KR100583952B1 - Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same - Google Patents
Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same Download PDFInfo
- Publication number
- KR100583952B1 KR100583952B1 KR1020040079336A KR20040079336A KR100583952B1 KR 100583952 B1 KR100583952 B1 KR 100583952B1 KR 1020040079336 A KR1020040079336 A KR 1020040079336A KR 20040079336 A KR20040079336 A KR 20040079336A KR 100583952 B1 KR100583952 B1 KR 100583952B1
- Authority
- KR
- South Korea
- Prior art keywords
- clay
- organic clay
- pet
- catalyst
- organic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0211—Compounds of Ti, Zr, Hf
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/36—Silicates having base-exchange properties but not having molecular sieve properties
- C01B33/38—Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
- C01B33/40—Clays
- C01B33/405—Clays not containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
본 발명은 층상 유기점토를 나노 스케일의 시트 상의 기본 단위로 완전박리한 PET-유기점토 복합체에 관한 것으로서, 더욱 상세하게는 PET-유기점토 복합체의 제조방법에 있어서 유기화제를 이용하여 점토를 유기화시키는 종래의 방법 대신, 점토 시트 상에 촉매를 치환시킴으로써 층상 유기점토를 나노 스케일의 시트 상의 기본 단위로 완전박리한 PET-유기점토 복합체에 관한 것이다.The present invention relates to a PET-organoclay composite in which layered organic clay is completely peeled as a basic unit on a nano-scale sheet, and more particularly, in the method of preparing a PET-organic clay composite, in which clay is organicized using an organic agent. Instead of the conventional method, the present invention relates to a PET-organoclay composite in which the layered organic clay is completely separated into basic units on a nanoscale sheet by replacing the catalyst on the clay sheet.
PET, 유기점토, 촉매, 폴리에스테르, 나노 복합체PET, organoclay, catalyst, polyester, nanocomposite
Description
본 발명은 층상 유기점토를 나노 스케일의 시트 상의 기본 단위로 완전박리한 PET-유기점토 복합체에 관한 것으로서, 더욱 상세하게는 PET-유기점토 복합체의 제조방법에 있어서 유기화제를 이용하여 점토를 유기화시키는 종래의 방법 대신, 점토 시트 상에 촉매를 치환시킴으로써 층상 유기점토를 나노 스케일의 시트 상의 기본 단위로 완전박리한 PET-유기점토 복합체에 관한 것이다.The present invention relates to a PET-organoclay composite in which layered organic clay is completely peeled as a basic unit on a nano-scale sheet, and more particularly, in the method of preparing a PET-organic clay composite, in which clay is organicized using an organic agent. Instead of the conventional method, the present invention relates to a PET-organoclay composite in which the layered organic clay is completely separated into basic units on a nanoscale sheet by replacing the catalyst on the clay sheet.
근래 고분자 수지의 물성을 개선하기 위한 방법으로 나노 단위의 입자를 첨가하는 시도가 많이 진행되어 왔으며, 여기에 사용하는 첨가제로서 층상의 점토가 많이 응용되고 있다. Recently, many attempts have been made to add nano-particles as a method for improving the physical properties of polymer resins, and a lot of layered clays have been applied as additives.
고분자 나노 복합체의 핵심기술은 층상물질인 점토를 어떻게 변화시켜 목표로 하는 고분자 수지가 용이하게 삽입(intercalation)되도록 하느냐이다. 점토의 대부분은 층상 규산염으로서 극성(polar)의 친수성을 띠고 있어, 대부분 친유성인 고분자 수지로는 쉽게 삽입될 수 없다. 따라서, 이 극성의 규산염에 각종 고분자 수지가 각각의 특성에 맞게 용이하게 삽입될 수 있도록 변형시킨 것이 유기화된 층상 규산염이다. The core technology of the polymer nanocomposite is how to change the layered clay so that the target polymer resin can be easily intercalated. Most of the clay is a layered silicate, which is polar hydrophilic, and cannot be easily inserted into most lipophilic polymer resins. Therefore, it is an organic layered silicate that modified so that various polymer resins could be easily inserted in each polarity according to the characteristic of this polar silicate.
점토 분산 나노 복합체 제조방법으로는 용액법, 중합법, 컴파운딩법의 3가지 방법이 잘 알려져 있는데, 이들 가운데 중합법은 우수한 물성의 나노 복합체를 제조할 수 있는 가장 좋은 방법으로 알려져 있다.Three methods for preparing clay dispersed nanocomposites are well known, such as a solution method, a polymerization method, and a compounding method. Among them, the polymerization method is known to be the best method for producing nanocomposites having excellent physical properties.
고분자 수지에 대한 층상 무기물질의 균일한 분산을 보다 용이하게 하기 위하여, 미국 특허 제 4,889,885호 등에서는 무기 실리케이트와 같은 다층 미립자 층상 물질의 단위층 사이에 천연상태로 존재하는 나트륨 또는 칼륨이온을 오니움(알킬암모늄 이온 또는 작용성화된 유기실란)으로 대체시킨 후, 이러한 층상 물질을 중합체의 단량체 또는 올리고머와 혼합하는 기술이 개시되어 있다. 그러나, 상기 특허에 개시된 층상 유기점토는 열안정성이 100∼110℃ 수준으로 낮아 고분자 수지-유기점토 복합체 제조시, 유기점토가 열분해되어 복합체의 물성이 저하되는 문제가 있었다. In order to facilitate uniform dispersion of the layered inorganic material to the polymer resin, U.S. Pat. No. 4,889,885 or the like discloses sodium or potassium ions which exist in a natural state between the unit layers of the multilayered particulate layered material such as inorganic silicate. After replacement by (alkylammonium ions or functionalized organosilanes), a technique is disclosed for mixing such layered materials with monomers or oligomers of the polymer. However, the layered organic clay disclosed in the patent has a low thermal stability at a level of 100 to 110 ° C., when the polymer resin-organic clay composite is prepared, there is a problem that the physical properties of the composite are degraded due to thermal decomposition of the organic clay.
또한, 미국특허 제 6,057,035호에서는 유기점토의 열안정성을 개선하기 위하여 점토를 인계 화합물로 유기화시키고 유기화제로 실리콘을 사용하는 방법을 개시하고 있다. 그러나, 상기 특허의 방법은 유기점토의 열안정성을 200℃ 수준으로 향상시킬 수는 있지만, 고분자 수지와의 분산성 및 상용성이 낮아 폴리에스테르 및 폴리프로필렌 등과의 복합체 제조에는 적용하기 곤란하다.In addition, US Pat. No. 6,057,035 discloses a method of organizing clay into a phosphorus compound and using silicon as an organic agent to improve the thermal stability of the organic clay. However, although the method of the patent can improve the thermal stability of the organic clay to 200 ° C. level, it is difficult to apply to composites of polyester and polypropylene due to low dispersibility and compatibility with the polymer resin.
또한, 대한민국 공개특허 제 2002-7583호에서는 (i) 변성 폴리프로필렌의 관능기와 아민계 비할로겐 난연제가 화학결합한 형태의 유기화제로 유기화된 층상 유기점토, (ii) 변성 프로필렌 및 (iii) 폴리프로필렌 수지(매트릭스)로 구성되는 폴리프로필렌-유기점토 복합체를 개시하고 있으나, 상기 특허에 사용된 층상 유기점토는 폴리프로필렌과의 상용성만 향상될 뿐, 기타 고분자 수지와의 상용성은 향상되지 않는 문제가 있었다.In addition, Korean Patent Laid-Open Publication No. 2002-7583 discloses (i) a layered organic clay organicized with an organizing agent in which a functional group of a modified polypropylene and an amine-based non-halogen flame retardant are chemically bonded, (ii) modified propylene and (iii) polypropylene. Although a polypropylene-organic clay composite composed of a resin (matrix) is disclosed, the layered organic clay used in the patent has only a problem of improving compatibility with polypropylene and not having compatibility with other polymer resins. .
현재 당업계에서는 폴리아미드계 나노 복합체의 경우, 중합법을 이용하여 제조된 우수한 물성을 가진 제품들이 상업화되어 있으나, 폴리에스테르계 나노 복합체의 경우, 유기화 점토를 이용한 중합법에 의해 제조되는 복합체는 아직 그 물성이 우수한 단계에 이르지 못하고 있고, 높은 중합온도에 의해 제조과정에서 유기화제가 분해되는 열화가 큰 문제로 남아 있다. Currently, in the art, polyamide-based nanocomposites have commercialized products having excellent physical properties prepared by polymerization. However, in the case of polyester-based nanocomposites, composites prepared by polymerization using organic clay have not yet been commercialized. Its physical properties have not reached the stage of superiority, and deterioration of organic agent decomposing in the manufacturing process due to high polymerization temperature remains a big problem.
이에 본 발명자들은 종래의 PET-유기점토 나노 복합체 제조에 있어서 층상의 점토를 유기화제로 유기화시킴으로써는 달성할 수 없었던 복합체 내 유기점토의 완전박리를, 층상의 점토에 PET 중합시 필요한 촉매를 치환시켜 유기점토의 시트 상에서 PET의 중합이 이루어지게 함으로써 유기점토가 완전박리될 수 있다는 것을 발견하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have replaced the catalyst required for PET polymerization to the layered clay by completely separating the organic clay in the composite, which could not be achieved by organicizing the layered clay with the organic agent in the conventional PET-organic clay nanocomposite production. It has been found that the organic clay can be completely exfoliated by allowing the polymerization of PET on a sheet of organoclay, thereby completing the present invention.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 PET-유기점토 복합체의 제조방법에 있어서 유기화제를 이용하여 점토를 유기화시키는 종래의 방법 대신, 점토 시트 상에 촉매를 치환시킴으로써 층상 유기점토를 나노 스케일의 시트 상의 기본 단위로 완전박리한 PET-유기점토 복합체를 제공하는 것이다.Therefore, the present invention is to solve the problems of the prior art as described above, the object of the present invention, instead of the conventional method of organicizing the clay using an organic agent in the method of producing a PET-organic clay composite, clay sheet Substituting the catalyst in the phase is to provide a PET-organoclay composite in which the layered organic clay is completely separated into basic units on a nanoscale sheet.
본 발명의 층상 유기점토는 층상 점토의 알칼리금속 이온이 하기 일반식 (I)로 표시되는 촉매로 치환된 것을 특징으로 한다.The layered organic clay of the present invention is characterized in that the alkali metal ions of the layered clay are substituted with a catalyst represented by the following general formula (I).
(식중, X는 F, Cl, Br, I 의 할로겐 원자이다.)Wherein X is a halogen atom of F, Cl, Br, I.
본 발명은 층상 점토의 시트 상에 상기 일반식 (I)로 표시되는 촉매가 치환된 층상 유기점토에 관한 것으로서, 이는 일반적으로 사용되고 있는 층상 점토에 상기 일반식 (I)로 표시되는 촉매를 치환시켜줌으로써 제조된다. The present invention relates to a layered organic clay in which the catalyst represented by the general formula (I) is substituted on a sheet of layered clay, which is generally substituted by replacing the catalyst represented by the general formula (I) with the layered clay being used. It is made by giving.
층 사이에 알칼리금속이 존재하는 층상 점토는 물에 의해서는 팽윤이 가능하나, 그 외의 다른 유기 고분자의 층간 침투는 불가능한 것으로 알려져 있다. 이는 층상 점토의 층간 거리가 0.24nm 정도 밖에 안 되기 때문인데, 점토에 유기 고분자가 용이하게 침투하게 하기 위해서는, 양이온의 헤드 그룹(head group)과 친유성의 테일 그룹(tail group)으로 이루어진 유기화제를 이용하여 점토의 친유성을 증대시킬 필요가 있다. 이때 양이온의 헤드 그룹은 점토 표면에 존재하는 알칼리금속 이온을 교환하는 역할을 하며, 친유성의 테일 그룹은 유기 고분자와의 상호작용을 증대시키고 점토의 층간 거리를 증가시켜 유기 고분자의 층간 침투를 용이하게 하는 역할을 한다. 그러나, 이와 같이 유기화제를 이용하여 점토를 유기화시키는 것으로는 유기 고분자내 점토를 완전박리시킬 수 없기 때문에, 본 발명에서는 층상 점토의 알칼리금속 이온을 촉매로 치환함으로써 촉매로 치환된 층상 유기점토의 발명을 완성하게 되었다. Layered clays with alkali metals present between layers are swellable by water, but are not known to penetrate other organic polymers. This is because the interlayer distance of the layered clay is only about 0.24 nm. In order to facilitate the penetration of the organic polymer into the clay, the organic agent composed of the head group of the cation and the lipophilic tail group It is necessary to increase the lipophilic properties of clay. At this time, the head group of the cation exchanges alkali metal ions on the clay surface, and the lipophilic tail group increases the interaction with the organic polymer and increases the interlayer distance of the clay to facilitate the interpenetration of the organic polymer. Play a role. However, in the present invention, since the organic use of the organizing clay cannot completely separate the clay in the organic polymer, in the present invention, the invention of the layered organic clay substituted with the catalyst by replacing the alkali metal ions of the layered clay with the catalyst To complete.
상기한 촉매는 사용하는 점토 층 사이에 존재하는 알칼리금속의 종류에 따라 선택하여 사용할 수 있으나, 클로로티타늄 트리이소프로폭사이드(chlorotitanium triisopropoxide)를 사용하는 것이 바람직하다.The catalyst may be selected and used according to the type of alkali metal present between the clay layers to be used, but it is preferable to use chlorotitanium triisopropoxide.
본 발명의 점토로는 몬트모릴로나이트, 사포나이트, 헥토라이트, 베이텔라이트, 벤토나이트, 논트로나이트 또는 마이카(mica) 등을 이용할 수 있으나, 일반적으로 높은 팽윤능력을 보이는 몬트모릴로나이트를 이용하는 것이 바람직하다.As the clay of the present invention, montmorillonite, saponite, hectorite, betelite, bentonite, nontronite or mica may be used, but generally montmorillonite using high swelling ability is used. It is preferable.
또한, 본 발명의 PET-유기점토 복합체는, PET와 PET에 분산되어 있는 층상 유기점토로 이루어진 PET-유기점토 복합체에 있어서, 층상 점토의 알칼리금속 이온이 하기 일반식 (I)로 표시되는 촉매로 치환된 것을 특징으로 한다.In addition, the PET-organic clay composite of the present invention is a PET-organic clay composite composed of PET and layered organic clay dispersed in PET, wherein the alkali metal ion of the layered clay is a catalyst represented by the following general formula (I). Characterized in that substituted.
(식중, X는 F, Cl, Br, I 의 할로겐 원자이다.)Wherein X is a halogen atom of F, Cl, Br, I.
본 발명의 PET-유기점토 복합체내 층상 유기점토의 함량은 0.1∼10중량%인 것이 바람직하다. 유기점토의 함량이 0.1중량% 미만일 경우, 층상 유기점토가 나노 스케일의 시트 상의 기본 단위로 박리되는 효과가 미흡하여 완전박리되지 못하고, 10중량%를 초과할 경우 제조원가가 상승하여 바람직하지 않다.The content of the layered organic clay in the PET-organic clay composite of the present invention is preferably 0.1 to 10% by weight. If the content of the organic clay is less than 0.1% by weight, the effect of peeling the layered organic clay into the basic unit on the sheet of the nano-scale is insufficient, not fully peeled off, if it exceeds 10% by weight is not preferable because the manufacturing cost increases.
본 발명에 있어서, 상기 일반식 (I)로 표시되는 촉매의 할로겐 원자가 층상 점토의 알칼리금속 이온과 치환반응을 일으켜 촉매가 점토에 결합되게 하는 것이 기본 원리이다. 먼저 극성 용매로 점토를 팽윤시킨 뒤 촉매의 할로겐 원자가 점토의 알칼리금속 이온과 이온결합을 함으로써, 유기점토의 층 사이가 벌어져서 점토 내에 촉매가 붙어 있는 형태로 존재하게 된다. 다음으로, 중합과정에서 유기점토의 층 사이에서 촉매에 의해 PET 중합이 이루어지며, PET 사슬들이 성장함으로써 PET 내에서 점토가 완전박리되어 있는 상태를 얻을 수 있다. In the present invention, the basic principle is that the halogen atom of the catalyst represented by the general formula (I) causes a substitution reaction with the alkali metal ions of the layered clay so that the catalyst is bonded to the clay. First, the clay is swollen with a polar solvent, and then the halogen atoms of the catalyst are ion-bonded with the alkali metal ions of the clay, so that the layers between the organic clays are opened and the catalyst is present in the clay. Next, PET polymerization is performed by a catalyst between the layers of the organic clay in the polymerization process, and the PET chains are grown to obtain a state in which the clay is completely separated from the PET.
본 발명에 있어서, 점토 시트 상에 촉매를 치환시키는 방법은 다음과 같은 순서로 특별한 장치 없이 간단히 행할 수 있다. In the present invention, the method of substituting the catalyst on the clay sheet can be performed simply without any special apparatus in the following order.
먼저, 촉매를 치환할 점토는 사용 전에 150℃에서 24시간 동안 진공건조한다. 글로우박스 안에서 진공건조한 점토 10g에 무수 테트라하이드로퓨란(THF) 100mL을 넣은 후, 2시간 동안 상온에서 교반한다. 이렇게 얻어진 현탁액에 촉매 2g을 넣어 상온에서 교반하면서 반응시킨다. 24시간 후에 점토를 여과하고, 여과된 무수 THF로 여러 번 씻어서 치환되지 않고 남아있는 촉매를 제거함으로써 촉매가 치환된 층상 유기점토를 얻을 수 있다. 이렇게 제조된 층상 유기점토는 EDX 측정을 하여 유기점토 내의 촉매의 치환을 확인할 수 있다. First, the clay to replace the catalyst is vacuum dried at 150 ° C. for 24 hours before use. 100 g of anhydrous tetrahydrofuran (THF) was added to 10 g of vacuum dried clay in a glow box, followed by stirring at room temperature for 2 hours. 2 g of the catalyst was added to the suspension thus obtained and reacted at room temperature with stirring. After 24 hours, the clay was filtered and washed several times with filtered anhydrous THF to remove the catalyst which remained unsubstituted, thereby obtaining a layered organic clay in which the catalyst was substituted. Thus prepared layered organic clay can be determined by the replacement of the catalyst in the organic clay by measuring the EDX.
본 발명의 촉매로 치환된 층상 유기점토로 PET-유기점토 복합체를 제조할 경우, 유기점토의 시트 상에 촉매가 존재하여 그 곳에서 중합이 이루어지므로 PET- 유기점토 복합체 내에 유기점토가 박리되어 있는 상태를 얻을 수 있고, 이는 TEM 사진으로서 확인가능하다.When PET-organic clay composite is prepared from the layered organic clay substituted with the catalyst of the present invention, since the catalyst is present on the sheet of the organic clay and polymerization occurs therein, the organic clay is separated from the PET-organoclay composite. The state can be obtained, which can be seen as a TEM picture.
이하, 본 발명을 하기의 실시예를 통하여 더욱 자세히 설명한다. 하기의 실시예는 본 발명을 예시하기 위한 예에 지나지 않으며, 본 발명의 보호범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following examples are merely examples for illustrating the present invention, and do not limit the protection scope of the present invention.
실시예에 있어서, 층상 점토의 층 사이에 존재하는 알칼리금속의 종류에는 제한이 없으나, 일반적으로 사용되는 것이 점토 Na+이므로, 점토로서 점토 Na+의 일종인 Southern Clay사의 Cloisite 제품을 사용하였다. In the embodiment, there is no limitation on the type of alkali metal present between the layers of layered clay, but since it is generally used clay Na +, Southern Clay Cloisite product, a type of clay Na +, was used as clay.
(실시예 1)(Example 1)
점토를 150℃에서 24시간 동안 진공건조한 후, 글로우박스 안에서 진공건조한 점토 10g에 무수 THF 100mL을 넣은 후, 2시간 동안 상온에서 교반하였다. 이렇게 얻어진 현탁액에 촉매로서 클로로티타늄 트리이소프로폭사이드 2g을 넣어 상온에서 교반하면서 반응시켰다. 24시간 후 점토를 여과하고, 여과된 무수 THF로 여러 번 씻어서 치환되지 않고 남아있는 촉매를 제거함으로써 촉매로 치환된 층상 유기점토를 얻었다.After vacuum drying the clay at 150 ° C. for 24 hours, 100 g of dry THF was added to 10 g of vacuum dried clay in a glow box, followed by stirring at room temperature for 2 hours. 2 g of chlorotitanium triisopropoxide was added to the suspension thus obtained as a catalyst and reacted at room temperature with stirring. After 24 hours, the clay was filtered and washed several times with filtered anhydrous THF to remove the catalyst remaining unsubstituted to obtain a layered organic clay substituted with a catalyst.
(실시예 2)(Example 2)
점토를 150℃에서 24시간 동안 진공건조한 후, 글로우박스 안에서 진공건조한 점토 10g에 무수 디메틸포름아미드(DMF) 100mL을 넣은 후, 2시간 동안 상온에 서 교반하였다. 이렇게 얻어진 현탁액에 촉매로서 클로로티타늄 트리이소프로폭사이드 2g을 넣어 상온에서 교반하면서 반응시켰다. 24시간 후 점토를 여과하고, 여과된 무수 THF로 여러 번 씻어서 치환되지 않고 남아있는 촉매를 제거함으로써 촉매로 치환된 유기점토를 얻었다.After vacuum drying the clay at 150 ° C. for 24 hours, 100 mL of anhydrous dimethylformamide (DMF) was added to 10 g of vacuum dried clay in a glow box, followed by stirring at room temperature for 2 hours. 2 g of chlorotitanium triisopropoxide was added to the suspension thus obtained as a catalyst and reacted at room temperature with stirring. After 24 hours, the clay was filtered and washed several times with filtered anhydrous THF to remove the catalyst remaining unsubstituted to obtain an organic clay substituted with a catalyst.
(실시예 3)(Example 3)
디메틸렌테레프탈레이트, 에틸렌글리콜, 실시예 1에서 얻은 촉매로 치환된 층상 유기점토 1중량%(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에스테르 교환반응을 거치고, 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다.1% by weight of the layered organic clay (based on the total weight of dimethylene terephthalate and ethylene glycol) substituted with dimethylene terephthalate, ethylene glycol and the catalyst obtained in Example 1, at 230 ° C. under nitrogen atmosphere in a small polymerization apparatus for 1 hour, 230 After transesterification for 2 hours at ℃, 280 ℃, a condensation reaction in a vacuum of 0.1torr for 1 hour to prepare a PET-organic clay composite.
(실시예 4)(Example 4)
디메틸렌테레프탈레이트, 에틸렌글리콜, 실시예 1에서 얻은 촉매로 치환된 층상 유기점토 2중량%(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에스테르 교환반응을 거치고, 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다. 2% by weight of layered organic clay (based on the total weight of dimethylene terephthalate and ethylene glycol) substituted with dimethylene terephthalate, ethylene glycol and the catalyst obtained in Example 1, at 230 ° C. under nitrogen atmosphere for 1 hour, 230 After transesterification for 2 hours at ℃, 280 ℃, a condensation reaction in a vacuum of 0.1torr for 1 hour to prepare a PET-organic clay composite.
(실시예 5)(Example 5)
디메틸렌테레프탈레이트, 에틸렌글리콜, 실시예 1에서 얻은 촉매로 치환된 층상 유기점토 5중량%(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에 스테르 교환반응을 거치고, 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다. 5% by weight of layered organic clay (based on the total weight of dimethylene terephthalate and ethylene glycol) substituted with dimethylene terephthalate, ethylene glycol and the catalyst obtained in Example 1, at 230 ° C. under nitrogen atmosphere in a small polymerization apparatus for 1 hour, 230 After 2 hours of ester exchange reaction at ℃, and 280 ℃, condensation reaction in a vacuum of 0.1torr for 1 hour to prepare a PET-organic clay composite.
(비교예 1)(Comparative Example 1)
디메틸렌테레프탈레이트(DMT), 에틸렌글리콜, 촉매로 티타늄아이소프로폭사이드를 DMT 기준으로 500ppm을 넣어 준 다음, 유기화제가 붙어있는 Cloisite 10A 1중량%(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에스테르 교환반응을 거치고, 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다. 500 ppm of titanium isopropoxide was used as the dimethylene terephthalate (DMT), ethylene glycol, and catalyst based on DMT, and then 1% by weight of Cloisite 10A with an organizing agent (based on the total weight of dimethylene terephthalate and ethylene glycol) Was subjected to transesterification for 1 hour at 190 ° C. and 2 hours at 230 ° C. under a nitrogen atmosphere in a small polymerization apparatus, and a PET-organic clay composite was prepared through a condensation reaction at 280 ° C. in a vacuum of 0.1 torr for 1 hour.
(비교예 2)(Comparative Example 2)
디메틸렌테레프탈레이트, 에틸렌글리콜, 촉매로 티타늄아이소프로폭사이드를 DMT 기준으로 500ppm을 넣어 준 다음, 유기화제가 붙어있는 Cloisite 10A 2중량%(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에스테르 교환반응을 거치고, 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다. 500 ppm of titanium isopropoxide was used as the dimethylene terephthalate, ethylene glycol, and catalyst based on DMT, and then 2% by weight of Cloisite 10A (organic weight of dimethylene terephthalate and ethylene glycol) with an organizing agent was compactly polymerized. The PET-organic clay composite was prepared by transesterification for 1 hour at 190 ° C. and 2 hours at 230 ° C. under a nitrogen atmosphere in the apparatus, and then for 1 hour at 280 ° C. under a vacuum of 0.1 torr.
(비교예 3)(Comparative Example 3)
디메틸렌테레프탈레이트, 에틸렌글리콜, 촉매로 티타늄아이소프로폭사이드를 DMT 기준으로 500ppm을 넣어 준 다음, 유기화제가 붙어있는 Cloisite 10A 3중량 %(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에스테르 교환반응을 거치고, 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다. 500 ppm of titanium isopropoxide was used as the dimethylene terephthalate, ethylene glycol, and catalyst based on DMT, and then 3% by weight of Cloisite 10A (organic weight of dimethylene terephthalate and ethylene glycol) with an organizing agent was compactly polymerized. The PET-organic clay composite was prepared by transesterification for 1 hour at 190 ° C. and 2 hours at 230 ° C. under a nitrogen atmosphere in the apparatus, and then for 1 hour at 280 ° C. under a vacuum of 0.1 torr.
(비교예 4)(Comparative Example 4)
디메틸렌테레프탈레이트, 에틸렌글리콜, 촉매로 티타늄아이소프로폭사이드를 DMT 기준으로 500ppm을 넣어 준 다음, 유기화제가 붙어있는 Cloisite 10A 5중량%(디메틸렌테레프탈레이트와 에틸렌글리콜 전체 중량 기준)를 소형 중합 장치내의 질소분위기 하에서 190℃에서 1시간, 230℃에서 2시간 동안 에스테르 교환반응을 거치고 280℃, 0.1torr의 진공에서 축합반응을 1시간 거쳐서 PET-유기점토 복합체를 제조하였다. 500 ppm of titanium isopropoxide was used as the dimethylene terephthalate, ethylene glycol, and catalyst based on DMT, and then 5% by weight of Cloisite 10A (organic weight of dimethylene terephthalate and ethylene glycol) with an organizing agent was compactly polymerized. The PET-organic clay composite was prepared by transesterification for 1 hour at 190 ° C. and 2 hours at 230 ° C. under a nitrogen atmosphere in the apparatus, and then for 1 hour at 280 ° C. under a vacuum of 0.1 torr.
상기 실시예 3∼5 및 비교예 1∼4에서 얻어진 PET-유기점토 복합체에 대한 중합여부(○: 중합 잘 됨, △: 중합은 되었으나 거품 발생, ×: 중합되지 않음) 및 상대점도를 측정하여 하기 표 1에 나타내었다.The polymerization of the PET-organic clay composites obtained in Examples 3 to 5 and Comparative Examples 1 to 4 (○: polymerization was good, △: polymerization but foaming, ×: polymerization) and the relative viscosity was measured It is shown in Table 1 below.
[표 1]TABLE 1
상기 표 1에서 알 수 있는 바와 같이, 종래와 같이 유기화제로 유기화된 점토로 PET-유기점토 복합체를 제조한 비교예 1 및 2의 경우, 중합은 이루어졌으나 중합시 발생하는 거품을 제거해야 하는 어려움이 있었다. 또한, 종래와 같이 유기화제로 유기화된 점토로 PET-유기점토 복합체를 제조한 비교예 3 및 4의 경우, 유기점토의 함량이 증가함에 따라 생성되는 거품의 양이 너무 많아 중합이 이루어지지지 않았다. 이에 반해, 실시예 1에서 얻은 본 발명의 촉매로 치환된 층상 유기점토로 PET-유기점토 복합체를 제조할 경우(실시예 3, 4 및 5), 종래의 방법과 비교해 보면, 중합시 거품이 발생하지 않아 손쉽게 PET-유기점토 복합체를 제조할 수 있었다. As can be seen in Table 1, in Comparative Examples 1 and 2 in which PET-organic clay composites were prepared from clay organicized with an organic agent as in the prior art, polymerization was performed, but difficulty in removing bubbles generated during polymerization was observed. There was this. In addition, in the case of Comparative Examples 3 and 4 in which PET-organic clay composites were prepared from clay organicized with an organic agent as in the prior art, the amount of bubbles generated was too high as the content of the organic clay was increased so that polymerization was not performed. In contrast, when the PET-organic clay composite was prepared from the layered organic clay substituted with the catalyst of the present invention obtained in Example 1 (Examples 3, 4 and 5), foaming occurred during polymerization compared to the conventional method. It could not be easily produced PET-organic clay composite.
이상에서 알 수 있는 바와 같이, 본 발명의 촉매로 치환된 층상 유기점토로 PET-유기점토 복합체를 제조하면, PET 내에 유기점토가 완전박리되어 있는 PET-유기점토 복합체를 제조할 수 있다. 또한, 중합시 거품이 발생하지 않아 손쉽게 PET-유기점토 복합체를 제조할 수 있는 장점이 있다. As can be seen from the above, when the PET-organic clay composite is prepared from the layered organic clay substituted with the catalyst of the present invention, the PET-organoclay composite in which the organic clay is completely separated in PET can be prepared. In addition, foaming does not occur during polymerization, there is an advantage that can be easily produced PET-organic clay composite.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040079336A KR100583952B1 (en) | 2004-10-06 | 2004-10-06 | Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040079336A KR100583952B1 (en) | 2004-10-06 | 2004-10-06 | Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060037471A KR20060037471A (en) | 2006-05-03 |
KR100583952B1 true KR100583952B1 (en) | 2006-05-26 |
Family
ID=37145245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040079336A KR100583952B1 (en) | 2004-10-06 | 2004-10-06 | Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100583952B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100616753B1 (en) * | 2005-06-27 | 2006-08-28 | 윤관한 | Process for preparing polyethyleneterephthalate-organic clay composite film |
KR101101804B1 (en) * | 2009-03-19 | 2012-01-05 | 한국세라믹기술원 | Polymer complex having color evolution and method for manufacturing thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62171915A (en) | 1986-01-24 | 1987-07-28 | Fuji Kagaku Kogyo Kk | Production of clay derivative having porous structure |
US5364823A (en) | 1986-09-25 | 1994-11-15 | Matsushita Electric Works, Ltd. | Method for manufacturing inorganic porous layered member |
JP2003062462A (en) | 2001-08-27 | 2003-03-04 | National Institute Of Advanced Industrial & Technology | Photocatalyst included between clay layers and method for producing the same |
KR20030025308A (en) * | 2001-08-23 | 2003-03-29 | 한국과학기술연구원 | Method for Preparation of Polyolefin/Clay Nanocomposite |
-
2004
- 2004-10-06 KR KR1020040079336A patent/KR100583952B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62171915A (en) | 1986-01-24 | 1987-07-28 | Fuji Kagaku Kogyo Kk | Production of clay derivative having porous structure |
US5364823A (en) | 1986-09-25 | 1994-11-15 | Matsushita Electric Works, Ltd. | Method for manufacturing inorganic porous layered member |
KR20030025308A (en) * | 2001-08-23 | 2003-03-29 | 한국과학기술연구원 | Method for Preparation of Polyolefin/Clay Nanocomposite |
JP2003062462A (en) | 2001-08-27 | 2003-03-04 | National Institute Of Advanced Industrial & Technology | Photocatalyst included between clay layers and method for producing the same |
Non-Patent Citations (1)
Title |
---|
1020030025308 |
Also Published As
Publication number | Publication date |
---|---|
KR20060037471A (en) | 2006-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3187025B2 (en) | Method for producing conductive polymer nanocomposite | |
Fawaz et al. | Synthesis of polymer nanocomposites: review of various techniques | |
Utracki et al. | Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs) | |
Chen | Polymer–clay nanocomposites: an overview with emphasis on interaction mechanisms | |
Someya et al. | Nanocomposites based on poly (butylene adipate‐co‐terephthalate) and montmorillonite | |
US6410142B1 (en) | sPS nanocomposite and processes for producing the same | |
US20020086932A1 (en) | Polymer nanocomposites and the process of preparing the same | |
Mallakpour et al. | Biomodification of cloisite Na+ with L‐methionine amino acid and preparation of poly (vinyl alcohol)/organoclay nanocomposite films | |
JP2001512773A (en) | Nanocomposite | |
US20070032585A1 (en) | Composite of high melting polymer and nanoclay with enhanced properties | |
US20040214921A1 (en) | Polymer-phyllosilicate nanocomposites and their preparation | |
Mansoori et al. | Nanocomposite materials based on isosorbide methacrylate/Cloisite 20A | |
KR100824133B1 (en) | A manufacturing method of organic modifier-free exfoliated nano clay-polymer composite | |
JP2001200135A (en) | Abs nano composite material and method for producing the same | |
KR100583952B1 (en) | Catalyst-substituted lamellar organic clay and PET-organic clay composite using the same | |
KR100864429B1 (en) | Hyperbranched organic modifier, method of preparing thereof and organo-modified clay using the same | |
KR100545140B1 (en) | A layered organo clay with excellent thermal stability and flame-retardant properties, and a composites comprising the organo clay | |
KR100853441B1 (en) | Clay modified with silane compound, polymer/clay nanocomposite containing the clay compound, and methods for preparing them | |
Şen et al. | Synthesis of effective poly (4‐vinylpyridine) nanocomposites: in situ polymerization from edges/surfaces and interlayer galleries of clay | |
US6828367B1 (en) | Organic modification of a layered silicate by co-ion exchange of an alkyl ammonium and a mono-protonated diamine | |
Qin et al. | Effect of intercalation method and intercalating agent type on the structure of silane-grafted montmorillonite | |
KR100450231B1 (en) | Organic clay compound for preparing polar polymer-clay nanocomposities, polar polymer-clay nanocomposities comprising same, and method of preparing polar polymer-clay nanocomposiites using same | |
KR100788498B1 (en) | Polyester reactive organo clay and polyester nano-complex thereof | |
KR20050071164A (en) | Method for preparing polyester resin composition containing organo-layered compound | |
EP1599533B1 (en) | Process for the manufacture of nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130502 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140507 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |