법에 의한 미세분말 제조법이 있다.One example of a sensor manufacturing method for detecting a harmful gas in such a conventional sensor is a fine powder production method by a powder synthesis method using an aqueous solution.

그리고, 다른 예로는 산화텅스텐(WO3) 분말에 이산화티타늄(TiO2), 실리카(SiO2), 탄산바륨(Bi2O3), BaCO3등의 첨가제를 첨가하여 전도성 변화에 따른 센서특성 개선을 시도한 방법 등이 있다.In addition, as an example, additives such as titanium dioxide (TiO 2 ), silica (SiO 2 ), barium carbonate (Bi 2 O 3 ), and BaCO 3 are added to the tungsten oxide (WO 3 ) powder to improve sensor characteristics according to the conductivity change. How to try.

그러나 이와 같은 종래 기술에 있어서는 다음과 같은 문제점이 있었다.However, such a conventional technology has the following problems.

첫 번째, 수용액을 이용한 분말 합성법은 미세 분말을 얻을 수는 있으나 공정이 복잡하고 수율이 낮다는 문제점이 있다.First, the powder synthesis method using an aqueous solution has a problem that the fine powder can be obtained, but the process is complicated and the yield is low.

두 번째, 산화텅스텐(WO3)에 첨가제를(TiO2, SiO2, Bi2O3, BaCO3) 넣어 제조하는 방법에 있어서는 센서의 감지특성 개선이 크지 않고 안정성과 재현성이 떨어지는 문제점이 있었다.특히 종래 기술에 있어서는 산화물 분말은 열처리 할 때 그 입자 크기가 수 ㎛크기로 입자가 성장하고, 입도의 분포도가 불균일하여 화학센서의 표면반응에 의한 감지시 비표면적 감소로 감도저하의 원인이 되는 문제점이 있었다.Second, in the method of manufacturing additives (TiO 2 , SiO 2 , Bi 2 O 3 , BaCO 3 ) into tungsten oxide (WO 3 ), there is a problem that the detection characteristics of the sensor are not improved and stability and reproducibility are inferior. Particularly, in the prior art, oxide powder has a particle size of several μm when it is heat treated, and the particle size distribution is nonuniform, causing a decrease in specific surface area when sensing due to the surface reaction of a chemical sensor, which causes a decrease in sensitivity. There was this.

본 발명의 목적은 이상에서 언급한 종래 기술의 문제점들을 해결하기 위하여 안출한 것으로서, 가스센싱 소자를 제조함에 있어 산화텅스텐에 산화니켈(NiO)를 첨가함으로써 가스센싱 소자로써 산화텅스텐(WO3)을 고온 열처리할 경우에도 입자 성장을 억제하고 입도분포를 개선하여 고감도의 질소산화물(NOx) 가스 센싱소자를 제공할 수 있는 가스센싱 소자 제조 방법을 제공하는데 있다.An object of the present invention is to solve the above-mentioned problems of the prior art, in the production of gas sensing device by adding nickel oxide (NiO) to the tungsten oxide as tungsten oxide (WO 3 ) as a gas sensing device. The present invention provides a gas sensing device manufacturing method capable of providing a highly sensitive nitrogen oxide (NO x ) gas sensing device by suppressing particle growth and improving particle size distribution even when subjected to high temperature heat treatment.

이와 같은 목적을 달성하기 위한 본 발명 가스센싱 소자의 제조 방법은 기판상의 소정 형상으로 센서전극 및 히터를 형성하고, 상기 소정형상의 영역에 산화텅스텐(WO3)에 산화니켈(NiO)을 혼합한 감지막을 형성하는 가스센서 제조방법에 있어서, 상기 산화텅스텐에 산화니켈을 0.1 ∼ 10mol% 첨가하여 혼합하고, 상기 산화텅스텐과 산화니켈 혼합물을 지르코니아 볼(Zirconia Balls)을 사용하여 12시간 볼밀링하는 단계와, 상기 볼밀링된 혼합물을 120℃로 오븐(oven)에서 건조한 후 분말로 형성하는 단계와, 상기 건조된 분말을 알루미나(Al2O3) 유발(Pestle or Grinding Mixer)을 이용하여 미립화하는 단계와, 상기 미립화한 분말을 전기로에서 850 ∼ 950℃로 2시간 동안 소결하여 벌크시편을 감지물질을 완성하는 단계와, 상기 벌크시편을 상기 소정의 기판영역에 페이스트를 사용하여 프린팅하는 단계를 포함하여 이루어진다.본 발명의 다른 목적, 특성 및 이점들은 첨부한 도면을 참조한 실시예들의 상세한 설명을 통해 명백해 질 것이다.In the method of manufacturing the gas sensing device of the present invention for achieving the above object, a sensor electrode and a heater are formed in a predetermined shape on a substrate, and nickel oxide (NiO) is mixed with tungsten oxide (WO 3 ) in the predetermined shape region. In the gas sensor manufacturing method for forming a sensing film, 0.1-10 mol% of nickel oxide is added to the tungsten oxide and mixed, and the tungsten oxide and nickel oxide mixture is ball milled for 12 hours using zirconia balls. And, drying the ball milled mixture in an oven at 120 ° C. and then forming a powder, and atomizing the dried powder using alumina (Al 2 O 3 ) induction (Pestle or Grinding Mixer). And sintering the atomized powder at an electric furnace at 850 to 950 ° C. for 2 hours to complete a bulk specimen sensing material, and to face the bulk specimen to the predetermined substrate region. Comprises the steps of printing with the other objects, features and advantages of the invention will become apparent from the following detailed description of the embodiments taken in conjunction with the accompanying drawings, for example.

도 1은 본 발명에 따른 가스센싱 소자의 입자 크기 및 입도분포를 설명하기 위한 주사전자현미경 사진으로써 WO3에 NiO 0.1mol% 첨가 후 900℃/2h 열처리한 분말의 입자형상, 입자크기, 입도분포를 보여주고 있다.1 is a scanning electron micrograph for explaining the particle size and particle size distribution of the gas sensing device according to the present invention, the particle shape, particle size, particle size distribution of the powder heat-treated 900 ℃ / 2h after adding 0.1 mol% of NiO to WO 3 Is showing.

도 2는 종래 기술에 따른 가스센싱 소자의 입자 크기 및 입도분포를 설명하기 위한 주사전자현미경 사진으로써, 첨가제를 넣지 않은 WO3를 900℃/2h 열처리한 분말의 입자형상, 입자크기, 입도분포를 보여주고 있다.2 is a scanning electron micrograph for explaining the particle size and particle size distribution of the gas sensing device according to the prior art, the particle shape, particle size, particle size distribution of the powder obtained by heat treatment of 900 ℃ / 2h WO 3 without additives Is showing.

도 3은 본 발명과 종래 기술에 따른 가스센싱 소자의 센서 감도 특성 및 평균입자 크기를 설명하기 위한 테이블로써 WO3에 NiO 첨가 유무에 따른 센서감도 특성 및 평균 입자 크기를 비교 표시하였다.Figure 3 is a table for explaining the sensor sensitivity characteristics and average particle size of the gas sensing device according to the present invention and the prior art compared the sensor sensitivity characteristics and average particle size with or without NiO added to WO 3 .

이하 첨부된 도면을 참조하여 본 발명에 따른 가스센싱 소자의 제조 방법을 설명하기로 한다.Hereinafter, a method of manufacturing a gas sensing device according to the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에 따른 가스센싱 소자의 입자 크기 및 입도분포를 설명하기 위한 주사전자현미경 사진이고, 도 2는 종래 기술에 따른 가스센싱 소자의 입자 크기 및 입도분포를 설명하기 위한 주사전자현미경 사진이다.1 is a scanning electron micrograph for explaining the particle size and particle size distribution of the gas sensing device according to the present invention, Figure 2 is a scanning electron micrograph for explaining the particle size and particle size distribution of the gas sensing device according to the prior art to be.

본 발명은 산화텅스텐(WO3)을 모물질로 하여 도펀트(Dopants)로써 산화니켈(NiO)을 첨가한 것으로, 여기서 산화니켈(NiO)은 0.1 ∼ 10mol%로 하여 혼합한다.In the present invention, tungsten oxide (WO 3 ) is used as a base material, and nickel oxide (NiO) is added as a dopant, where nickel oxide (NiO) is mixed at 0.1 to 10 mol%.

이어서, 산화텅스텐(WO3)과 산화니켈(NiO) 혼합물을 지르코니아 볼(Zirconia Balls)을 사용하여 12시간 볼 밀링(ball-milling)을 실시한다.The tungsten oxide (WO 3 ) and nickel oxide (NiO) mixture is then subjected to ball milling for 12 hours using Zirconia Balls.

그다음 120℃ 오븐(oven)에서 건조를 실시한다.The drying is then carried out in a 120 ° C. oven.

그리고 건조된 분말을 알루미나(Al2O3) 유발(Pestle or Grinding Mixer)을 이용하여 미립화한다.The dried powder is atomized using alumina (Al 2 O 3 ) induction (Pestle or Grinding Mixer).

이어서 미립화한 분말을 이용하여 본 발명 가스센싱 소자로 사용할 벌크시편을 예를 들면, 직경 1.2㎝ 두께 1㎜로 제조한다.Subsequently, a bulk specimen to be used as the gas sensing device of the present invention using the atomized powder is produced, for example, with a diameter of 1.2 cm and a thickness of 1 mm.

그 다음 벌크시편을 전기로에서 850 ∼ 950℃, 바람직하게는 900℃로 2시간 소결하여 감지물질을 완성한다.The bulk specimen is then sintered at 850-950 ° C., preferably 900 ° C., for 2 hours in an electric furnace to complete the sensing material.

이어서 예를 들면 1-heptanol(CH3CH2CH2CH2CH2CH2OH)을 이용하여 페이스트(paste)를 제조한 후, 스크린 프린팅(Screen printing) 방법으로 기판에 완성된 감지물질을 프린팅하여 가스센싱 소자로 사용할 후막을 완성한다.Subsequently, a paste is prepared using, for example, 1-heptanol (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 OH), and then, a screen sensing method is used to print a completed sensing material on a substrate to complete a thick film to be used as a gas sensing device.

그 다음 필요에 따라, 주사전자현미경을 사용하여 입자크기 및 입도분포를 관찰하고, 계측기를 사용하여 전도도 변화를 측정한다. 이때, 산화텅스텐(WO3)에 산화니켈(NiO)을 1mol% 첨가한 경우 질소산화물(NOx) 가스에 대한 향상된 감도를 나타내었다.또한 산화텅스텐(WO3)에 산화니켈(NiO) 10mol% 첨가시 NiWO4의 제2상이 생성되었다.도 3은 본 발명과 종래 기술에 따른 가스센싱 소자의 센서 감도 특성 및 평균입자 크기를 설명하기 위한 테이블이다.도 3에 나타낸 바와 같이 종래 제조 방법을 이용하여 가스센싱 소자로써 산화니켈(NiO)을 첨가하지 않은(undoped) 산화텅스텐(WO3)을 이용한 경우의 평균입자크기와, 본 발명의 제조 방법을 이용하여 산화텅스텐(WO3)에 0.1, 1, 10 mol%의 산화니켈(NiO)을 첨가한 경우의 평균입자 크기를 도 1 및 도 2와 함께 비교하여 보면, 본 발명의 평균입자크기가 더 작고, 그 입도분포 역시 균일한 것을 알 수 있다. 또한, 유해가스인 질소산화물(NOx)에 대한 감도 역시 향상된 것을 알 수 있다.이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.Then, if necessary, the particle size and particle size distribution are observed using a scanning electron microscope, and the conductivity change is measured using a measuring instrument. In this case, if the addition of nickel oxide (NiO) 1mol% tungsten oxide (WO 3) exhibited an enhanced sensitivity to the nitrogen oxide (NO x) gas. Also tungsten oxide (WO 3) Ni (NiO) 10mol% oxide The addition produced a second phase of NiWO 4. FIG. 3 is a table for explaining sensor sensitivity characteristics and average particle size of the gas sensing device according to the present invention and the prior art. As shown in FIG. 3, a conventional manufacturing method is used. Average particle size in the case of using undoped tungsten oxide (WO 3 ) as a gas sensing element, and 0.1, 1 to tungsten oxide (WO 3 ) using the manufacturing method of the present invention. Comparing the average particle size in the case of adding 10 mol% nickel oxide (NiO) with Figs. 1 and 2, it can be seen that the average particle size of the present invention is smaller and the particle size distribution is also uniform. . In addition, it can be seen that the sensitivity to nitrogen oxides (NOx), which is a noxious gas, has also been improved. It will be appreciated by those skilled in the art that various changes and modifications can be made without departing from the spirit of the present invention. .

따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be defined by the claims.

이와 같은 본 발명 가스센싱 소자의 제조 방법은 다음과 같은 효과가 있다.첫째, 산화텅스텐(WO3)에 산화니켈(NiO)을 0.1, 1, 10mol% 첨가하고, 900℃ 열처리 후 입자성장을 억제 할 수 있었으며, 입도분포가 우수한 미세구조를 갖는 가스센싱 소자를 얻을 수 있다.Such a method of manufacturing the gas sensing device of the present invention has the following effects. First, 0.1, 1, 10 mol% of nickel oxide (NiO) is added to tungsten oxide (WO 3 ), and the grain growth is suppressed after 900 ° C. heat treatment. It was possible to obtain a gas sensing element having a fine structure with excellent particle size distribution.

둘째, 산화니켈(NiO) 첨가시 유해가스인 질소산화물(NOx) 가스에 대한 우수한 감도 특성을 갖는 가스센싱 소자를 제조할 수 있다.셋째, 산화텅스텐(WO3)에 산화니켈(NiO)을 고용한계(10mol%) 이상 첨가시 NiWO4의 상이 생성된다.Second, a gas sensing device having excellent sensitivity to nitrogen oxide (NO x ) gas, which is a noxious gas when nickel oxide (NiO) is added, may be manufactured. Third, nickel oxide (NiO) is added to tungsten oxide (WO 3 ). Addition above the high solubility limit (10 mol%) produces a phase of NiWO 4 .

Claims (3)

기판상의 소정 형상으로 센서전극 및 히터를 형성하고, 상기 소정형상의 영역에 산화텅스텐(WO3)에 산화니켈(NiO)을 혼합한 감지막을 형성하는 가스센서 제조방법에 있어서,In the gas sensor manufacturing method of forming a sensor electrode and a heater in a predetermined shape on a substrate, and forming a sensing film in which nickel oxide (NiO) is mixed with tungsten oxide (WO 3 ) in the predetermined shape region, 상기 산화텅스텐에 산화니켈을 0.1 ∼ 10mol% 첨가하여 혼합하고, 상기 산화텅스텐과 산화니켈 혼합물을 지르코니아 볼(Zirconia Balls)을 사용하여 12시간 볼밀링하는 단계;Adding 0.1 to 10 mol% of nickel oxide to the tungsten oxide and mixing the mixture, and ball milling the tungsten oxide and nickel oxide mixture for 12 hours using zirconia balls; 상기 볼밀링된 혼합물을 120℃로 오븐(oven)에서 건조한 후 분말로 형성하는 단계;Drying the ball milled mixture in an oven at 120 ° C. to form a powder; 상기 건조된 분말을 알루미나(Al2O3) 유발(Pestle or Grinding Mixer)을 이용하여 미립화하는 단계;Atomizing the dried powder using alumina (Al 2 O 3 ) induction (Pestle or Grinding Mixer); 상기 미립화한 분말을 전기로에서 850 ∼ 950℃로 2시간 동안 소결하여 벌크시편을 감지물질로 완성하는 단계; 및Sintering the atomized powder at 850 to 950 ° C. for 2 hours in an electric furnace to complete a bulk specimen as a sensing material; And 상기 벌크시편을 상기 소정의 기판영역에 페이스트를 사용하여 프린팅하는 단계를 포함하여 이루어지는 것을 특징으로 하는 가스센싱 소자의 제조 방법.And printing the bulk specimen using a paste in the predetermined substrate region. 삭제delete 삭제delete
KR10-2001-0059533A 2001-09-26 2001-09-26 Method for fabricating of gas sensing device KR100449427B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0059533A KR100449427B1 (en) 2001-09-26 2001-09-26 Method for fabricating of gas sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0059533A KR100449427B1 (en) 2001-09-26 2001-09-26 Method for fabricating of gas sensing device

Publications (2)

Publication Number Publication Date
KR20030026516A KR20030026516A (en) 2003-04-03
KR100449427B1 true KR100449427B1 (en) 2004-09-21

Family

ID=29562246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0059533A KR100449427B1 (en) 2001-09-26 2001-09-26 Method for fabricating of gas sensing device

Country Status (1)

Country Link
KR (1) KR100449427B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981166B1 (en) * 2007-11-23 2010-09-10 고려대학교 산학협력단 Fast responding oxide semiconductor-type gas sensor and fabrication method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248737B (en) * 2011-04-14 2013-08-14 天津大学 Cr2O3 or NiO porous film material using WO3 as base material and method for manufacturing air-sensitive sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192950A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Detecting element for carbon monoxide
KR19980076178A (en) * 1997-04-07 1998-11-16 구자홍 Nitrogen dioxide gas sensor and its manufacturing method
KR100246719B1 (en) * 1997-02-04 2000-04-01 박호군 Nox gas sensor using wo3 sensing layer and its manufacturing method
US6113859A (en) * 1998-02-04 2000-09-05 Korea Institute Of Science And Technology Bar-type NOx gas sensor having WO3 sensing film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192950A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Detecting element for carbon monoxide
KR100246719B1 (en) * 1997-02-04 2000-04-01 박호군 Nox gas sensor using wo3 sensing layer and its manufacturing method
KR19980076178A (en) * 1997-04-07 1998-11-16 구자홍 Nitrogen dioxide gas sensor and its manufacturing method
KR100223818B1 (en) * 1997-04-07 1999-10-15 구자홍 Nitrogen dioxide gas sensor and its manufacturing method
US6113859A (en) * 1998-02-04 2000-09-05 Korea Institute Of Science And Technology Bar-type NOx gas sensor having WO3 sensing film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981166B1 (en) * 2007-11-23 2010-09-10 고려대학교 산학협력단 Fast responding oxide semiconductor-type gas sensor and fabrication method thereof

Also Published As

Publication number Publication date
KR20030026516A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
CN102375015A (en) Field effect gas sensors, method for manufacturing field effect gas sensor and method used for detecting gas
CA2340216A1 (en) Transition metal oxide gas sensor
JPH1194786A (en) Tin oxide gas sensor and its production
US5518603A (en) Oxygen sensor and a process for production thereof
CN108700546A (en) Gas sensor element
Noh et al. Effects of NiO addition in WO3-based gas sensors prepared by thick film process
Qiu et al. Investigation of CO2 sensor based on NASICON synthesized by a new sol–gel process
Wilson et al. Sol-gel materials for gas-sensing applications
KR100449427B1 (en) Method for fabricating of gas sensing device
Yang et al. Development of a NASICON-based amperometric carbon dioxide sensor
CN110361430A (en) Sensing element for potentiometric sensor
White et al. Effect of electrode microstructure on the sensitivity and response time of potentiometric NOx sensors
KR101843848B1 (en) NOx Sensor and Method of preparing the same
Slunečko et al. Thick film humidity sensors based on (Ba, Sr) TiO3 porous ceramic doped with MgO and CaO
KR20000005923A (en) Process for manufacturing Ceramic, Diffusion-Limiting Layers and Use of These Layers
RU2237039C2 (en) Perovskite-type ceramic material
Chen et al. Structure, sintering behavior and dielectric properties of silica-coated BaTiO3
GB2149122A (en) Improvements in or relating to sensors
Bag et al. High performance sol–gel synthesized Ce 0.9 Sr 0.1 (Zr 0.53 Ti 0.47) O 4 sensing membrane for a solid-state pH sensor
GB2202948A (en) Metal oxide gas sensors
GB2149121A (en) Improvements in or relating to sensors
Shan et al. Improving the stability of an amperometric ammonia sensor based on BaZr0. 8Y0. 2O3-δ electrolyte with a volatile B2O3 sintering additive
Zheng et al. Influence of CO2 in dry and wet atmospheres on the response of Mg-doped SrTiO3 ceramic oxygen sensors
KR20160096764A (en) Carbon dioxide gas sensor
KR20090001399A (en) Preparation method of oxygen sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090710

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee