KR100445237B1 - Method for Preparation of Polyolefin/Clay Nanocomposite - Google Patents

Method for Preparation of Polyolefin/Clay Nanocomposite Download PDF

Info

Publication number
KR100445237B1
KR100445237B1 KR10-2001-0050871A KR20010050871A KR100445237B1 KR 100445237 B1 KR100445237 B1 KR 100445237B1 KR 20010050871 A KR20010050871 A KR 20010050871A KR 100445237 B1 KR100445237 B1 KR 100445237B1
Authority
KR
South Korea
Prior art keywords
clay
olefin
catalyst
dispersed
methyl
Prior art date
Application number
KR10-2001-0050871A
Other languages
Korean (ko)
Other versions
KR20030025308A (en
Inventor
곽순종
김준경
박민
김정안
진용현
박홍조
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2001-0050871A priority Critical patent/KR100445237B1/en
Publication of KR20030025308A publication Critical patent/KR20030025308A/en
Application granted granted Critical
Publication of KR100445237B1 publication Critical patent/KR100445237B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/622Component covered by group C08F4/62 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates

Abstract

본 발명은 클레이가 올레핀계 고분자에 나노 스케일(nano scale)로 분산된 나노 복합체를 제조하는 방법에 관한 것으로, 컴파운딩법으로 제조된 것보다 우수한 물성을 갖는 나노 복합체를 제공하는 것이 본 발명의 목적이다.The present invention relates to a method for manufacturing a nanocomposite in which clay is dispersed on an olefin-based polymer at a nano scale, and an object of the present invention is to provide a nanocomposite having superior physical properties than that prepared by the compounding method. to be.

클레이에 올레핀 중합용 촉매를 담지시키는 단계와, 조촉매를 담지시키는 단계와, 올레핀을 중합시켜서 층간이 박리된 클레이가 분산된 올레핀계 고분자 나노 복합체를 제조하는데 있어서, 클레이로 기능성기를 가지는 유기화 처리된 클레이를 사용하고, 올레핀 중합용 촉매로 티타늄(Ti) 또는 바나듐(V)에 염소 또는 옥시클로라이드가 결합된 형태의 지글러 나타 촉매를 사용하며, 조촉매로 유기 알루미늄을 사용하는 것을 특징으로 한다.In the step of supporting the catalyst for olefin polymerization on the clay, the step of supporting the promoter and polymerizing the olefin to prepare the olefin-based polymer nanocomposites in which the delaminated clay is dispersed, organic treatment having a functional group with clay Clay is used, a Ziegler-Natta catalyst in which chlorine or oxychloride is bonded to titanium (Ti) or vanadium (V) as an olefin polymerization catalyst, and an organic aluminum is used as a promoter.

Description

클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법 {Method for Preparation of Polyolefin/Clay Nanocomposite}Method for preparing olefin-based polymer nanocomposites dispersed in clay {Method for Preparation of Polyolefin / Clay Nanocomposite}

본 발명은 고분자/클레이 나노 복합체(nanocomposite)의 제조방법에 관한 것으로, 상세하게는 클레이가 올레핀계 고분자에 나노 스케일(nano scale)로 분산된 나노 복합체의 제조방법 및 이를 함유하는 폴리올레핀 수지에 관한 것이다.The present invention relates to a method for producing a polymer / clay nanocomposite, and more particularly, to a method for producing a nanocomposite in which clay is dispersed in an olefin polymer on a nano scale and a polyolefin resin containing the same. .

고분자/클레이 나노 복합체는 실리케이트 층상구조를 갖는 클레이를 박리시켜 고분자 매트릭스 내에 나노 스케일 단위로 분산시킨 것인데 비교적 큰 클레이입자를 분산시킨 기존의 고분자/클레이 복합체보다 우수한 물성을 갖는다.The polymer / clay nanocomposite is a polymer having a silicate layered structure that is peeled off and dispersed in a polymer matrix in nanoscale units. The polymer / clay nanocomposite has superior physical properties than a conventional polymer / clay composite in which relatively large clay particles are dispersed.

즉, 고분자 수지에 실리케이트 층상구조를 가지는 클레이를 시트상의 기본단위로 박리하여 분산시키면 수지의 투명성을 크게 손상시키지 않으면서도 인장강도와 열변형 온도(heat distortion temperature)가 월등히 높아질 뿐만 아니라 내충격성, 내열성, 기체 및 액체 차단성, 내연성(flame resistance) 및 UV 투과 방지능이 동일한 클레이 함량의 기존 고분자/클레이 복합체에 비해 높아지는 것이다.In other words, if a polymer having a silicate layer structure in a polymer resin is peeled off and dispersed in a sheet-based base unit, the tensile strength and heat distortion temperature are not only significantly increased but also impact resistance and heat resistance are not significantly impaired. Gas and liquid barrier properties, flame resistance and UV transmission resistance are higher than existing polymer / clay composites of the same clay content.

이러한 고분자/클레이 나노 복합체는 종래에는 주로 용융상태의 고분자를 클레이의 실리케이트층 사이에 삽입시키고 기계적으로 혼합하여 분산시키는 컴파운딩법에 의하여 제조되었는데, 매트릭스 고분자가 비극성인 경우, 클레이가 양전하를 띄고 있기 때문에 고분자가 층간에 잘 침투되지 않는 문제점이 있다.Such polymer / clay nanocomposites were conventionally manufactured by compounding, in which molten polymer is intercalated between silica silicate layers and mechanically mixed and dispersed. When the matrix polymer is nonpolar, clay exhibits a positive charge. Therefore, there is a problem that the polymer does not penetrate well between the layers.

Macromolecules, 30, 6333 (1997)과 J. of Applied Polymer Science, 67, 87 (1998)에는 클레이의 실리케이트 층간에 비극성 고분자를 삽입시키기 위해 무수 말레인(maleic anhydride) 등 극성기가 그라프트된 폴리올레핀 올리고머를 침투시켜 유기화된(intercalated) 클레이 마스터 배치를 만들고, 이를 폴리올레핀 고분자와 혼합하는 방법이 개시되어 있다.Macromolecules, 30, 6333 (1997) and J. of Applied Polymer Science, 67, 87 (1998) include polar group-grafted polyolefin oligomers such as maleic anhydride to insert nonpolar polymers between clay silicate layers. A method of infiltrating to make an intercalated clay master batch and mixing it with a polyolefin polymer is disclosed.

그러나, 이 방법에 의하면 극성 고분자를 실리케이트층에 침투시켜 유기화시킬 수 있지만 실리케이트층을 완전하게 박리시키기 위해서는 압출기 내에서 높은 전단율로 장시간 동안 혼합해야 하는데 이 과정 중에서 고분자가 분해되는 등 물성이 악화될 우려가 있고, 클레이를 유기화시키기 위해 첨가하는 올리고머가 생성되는 나노 복합체의 열변형 온도 및 기계적 강도를 저하시키는 단점이 있다.However, according to this method, the polar polymer can be penetrated into the silicate layer and organicized. However, in order to completely peel off the silicate layer, it is necessary to mix it for a long time at high shear rate in the extruder. There is a concern, and there is a disadvantage in reducing the heat deformation temperature and the mechanical strength of the nanocomposite in which the oligomer added to organicize the clay is produced.

그리하여, 실리케이트층 사이에서 올레핀 단량체를 중합시킴으로써 실리케이트층이 박리되도록 하는 중합법이 개발되었는데 국제특허 WO99/47598에는 클레이를 조촉매인 알킬 알루민옥산(alkyl aluminoxane)과 접촉시켜 클레이/알킬 알루민옥산 복합체를 만들고, 다시 올레핀 중합촉매를 담지시켜 클레이/알킬 알루민옥산/촉매 복합체를 만든 후, 올레핀 단량체가 층간에서 중합되도록 하여 나노 복합체를 제조하는 방법이 개시되어 있다.Thus, a polymerization method has been developed in which a silicate layer is peeled off by polymerizing an olefin monomer between silicate layers. International patent WO99 / 47598 discloses clay / alkyl aluminoxane by contacting clay with a promoter of alkyl aluminoxane. A method of preparing a nanocomposite by making a composite, carrying an olefin polymerization catalyst to make a clay / alkyl aluminoxane / catalyst complex, and then allowing the olefin monomer to polymerize between layers is disclosed.

그러나, 촉매에 활성을 부여하기 위해 첨가하는 조촉매인 알킬 알루민옥산의 사용량이 촉매 사용량의 수천 배에 달한다는 단점과, 알킬 알루민옥산의 분자량이 커서 이를 실리케이트층 사이에 담지시키기 위해서는 클레이의 실리케이트 층간 거리를 넓히는 전처리공정이 필요하다는 단점이 있다.However, the disadvantage that the amount of alkyl aluminoxane, which is a promoter added to impart activity to the catalyst, amounts to several thousand times the amount of catalyst, and the molecular weight of the alkyl aluminoxane is large so that it can be supported between the silicate layers. There is a disadvantage in that a pretreatment process for increasing the distance between silicates is required.

본 발명의 목적은 클레이의 실리케이트층을 완전 박리시켜 클레이가 올레핀계 고분자 내에 나노 스케일로 분산된 나노 복합체를 제조하는 방법 및 이를 함유하는 폴리올레핀 수지를 제공하는 것이다.It is an object of the present invention to provide a method for producing nanocomposites in which clays are dispersed at an nanoscale in an olefinic polymer by completely peeling the silicate layer of clay and a polyolefin resin containing the same.

도 1은 X-선 산란분석기(XRD)로 분석한 결과로, a는 시료인 유기화된 몬모릴로나이트의 X-선 산란분석 결과이고, b는 유기화된 몬모릴로나이트에 촉매를 담지시켜 에틸렌을 중합시켜 제조된 나노 복합체의 X-선 산란분석 결과이다. 여기에서, 2θ는 X-선의 반사각이고, I(cps: counts per second)는 X-선의 세기이다.1 is a result of analysis by X-ray scattering analyzer (XRD), a is a result of X-ray scattering analysis of the sample of the organic montmorillonite, b is a nanoparticle prepared by polymerizing ethylene by supporting the catalyst on the organic montmorillonite X-ray scattering analysis of the complex. Where 2θ is the angle of reflection of the X-rays and I (cps: counts per second) is the intensity of the X-rays.

도 2는 유기화된 몬모릴로나이트에 촉매를 담지시키고 에틸렌을 중합시켜 제조된 나노 복합체 마스터 배치와 폴리에틸렌을 이축압출기에서 1회 컴파운딩하여 제조된 시편(몬모릴로나이트의 함량 5중량%)의 투과전자현미경(TEM) 사진이다.2 is a transmission electron microscope (TEM) of a nanocomposite master batch prepared by supporting a catalyst in organicized montmorillonite and polymerizing ethylene and a specimen prepared by compounding polyethylene in a twin screw extruder once (content of montmorillonite 5 wt%) It is a photograph.

상기 목적을 달성하기 위한 본 발명은, 클레이에 올레핀 중합용 촉매를 담지시키는 단계와, 조촉매를 담지시키는 단계와, 올레핀을 중합시켜서 층간이 박리된 클레이가 분산된 올레핀계 고분자 나노 복합체를 제조하는데 있어서, 클레이로 촉매를 담지시킬 수 있는 히드록시기 또는 아민기가 말단에 있는 유기화 화합물로 유기화 처리된 클레이를 사용하고, 올레핀 중합용 촉매로 티타늄(Ti) 또는 바나듐(V)에 염소 또는 옥시클로라이드가 결합된 형태의 지글러 나타(Ziegler-Natta) 촉매를 사용하며, 조촉매로 유기 알루미늄을 사용하는 것을 특징으로 한다.The present invention for achieving the above object, the step of supporting the catalyst for olefin polymerization in the clay, the step of supporting the cocatalyst, and polymerizing the olefin to prepare the olefin-based polymer nanocomposites in which the clay is separated In the present invention, clay is organically treated with an organic compound having a hydroxyl group or an amine group capable of supporting a catalyst with clay, and chlorine or oxychloride is bonded to titanium (Ti) or vanadium (V) as a catalyst for olefin polymerization. Ziegler-Natta catalyst in the form, characterized in that the use of organic aluminum as a promoter.

촉매가 담지된 클레이의 실리케이트 층간에서 폴리올레핀이 중합되면서 층과 층 사이가 벌어져 박리됨으로써 본 발명의 목적이 달성되는 것이다.The object of the present invention is achieved by the separation between the layers and the layers while the polyolefin is polymerized between the silicate layers of the catalyst supported clay.

선택적으로, 촉매를 담지시키기 전에 전처리를 할 수 있는데 전처리 공정은 진공 오븐에서 100℃ 미만으로 건조하는 것으로 충분하다.Optionally, pretreatment may be carried out before loading the catalyst, which is sufficient to dry below 100 ° C. in a vacuum oven.

유기화 처리된 클레이에서 클레이는 층상 구조를 가지며 고분자 내에서 나노 분산이 가능한 몬모릴로나이트(montmorillonite), 헥토라이트(hectorite), 사포나이트(saponite), 사우코나이트(sauconite), 버미쿠라이트(vermiculite), 마가디이트(magadiite) 및 케냐아이트(kenyaite)로 이루어지는 군에서 선택하고, 유기화 화합물은 말단에 히드록실기, 아민기와 같이 촉매와 반응하여 촉매를 고정시킬 수 있는 기능성기를 갖는 것을 선택한다.In organically treated clay, the clay has a layered structure and can be nanodispersed in the polymer, montmorillonite, hectorite, saponite, sauconite, sauconite, vermiculite, and margarine. The organic compound is selected from the group consisting of magnetite and kenyaite, and the organic compound is selected to have a functional group capable of fixing a catalyst by reacting with a catalyst such as a hydroxyl group and an amine group at the terminal.

실리케이트 층상에 이미 존재하는 히드록실기를 이용할 경우에는 촉매가 실리케이트층 사이로 용이하기 침투될 수 있도록 층간 거리를 최대한 벌릴 수 있는 화합물 중에서 선택하면 되는데 촉매 담지 조절 및 효율성을 고려할 때 말단에 기능성기를 갖는 유기화 화합물로 유기화 처리된 클레이를 사용하는 것이 유리하다.In the case of using the hydroxyl group already present on the silicate layer, the catalyst may be selected from compounds that can maximize the distance between layers so that the catalyst can easily penetrate between the silicate layers. It is advantageous to use clays that have been organically treated with the compound.

클레이의 유기화 처리에 사용되는 말단 기능성기를 갖는 유기화 화합물은 암모니움 탄화수소 화합물의 말단에 히드록실기, 아민기를 갖는 화합물로 주로 탄소수가 8-18의 탄소수가 커서 실리케이트 층간 거리를 최대한으로 벌릴 수 있는 화합물이 유리하다.An organic compound having a terminal functional group used in the organic treatment of clay is a compound having a hydroxyl group and an amine group at the terminal of the ammonium hydrocarbon compound, and a compound having a large carbon number of 8-18 having a large number of silicates to maximize the distance between silicates. This is advantageous.

클레이의 층상 구조 사이에 담지시키는 올레핀 중합용 촉매는 티타늄(Ti) 또는 바나듐(V)에 염소 또는 옥시클로라이드가 결합된 형태의 지글러 나타 (Ziegler-Natta) 촉매를 사용한다. 즉, 본 발명에서는 일반적으로 사용되는 올레핀 중합용 촉매를 사용하는 것이 특징이다.As the catalyst for olefin polymerization supported between the layered structures of clay, a Ziegler-Natta catalyst in which chlorine or oxychloride is bonded to titanium (Ti) or vanadium (V) is used. That is, the present invention is characterized by using a catalyst for olefin polymerization which is generally used.

또는, 촉매로 유기 화합물에 Zr, Ti, Ni, Pd에서 선택되는 금속이 결합된 유기금속 복합체(organometal complex)을 사용할 수도 있다. 이는 통상의 올레핀 중합에 사용되는 전이금속촉매와 동일한 것들이다.Alternatively, an organometal complex in which a metal selected from Zr, Ti, Ni, and Pd is bonded to the organic compound may be used as a catalyst. These are the same as the transition metal catalysts used in conventional olefin polymerization.

촉매는 클레이의 실리케이트층 표면에 처음부터 존재하는 히드록실기 또는 클레이를 유기화하기 위해 클레이 층 사이에 삽입하는 유기화 화합물에 존재하는 히드록실기 또는 아민기 등의 기능성기와 반응하여 담지되는데, 히드록실기 또는 아민기 등의 기능성기를 갖는 유기화 화합물은 촉매 담지시에 촉매와 직접 반응하여 촉매의 담체 역할을 하고, 기능성기가 없는 유기화 화합물은 클레이의 실리케이트 층간거리를 벌려 촉매가 클레이 층 표면에 존재하는 히드록실기와 반응하여 담지될 수 있게 한다. 촉매 담지 반응은 진공 또는 불활성 가스의 분위기 하에서 유기화된 클레이를 용매에 분산시킨 상태에서 이루어진다.The catalyst is supported by reaction with functional groups such as hydroxyl groups or amine groups present in the hydroxyl group existing on the surface of the silicate layer of clay or between organic compounds inserted between the clay layers in order to organicize the clay. Alternatively, an organic compound having a functional group such as an amine group directly reacts with the catalyst when supporting the catalyst to serve as a carrier for the catalyst, and the organic compound without the functional group increases the silicate interlayer distance between the clays and the catalyst is present on the surface of the clay layer. It can be supported by reacting with actual machine. The catalyst supported reaction is carried out in a state in which the organicated clay is dispersed in a solvent under an atmosphere of vacuum or an inert gas.

조촉매로는 유기 알루미늄 또는 할로겐을 포함하는 알루미늄 화합물을 사용하는데 이를테면, (C2H5)3Al, (C2H5)2AlCl, (C2H5)AlCl2, (t-C4H9)3Al, (iso-C4H9)3Al에서 선택하여 사용한다.Cocatalysts include organoaluminum or aluminum compounds including halogens, such as (C 2 H 5 ) 3 Al, (C 2 H 5 ) 2 AlCl, (C 2 H 5 ) AlCl 2 , (tC 4 H 9 ) 3 Al, (iso-C 4 H 9 ) 3 Al to be used.

조촉매는 몰 기준으로 촉매의 5∼200배, 바람직하게는 10∼100 배 사용한다.The cocatalyst is used 5 to 200 times, preferably 10 to 100 times the catalyst on a molar basis.

올레핀은 에틸렌, 프로필렌, 1-뷰텐(1-butene), 1-펜텐(1-pentene), 1-헥센(1-hexene), 1-헵텐(1-heptene), 1-옥텐(1-octene) 등의 선형 알킬기를 갖는 α-올레핀과, 3-메틸-1-뷰텐(3-methyl-1-butene), 3-메틸-1-펜텐(3-methyl-1-pentene), 4-메틸-1-펜텐(4-methyl-1-pentene), 4-메틸-1-헥센(4-methyl-1-hexene) 등의 가지형 알킬기를 갖는 α-올레핀과, 비닐사이클로펜탄(vinylcyclopentane), 비닐사이클로헥산(vinylcyclohexane), 5-비닐-2-노르보르넨(5-vinyl-2-norbornene) 등의 고리형 알킬기를 갖는 α-올레핀과, 스티렌, 비닐나프탈렌(vinylnaphthalene) 등의 방향족 알킬기를 갖는 올레핀과, 1,4-헥사디엔(1,4-hexadiene), 1,5-헥사디엔(1,5-hexadiene), 4-메틸-1,4-헥사디엔(4-methyl-1,4-hexadiene), 1,7-옥타디엔(1,7-octadiene) 등의 비공액 디엔계 알킬 화합물과 이들의 공중합체에서 1 또는 2 이상 선택하여 사용한다.Olefins are ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene (Alpha) -olefin which has linear alkyl groups, such as these, 3-methyl-1- butene (3-methyl-1-butene), 3-methyl-1- pentene (3-methyl-1-pentene), 4-methyl-1 ? -Olefins having branched alkyl groups such as -pentene (4-methyl-1-pentene) and 4-methyl-1-hexene; vinylcyclopentane and vinylcyclohexane (alpha) -olefin which has cyclic alkyl groups, such as (vinylcyclohexane) and 5-vinyl-2-norbornene, and the olefin which has aromatic alkyl groups, such as styrene and vinylnaphthalene, 1,4-hexadiene (1,4-hexadiene), 1,5-hexadiene (1,5-hexadiene), 4-methyl-1,4-hexadiene (4-methyl-1,4-hexadiene), It is used by selecting one or two or more from non-conjugated diene alkyl compounds such as 1,7-octadiene (1,7-octadiene) and copolymers thereof.

올레핀 중합반응은 기상반응에 의할 수도 있고, n-헥산(n-hexane), n-헵탄(n-heptane) 등의 지방족 탄화수소 화합물, 또는 톨루엔, 벤젠 등의 방향족 탄화수소 화합물을 용매로 사용하여 용매 속에서 반응시켜도 된다.The olefin polymerization reaction may be based on a gas phase reaction, and may be an aliphatic hydrocarbon compound such as n-hexane or n-heptane, or an aromatic hydrocarbon compound such as toluene or benzene as a solvent. You may react inside.

이상과 같은 제조과정을 거쳐 제조된 클레이가 분산된 올레핀계 고분자 나노 복합체를 마스터 배치로 하여 통상의 방법에 따라 폴리올레핀 수지를 혼합하면 원하는 물성의 폴리올레핀 수지를 얻을 수 있다.The polyolefin resin of desired physical properties can be obtained by mixing the polyolefin resin according to a conventional method using the clay-dispersed olefin polymer nanocomposite prepared through the above manufacturing process as a master batch.

본 발명의 구성은 후술하는 실시예를 통하여 더욱 명확해 질 것이다.The configuration of the present invention will be clearer through the following examples.

<실시예 1><Example 1>

1. 시료1. Sample

(1) 유기화된 클레이: 메틸 탈로우 비스-2-하이드록시에틸 쿼터너리 암모니움 클로라이드 (methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride)로 유기화된 몬모릴로나이트 (미국 Southern Clay Products Inc. 의 Cloisite 30B) 5,000㎎(1) Organicated Clay: Montmorillonite (Closisite 30B from Southern Clay Products Inc., USA) 5,000 with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride Mg

(2) 용매: 톨루엔 200㎖(2) solvent: toluene 200ml

(3) 에틸렌 중합용 촉매: TiCl40.7 mmol(3) Catalyst for ethylene polymerization: TiCl 4 0.7 mmol

(4) 조촉매: Al(Et)314mmol (Al/Ti=20)(4) Cocatalyst: Al (Et) 3 14 mmol (Al / Ti = 20)

2. 실험방법2. Experimental method

(1) 촉매의 담지(1) Support of catalyst

아르곤 가스(불활성 가스) 분위기의 고압 반응기(1ℓ)에서 유기화된 클레이를 용매에 분산시키고, 촉매를 반응기에 투입하여 30℃에서 1시간 동안 유기화된 클레이에 담지시킨 후, 이어서 조촉매를 투입하여 30분간 반응시켰다.In the high-pressure reactor (1 L) in an argon gas (inert gas) atmosphere, the organicized clay was dispersed in a solvent, and the catalyst was added to the reactor and supported on the organicized clay for 1 hour at 30 ° C., followed by adding a promoter to 30 It was reacted for a minute.

(2) 중합반응(2) polymerization

상기 (1)의 가정을 통하여 촉매와 조촉매가 담지된 클레이를 사용하여 30℃, 4기압에서 에틸렌을 1시간 동안 중합시켰다.Through the assumption of (1), ethylene was polymerized for 1 hour at 30 DEG C and 4 atm using clay loaded with a catalyst and a promoter.

3. 결과3. Results

용융점 131.2℃의 폴리에틸렌 20.2g이 중합되었으며, 촉매로 사용한 클레이를 광각 X-선 산란분석기(XRD)(Mac Science, MXT-108, CuKα X-ray, 30kV, 40mA,sampling width: 0.02deg.)로 분석한 결과, 도 1에 도시된 바와 같이, 피크(peak)가 전혀 나타나지 않아 결정구조가 완전히 깨졌음(층상이 완전히 박리되었음)이 확인되었다.20.2 g of polyethylene at a melting point of 131.2 ° C. was polymerized, and the clay used as a catalyst was subjected to a wide-angle X-ray scattering analyzer (XRD) (Mac Science, MXT-108, CuKα X-ray, 30 kV, 40 mA, sampling width: 0.02 deg.). As a result, as shown in FIG. 1, it was confirmed that no peak appeared and the crystal structure was completely broken (the layer was completely peeled off).

또한, 합성된 생성물을 클레이의 함량이 5wt%되도록 폴리에틸렌과 혼합하여 이축 압출기로 1회 컴파운딩하여 제조한 시편을 투과 전자 현미경(TEM)으로 관찰한 결과, 도 2에 도시된 바와 같이, 클레이의 실리케이트층이 완전 박리되었음이 확인되었다.In addition, the synthesized product was mixed with polyethylene so that the content of clay was 5wt% and compounded once with a twin screw extruder to observe the specimen by transmission electron microscopy (TEM), as shown in Figure 2, It was confirmed that the silicate layer was completely peeled off.

<실시예 2><Example 2>

실시예 1에서 담지된 촉매를 사용하여 1시간 동안 프로필렌을 중합시켰다.Propylene was polymerized for 1 hour using the catalyst supported in Example 1.

용융점 160.5℃의 폴리프로필렌이 15.3g이 중합되었으며, 클레이 Cloisite 30B를 X-선 산란분석기로 분석한 결과, 실시예 1과 마찬가지로, 피크가 나타나지 않아 클레이의 층상의 완전히 박리되었음을 알 수 있었다.15.3 g of polypropylene having a melting point of 160.5 ° C. was polymerized, and clay Cloisite 30B was analyzed by X-ray scattering analyzer, and as in Example 1, no peak was observed, indicating that the clay was completely peeled off.

<실시예 3><Example 3>

유기화된 클레이로 디메틸 디하이드로게네이티드 탈로우 쿼터너리 암모니움 클로라이드(Dimethyl dihydrogenated tallow quaternary amonium chloride)로 유기화된 몬트모릴로나이트 (미국 Southern Clay Products Inc.의 Cloisite 20A, 유기화 농도; 95meq/100g) 5,000㎎을 200ml의 톨루엔에 분산시키고 여기에 1.3mmol의TiCl4촉매를 가하여 30℃에서 1시간 이상 담지시키고 26.0mmol의 Al(Et)3를 가하여 30분 이상 반응시킨 후 에틸렌을 주입하여 반응 온도 50℃, 반응 압력 8기압에서 1시간 동안 반응시켰다.Montmorillonite (Closisite 20A from Southern Clay Products Inc., USA; Organication Concentration; 95meq / 100g) 5,000 with organicated clay dimethyl dihydrogenated tallow quaternary amonium chloride 5,000 MG was dispersed in 200 ml of toluene, 1.3 mmol of TiCl 4 catalyst was added thereto, and the mixture was supported at 30 ° C. for at least 1 hour, 26.0 mmol of Al (Et) 3 was added and reacted for at least 30 minutes. The reaction was carried out at 8 atmospheres for 1 hour.

용융점 131℃의 에틸렌 32.7g이 중합되었으며, 클레이 Cloisite 20A를 X-선 산란분석기로 분석한 결과, 피크의 산란각이 감소하여 에틸렌 중합에 의하여 실리케이트층이 벌어진다는 사실은 확인되었으나 실시예 1과 같이 완전 박리되지는 않았다.32.7 g of ethylene at a melting point of 131 ° C. was polymerized, and clay Cloisite 20A was analyzed by X-ray scattering analyzer. As a result, it was confirmed that the silicate layer was opened by ethylene polymerization due to the decrease in the scattering angle of the peak. It was not completely peeled off.

<실시예 4><Example 4>

메틸 탈로우 비스-2-하이드록시에틸 쿼터너리 암모니움 클로라이드 (methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride)로 유기화된 몬모릴로나이트 (미국 Southern Clay Products Inc. 의 Cloisite 30B) 10.0g을 500ml의 톨루엔에 분산시키고 여기에 2.0mmol의 TiCl4촉매를 가하여 30℃에서 1시간 이상 담지 시키고 30.0mmol의 Al(Et)3를 가하여 30분 이상 반응시킨 후 1-butene을 주입하여 반응 온도 50℃, 반응 압력 6기압에서 1시간 동안 반응시켰다. 반응 결과 용융점 130℃의 폴리뷰텐 [poly(1-butene)] 35.7g을 얻었으며 광각 X-선 산란분석기 분석 결과 몬모릴로나이트의 층상이 완전 박리되었음이 확인되었다.Disperse 10.0 g of montmorillonite (Closisite 30B from Southern Clay Products Inc., U.S.A.) organicized with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride in 500 ml of toluene Then, 2.0 mmol of TiCl 4 catalyst was added thereto, and the mixture was supported at 30 ° C. for at least 1 hour, and 30.0 mmol of Al (Et) 3 was added for reaction for at least 30 minutes. The reaction was carried out for 1 hour at. As a result, 35.7 g of poly (1-butene) was obtained at a melting point of 130 ° C., and a wide angle X-ray scattering analyzer analysis showed that montmorillonite was completely peeled off.

<실시예 5>Example 5

메틸 탈로우 비스-2-하이드록시에틸 쿼터너리 암모니움 클로라이드 (methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride)로 유기화된 몬모릴로나이트 (미국 Southern Clay Products Inc. 의 Cloisite 30B) 5.0g을 200ml의 톨루엔에 분산시키고 여기에 1.0mmol의 TiCl4촉매를 가하여 30℃에서 1시간 이상 담지 시키고 15.0mmol의 (C2H5)2AlCl를 가하여 30분 이상 반응시킨 후 40g의 4-메틸-1-펜텐(4-methyl-1-pentene)을 주입하여 반응 온도 50℃에서 1시간 동안 반응시켰다. 반응 결과 용융점 240.5℃를 갖는 폴리메틸펜텐[poly(4-methyl-1-pentene)] 19.8g을 얻었으며 광각 X-선 산란분석기 분석 결과 몬모릴로나이트의 층상이 완전히 박리되었음이 확인되었다.Disperse 5.0 g of montmorillonite (Closisite 30B from Southern Clay Products Inc., USA) organicized with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride in 200 ml of toluene 1.0 mmol of TiCl 4 catalyst was added thereto, and the mixture was supported at 30 ° C. for at least 1 hour, and 15.0 mmol of (C 2 H 5 ) 2 AlCl was added for reaction for 30 minutes or longer, followed by 40 g of 4-methyl-1-pentene (4- methyl-1-pentene) was injected and reacted at a reaction temperature of 50 ° C. for 1 hour. As a result, 19.8 g of poly (4-methyl-1-pentene) having a melting point of 240.5 ° C. was obtained, and a wide angle X-ray scattering analyzer analysis showed that the montmorillonite layer was completely peeled off.

<비교예 1>Comparative Example 1

유기화되지 않은 몬모릴로나이트(미국 Southern Clay Products Inc.의 Cloisite Na+)를 이용하여 실시예 1과 같은 조건에서 반응을 수행한 결과, 용융점 133℃의 폴리에틸렌을 21.9g 얻었으나 광각 X-선 산란분석 결과, 몬모릴로나이트의 실리케이트층이 박리되지 않음이 확인되었으며 폴리에틸렌 중합이 몬모릴로나이트 실리케이트층 외부에서 대부분 일어났음이 확인되었다.The reaction was carried out under the same conditions as in Example 1 using unorganized montmorillonite (Closisite Na + of Southern Clay Products Inc., USA), whereby 21.9 g of polyethylene having a melting point of 133 ° C. was obtained. It was confirmed that the silicate layer of montmorillonite did not peel off, and that polyethylene polymerization occurred mostly outside the montmorillonite silicate layer.

상기 방법에 의하여 제조된 클레이가 분산된 올레핀계 고분자 나노 복합체를 마스터 배치로 하여 폴리올레핀을 혼합하면 우수한 물성을 지니는 폴리올레핀 수지가 얻어진다.The polyolefin resin having excellent physical properties is obtained by mixing polyolefin using the olefin polymer nanocomposite in which clay prepared by the above method is dispersed as a master batch.

마스터 배치와 폴리올레핀 수지의 배합비율은 원하는 물성에 따라 다르나 클레이의 함량이 1∼10중량%가 되도록 하면 투명성을 크게 훼손하지 않을 수 있다.The blending ratio of the master batch and the polyolefin resin depends on the desired physical properties, but if the content of clay is 1 to 10% by weight, the transparency may not be significantly impaired.

본 발명에 의하면 컴파운딩법만으로 제조된 것보다 우수한 물성을 가지는, 올레핀계 고분자에 클레이가 나노 스케일로 분산된 올레핀계 고분자 나노 복합체를 제조할 수 있으며, 이를 폴리올레핀 수지와 배합하면 투명성을 크게 손상시키지 않으면서도 인장강도와 열변형 온도 등 물성이 우수한 수지를 제조할 수 있다.According to the present invention, an olefin-based polymer nanocomposite in which clay is dispersed on a nanoscale in an olefin-based polymer having superior physical properties than that prepared by the compounding method alone can be prepared. It is possible to prepare a resin having excellent physical properties such as tensile strength and heat deformation temperature without using.

Claims (8)

클레이에 올레핀 중합용 촉매를 담지시키는 단계와, 조촉매를 담지시키는 단계와, 올레핀을 중합시켜서 층간이 박리된 클레이가 분산된 올레핀계 고분자 나노 복합체를 제조하는데 있어서, 클레이로 촉매를 담지시킬 수 있는 히드록시기 또는 아민기가 말단에 있는 유기화 화합물로 유기화 처리된 클레이를 사용하고, 올레핀 중합용 촉매로 티타늄(Ti) 또는 바나듐(V)에 염소 또는 옥시클로라이드가 결합된 형태의 지글러 나타(Ziegler-Natta) 촉매를 사용하고, 조촉매로 유기 알루미늄을 사용하는 것을 특징으로 하는 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법.In the step of supporting the catalyst for olefin polymerization on the clay, the step of supporting the cocatalyst, and in the preparation of the olefin polymer nanocomposites in which the delaminated clay is dispersed by polymerizing olefin, the catalyst may be supported by clay. Ziegler-Natta catalyst using a clay organicated with an organic compound having a hydroxy group or an amine group at the end, and chlorine or oxychloride bonded to titanium (Ti) or vanadium (V) as a catalyst for olefin polymerization. The method of producing an olefin-based polymer nanocomposite in which clay is dispersed, which comprises using organic aluminum as a promoter. 제1항에 있어서, 클레이가 몬모릴로나이트, 헥토라이트, 사포나이트, 사우코나이트, 버미쿠라이트, 마가디이트, 케냐아이트에서 선택되는 것을 특징으로 하는 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법.The method of claim 1, wherein the clay is montmorillonite, hectorite, saponite, souconite, vermiculite, margarite, Kenyaite, characterized in that clay dispersed olefin polymer nanocomposite manufacturing method. 제1항에 있어서, 올레핀 중합용 촉매가 유기화합물(organic compound)에 Zr, Ti, Ni, Pd에서 선택되는 금속이 결합된 유기금속 복합체(organometal complex)에서 선택되는 것을 특징으로 하는 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법.The method of claim 1, wherein the olefin polymerization catalyst is dispersed in clay, characterized in that selected from the organic compound (organometal complex) in which a metal selected from Zr, Ti, Ni, Pd is bonded to the organic compound (organic compound) Olefin-based polymer nanocomposite manufacturing method. 제1항에 있어서, 조촉매로 사용되는 유기 알루미늄이 (C2H5)3Al, (C2H5)2AlCl, (C2H5)AlCl2, (t-C4H9)3Al, (iso-C4H9)3Al에서 선택되는 것을 특징으로 하는 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법.The method of claim 1, wherein the organoaluminum used as a promoter is (C 2 H 5 ) 3 Al, (C 2 H 5 ) 2 AlCl, (C 2 H 5 ) AlCl 2 , (tC 4 H 9 ) 3 Al, (iso-C 4 H 9 ) A method for producing clay dispersed olefin polymer nanocomposite, characterized in that selected from 3 Al. 제1항에 있어서, 조촉매의 사용량이 몰 기준으로 촉매 사용량의 10∼100배인 것을 특징으로 하는 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법.The method of claim 1, wherein the amount of cocatalyst used is 10 to 100 times the amount of the catalyst on a molar basis. 제1항에 있어서, 올레핀이 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 3-메틸-1-부텐, 3-메틸-1-펜텐, 4-메틸-1-펜텐, 4-메틸-1-헥센, 비닐사이클로펜탄, 비닐사이클로헥산, 5-비닐-2-노르보르넨, 스티렌, 비닐나프탈렌, 1,4-헥사디엔, 1,5-헥사디엔, 4-메틸-1,4-헥사디엔, 1,7-옥타디엔에서 1 또는 2 이상 선택되는 것을 특징으로 하는 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법.The olefin of claim 1 wherein the olefin is ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 3-methyl-1-butene, 3-methyl-1-pentene, 4- Methyl-1-pentene, 4-methyl-1-hexene, vinylcyclopentane, vinylcyclohexane, 5-vinyl-2-norbornene, styrene, vinylnaphthalene, 1,4-hexadiene, 1,5-hexadiene , 4-methyl-1,4-hexadiene, 1,7-octadiene is selected from 1 or 2 or more clay-dispersed olefin polymer nanocomposite manufacturing method. 제1항 내지 제6항의 어느 한 방법에 의하여 제조되는 클레이가 분산된 올레핀계 고분자 나노 복합체를 함유하는 폴리올레핀 수지.The polyolefin resin containing the olefin type polymer nanocomposite which the clay manufactured by the method of any one of Claims 1-6 disperse | distributed. 제7항에 있어서, 폴리올레핀 수지에서 클레이의 함량이 1∼10중량%인 것을특징으로 하는 폴리올레핀 수지.The polyolefin resin according to claim 7, wherein the content of clay in the polyolefin resin is 1 to 10% by weight.
KR10-2001-0050871A 2001-08-23 2001-08-23 Method for Preparation of Polyolefin/Clay Nanocomposite KR100445237B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0050871A KR100445237B1 (en) 2001-08-23 2001-08-23 Method for Preparation of Polyolefin/Clay Nanocomposite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0050871A KR100445237B1 (en) 2001-08-23 2001-08-23 Method for Preparation of Polyolefin/Clay Nanocomposite

Publications (2)

Publication Number Publication Date
KR20030025308A KR20030025308A (en) 2003-03-29
KR100445237B1 true KR100445237B1 (en) 2004-08-18

Family

ID=27720428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0050871A KR100445237B1 (en) 2001-08-23 2001-08-23 Method for Preparation of Polyolefin/Clay Nanocomposite

Country Status (1)

Country Link
KR (1) KR100445237B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144042B1 (en) 2005-11-23 2012-07-03 현대자동차주식회사 Polyolefin Clay Nanocomposites and Preparing Method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583952B1 (en) * 2004-10-06 2006-05-26 윤관한 Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same
KR100616753B1 (en) * 2005-06-27 2006-08-28 윤관한 Process for preparing polyethyleneterephthalate-organic clay composite film
CN101565500B (en) * 2008-04-23 2011-08-03 中国科学院化学研究所 Polyester/clay nanometer composite material, special catalyst thereof and methods for preparing polyester/clay nanometer composite material and special catalyst thereof
CN102933614A (en) * 2010-06-08 2013-02-13 Lg化学株式会社 Clay-supported nickel diimine catalyst and method for preparation of polyolepin/clay nanocomposites using the same
WO2015054758A1 (en) * 2013-10-17 2015-04-23 Petróleo Brasileiro S.A. - Petrobras Method for preparing bisupported ziegler-natta catalysts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192576A (en) * 1991-07-22 1993-08-03 Texaco Chem Co Olefin oligomerizing method using nonhalogenated titanium compound or zirconium compound supported on clay
JPH06136046A (en) * 1992-10-29 1994-05-17 Mitsubishi Kasei Corp Catalyst for polymerization of olefin and production of olefin polymer
JPH10139807A (en) * 1996-11-06 1998-05-26 Tosoh Corp Catalyst for polymerizing olefin and polymerization of olefin
JPH10204114A (en) * 1996-11-21 1998-08-04 Tosoh Corp Catalyst for production of olefin polymer and production of olefin polymer
JPH11106415A (en) * 1997-10-07 1999-04-20 Tosoh Corp Catalyst for producing olefin polymer and production of olefin polymer
CN1255510A (en) * 1998-11-26 2000-06-07 中国石油化工集团公司 nm-class polyolefine-clay composition
KR101255510B1 (en) * 2010-11-26 2013-04-16 엘지디스플레이 주식회사 A exhaust system and a control method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192576A (en) * 1991-07-22 1993-08-03 Texaco Chem Co Olefin oligomerizing method using nonhalogenated titanium compound or zirconium compound supported on clay
JPH06136046A (en) * 1992-10-29 1994-05-17 Mitsubishi Kasei Corp Catalyst for polymerization of olefin and production of olefin polymer
JPH10139807A (en) * 1996-11-06 1998-05-26 Tosoh Corp Catalyst for polymerizing olefin and polymerization of olefin
JPH10204114A (en) * 1996-11-21 1998-08-04 Tosoh Corp Catalyst for production of olefin polymer and production of olefin polymer
JPH11106415A (en) * 1997-10-07 1999-04-20 Tosoh Corp Catalyst for producing olefin polymer and production of olefin polymer
CN1255510A (en) * 1998-11-26 2000-06-07 中国石油化工集团公司 nm-class polyolefine-clay composition
KR101255510B1 (en) * 2010-11-26 2013-04-16 엘지디스플레이 주식회사 A exhaust system and a control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144042B1 (en) 2005-11-23 2012-07-03 현대자동차주식회사 Polyolefin Clay Nanocomposites and Preparing Method thereof

Also Published As

Publication number Publication date
KR20030025308A (en) 2003-03-29

Similar Documents

Publication Publication Date Title
US6646072B2 (en) Process for making polyolefin compositions containing exfoliated clay
US6444742B1 (en) Polyolefin/clay nanocomposites and process for the preparation thereof
Alexandre et al. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties
US6034025A (en) Catalyst for polymerization and copolymerization of olefins
US6649713B2 (en) Process for preparation of polyolefin/inorganic component nanocomposite by in-situ polymerization
CN1293692A (en) Polyolefin nanocomposites
HU221058B1 (en) Catalyst support and process for obtaining it, catalyst and polymerization of alpha olefins
EP2029668B1 (en) Method for forming exfoliated clay-polyolefin nanocomposites
Nikkhah et al. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler–Natta catalyst
Hanifpour et al. Silica‐grafted poly1‐hexene: A new approach to prepare polyethylene/silica nanocomposites
KR100445237B1 (en) Method for Preparation of Polyolefin/Clay Nanocomposite
Dubois et al. Polymerization‐filled composites and nanocomposites by coordination catalysis
KR20030067716A (en) Polyolefin nano-composite
CN100535042C (en) Polymer composition comprising nanofillers
KR100216665B1 (en) Solid catalyst for use in stereospecific alpha-olefin polymerization, process of preparation and polymerization process using the same
Du et al. High‐Performance Exfoliated Poly (propylene)/Clay Nanocomposites by In Situ Polymerization with a Novel Z–N/Clay Compound Catalyst
US8329811B2 (en) Process for polymerization in the presence of nanoparticles of a mineral filler for the attainment of polymer nanocomposites, and a polymer nanocomposite
Khar’kova et al. Nanocomposites and high-modulus fibers based on ultrahigh-molecular-weight polyethylene and silicates: Synthesis, structure, and properties
KR101442202B1 (en) Clay-supported nickel diimine catalyst and method for preparation of polyolepin/clay nanocomposites using the same
Mariott et al. Stereoregular P (MMA)‐clay nanocomposites by metallocene catalysts: In situ synthesis and stereocomplex formation
CN1176116C (en) Polyolefin/montmorillonite nano composite material and its preparation method
US7432319B2 (en) Process for making exfoliated polyolefin/clay nanocomposites
KR100431637B1 (en) Polymeration method of olefin and resin composition of high melt strength
EP2176337B1 (en) Impact modification of polyolefins
JP3100427B2 (en) Heat resistant insulation film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090731

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee