KR100443425B1 - Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal - Google Patents

Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal Download PDF

Info

Publication number
KR100443425B1
KR100443425B1 KR10-2001-0022461A KR20010022461A KR100443425B1 KR 100443425 B1 KR100443425 B1 KR 100443425B1 KR 20010022461 A KR20010022461 A KR 20010022461A KR 100443425 B1 KR100443425 B1 KR 100443425B1
Authority
KR
South Korea
Prior art keywords
srg3
promoter
thymus
transgenic
fertilized egg
Prior art date
Application number
KR10-2001-0022461A
Other languages
Korean (ko)
Other versions
KR20020082724A (en
Inventor
성노현
한선미
장재진
김길수
Original Assignee
주식회사 오리엔트
성노현
김길수
장재진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오리엔트, 성노현, 김길수, 장재진 filed Critical 주식회사 오리엔트
Priority to KR10-2001-0022461A priority Critical patent/KR100443425B1/en
Publication of KR20020082724A publication Critical patent/KR20020082724A/en
Application granted granted Critical
Publication of KR100443425B1 publication Critical patent/KR100443425B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8775Murine embryos
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0387Animal model for diseases of the immune system

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Veterinary Medicine (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 SRG3 안티센스 RNA 단편을 흉선특이적으로 발현하는 형질전환 동물 및 그의 제조방법에 관한 것으로, 보다 상세하게는 흉선특이적으로 유전자의 발현을 유도하는 Lck 근접 프로모터(proximal promoter)와 폴리A 서열(polyA sequence)을 가지는 인간 성장호르몬(human growth hormone) 유전자 단편 사이에 상기 프로모터와 반대방향으로 삽입된 생쥐 SRG3 cDNA 단편을 포함하는 융합 유전자 컨스트럭트(construct), 이를 함유하여 SRG3 안티센스(antisense) RNA 단편을 발현시킬 수 있는 발현벡터, 상기 벡터중 융합 유전자 컨스트럭트가 미세주입된 수정란, 이로부터 얻은 형질전환 동물 및 그의 제조방법에 관한 것이다. 본 발명의 형질전환 동물은 흉선에서 SRG3 안티센스 RNA 단편이 과발현되어 글루코코티코이드(glucocorticoids)에 의한 흉선세포의 아폽토시스를 유도하는 SRG3의 발현이 저해됨으로써 글루코코티코이드에 의한 아폽토시스 민감성이 저하된 미성숙 흉선세포를 가지고 있어 면역세포 분화 및 면역기능의 조절기작을 연구하는데 유용하게 이용될 수 있다.The present invention relates to a transgenic animal expressing SRG3 antisense RNA fragments in a thymus-specific manner, and to a method for preparing the same. More specifically, the Lck proximal promoter and polyA sequence for inducing thymus specific gene expression. a fusion gene construct comprising a mouse SRG3 cDNA fragment inserted opposite to the promoter between human growth hormone gene fragments having a polyA sequence, containing the SRG3 antisense An expression vector capable of expressing an RNA fragment, a fertilized egg microinjected with a fusion gene construct in the vector, a transgenic animal obtained therefrom and a method for producing the same. The transgenic animals of the present invention have immature thymic cells that have decreased expression of apoptosis by glucocorticoids by inhibiting the expression of SRG3, which overexpresses SRG3 antisense RNA fragments in the thymus and induces apoptosis of thymic cells by glucocorticoids. It can be usefully used to study the regulation of cell differentiation and immune function.

Description

SRG3 안티센스 RNA 단편을 흉선특이적으로 발현하는 형질전환 동물 및 그의 제조방법{Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal}Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal}

본 발명은 SRG3 안티센스 RNA 단편을 흉선특이적으로 발현하는 형질전환 동물 및 그의 제조방법에 관한 것으로, 보다 상세하게는 흉선특이적으로 유전자의 발현을 유도하는 Lck 근접 프로모터(proximal promoter)와 폴리A 서열(polyA sequence)을 가지는 인간 성장호르몬(human growth hormone) 유전자 단편 사이에 상기 프로모터와 반대방향으로 삽입된 생쥐 SRG3 cDNA 단편을 포함하는 융합 유전자 컨스트럭트(construct), 이를 함유하여 SRG3 안티센스(antisense) RNA 단편을 발현시킬 수 있는 발현벡터, 상기 벡터중 융합 유전자 컨스트럭트가 미세주입된 수정란, 이로부터 얻은 형질전환 동물 및 그의 제조방법에 관한 것이다.The present invention relates to a transgenic animal expressing SRG3 antisense RNA fragments in a thymus-specific manner, and to a method for preparing the same. More specifically, the Lck proximal promoter and polyA sequence for inducing thymus specific gene expression. a fusion gene construct comprising a mouse SRG3 cDNA fragment inserted opposite to the promoter between human growth hormone gene fragments having a polyA sequence, containing the SRG3 antisense An expression vector capable of expressing an RNA fragment, a fertilized egg microinjected with a fusion gene construct in the vector, a transgenic animal obtained therefrom and a method for producing the same.

미성숙한 흉선세포(immature thymus cell)는 흉선에서 정교한 분화과정을 통하여 항원 인식에 필요한 자가 MHC(major histocompatibility complex) 제한 및 자가 관용(self tolerance)을 가지는 성숙한 흉선세포(mature thymus cell)로 분화된다(Von Boehmer H.et al., Cell76, 219-228, 1994). MHC란 면역 보조세포 또는 B 세포(Bone marrow cell)가 펩티드 항원을 흉선세포에 인식시키기 위하여 상기 펩티드 항원과 함께 세포표면에 발현하는 단백질 콤플렉스(complex)로서 흉선세포의 수용체(T cell receptor, 이하 "TCR"이라 약칭함)와 결합하여 흉선세포를 자극시키는 역할을 수행한다. 성숙한 흉선세포가 가지는 자가 MHC 제한이란 흉선세포가 자가 MHC에 결합된 펩티드 항원만을 인식하여 면역기능을 수행하는데 필수적인 능력이고, 자가관용이란 흉선세포가 자가-MHC에 결합된 자가 펩티드 항원을 인식하지 않아 자가조직을 면역작용으로부터 보호하는데 필수적인 능력이다.Immature thymus cells are differentiated into mature thymus cells with a self-major histocompatibility complex (MHC) restriction and self tolerance required for antigen recognition through an elaborate differentiation process in the thymus ( Von Boehmer H. et al., Cell 76, 219-228, 1994). MHC is a protein complex in which immune adjuvant cells or bone marrow cells express peptide antigens on the cell surface together with the peptide antigens in order to recognize the peptide antigens in thymic cells. TCR ") to stimulate thymic cells. Autologous MHC restriction of mature thymus cells is an essential ability for thymus cells to recognize only peptide antigens bound to autologous MHC and perform immunity. Self-tolerance does not recognize autologous peptide antigens linked to autologous MHC. It is an essential ability to protect autologous tissues from immunity.

성숙한 흉선세포가 되기 위하여, 미성숙한 흉선세포는 일련의 유전자 재배열(gene rearrangement)을 거쳐 α-TCR 및 β-TCR을 발현시키고, 적절한 TCR을 발현하는 흉선세포가 선택되어 CD4 흉선세포 또는 CD8 흉선세포로 분화된다. 구체적으로, 흉선세포의 세포표면에 TCR이 발현되면 흉선세포는 펩티드 항원(peptide antigen)이 결합된 자가 MHC만을 인식하여 적절히 결합할 수 있는 흉선세포만 선택되는 양성 선택과정(positive selection process)을 통하여 CD4 단일양성 또는 CD8 단일양성 흉선세포로 분화된다(Janeway C.A. Jr.et al., Immunity,1, 3-6, 1994). 양성 선택과정에서 CD4/CD8 이중양성 흉선세포는 프로그램화된 세포사멸과정인 아폽토시스를 통해서 제거되는데, 이것은 이중양성 흉선세포가 TCR에 의해 매개되는 적절한 생존신호를 받지 못하여 아폽토시스가 유발되기 때문이다(Surh C.D. and Sprent J.et al., Nature,372, 100-103, 1994).To become mature thymic cells, immature thymic cells undergo a series of gene rearrangements to express α-TCR and β-TCR, and thymic cells expressing the appropriate TCR are selected to allow CD4 thymic cells or CD8 thymus Differentiate into cells. Specifically, when TCR is expressed on the cell surface of the thymus cells, the thymus cells recognize only autologous MHC to which peptide antigens are bound, and then through a positive selection process in which only thymus cells that can properly bind are selected. Differentiate into CD4 monopositive or CD8 monopositive thymic cells (Janeway CA Jr. et al., Immunity, 1, 3-6, 1994). In positive selection, CD4 / CD8 double-positive thymic cells are eliminated through apoptosis, a programmed apoptosis process, because apoptosis is induced because the double-positive thymic cells do not receive the appropriate survival signal mediated by TCR (Surh). CD and Sprent J. et al., Nature, 372, 100-103, 1994).

반면, 펩티드 항원이 결합된 자가 MHC와 필요이상으로 강한 결합을 하는 흉선세포는 음성 선택과정(negative selection process)을 통하여 제거되는데, 이때 제거되는 흉선세포의 사멸은 아폽토시스에 의하여 유도되고, 생존한 흉선세포는 비로서 자가-관용을 가지게 되어 면역작용으로부터 자가조직을 보호하게 된다(Matzinger P.et al., Nature,308, 738-741, 1984; Sprent J. et al., Immunol. Rev., 101, 173-190, 1988; Schwartz R.H.et al., Cell,57, 1073-1081, 1989). 따라서, 흉선세포의 TCR과 펩티드 항원이 결합된 자가 MHC 사이의 결합력은 분화과정의 흉선세포가 생존하는지 사멸하는지를 결정하는 중요한 요소로 작용하는 것으로 보고되고 있다(Ashton-Rickardt P.G.et al., Cell76, 651-663, 1994; Sebzda E.et al., Immunol. 17, 829-874, 1999).On the other hand, thymus cells that bind more strongly than necessary with autologous MHC bound to peptide antigens are removed through a negative selection process, whereby the death of the thymus cells removed is induced by apoptosis and survives. Cells have self-tolerance as a ratio to protect autologous tissues from immunity (Matzinger P. et al., Nature, 308, 738-741, 1984; Sprent J. et al., Immunol. Rev. , 101 , 173-190, 1988; Schwartz RH et al., Cell, 57, 1073-1081, 1989). Therefore, the binding force between TCR of thymic cells and autologous MHC bound to peptide antigens has been reported to play an important role in determining whether thymocytes in differentiation survive or die (Ashton-Rickardt PG et al., Cell 76). , 651-663, 1994; Sebzda E. et al., Immunol . 17, 829-874, 1999).

한편, 흉선세포가 양성 선택과정을 거쳐 선택될 때 어떤 기작으로 아폽토시스가 일어나지 않는지는 아직 정확히 알려져 있지 않으나, 글루코코티코이드가 상기 양성 선택과정에서 중요한 역할을 수행하는 것으로 보고되고 있다(Yang Y. and Ashwell J.D.,J Clin. Immunol., 19, 337-349, 1999). 현재까지 글루코코티코이드에 관한 연구결과, 글루코코티코이드는 부신(adrenal gland) 및 흉선에서 생산되는 호르몬으로 양성 선택과정에서 선택되지 못한 미성숙 흉선세포의 아폽토시스를 유발시킨다. 따라서, 미성숙 흉선세포는 상기 글루코코티코이드에 의한 아폽토시스에 대하여 민감한 반면, 성숙한 단일양성 흉선세포는 상대적으로 글루코코티코이드에 의한 아폽토시스에 대하여 저항성을 갖는다(Cohen J.et al.,Semin. Immunol., 4, 363-369, 1992). 상술한 바와 같이, 미성숙 흉선세포와 성숙한 단일양성 흉선세포사이의 글루코코티코이드에 대한 민감도 차이를 명확하게 설명할 수 있는 분자생물학적 기작은이 아직까지 밟혀져 있지 않으므로 양성 선택과정에서 선택된 미성숙 흉선세포가 글루코코티코이드에 의한 아폽토시스에 대하여 저항성을 획득하는 방법에 관한 연구가 요구되고 있다.On the other hand, it is not yet known exactly how apoptosis does not occur when thymic cells are selected through a positive selection process, but glucocorticoids have been reported to play an important role in the positive selection process (Yang Y. and Ashwell JD). , J Clin. Immunol ., 19, 337-349, 1999). To date, studies on glucocorticoids are hormones produced in the adrenal gland and thymus, causing apoptosis of immature thymic cells that were not selected during the positive selection process. Thus, immature thymic cells are sensitive to apoptosis by the glucocorticoids, while mature mono-positive thymic cells are relatively resistant to apoptosis by glucocorticoids (Cohen J. et al ., Semin. Immunol ., 4, 363- 369, 1992). As described above, the molecular biological mechanisms that can clearly explain the difference in sensitivity to glucocorticoids between immature thymic cells and mature mono-positive thymic cells are not yet undertaken, so that immature thymic cells selected during the positive selection process are not present in the glucocorticoids. There is a need for a study on how to obtain resistance to apoptosis.

전술한 바와 같은 흉선세포 분화에서의 글루코코티코이드의 작용에 근거하여 글루코코티코이드의 유사체인 덱사메타손(Dexamethasone) 또는 하이드로코프티손(Hydrocortisone)등이 면역억제제로서 시판되고 있다. 글루코코티코이드의 면역기능 조절은 글루코코티코이드 수용체를 통하여 이루어지는데, 이러한 연구의 일환으로 최근에 글루코코티코이드의 면역기능을 조절하는 SRG3가 발견되었다.Based on the action of glucocorticoids in thymic cell differentiation as described above, dexamethasone or hydrocortisone, which are analogs of glucocorticoids, are commercially available as immunosuppressive agents. Glucocorticoid immune function is regulated through glucocorticoid receptors. As part of this study, SRG3 has recently been found to regulate the immune function of glucocorticoids.

SRG3는 글루코코티코이드에 의한 미성숙 흉선세포의 아폽토시스를 조절하는 과정에서 중추적인 역할을 담당하는 단백질로서 글루코코티코이드 수용체의 전사활성을 조절하는 것으로 알려졌다(Jeon S.H.et al., J. Exp. Med.185, 1827-1836, 1997). SRG3는 성숙한 흉선세포에 비하여 미성숙 흉선세포에서 그 발현량이 매우높은 반면, 양성 선택과정에 의해 선택된 흉선세포에서의 SRG3 발현량은 감소되는데, 이는 SRG3 발현량이 글루코코티코이드에 의한 아폽토시스에 대한 흉선세포의 민감도를 결정하기 때문이다. 구체적으로, SRG3 발현량이 높을 경우는 SRG3가 글루코코티코이드 수용체와 결합하여 상기 수용체의 전사활성화를 가속화시켜 아폽토시스를 유도하고, SRG3 발현량이 낮을 경우는 글루코코티코이드 수용체와 결합하는 SRG3 분자수가 감소되어 글루코코티코이드 수용체의 전사활성이 저하되기 때문에 아폽토시스가 유발되지 않는다.SRG3 is a protein that plays a pivotal role in regulating apoptosis of immature thymic cells by glucocorticoids and is known to modulate the transcriptional activity of glucocorticoid receptors (Jeon SH et al., J. Exp. Med. 185, 1827-). 1836, 1997). SRG3 is much higher in immature thymus cells compared to mature thymic cells, whereas SRG3 expression in thymic cells selected by the positive selection process is reduced, which indicates that thymus cells are sensitive to apoptosis by glucocorticoids. Because it is determined. Specifically, when the expression level of SRG3 is high, SRG3 binds to the glucocorticoid receptor to accelerate the transcriptional activation of the receptor to induce apoptosis, and when the expression level of SRG3 is low, the number of SRG3 molecules that bind to the glucocorticoid receptor decreases, thereby reducing the transcriptional activity of the glucocorticoid receptor. Because it is lowered, apoptosis is not induced.

SRG3에 대한 최근 연구결과, 흉선세포의 분화에 중요한 기능을 하는 노취(Notch) 단백질이 SRG3 단백질의 발현을 억제하여 글루코코티코이드에 의한 아폽토시스를 저해함으로써 미성숙 흉선세포가 CD4 또는 CD8 단일양성 흉선세포로 분화하는데 영향을 주는 것으로 알려져 있다(Deftos M.L.et al., Immunity,9, 777-786, 1998). 특히, 노취 단백질의 내부도메인(이하 "노취IC"라 약칭함)이 발현되는 생쥐 흉선세포에서 글루코코티코이드에 의한 아폽토시스가 억제되고, 상기 생쥐 흉선세포에 SRG3를 과발현시키면 글루코코티코이드에 의한 아폽토시스에 대한 흉선세포의 민감도가 부분적으로 회복되는데, 이는 노취 단백질중 노취I가 SRG3 발현을 저해하여 글루코코티코이드에 의한 흉선세포의 아폽토시스를 억제하는데 핵심적인 역할을 수행하는 것을 의미한다(Deftos M.L.et al., Immunity,9, 777-786, 1998). 따라서, 노취에 의하여 SRG3 발현량이 정확히 조절되어 미성숙 흉선세포의 분화과정중 선택되지 못하는 흉선세포에서의 글루코코티코이드에 의한 아폽토시스가 조절된다.Recent studies on SRG3 have shown that Notch protein, an important function of thymic cell differentiation, inhibits the expression of SRG3 protein and inhibits apoptosis by glucocorticoids, thereby allowing immature thymic cells to differentiate into CD4 or CD8 monopositive thymic cells. It is known to affect (Deftos ML et al., Immunity, 9, 777-786, 1998). In particular, apoptosis by glucocorticoids is suppressed in mouse thymic cells expressing the internal domain of notch protein (hereinafter, abbreviated as "notch IC"), and overexpression of SRG3 in the mouse thymic cells results in thymic cell response to apoptosis by glucocorticoids. Sensitivity is partially restored, meaning that Notch I in Notch protein plays a key role in inhibiting SRG3 expression and inhibiting apoptosis of thymic cells by glucocorticoids (Deftos ML et al., Immunity, 9, 777). -786, 1998). Therefore, the expression level of SRG3 is precisely regulated by notch, thereby controlling apoptosis by glucocorticoids in thymic cells which are not selected during the differentiation of immature thymic cells.

비록 노취에 의한 SRG3 발현저해로 인하여 글루코코티코이드로 유발되는 미성숙 흉선세포의 아폽토시스가 저해된다는 사실은 밟혀졌지만 그 기작은 아직까지 알려져 있지 않다. 따라서, 흉선세포의 분화과정중에 유발되는 아폽토시스의 조절기작을 정확히 밟히기 위해서는 글루코코티코이드로 유발되는 흉선세포의 아폽토시스가 SRG3 발현저해로 인하여 억제되는 기작에 관한 활발한 연구가 요구되고 있다.Although the suppression of SRG3 expression by notch inhibits the apoptosis of immature thymic cells induced by glucocorticoids, the mechanism is still unknown. Therefore, in order to accurately control the regulation of apoptosis induced during thymic cell differentiation, active research on the mechanism by which glucocorticoid-induced apoptosis is suppressed by SRG3 expression inhibition is required.

이에, 본 발명자들은 글루코코티코이드에 의한 흉선세포의 아폽토시스를 조절하는 기작을 밝히기 위하여 노력하던 중, 흉선세포 및 흉선암 세포주에서 글루코코티코이드에 의한 아폽토시스를 조절하는 SRG3 단백질을 SRG3 안티센스 RNA 단편을 이용하여 발현량을 감소시킴으로써 글루코코티코이드에 대한 민감성이 저하된 흉선세포를 가지는 형질전환 생쥐를 제조하였으며, 상기 형질전환 생쥐에서 SRG3 안티센스 RNA 단편이 과발현되어 SRG3 단백질의 발현을 감소시키고, 이로인해 글루코코티코이드에 의한 아폽토시스 민감성이 저하되었음을 확인함으로써 본 발명을 완성하였다.Therefore, the present inventors are trying to elucidate the mechanism of regulating apoptosis of thymic cells by glucocorticoids, and expressing SRG3 protein that regulates apoptosis by glucocorticoids in thymic cells and thymic cancer cell lines using SRG3 antisense RNA fragment. Transgenic mice having thymic cells with reduced sensitivity to glucocorticoids were prepared, and overexpressed SRG3 antisense RNA fragments in the transgenic mice reduced expression of SRG3 protein, thereby reducing apoptosis sensitivity by glucocorticoids. The present invention was completed by confirming.

본 발명의 목적은 면역세포 분화 및 면역기능의 조절기작을 연구하기 위한 생체 동물모델을 제공하기 위하여, 글루코코티코이드에 대한 아폽토시스 민감성이 저하된 흉선세포를 가지는 형질전환 동물 및 그의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a transgenic animal having thymic cells with reduced apoptosis sensitivity to glucocorticoids and a method for producing the same, in order to provide a living animal model for studying the regulation of immune cell differentiation and immune function.

도 1은 본 발명의 발현벡터내에 Lck 근접 프로모터와 폴리 A 서열을 가지는 인간 성장호르몬 사이에 2.8 kb의 SRG3 cDNA 단편이 삽입된 것을 전기영동으로 확인한 결과를 나타낸 것이고, 1 shows the results of electrophoresis confirming that 2.8 kb SRG3 cDNA fragment was inserted between the Lck proximity promoter and human growth hormone having a poly A sequence in the expression vector of the present invention.

레인 1 : DNA 사이즈 마커(DNA size marker)Lane 1: DNA size marker

레인 2 : 제한효소NotI으로 절단하여 얻은 DNA 단편Lane 2: DNA fragment obtained by cleavage with restriction enzyme Not I

도 2는 SRG3 안티센스 RNA를 발현하는 발명의 발현벡터의 개열지도를 나타내는 것이고, 2 shows a cleavage map of the expression vector of the invention expressing SRG3 antisense RNA,

이용될 수 있는 제한 효소 N : NotI, B: BamHIRestriction enzymes that may be used N: NotI, B: BamHI

hGH poly A : 인간 성장 호르몬 Poly AhGH poly A: Human Growth Hormone Poly A

도 3은 본 발명의 형질전환 생쥐를 제조하는 과정을 나타낸 것이고, Figure 3 shows the process for producing a transgenic mouse of the present invention,

도 4a는 게놈내에 생쥐 SRG3 cDNA 단편을 포함하는 융합 유전자 컨스트럭트가 삽입된 형질전환 생쥐를 선별하기 위하여 PCR(polymerase chain reaction)을 수행한 결과를 나타낸 것이고, Figure 4a shows the result of performing a polymerase chain reaction (PCR) to select a transgenic mouse inserted with a fusion gene construct containing a mouse SRG3 cDNA fragment in the genome,

레인 1 : DNA 사이즈 마커Lane 1: DNA size marker

레인 2 : 형질전환 생쥐의 꼬리 DNA를 PCR로 증폭시켜 얻은 SRG3 cDNA 단편Lane 2: SRG3 cDNA fragment obtained by PCR amplification of the tail DNA of the transgenic mouse

도 4b는 게놈내에 생쥐 SRG3 cDNA 단편을 포함하는 융합 유전자 컨스트럭트가 삽입된 형질전환 생쥐를 선별하기 서던 블로팅을 한 결과이고, 4B is a result of Southern blotting for selecting transgenic mice in which a fusion gene construct including a mouse SRG3 cDNA fragment is inserted in a genome.

레인 1 : 대조군 FVBLane 1: control group FVB

레인 2, 3 : 서로 다른 두 line의 생쥐의 서던 블로팅 결과Lanes 2 and 3: Southern blotting results of mice with two different lines

도 5는 본 발명의 형질전환 생쥐에서 SRG3 안티센스 RNA 단편의 발현양상을 RNA 수준에서 확인하기 위하여, 각 조직으로부터 분리한 RNA를 이용하여 노던 블러팅(northern blotting) 수행한 결과를 나타낸 것이고, 5 shows the results of Northern blotting using RNA isolated from each tissue in order to confirm the expression pattern of the SRG3 antisense RNA fragment in the transgenic mice of the present invention at the RNA level,

도 6은 본 발명의 형질전환 생쥐에서 SRG3 발현량을 단백질 수준에서 확인하기 위하여, 흉선세포 파쇄액을 이용하여 웨스턴 블러팅(western blotting)을 수행한 결과를 나타낸 것이고, 6 shows the results of Western blotting using thymic cell lysate in order to confirm the SRG3 expression level at the protein level in the transgenic mice of the present invention.

레인 1 : 정상 생쥐Lane 1: normal mice

레인 2 : 형질전환 생쥐Lane 2: transgenic mouse

도 7은 본 발명의 형질전환 생쥐의 흉선세포의 종류 및 흉선세포의 수를 가 정상 생쥐의 흉선세포수보다 증가된 것을 FACS(Fluorescence Activated Cell Sorter)로 측정하여 정상 생쥐와 비교한 결과를 나타낸 것으로서, 형질전환 생쥐에서 CD4+ T 세포와 Double Negative T 세포 집단이 증가한 양상을 보이고 있다. Figure 7 shows the result of comparing the type of thymic cells and the number of thymic cells of the transgenic mice of the present invention with the number of thymic cells of the normal mouse by FACS (Fluorescence Activated Cell Sorter) as compared with normal mice In addition, CD4 + T cells and double negative T cell populations were increased in transgenic mice.

A : 정상 생쥐A: normal mice

B : 형질전환 생쥐B: transgenic mice

CD4 : 흉선세포 수용체CD4: Thymic Cell Receptor

CD8 : 흉선세포 수용체CD8: Thymic Cell Receptor

도 8은 본 발명의 형질전환 생쥐의 미성숙 흉선세포가 정상 생쥐의 미성숙 흉선세포보다 글루코코티코이드에 의한 아폽토시스에 대한 민감성이 감소된 것을 나타낸 것이다. Figure 8 shows that immature thymic cells of the transgenic mice of the present invention is less sensitive to apoptosis by glucocorticoids than immature thymic cells of normal mice.

▲ : 정상 생쥐 10-7M 농도▲: normal mouse 10 -7 M concentration

● : 형질전환 생쥐 10-7M 농도●: Transgenic mouse 10 -7 M concentration

△ : 정상생쥐 10-8M 농도△: normal mouse 10 -8 M concentration

○ : 형질전환 생쥐 10-8M 농도○: transgenic mouse 10 -8 M concentration

상기의 목적을 달성하기 위하여, 본 발명은 Lck 근접 프로모터, 상기 프로모터와 반대방향으로 삽입된 생쥐 SRG3 cDNA 단편 및 폴리A 서열이 결합된 인간 성장호르몬을 포함하는 융합 유전자 컨스트럭트를 제공한다.In order to achieve the above object, the present invention provides a fusion gene construct comprising a Lck proximity promoter, a mouse SRG3 cDNA fragment inserted in the opposite direction to the promoter and a human growth hormone to which the polyA sequence is bound.

또한, 본 발명은 상기 융합 유전자 컨스트럭트를 함유하여 흉선특이적으로 SRG3 안티센스 RNA 단편을 발현시킬 수 있는 발현벡터를 제공한다.In addition, the present invention provides an expression vector capable of expressing the SRG3 antisense RNA fragment by the thymus-specific containing the fusion gene construct.

아울러, 본 발명은 상기 벡터중 본 발명의 융합 유전자 컨스트럭트가 게놈내에 삽입된 수정란 및 이로부터 얻은 형질전환 동물을 제공한다.In addition, the present invention provides a fertilized egg and a transgenic animal obtained by inserting the fusion gene construct of the present invention into the genome of the vector.

마지막으로, 본 발명은 상기 형질전환 동물의 제조방법을 제공한다.Finally, the present invention provides a method for producing the transgenic animal.

본 발명은 흉선특이적으로 유전자의 발현을 유도시키는 Lck 근접 프로모터와 폴리A 서열이 결합된 인간 성장호르몬 유전자 단편 사이에 생쥐 SRG3 cDNA 단편이 상기 프로모터와 반대방향으로 삽입된 융합 유전자 컨스트럭트를 제공한다.The present invention provides a fusion gene construct in which a mouse SRG3 cDNA fragment is inserted in a direction opposite to the promoter between a Lck proximity promoter and a human growth hormone gene fragment in which a polyA sequence is bound to thymus-specific gene expression. do.

상기 융합 유전자 컨스트럭트는 흉선에서만 활성화되는 Lck 근접 프로모터를 포함하여 SRG3 cDNA 단편을 흉선에서만 특이적으로 발현시키는데, 이는 SRG3가 부신 및 흉선에서만 발현되는 단백질이기 때문이다. 본 발명의 융합 유전자 컨스트럭트는 생쥐 SRG3 cDNA가 Lck 근접 프로모터와 반대방향(antiorientation)으로 삽입되어 있기 때문에 본 발명의 융합 유전자 컨스트럭트내 생쥐 SRG3 cDNA 단편으로부터 단백질을 코딩(coding)하는 센스 DNA 가닥(sense DNA strand)과 상보적인 결합을 하는 안티센스 DNA 가닥이 전사(transcription)되어 SRG3 안티세스 RNA 단편이 생산된다.The fusion gene construct specifically expresses the SRG3 cDNA fragment only in the thymus, including the Lck proximity promoter, which is activated only in the thymus, since SRG3 is a protein expressed only in the adrenal and thymus. The fusion gene construct of the present invention has a sense DNA strand encoding a protein from the mouse SRG3 cDNA fragment in the fusion gene construct of the present invention because the mouse SRG3 cDNA is inserted in an antiorientation with the Lck proximity promoter. Antisense DNA strands, which are complementary to the sense DNA strand, are transcribed to produce SRG3 anticess RNA fragments.

또한, 본 발명의 융합 유전자 컨스트럭트내 SRG3 cDNA의 3'-말단(3'-terminus)에 폴리A 서열이 결합된 인간 성장호르몬 유전자 단편이 부착되어 있는데, 이는 폴리A 서열이 포유동물에서의 유전자 발현에 필수적인 서열이기 때문이다. 따라서, 본 발명의 융합 유전자 컨스트럭트는 Lck 근접 프로모터의 조절하에서 상기 융합 유전자 컨스트럭트로부터 SRG3 안티센스 RNA 단편의 3'-말단에 폴리A 서열이 결합된 인간 성장호르몬 RNA 단편이 부착된 융합 RNA를 흉선세포 특이적으로 발현시킬 수 있다(도 1참조).In addition, the human growth hormone gene fragment to which the polyA sequence is bound is attached to the 3'-terminus of SRG3 cDNA in the fusion gene construct of the present invention. It is because it is an essential sequence for expression. Accordingly, the fusion gene construct of the present invention is a fusion RNA with a human growth hormone RNA fragment attached to the polyA sequence at the 3'-end of the SRG3 antisense RNA fragment from the fusion gene construct under the control of the Lck proximity promoter. Thymic cells may be specifically expressed (see FIG. 1 ).

또한, 본 발명은 상기 융합 유전자 컨스트럭트를 포함하여 흉선특이적으로 SRG3 안티센스 RNA 단편을 발현시킬 수 있는 발현벡터를 제공한다.In addition, the present invention provides an expression vector capable of expressing the SRG3 antisense RNA fragment thymus-specifically, including the fusion gene construct.

상기 발현벡터는 Lck 근접 프로모터 및 폴리A 서열이 결합된 인간 성장호르몬 유전자 단편을 포함하는 공지의 벡터 p1017(Chaffin K.E.et al., EMBO J., 9, 3821-3829, 1990)을 이용하여 제조되었다.The expression vector was prepared using a known vector p1017 (Chaffin KE et al., EMBO J. , 9, 3821-3829, 1990) comprising a human growth hormone gene fragment to which the Lck proximity promoter and polyA sequence were bound . .

SRG3 cDNA 단편을 얻기 위하여, 2.9 kb의 생쥐 SRG3 cDNA 단편이 클로닝된 재조합 벡터로부터 2.8 kb의 SRG3 cDNA 단편을 절단한 후 이를 벡터 p1017내 Lck 근접 프로모터와 폴리A 서열이 결합된 인간 성장호르몬 유전자 단편 사이에 프로모터와 반대방향으로 삽입하여 흉선특이적으로 SRG3 안티센스 RNA 단편을 발현하는 발현벡터를 제조하였다(도 2참조). 본 발명의 발현벡터를 흉선세포에 형질전환시키면 Lck 근접 프로모터의 조절에 의해 SRG3 안티센스 RNA 단편이 과발현되어 SRG3단백질의 발현을 억제시킬 수 있다.To obtain an SRG3 cDNA fragment, a 2.8 kb SRG3 cDNA fragment was cleaved from a recombinant vector in which 2.9 kb of mouse SRG3 cDNA fragment was cloned, and then, between the Lck proximity promoter and the human growth hormone gene fragment to which the polyA sequence was bound in the vector p1017. Inserted in the opposite direction to the promoter to prepare an expression vector expressing the SRG3 antisense RNA fragment thymus specific (see Figure 2 ). When the expression vector of the present invention is transformed into thymic cells, the expression of the SRG3 antisense RNA fragment can be overexpressed by the regulation of the Lck proximity promoter, thereby suppressing the expression of the SRG3 protein.

따라서, 본 발명의 발현벡터는 흉선세포 및 흉선암 세포주에서 글루코코티코이드에 의한 아폽토시스를 조절하는 SRG3 단백질의 발현량을 SRG3 안티센스 RNA 단편을 이용하여 감소시킴으로써 글루코코티코이드의 작용기작을 이해하는데 유용하게 사용될 수 있다.Therefore, the expression vector of the present invention can be usefully used to understand the mechanism of action of glucocorticoids by reducing the expression level of SRG3 protein that regulates apoptosis by glucocorticoids in thymic cells and thymic cancer cell lines using SRG3 antisense RNA fragments.

아울러, 본 발명은 상기 발현벡터중 Lck 근접 프로모터, 이 프로모터와 반대방향으로 삽입된 SRG3 cDNA 단편, 인간 성장호르몬 유전자 단편 및 폴리A 서열로 구성되는 DNA 단편을 미세주입방법으로 생쥐 수정란에 주입하여 얻은 형질전환 생쥐 수정란 및 이로부터 얻은 형질전환 생쥐를 제공한다.In addition, the present invention is obtained by injecting a mouse fragment fertilized by the microinjection method of the expression vector Lck proximity promoter, the SRG3 cDNA fragment inserted in the opposite direction to the promoter, a human growth hormone gene fragment and a polyA sequence of the expression vector Transgenic Mouse Fertilized eggs and transgenic mice obtained therefrom are provided.

본 발명의 발현벡터를 제한효소로 절단하여 상기 DNA 단편을 얻고, 이를 미세주입방법으로 생쥐 수정란에 주입하여 얻은 형질전환 생쥐 수정란을 한국생명공학연구원 유전자은행에 2001년 3월 16일자로 기탁하였다(수탁번호: KCTC 0973BP)(도 3참조).The DNA fragment was obtained by cutting the expression vector of the present invention with a restriction enzyme, and the transgenic mouse fertilized egg obtained by injecting the fertilized egg into the mouse fertilized egg by a microinjection method was deposited on March 16, 2001 to the Korea Biotechnology Research Institute Gene Bank ( Accession number: KCTC 0973BP) (see FIG. 3 ).

구체적으로, 본 발명의 형질전환 생쥐 수정란은 흉선특이적 프로모터인 Lck 근접 프로모터와 반대방향으로 결합된 SRG3 cDNA 단편 및 포유동물에서 유전자 발현에 관여하는 폴리A 서열을 포함하는 DNA 단편을 정핵과 난핵이 융합되지 않은 생쥐 수정란에 미세주입방법으로 주입하여 확보하며, 상기 형질전환 생쥐 수정란은 세포분열시 형성되는 모든 세포내에 상기 DNA 단편을 포함한다.Specifically, the transgenic mouse fertilized egg of the present invention is a SRG3 cDNA fragment bound in the opposite direction to the thymus-specific promoter Lck proximity promoter and DNA fragments containing polyA sequences involved in gene expression in mammals, nucleus and nucleus It is secured by injecting into the unfused mouse fertilized egg by a microinjection method, the transgenic mouse fertilized egg contains the DNA fragment in all cells formed during cell division.

본 발명의 형질전환 생쥐 수정란을 이용하여 SRG3 안티센스 RNA 단편을 과발현하여 SRG3 단백질의 발현량이 감소되는 형질전환 생쥐를 얻을 수 있다.The transgenic mice can be obtained by overexpressing SRG3 antisense RNA fragments using the transgenic mouse embryos of the present invention.

본 발명의 형질전환 생쥐는 Lck 근접 프로모터와 반대방향으로 삽입된 SRG3 cDNA 단편 및 포유동물에서의 유전자 발현에 관여하는 폴리A 서열을 포함하는 DNA 단편이 주입된 생쥐 수정란을 가임신된 대리모 생쥐에 착상시켜 제조된다(도 3참조). 상기 형질전환 생쥐는 모든 체세포 및 생식세포의 게놈내에 SRG3 cDNA 단편이 삽입되어 있으므로 생식세포를 통하여 SRG3 cDNA 단편을 유전시킬 수 있다. 또한, Lck 근접 프로모터는 흉선세포에서만 유전자 발현을 유도하는 흉선특이적 프로모터이고 상기 프로모터와 반대방향으로 SRG3 cDNA 단편이 삽입되어 있기 때문에 본 발명의 형질전환 생쥐는 체세포중 흉선세포에서만 SRG3 안티센스 RNA 단편을 과발현시킨다. 상기 과발현된 SRG3 안티센스 RNA는 SRG3 센스 RNA와 상보적으로 결합하여 SRG3 단백질 생산을 억제함으로써 흉선세포의 분화과정중에 유도되는 글루코티코이드에 의한 흉선세포의 아폽토시스를 저해한다.The transgenic mice of the present invention implanted mouse fertilized mice with fertilized embryos injected with DNA fragments containing SRG3 cDNA fragments inserted opposite to the Lck proximity promoter and polyA sequences involved in gene expression in mammals. (See FIG. 3 ). The transgenic mouse has an SRG3 cDNA fragment inserted into the genome of all somatic and germ cells, so that the SRG3 cDNA fragment can be inherited through germ cells. In addition, the Lck proximity promoter is a thymus-specific promoter that induces gene expression only in thymic cells, and since the SRG3 cDNA fragment is inserted in the opposite direction to the promoter, the transgenic mice of the present invention are capable of generating SRG3 antisense RNA fragments only in thymic cells. Overexpress. The overexpressed SRG3 antisense RNA binds complementarily with SRG3 sense RNA and inhibits SRG3 protein production, thereby inhibiting apoptosis of thymic cells by glucoticoids induced during thymic cell differentiation.

따라서, 본 발명의 형질전환 생쥐는 생체내에서 SRG3 단백질의 발현감소시에 글루코코티코이드에 대한 미성숙 흉선세포의 민감성 저하가 흉선세포의 분화과정 및 이후의 면역반응에 미치는 영향을 이해하는데 유용하게 이용될 수 있다.Therefore, the transgenic mice of the present invention can be usefully used to understand the effect of desensitization of immature thymic cells to glucocorticoids on the differentiation process and subsequent immune response of glucocorticoids in the expression of SRG3 protein in vivo. have.

마지막으로, 본 발명은 상기 형질전환 생쥐의 제조방법을 제공한다.Finally, the present invention provides a method for producing the transgenic mouse.

본 발명의 제조방법은The manufacturing method of the present invention

1) 흉선특이적 프로모터와 포유동물 유래 유전자 사이에 SRG3 cDNA를 상기 프로모터와 반대방향으로 삽입하여 발현벡터를 제조하는 단계(단계 1);1) preparing an expression vector by inserting the SRG3 cDNA in the opposite direction to the promoter between the thymus specific promoter and the mammal-derived gene (step 1);

2) 상기 발현벡터를 제한효소로 절단하여 흉선특이적 프로모터, 상기 프로모터와 반대방향으로 삽입된 SRG3 cDNA 및 포유동물 유래 유전자로 구성된 융합 유전자 컨스트럭트를 얻는 단계(단계 2);2) cutting the expression vector with a restriction enzyme to obtain a fusion gene construct composed of a thymus specific promoter, an SRG3 cDNA inserted in a direction opposite to the promoter and a mammalian-derived gene (step 2);

3) 상기 융합 유전자 컨스트럭트를 포유동물 수정란에 삽입하여 형질전환 수정란을 제조하는 단계(단계 3); 및3) inserting the fusion gene construct into a mammalian fertilized egg to produce a transformed fertilized egg (step 3); And

4) 상기 형질전환 수정란을 가임심된 대리모의 자궁에 착상시켜 형질전환 동물을 얻는 단계(단계 4)로 이루어진다.4) implanting the transformed fertilized egg into the womb of the surrogate surrogate mother to obtain a transgenic animal (step 4).

단계 1을 구체적으로 설명하면, 흉선특이적 프로모터는, Lck 근접 프로모터, CD2 프로모터, CD4 minigene 프로모터, TCR 프로모터 및 CD3 프로모터로 이루어지는 군에서 선택되어 사용될 수 있다. SRG3 cDNA는 생쥐 SRG3 cDNA이고 cDNA 전체 또는 일부분을 이용될 수 있는데, 본 발명에서는 생쥐 SRG3 cDNA 일부분을 이용하였다.Specifically, step 1, the thymus specific promoter can be selected from the group consisting of Lck proximity promoter, CD2 promoter, CD4 minigene promoter, TCR promoter and CD3 promoter. SRG3 cDNA is mouse SRG3 cDNA and all or part of the cDNA can be used. In the present invention, a mouse SRG3 cDNA part was used.

포유동물 유래 유전자로는 포유동물에서 발현되는 유전자의 cDNA 전체 또는 일부분에 폴리A 서열이 결합된 융합 유전자이고, 바람직하게는 SRG3 안티센스 RNA가 SRG3 mRNA(messenger RNA)에 결합하는데 방해가 되지 않는 길이의 cDNA 단편이며, 폴리A 서열이 결합된 인간 성장호르몬 (hGH PolyA), 소성장호르몬(bGH PolyA), 인간 CD2 (hCD2 polyA), 및 SV40 (SV40 PolyA)으로 이루어지는 군에서 선택되어 사용될 수 있다. 본 발명에서는 바람직한 실시예로서 3' 말단에 폴리A 서열이 결합된 인간 성장호르몬 유전자의 단편을 이용하였다.Mammalian-derived genes are fusion genes in which a polyA sequence is attached to all or a portion of cDNA of a gene expressed in a mammal. Preferably, the SRG3 antisense RNA has a length that does not interfere with binding to SRG3 mRNA (messenger RNA). cDNA fragment, and may be selected from the group consisting of human growth hormone (hGH PolyA), bovine growth hormone (bGH PolyA), human CD2 (hCD2 polyA), and SV40 (SV40 PolyA) to which a polyA sequence is bound. In the present invention, as a preferred embodiment, a fragment of the human growth hormone gene having a polyA sequence linked to the 3 'end was used.

단계 2를 구체적으로 설명하면, 단계 2의 융합 유전자 컨스트럭트는 포유동물에서 유전자로부터 RNA를 생성하는데 필수적인 구성요소를 갖춘 컨스트럭트이다. 흉선특이적 프로모터는 흉선세포에서만 유전자 발현을 유도하는 프로모터로서 Lck 근접 프로모터, CD2 프로모터, CD4 minigene promoter, CD3 프로모터가 이용될 수 있는데, 본 발명에서는 Lck 근접 프로모터를 이용하였다.Specifically describing step 2, the fusion gene construct of step 2 is a construct with the necessary components for generating RNA from a gene in a mammal. The thymus-specific promoter may be a Lck proximity promoter, a CD2 promoter, a CD4 minigene promoter, or a CD3 promoter as a promoter for inducing gene expression only in thymus cells. In the present invention, the Lck proximity promoter was used.

단계 3을 구체적으로 설명하면, 포유동물 수정란은 정핵과 난핵이 융합되지 않은 상태의 1 세포기 수정란으로서 제조하고자 하는 형질전환 동물에 따라 생쥐, 기니아 피그(guinea pig), 렛트(rat), 염소, 소 등의 수정란이 이용될 수 있고 형질전환 수정란은 단계 2의 융합 유전자 컨스트럭트를 상기 1 세포기의 포유동물 수정란에 미세주입하는 미세주입법, 융합 유전자 컨스트럭트를 삽입한 간(杆)세포(stem cell)를 발생중인 수정란과 결합시켜 만드는 세포혼합법등에 의하여 제조될 수 있는데, 본 발명에서는 생쥐 수정란에 상기 융합 유전자 컨스트럭트를 미세주입법으로 삽입하였다.Specifically, in step 3, the mammalian fertilized egg is a one-celled fertilized egg in which the nucleus and the nucleus are not fused, and according to the transgenic animal to be prepared, mice, guinea pigs, rats, goats, A fertilized egg such as a cow may be used, and the transformed fertilized egg may be a microinjection method for microinjecting the fusion gene construct of step 2 into a mammalian fertilized egg of the first cell stage, and a liver cell into which the fusion gene construct is inserted. (Stem cell) can be prepared by a cell mixing method, such as by combining with a developing fertilized egg, in the present invention, the fusion gene construct was inserted into the mouse fertilized egg by microinjection.

단계 4를 구체적으로 설명하면, 가임신된 대리모는 이용되는 형질전환 수정란에 따라 선택되며 수정관이 절제된 수컷 포유동물과 교배하여 가임신시킨 암컷 포유동물인데, 본 발명에서는 형질전환 생쥐 수정란을 이용하였기 때문에 가임신된 생쥐 대리모를 선택하였다. 형질전환 동물을 선별하기 위한 DNA 분석은 게놈 DNA내 SRG3 cDNA가 삽입된 형질전환 1 세대 동물을 확인하기 위하여 수행되는데, 꼬리 DNA를 이용한 서던 블러팅과 PCR이 이용될 수 있다.Specifically describing step 4, the fertility surrogate mother is selected according to the transgenic fertilized eggs used and the female mammals fertilized by fertilizing the fertilized ducts with the resected male mammal, since the present invention uses a transgenic mouse fertilized egg. Fertility mouse surrogate mothers were selected. DNA analysis for screening transgenic animals is performed to identify transgenic first generation animals in which SRG3 cDNA is inserted in genomic DNA. Southern blotting and PCR using tail DNA can be used.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1> SRG3 안티센스 RNA 단편 발현벡터의 제조Example 1 Preparation of SRG3 Antisense RNA Fragment Expression Vector

SRG3 안티센스 RNA 단편을 흉선세포에서만 과발현시키는 발현벡터를 제조하기 위하여, 본 발명자들은 흉선특이적으로 유전자 발현을 유도시키는 Lck 프로모터와 반대방향으로 삽입된 SRG3 cDNA 단편을 포함하는 재조합 발현벡터를 제조하였다.To prepare an expression vector that overexpresses an SRG3 antisense RNA fragment only in thymus cells, we prepared a recombinant expression vector comprising an SRG3 cDNA fragment inserted in the opposite direction to the Lck promoter that specifically induces gene expression.

먼저, 클로닝(cloning)되어 있는 생쥐의 SRG3 cDNA(Jeon, S.H.et al., J. Exp. Med., 185, 1827-1836, 1997)를 제한효소XbaI으로 절단하여 2.9 kb의 SRG3 cDNA 단편을 얻고, 이를 pBluescriptII KS(-) 벡터(Promega)에 클로닝하여 재조합 벡터를 제조한 후 상기 재조합 벡터를 제한효소BamHI으로 절단하여 2.8 kb의 SRG3 cDNA 단편을 확인하였다. 상기 2.8 kb SRG3 cDNA 단편을 벡터 p1017(Chaffin K.E.et al., EMBO J., 9, 3821-3829, 1990)내 Lck 프로모터와 폴리A 서열이 결합된 인간 성장호르몬 유전자 단편 사이에 상기 프로모터와 반대방향으로 삽입하여 흉선특이적으로 SRG3 안티센스 RNA를 과발현시킬 수 있는 발현벡터를 제조하였고, 이를 "pLck-αSRG3"이라 명명하였다(도 2).First, a cloned mouse SRG3 cDNA (Jeon, SH et al., J. Exp. Med ., 185, 1827-1836, 1997) was digested with restriction enzyme Xba I to cut a 2.9 kb SRG3 cDNA fragment. This was cloned into pBluescriptII KS (−) vector (Promega) to prepare a recombinant vector, and the recombinant vector was digested with restriction enzyme BamH I to identify 2.8 kb of SRG3 cDNA fragment. The 2.8 kb SRG3 cDNA fragment was reversed from the promoter between the Lck promoter and human growth hormone gene fragment to which the polyA sequence was bound in vector p1017 (Chaffin KE et al., EMBO J. , 9, 3821-3829, 1990). An expression vector capable of overexpressing SRG3 antisense RNA was inserted into the thymus and was named "pLck-αSRG3" ( FIG. 2 ).

상기 발현벡터내에 SRG3 cDNA 단편이 클로닝되었는지 확인하기 위하여, 발현벡터를 제한효소NotI으로 절단한 후 전기영동을 수행하였다. 그 결과, 벡터 자체의 크기인 2.9 kb DNA 밴드와 2.8 kb의 SRG3 cDNA 단편을 포함하는 8.2 kb DNA 밴드를 관찰함으로써 SRG3 cDNA 단편이 발현벡터 pLck-αSRG3내에 삽입되어 있음을확인하였다(도 1).In order to check whether the SRG3 cDNA fragment was cloned in the expression vector, the expression vector was digested with restriction enzyme Not I and electrophoresis was performed. As a result, it was confirmed that the SRG3 cDNA fragment was inserted into the expression vector pLck-αSRG3 by observing the 8.2 kb DNA band including the 2.9 kb DNA band and the 2.8 kb SRG3 cDNA fragment, which is the size of the vector itself ( FIG. 1 ).

<실시예 2> 형질전환 생쥐 수정란의 제조Example 2 Preparation of Transgenic Mouse Embryos

Lck 근접 프로모터와 폴리A 서열을 포함하는 인간 성장호르몬 유전자 단편 사이에 SRG3 cDNA 단편이 상기 프로모터와 반대방향으로 삽입된 융합 유전자 컨스트럭트를 이용하여 형질전환 생쥐 수정란을 제조하기 위하여, 본 발명자들은 하기와 같은 실험을 실시하였다.In order to prepare a transgenic mouse embryo using a fusion gene construct in which an SRG3 cDNA fragment was inserted in the opposite direction to the promoter between the Lck proximity promoter and a human growth hormone gene fragment comprising a polyA sequence, The same experiment was carried out.

먼저, 실시예 1에서 제조된 발현벡터 pLck-αSRG3로부터 Lck 근접 프로모터와 폴리A 서열을 포함하는 인간 성장호르몬 유전자 단편 사이에 SRG3 cDNA 단편이 상기 프로모터와 반대방향으로 삽입된 융합 유전자 컨스트럭트를 얻기 위하여, 제한효소NotI 및ApaI으로 상기 발현벡터를 각각 절단하고 전기영동한 후, SRG3 cDNA 단편을 포함하는 8.2 kb의 융합 유전자 컨스트럭트를 젤로부터 투석하여 정제하였다. 상기 정제된 8.2 kb의 융합 유전자 컨스트럭트를 정핵과 난핵이 융합되지 않은 생쥐 수정란에 표준방법으로 미세주입하여 형질전환 생쥐 수정란을 제조한 후 이를 한국생명공학연구원 유전자은행에 2001년 3월 16일자로 기탁하였다(수탁번호: KCTC 0973BP)(Hogan, B.et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).First, obtaining a fusion gene construct in which an SRG3 cDNA fragment is inserted in the opposite direction to the promoter between an Lck proximity promoter and a human growth hormone gene fragment comprising a polyA sequence from the expression vector pLck-αSRG3 prepared in Example 1 To this end, the expression vectors were digested and electrophoresed with restriction enzymes Not I and Apa I, respectively, and purified by dialysis from a gel of 8.2 kb containing the SRG3 cDNA fragment. The purified 8.2 kb fusion gene construct was microinjected into the fertilized embryos with no nucleus spermatozoa and the nucleus fused by a standard method to produce a transgenic mouse embryo, which was dated March 16, 2001 to the Korea Biotechnology Research Institute Gene Bank. (Accession: KCTC 0973BP) (Hogan, B. et al ., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

<실시예 3> 형질전환 생쥐의 제조Example 3 Preparation of Transgenic Mice

실시예 2에서 제조된 형질전환 생쥐 수정란을 이용하여 형질전환 생쥐를 제조하기 위하여, 본 발명자들은 하기와 같은 실험을 실시하였다.In order to prepare a transgenic mouse using the transgenic mouse fertilized egg prepared in Example 2, the inventors conducted the following experiment.

실시예 2의 형질전환 생쥐 수정란을 가임신된 대리모 생쥐(FVB strain, Macrogen 서울대학교 의대 암연구소 소재)의 자궁에 착상시켜 얻은 생후 3 주령의 생쥐의 꼬리를 1 cm 절제한 후 이로부터 게놈 DNA를 분리하였다. 상기 게놈 DNA를 주형으로 하고 서열번호 1 및 서열번호 2로 기재되며 SRG3 cDNA 단편의 3' 말단을 특이적으로 인식하는 프라이머쌍을 이용하여 PCR를 수행하였다. 그 결과, 상기 PCR 증폭에 의한 900 bp 크기의 PCR 산물이 검출된 1 세대 형질전환 생쥐를 선별하였고 이들의 게놈 DNA에 SRG3 cDNA 단편을 포함하는 8.2 kb DNA 단편이 삽입되어 있음을 확인하였다(도 4a도 4b).The transgenic mouse of Example 2 was implanted into the uterus of a fertility surrogate mouse (FVB strain, Macrogen Seoul National University Medical Research Institute, Cancer Institute). Separated. PCR was performed using a pair of primers based on the genomic DNA and described as SEQ ID NO: 1 and SEQ ID NO: 2, and specifically recognized the 3 'end of the SRG3 cDNA fragment. As a result, the first generation transgenic mice in which the 900 bp PCR product was detected by the PCR amplification were selected, and it was confirmed that 8.2 kb DNA fragments containing SRG3 cDNA fragments were inserted in their genomic DNA ( FIG. 4A ) . And FIG. 4B ).

<실험예 1> SRG3 안티센스 RNA 발현양상 분석Experimental Example 1 Analysis of SRG3 Antisense RNA Expression

상기 실시예 3에서 선별된 형질전환 생쥐의 SRG3 안티센스 RNA 단편의 발현양상을 조사하기 위하여, 본 발명자들은 정상 생쥐 및 SRG3 cDNA가 삽입된 형질전환 생쥐의 각 조직으로부터 분리된 전체 RNA를 이용하는 노던 블러팅(northern blotting)을 수행하여 생쥐 게놈 DNA내에 삽입된 SRG3 cDNA 단편으로부터 발현되는 SRG3 안티센스 RNA 단편의 발현양상을 분석하였다.In order to investigate the expression patterns of the SRG3 antisense RNA fragments of the transgenic mice selected in Example 3, the inventors used northern blotting using total RNA isolated from the tissues of normal mice and transgenic mice into which SRG3 cDNA was inserted. (Northern blotting) was performed to analyze the expression patterns of SRG3 antisense RNA fragments expressed from SRG3 cDNA fragments inserted into mouse genomic DNA.

먼저, Chomczynski 등의 방법(Chomczynski, P. et al., Anal. Biochem. 162, 156-159, 1987)을 이용하여 정상 생쥐의 흉선과 형질전환 생쥐의 흉선, 림프절, 비장, 뇌, 정소 및 간조직으로부터 전체 RNA를 정제한 후 20 μg의 전체 RNA를 1.2% 아가로스 젤에서 전기영동하여 분리하였다. 전기영동후 EtBr(Ethidium bromide)로염색하여 28S 및 18S rRNA(ribosomal RNA)를 확인함으로써 동일한 양의 RNA가 로딩(loading)된 것을 확인한 후 아가로스 젤상의 RNA를 니트로셀룰로즈 막(nitrocellulose membrane)으로 이동시켰다. 실시예 1의 2.9 kbXbaI SRG3 cDNA 단편을 주형으로 이용하고 T3 시발체(primer)를 사용하여 SRG3 안티센스 RNA와 상보적인 단일가닥 SRG3 cDNA를 PCR로 증폭하여 얻은 후 이를 탐침(probe)으로 이용하여 노던 블러팅을 수행하였다.First, using Chomczynski et al. (Chomczynski, P. et al., Anal. Biochem. 162, 156-159, 1987), the thymus of normal mice and the thymus, lymph nodes, spleen, brain, testis and liver of transgenic mice. After total RNA was purified from the tissue, 20 μg of total RNA was isolated by electrophoresis on 1.2% agarose gel. After electrophoresis, staining with EtBr (Ethidium bromide) confirmed 28S and 18S rRNA (ribosomal RNA) to confirm that the same amount of RNA was loaded, and then the RNA on the agarose gel was transferred to the nitrocellulose membrane. I was. The 2.9 kb Xba I SRG3 cDNA fragment of Example 1 was used as a template and a single-stranded SRG3 cDNA complementary to SRG3 antisense RNA was obtained by PCR using a T3 primer and then used as a probe. Blotting was performed.

그 결과, 정상 생쥐의 흉선과 형질전환 생쥐의 흉선을 제외한 다른 조직에서는 SRG3 안티센스 RNA 단편이 관찰되지 않았으나, 형질전환 생쥐의 흉선에서는 3 kb의 SRG3 안티센스 RNA 단편이 확인되었다. 상기의 결과로부터, Lck 근접 프로모터의 조절하에서 형질전환 생쥐의 게놈 DNA에 삽입된 SRG3 cDNA 단편으로부터 SRG3 안티센스 RNA 단편이 흉선에서만 특이적으로 과발현됨을 확인하였다(도 5).As a result, no SRG3 antisense RNA fragment was observed in tissues other than the thymus of normal mice and the thymus of transgenic mice, but 3 kb of SRG3 antisense RNA fragment was identified in the thymus of transgenic mice. From the above results, it was confirmed that the SRG3 antisense RNA fragment was specifically overexpressed only in the thymus from the SRG3 cDNA fragment inserted into the genomic DNA of the transgenic mouse under the control of the Lck proximity promoter ( FIG. 5 ).

<실험예 2> SRG3 단백질 발현량 측정Experimental Example 2 Measurement of SRG3 Protein Expression

상기 노던 블러팅에서 확인한 바와 같이, 본 발명의 형질전환 생쥐가 SRG3 안티센스 RNA의 과발현으로 인하여 SRG3 단백질의 발현량이 감소됨을 단백질 수준에서 확인하기 위하여, 본 발명자들은 하기와 같은 방법으로 웨스턴 블러팅(western blotting)을 수행하였다.As confirmed by the northern blotting, in order to confirm that the transgenic mice of the present invention reduce the expression level of SRG3 protein due to the overexpression of SRG3 antisense RNA, the present inventors used western blotting in the following manner. blotting) was performed.

정상 생쥐 및 형질전환 생쥐의 흉선세포(107개)를 파쇄하여 얻은 세포파쇄액을 SDS-PAGE(SDS-polyacrylamide gel electrophoresis)를 수행하여 분리한 후 단백질을 니트로셀룰로즈 막에 이동시켰다. 탈지유를 TBS/Tween-20(이하 "TBST"라 약칭함)에 희석하여 최종농도 5%로 만든 블러킹 용액(blocking solution)에서 상기 니트로셀룰로즈 막을 1 시간 동안 블러킹시킨 후 SRG3, 글루코코티코이드 및 Lck 각각에 대한 일차 항체를 첨가하여 상온에서 3 시간 동안 반응시켰다. 반응이 종결된 니트로셀룰로즈 막을 TBST로 15 분간 3 번 세척하고 HRP(horseradish peroxidase)가 접합된 이차 항체를 함유하는 TBST에서 상기 니트로셀룰로즈 막을 2 시간 동안 반응시킨 후 TBST로 15 분간 3 번 세척하였다. ECL 키트(Amersham Pharmacia, Sweden)를 이용하여 니트로셀룰로즈 막을 X-선 필름(X-ray film)에 노출시켜 SRG3, 글루코코티코이드 및 Lck 밴드를 관찰한 후 바이오-라드 단백질 분석법(Bio-Rad Protein assay)으로 관찰된 단백질의 양을 결정하여 동량의 단백질이 로딩된 것을 확인하였으며, 젤-프로 분석기의 소프트웨어(Gel-Pro Analyzer software, Media Cybernetics, USA)를 사용하여 상기 단백질 밴드의 강도(band intensity)를 결정하였다.Cell lysates obtained by crushing thymocytes (10 7 cells) of normal and transgenic mice were separated by SDS-PAGE (SDS-polyacrylamide gel electrophoresis), and then proteins were transferred to nitrocellulose membranes. The skimmed milk was diluted in TBS / Tween-20 (hereinafter abbreviated as "TBST") to block the nitrocellulose membrane for 1 hour in a blocking solution made to a final concentration of 5% and then for SRG3, Glucocorticoid and Lck respectively. The primary antibody was added and reacted at room temperature for 3 hours. After completion of the reaction, the nitrocellulose membrane was washed three times with TBST for 15 minutes and the nitrocellulose membrane was reacted for 2 hours in TBST containing a secondary antibody conjugated with a horseradish peroxidase (HRP), followed by three times with TBST for 15 minutes. Nitrocellulose membranes were exposed to X-ray films using an ECL kit (Amersham Pharmacia, Sweden) to observe SRG3, glucocorticoids and Lck bands, followed by Bio-Rad Protein Assay. The amount of protein observed was determined to confirm that the same amount of protein was loaded, and the intensity of the protein band was determined using Gel-Pro Analyzer software, Media Cybernetics, USA. It was.

그 결과, 형질전환을 시키지 않은 정상 생쥐의 글루코코티코이드 및 Lck 밴드와 형질전환 생쥐의 글루코코티코이드 및 Lck 밴드는 거의 동일한 강도로 확인되었으나, 형질전환 생쥐의 SRG3 밴드는 정상 생쥐의 SRG3 밴드보다 약한 강도로 탐지되어 형질전환 생쥐의 SRG3 발현량이 감소됨을 확인하였다(도 6). 상기의 결과로부터, 본 발명의 형질전환 생쥐의 흉선에서 과발현되는 SRG3 안티센스 RNA 단편이 SRG3 mRNA(messenger RNA)와 상보적으로 결합하여 SRG3 mRNA로부터의 SRG3 단백질 발현을 억제한다는 것을 확인하였다.As a result, the glucocorticoid and Lck bands of the non-transformed normal mice and the glucocorticoid and Lck bands of the transgenic mice were found to be almost the same intensity, but the SRG3 band of the transgenic mice was detected at a weaker intensity than the SRG3 band of the normal mice. It was confirmed that the amount of SRG3 expression in the transgenic mice ( FIG. 6 ). From the above results, it was confirmed that the SRG3 antisense RNA fragment overexpressed in the thymus of the transgenic mouse of the present invention binds complementarily with SRG3 mRNA (messenger RNA) to inhibit SRG3 protein expression from SRG3 mRNA.

<실험예 3> 형질전환 생쥐와 정상 생쥐의 흉선세포 종류 및 흉선세포수 비교Experimental Example 3 Comparison of Thymic Cell Types and Thymic Cell Numbers in Transgenic and Normal Mice

형질전환 생쥐와 정상 생쥐의 흉선세포 종류 및 흉선세포수를 비교하기 위하여, 본 발명자들은 플루 사이토메트리(flow cytometry)를 수행하여 형질전환 생쥐 및 정상 생쥐의 흉선세포 종류 및 흉선세포수를 조사하였다.In order to compare thymic cell types and thymic cell numbers of transgenic mice and normal mice, the present inventors performed flow cytometry to investigate the thymic cell types and thymic cell numbers of transgenic mice and normal mice. .

먼저, 3 내지 4 주령의 생쥐로부터 분리한 흉선세포를 단일세포로 현탁하고 PBS(phosphate buffered saline, PBS)로 한번 세척한 후 FITC(Fluorescence isothiocyanate)로 표지된 CD4에 대한 항체 및 바이오틴(biotin)으로 표지된 CD8에 대한 항체를 첨가하여 상온에서 10 분간 반응시켰다. PBS로 흉선세포를 세척한 후 PE(full name)가 접합된 스트렙타비딘(streptavidin)으로 염색한 다음 PBS로 세척하였다. 상기 세척된 흉선세포를 2% FBS(fetal bovine serum)를 함유하는 PBS 1 ㎖에 현탁한 후 셀퀘스트 소프트웨어(CellQuest software)를 이용하는 FACStarplus플루 사이토미터(flow cytometer, Becton Dicknson)로 흉선세포 종류 및 흉선세포수를 조사하였다.First, thymic cells isolated from 3 to 4 week old mice were suspended in single cells, washed once with PBS (phosphate buffered saline (PBS), and then with antibodies and biotin against CD4 labeled with Fluorescence isothiocyanate (FITC). The antibody against labeled CD8 was added and reacted for 10 minutes at room temperature. Thymus cells were washed with PBS, stained with streptavidin (PE) conjugated with PE (full name), and then washed with PBS. The washed thymic cells were suspended in 1 ml of PBS containing 2% FBS (fetal bovine serum) and then thymic cell types with a FACStarp lus flow cytometer (Becton Dicknson) using CellQuest software. Thymic cell number was examined.

그 결과, 형질전환 생쥐의 CD4 흉선세포 및 CD8 흉선세포 분포양상은 정상 생쥐와 유사하였지만, 형질전환 생쥐의 흉선세포수는 정상 생쥐에 비하여 증가되었다(도 7). 상기 결과로부터, SRG3는 흉선세포의 종류를 결정하는데는 영향을 주지 않지만 글루코코티코이드에 의한 미성숙 흉선세포의 아폽토시스를 유도한다는 것을 확인하였다.As a result, the distribution of CD4 thymus cells and CD8 thymic cells in transgenic mice was similar to that of normal mice, but the number of thymus cells in transgenic mice was increased ( Fig. 7 ). From these results, it was confirmed that SRG3 does not affect the type of thymic cells but induces apoptosis of immature thymic cells by glucocorticoids.

<실험예 4> 형질전환 생쥐 흉선세포의 아폽토시스에 대한 민감성 측정Experimental Example 4 Measurement of Sensitivity to Apoptosis of Transgenic Mouse Thymic Cells

본 발명의 형질전환 생쥐의 흉선세포에서 과발현된 SRG3 안티센스 RNA 단편이 글루코코티코이드에 의한 미성숙 흉선세포의 아폽토시스에 대한 민감성에 미치는 영향을 조사하기 위하여, 본 발명자들은 글루코코티코이드를 처리하여 아폽토시스를 유도한 형질전환 생쥐 및 정상 생쥐의 흉선세포에서 아폽토시스에 의하여 사멸하는 흉선세포수를 측정하였다.In order to investigate the effect of SRG3 antisense RNA fragments overexpressed in thymus cells of transgenic mice on the susceptibility to apoptosis of immature thymic cells by glucocorticoids, the present inventors treated glucocorticoids to induce apoptosis. And the number of thymic cells killed by apoptosis in thymic cells of normal mice was measured.

먼저, 형질전환 생쥐 및 정상 생쥐로부터 분리한 흉선세포를 글루코코티코이드가 첨가되지 않은 배지와 글루코코티코이드가 10-8M, 10-7M 농도로 첨가된 배지에서 각각 배양하여 모은 흉선세포를 PE가 접합된 CD4에 대한 항체 및 에 FITC가 접합된 CD8에 대한 항체와 반응시킨 후 FACS(Fluorescence Activated Cell Sorter)를 이용하여 생존한 흉선세포수를 측정하고 하기 수학식 1에 따라 아폽토시스 발생률을 계산하였다.First, thymocytes isolated from transgenic mice and normal mice were cultured in medium without glucocorticoid and medium with glucocorticoid added at concentrations of 10 −8 M and 10 −7 M, respectively. After reacting with an antibody against CD8 conjugated with an antibody against and FITC, the number of surviving thymic cells was measured using a Fluorescence Activated Cell Sorter (FACS), and apoptosis incidence was calculated according to Equation 1 below.

<수학식 1><Equation 1>

이중양성 흉선세포의 아폽토시스 발생률(%) = 100 X (A-B)/(100-B)Incidence of apoptosis in bipositive thymic cells (%) = 100 X (A-B) / (100-B)

A: 글루코코티코이드가 첨가된 배지에서의 아폽토시스 발생률(%)A:% incidence of apoptosis in glucocorticoid added medium

B: 글루코코티코이드가 첨가되지 않은 배지에서의 아폽토시스 발생률(%)B:% incidence of apoptosis in medium without glucocorticoids

그 결과, 글루코코티코이드에 의하여 아폽토시스가 유도되었을 경우에 본 발명의 형질전환 생쥐의 흉선세포는 정상 생쥐의 흉선세포에 비해 시간이 경과함에 따라 서로 다른 10-8M, 10-7M 두 가지 농도에서 모두 아폽토시스 발생률이 감소하는 결과를 나타내었다(도 8). 상기의 결과로부터, 본 발명의 형질전환 생쥐의 흉선세포에서 과발현된 SRG3 안티센스 RNA 단편이 글루코코티코이드에 의한 아폽토시스를 유도하는 SRG3 발현을 저해하여 미성숙 흉선세포의 아폽토시스에 대한 민감성을 감소시키고, 이로 인하여 형질전환 생쥐의 미성숙 흉선세포에서 글루코코티코이드에 의한 아폽토시스가 저해됨을 확인하였다.As a result, when apoptosis was induced by glucocorticoids, the thymic cells of the transgenic mice of the present invention were different at different concentrations of 10 -8 M and 10 -7 M over time than those of normal mice. The incidence of apoptosis was shown ( FIG. 8 ). From the above results, SRG3 antisense RNA fragment overexpressed in thymic cells of transgenic mice of the present invention inhibits SRG3 expression inducing apoptosis by glucocorticoids, thereby reducing the sensitivity of immature thymic cells to apoptosis, thereby transforming Glucocorticoid apoptosis was inhibited in immature thymic cells of mice.

상기에서 살펴본 바와 같이, 본 발명의 형질전환 생쥐는 흉선에서 SRG3 안티센스 RNA 단편이 과발현되어 글루코코티코이드에 의한 아폽토시스 민감성이 저하된 미성숙 흉선세포를 가짐으로써 면역세포의 분화 및 면역기능의 조절기작을 연구하는데 유용하게 이용될 수 있다.As described above, the transgenic mice of the present invention have immature thymic cells with overexpression of SRG3 antisense RNA fragments in the thymus and reduced apoptosis susceptibility by glucocorticoids, which is useful for studying the differentiation of immune cells and the regulation of immune function. Can be used.

<110> SEONG, Rho Hyun JANG, Jae Jin KIM, Kil Soo Bio Genomics. INC. <120> Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal <130> 0p-06-63 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 gcatctgcat gaacatactt cttg 24 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 ctagctcagc gtgtgctcat ctg 23<110> SEONG, Rho Hyun JANG, Jae Jin KIM, Kil Soo Bio Genomics. INC. <120> Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal <130> 0p-06-63 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 gcatctgcat gaacatactt cttg 24 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 ctagctcagc gtgtgctcat ctg 23

Claims (11)

흉선특이적 프로모터로 Lck 근접 프로모터, 생쥐 SRG3 안티센스 cDNA 및 폴리A 서열이 결합된 인간 성장호르몬 유전자의 순서로 이루어진 핵산 서열을 포함하는 융합 유전자 컨스트럭트(fusion gene construct)를 인간이외의 포유동물 수정란에 주입하여 얻은 형질전환 수정란.A thymus-specific promoter is a fusion gene construct comprising a nucleic acid sequence consisting of a Lck proximity promoter, a mouse SRG3 antisense cDNA, and a sequence of human growth hormone genes linked to a polyA sequence. Transformed fertilized eggs obtained by injection into. 삭제delete 삭제delete 제 1항에 있어서, 상기 융합 유전자 컨스트럭트는 발현벡터 pLck-αSRG3로부터 얻어지는 것을 특징으로 하는 형질전환 수정란.The transformed fertilized egg of claim 1, wherein the fusion gene construct is obtained from an expression vector pLck-αSRG3. 제 1항에 있어서, 상기 융합 유전자 컨스트럭트의 주입은 미세주입방법으로 이루어지는 것을 특징으로 하는 형질전환 수정란.The transformed fertilized egg of claim 1, wherein the fusion gene construct is injected by a microinjection method. 제 1항에 있어서, 포유동물 수정란은 생쥐 수정란인 것을 특징으로 하는 형질전환 생쥐 수정란(수탁번호: KCTC 0973BP).The transgenic mouse fertilized egg according to claim 1, wherein the mammalian fertilized egg is a mouse fertilized egg (Accession Number: KCTC 0973BP). 제 1항의 형질전환 수정란을 인간을 제외한 대리모의 자궁에 착상시켜 얻은 형질전환 동물.A transgenic animal obtained by implanting the transformed fertilized egg of claim 1 into the uterus of a surrogate mother except for humans. 제 7항에 있어서, 대리모는 가임신된 암컷 생쥐인 것을 특징으로 하는 형질전환 생쥐.8. The transgenic mouse of claim 7, wherein the surrogate mother is a fertility female mouse. 1) 흉선특이적 프로모터와 포유동물 유래 유전자 사이에 SRG3 cDNA를 상기 프로모터와 반대방향으로 삽입하여 발현벡터를 제조하는 단계(단계 1);1) preparing an expression vector by inserting the SRG3 cDNA in the opposite direction to the promoter between the thymus specific promoter and the mammal-derived gene (step 1); 2) 상기 발현벡터를 제한효소로 절단하여 흉선특이적 프로모터, 상기 프로모터와 반대방향으로 삽입된 SRG3 cDNA 및 포유동물 유래 유전자로 구성된 융합 유전자 컨스트럭트를 얻는 단계(단계 2);2) cutting the expression vector with a restriction enzyme to obtain a fusion gene construct composed of a thymus specific promoter, an SRG3 cDNA inserted in a direction opposite to the promoter and a mammalian-derived gene (step 2); 3) 상기 융합 유전자 컨스트럭트를 인간이외의 포유동물 수정란에 삽입하여 형질전환 수정란을 제조하는 단계(단계 3); 및3) preparing a transgenic fertilized egg by inserting the fusion gene construct into a mammalian fertilized egg other than human (step 3); And 4) 상기 형질전환 수정란을 인간을 제외한 가임신된 대리모의 자궁에 착상시켜 형질전환 동물을 얻는 단계(단계 4)로 이루어지는 것을 특징으로 하는 제 7항의 형질전환 동물의 제조방법.4) The method of producing a transgenic animal according to claim 7, characterized in that the transgenic fertilized egg is implanted in the womb of a fertility surrogate mother except for humans to obtain a transgenic animal (step 4). 제 9항에 있어서, 단계 1의 흉선특이적 프로모터는, Lck 근접 프로모터, CD2 프로모터, CD4 minigene 프로모터, TCR 프로모터 및 CD3 프로모터로 이루어지는 군에서 선택되는 것을 특징으로 하는 제조방법.10. The method of claim 9, wherein the thymus specific promoter of step 1 is selected from the group consisting of Lck proximity promoter, CD2 promoter, CD4 minigene promoter, TCR promoter and CD3 promoter. 제 9항에 있어서, 단계 1의 포유동물 유래 유전자는 폴리A 서열이 결합된 인간 성장호르몬 (hGH PolyA), 소성장호르몬(bGH PolyA), 인간 CD2 (hCD2 polyA), 및 SV40 (SV40 PolyA)으로 이루어지는 군에서 선택되는 것을 특징으로 하는 제조방법.The method of claim 9, wherein the mammalian-derived gene of step 1 is composed of human growth hormone (hGH PolyA), phytotrophic hormone (bGH PolyA), human CD2 (hCD2 polyA), and SV40 (SV40 PolyA) to which polyA sequences are bound The manufacturing method characterized in that it is selected from the group consisting of.
KR10-2001-0022461A 2001-04-25 2001-04-25 Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal KR100443425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0022461A KR100443425B1 (en) 2001-04-25 2001-04-25 Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0022461A KR100443425B1 (en) 2001-04-25 2001-04-25 Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal

Publications (2)

Publication Number Publication Date
KR20020082724A KR20020082724A (en) 2002-10-31
KR100443425B1 true KR100443425B1 (en) 2004-08-09

Family

ID=27702579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0022461A KR100443425B1 (en) 2001-04-25 2001-04-25 Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal

Country Status (1)

Country Link
KR (1) KR100443425B1 (en)

Also Published As

Publication number Publication date
KR20020082724A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
Porter et al. Gene targeting at the mouse cytokeratin 10 locus: severe skin fragility and changes of cytokeratin expression in the epidermis.
AU718138B2 (en) Chimeric animal and method for constructing the same
CN107529739B (en) Transgenic non-human animals expressing human specific molecules and human Fc gamma receptor family
DK2319301T3 (en) Transgenic animals with human Ig lambda light chain genes
CN111837036B (en) Genetically modified non-human animals with human or chimeric genes
JP2006061158A (en) Antibody against epitope having homology to autoantigen, method for producing the same and use thereof
CN110499328B (en) Construction method and application of TIM3 humanized mouse model
CA2678901C (en) Methods for modulating embryonic stem cell differentiation
EP1497413B1 (en) Methods for producing immortalised antibodies-secreting cells
US7626074B2 (en) Method of screening candidate drugs for the treatment of leukemia
Corcos et al. Allelic exclusion in transgenic mice expressing a heavy chain disease‐like human μ protein
JPH10201396A (en) H2-m altered transgenic animal
KR100443425B1 (en) Transgenic animal expressing SRG3 antisense RNA fragment in thymocytes specifically and a method for preparing the transgenic animal
US20020155564A1 (en) Cloning of a high growth gene
CN112553252B (en) Construction method and application of TNFR2 gene humanized non-human animal
KR100443426B1 (en) Transgenic animal expressing SRG3 protein in T cells specifically and a method for preparing the transgenic animal
JP2003204796A (en) Non-human gene-modified animal and utilization thereof
JP2003000243A (en) Method for producing mutant
AU2003218236A1 (en) Transgenic non-human mammals expressing constitutively activated tyrosine kinase receptors
JP2002541765A (en) Mice deleted from MSH5 and method of using
JPH11512284A (en) Monoclonal lymphocytes and methods of use
JP4510490B2 (en) Method for controlling cell proliferation using Jab1 / COP9 signalosome
WO1997038091A1 (en) METHODS FOR ENHANCING ANIMAL GROWTH AND CELL PROLIFERATION BY ELIMINATION OF FUNCTIONAL p27?Kip1¿
JP2003199587A (en) New nkt cell
US20030027777A1 (en) Methods for enhancing animal growth and cell proliferation by elimination of the cyclin-dependent kinase inhibitor function of p27Kip1

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130717

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160627

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190620

Year of fee payment: 16