KR100435422B1 - A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM - Google Patents

A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM Download PDF

Info

Publication number
KR100435422B1
KR100435422B1 KR10-2000-0080757A KR20000080757A KR100435422B1 KR 100435422 B1 KR100435422 B1 KR 100435422B1 KR 20000080757 A KR20000080757 A KR 20000080757A KR 100435422 B1 KR100435422 B1 KR 100435422B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
coating
corrosion
steel sheet
coating layer
Prior art date
Application number
KR10-2000-0080757A
Other languages
Korean (ko)
Other versions
KR20020051490A (en
Inventor
조재억
류진호
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR10-2000-0080757A priority Critical patent/KR100435422B1/en
Publication of KR20020051490A publication Critical patent/KR20020051490A/en
Application granted granted Critical
Publication of KR100435422B1 publication Critical patent/KR100435422B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/309Sulfur containing acids

Abstract

이산화티탄과 아연을 함유하는 내식성 도료조성물 및 이를 이용한 강판상의 내식성 피막 형성방법에 관한 것으로, 이산화티탄:아연분말이 1:0.01-0.05중량비로 혼합된 안료 및 무기계 실리케이트 용매 및 황산용액으로 구성되며, 이산화티탄은 평균입자직경이 30-70nm이고 아연분말은 평균입자직경이 1-5㎛이며, 상기 용매:이산화티탄과 아연분말의 혼합안료는 1:0.5-1중량비로 혼합되며 황산은 도료조성물의 총중량을 기준으로 0.1-0.2중량%인 내식성 도료조성물 및 이를 이용하여 건조코팅두께가 5-20㎛가 되도록 코팅한 후 상온에서 건조시켜 강판상에 내식성 코팅층을 형성한다.The present invention relates to a corrosion resistant coating composition containing titanium dioxide and zinc and a method for forming a corrosion resistant coating on a steel sheet using the same, comprising a pigment, an inorganic silicate solvent and a sulfuric acid solution in which a titanium dioxide: zinc powder is mixed at a weight ratio of 1: 0.01-0.05. Titanium dioxide has an average particle diameter of 30-70 nm, zinc powder has an average particle diameter of 1-5 μm, and the mixed pigment of solvent: titanium dioxide and zinc powder is mixed in a 1: 0.5-1 weight ratio and sulfuric acid is a paint composition. Corrosion-resistant coating composition of 0.1-0.2% by weight based on the total weight and using it to coat the dry coating thickness to 5-20㎛ and then dried at room temperature to form a corrosion-resistant coating layer on a steel sheet.

본 발명의 도료조성물로 형성된 피막코팅층은 이산화티탄의 광촉매 작용에 의해 항균, 방오 및 탈취효과 뿐만 아니라 광음극방식으로 소재금속 강판의 부식을 방지한다. 아연분말에 의해 피막코팅층의 유연성 및 소재금속과의 밀착성이 개선된다.The coating layer formed of the coating composition of the present invention prevents the corrosion of the material metal steel sheet by photocathode as well as antibacterial, antifouling and deodorizing effect by the photocatalytic action of titanium dioxide. The zinc powder improves the flexibility of the coating layer and the adhesion to the material metal.

Description

이산화티탄 및 아연을 함유하는 내식성 도료조성물 및 이를 이용한 내식성 피막형성방법{A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM}Corrosion-resistant coating composition containing titanium dioxide and zinc and a method for forming a corrosion-resistant coating using the same {A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM}

본 발명은 이산화티탄 및 아연을 함유하는 내식성 도료조성물 및 이를 이용한 강판상의 내식성 피막 형성방법에 관한 것이다. 보다 상세하게는, 이산화티탄에서 방출되는 광전자에 의한 음극방식에 의한 내식성이 우수한 도료조성물 및 이를 이용한 강판상의 내식성 피막 형성방법에 관한 것이다.The present invention relates to a corrosion resistant coating composition containing titanium dioxide and zinc and a method for forming a corrosion resistant film on a steel sheet using the same. More specifically, the present invention relates to a coating composition excellent in corrosion resistance by a cathode method by photoelectrons emitted from titanium dioxide and a method of forming a corrosion resistant film on a steel sheet using the same.

이산화티탄(TiO2)은 광촉매로서 이에 자외선(UV)이 조사되면 광전자(photoelectron)가 티탄으로 부터 방출되는 광촉매 작용을 한다.Titanium dioxide (TiO 2 ) is a photocatalyst, which acts as a photocatalyst in which photoelectron is emitted from titanium when ultraviolet (UV) radiation is applied thereto.

이산화티탄의 밴드 갭(band gap) 에너지는 3.2eV(λ390nm)로서 일반적인 자외선 램프에서 방출되는 390nm이하의 파장을 이산화티탄에 조사하면 광전자와 정공(hole)이 여기되며 태양광으로도 어느 정도의 광전자가 발생되는 것으로 알려져 있다. 여기된 상태의 광전자와 정공은 주위 분위기와 연속적인 산화환원 반응에 의해 항균, 유기물 분해 및 탈취효과 등의 기능을 나타냄으로 이산화티탄은 항균, 방오 및 탈취 등 여러 분야에 활용되고 있다.The band gap energy of titanium dioxide is 3.2eV (λ390nm), and when titanium dioxide is irradiated with a wavelength of 390nm or less emitted by a general ultraviolet lamp, photons and holes are excited and some photoelectrons are exposed to sunlight. Is known to occur. Photoelectrics and holes in the excited state exhibit antibacterial, organic substance decomposition and deodorizing effects by the ambient atmosphere and continuous redox reactions, and titanium dioxide is used in various fields such as antibacterial, antifouling and deodorizing.

이산화티탄을 금속소재에 적용하는 코팅방법으로는 졸-겔(sol-gel)코팅법, 열용사코팅법, 화학증착법 및 페인트 도장법 등이 있다.Coating methods for applying titanium dioxide to metal materials include sol-gel coating, thermal spray coating, chemical vapor deposition, and paint coating.

졸-겔 코팅법은 티타늄이온이 함유되어 있는 용액에 소재를 침적(dipping)하는 것으로서 특성상 침적후 300-500℃정도로 코팅된 강판을 가열하는 공정이 필요하며, 또한 1회 침적시 코팅두께가 0.1㎛정도의 박막임으로 균일한 코팅층을 형성하기 위해 3-4회의 침적공정 및 가열공정을 반복하여야 하는 번거로움이 있다.The sol-gel coating method is to dip a material into a solution containing titanium ions. Due to its nature, a sol-gel coating method requires a process of heating a coated steel sheet at about 300 to 500 ° C after deposition, and also has a coating thickness of 0.1 for a single deposition. In order to form a uniform coating layer with a thin film of about μm, it is cumbersome to repeat the 3-4 deposition process and the heating process.

대한민국 특허출원 93-014226에는 산화티탄막을 제조하기 위하여 황산티타닐 또는 이산화티탄미립자를 100℃이상에서 수열처리하는 공정이 개시되어 있다. 그러나, 코팅후 가열공정으로 인하여 산화티탄 코팅체의 크기가 가열로 크기로 제한되는 단점이 있다.Korean Patent Application No. 93-014226 discloses a process of hydrothermally treating titanium sulfate or titanium dioxide fine particles at 100 ° C. or higher to produce a titanium oxide film. However, due to the post-coating heating process, the size of the titanium oxide coating is limited to the size of the heating furnace.

일본특허 JP-006172에는 이산화티탄입자를 NiCr금속입자와 혼합하고 열용사기를 사용하여 고온의 화염으로 용융 및 비산하여 코팅층을 형성하는 방법이 개시되어 있으나, 이 방법에서는 약 1000℃이상의 고온을 필요로 한다.Japanese Patent JP-006172 discloses a method of mixing titanium dioxide particles with NiCr metal particles and melting and scattering them with a high temperature flame using a thermal spraying machine to form a coating layer, but this method requires a high temperature of about 1000 ° C. or more. do.

일본특허 JP-0071137에는 화학진공증착법을 사용하여 산화티탄 코팅층을 형성하는 방법이 개시되어 있으나, 코팅작업시 진공분위기에서 작업이 이루어지며 코팅체의 크기가 매우 한정되는 단점이 있다.Japanese Patent JP-0071137 discloses a method of forming a titanium oxide coating layer using a chemical vacuum deposition method, but has a disadvantage that the size of the coating is very limited when the coating is performed in a vacuum atmosphere.

국제특허 PCT/JP1997/04559는 소재에 제 1도장층인 아크릴개질 실리콘계 수지를 형성하고 그 위에 콜로이드질 실리카계 이산화티탄을 제 2도장층으로 하여 산화티탄층을 형성하는 방법을 개시하고 있으나, 산화티탄코팅층 제조시 온도에 관한 언급이 없으며 2겹을 사용함으로 제조공정이 복잡하다.International patent PCT / JP1997 / 04559 discloses a method of forming an acrylic modified silicone resin as a first coating layer on a material and forming a titanium oxide layer using colloidal silica-based titanium dioxide as a second coating layer thereon. There is no mention of temperature in the production of titanium coating layer and the manufacturing process is complicated by using two layers.

또한, 상기 종래의 이산화티탄을 이용한 금속코팅 방법에서는 이산화티탄에 의해 금속소재에 장기간 내식성을 부여하는 바에 대하여는 전혀 개시하고 있지 않다.In addition, in the conventional metal coating method using titanium dioxide, there is no disclosure regarding the long-term corrosion resistance of the metal material by titanium dioxide.

나아가, TiO2코팅시 열처리 공정이 있으면, n-타입의 TiO2층에 소재강판의 여러원소가 확산되어 TiO2내부로 들어가며 따라서 자외선 조사시 광전자 방출효과가 감소된다.Further, if the heat treatment step when TiO 2 coating, is a number of elements of the material spread on a plate layer of the n- type TiO 2 enters into the TiO 2 thus it reduces the photoelectron emission effect upon UV irradiation.

이에 본 발명의 목적은 이산화티탄에서 방출되는 광전자에 의한 음극방식법으로 금속강판의 부식이 장기간 방지되는 내식성 도료조성물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a corrosion-resistant paint composition in which the corrosion of the metal sheet is prevented for a long time by a cathode method by the photoelectrons emitted from titanium dioxide.

본 발명의 다른 목적은 코팅층과 소재금속간의 접착력이 우수한 내식성 도료조성물을 제공하는 것이다.Another object of the present invention is to provide a corrosion resistant paint composition having excellent adhesion between the coating layer and the material metal.

본 발명의 또 다른 목적은 상온에서 강판에 피막코팅층을 형성할 수 있는 내식성 도료조성물을 제공하는 것이다.Still another object of the present invention is to provide a corrosion resistant paint composition capable of forming a coating layer on a steel sheet at room temperature.

나아가, 본 발명의 또 다른 목적은 상기 본 발명의 내식성 도료조성물을 사용하여 강판에 내식성 피막을 형성하는 방법을 제공하는 것이다.Furthermore, another object of the present invention is to provide a method of forming a corrosion resistant coating on a steel sheet using the corrosion resistant paint composition of the present invention.

도 1은 본 발명의 도료조성물로 형성된 내식성 피막에 의한 강판의 방식원리를 나타내는 코팅피막층을 갖는 강판의 측단면도이다.1 is a side cross-sectional view of a steel sheet having a coating layer showing the anticorrosive principle of the steel sheet by the corrosion-resistant coating formed of the paint composition of the present invention.

* 도면의 주요부위에 대한 간단한 설명 *Brief description of the main parts of the drawing

1.... 강판 2.... 코팅피막층1 .... Steel plate 2 .... Coating film layer

본 발명의 일 견지에 의하면,According to one aspect of the invention,

이산화티탄:아연분말이 1:0.01-0.05중량비로 혼합된 안료 및 무기계 실리케이트 용매 및 황산용액으로 구성되며, 이산화티탄은 평균입자직경이 30-70nm이고 아연분말은 평균입자직경이 1-5㎛이며, 상기 용매: 이산화티탄과 아연분말의 혼합 안료는 1:0.5-1중량비로 혼합되며 황산은 도료조성물의 총중량을 기준으로 0.1-0.2중량%인 내식성 도료조성물이 제공된다.Titanium dioxide: zinc powder is composed of 1: 0.01-0.05 weight ratio of pigment, inorganic silicate solvent and sulfuric acid solution, titanium dioxide has an average particle diameter of 30-70nm and zinc powder has an average particle diameter of 1-5㎛. The mixed pigment of the solvent: titanium dioxide and zinc powder is mixed in a 1: 0.5-1 weight ratio, and sulfuric acid is provided with a corrosion-resistant coating composition having 0.1-0.2% by weight based on the total weight of the coating composition.

본 발명의 다른 견지에 의하면,According to another aspect of the present invention,

금속강판에 상기 본 발명의 내식성 도료조성물을 건조코팅두께가 5-20㎛가 되도록 코팅한 후 상온에서 건조시켜 강판상에 내식성 코팅층을 형성하는 방법이제공된다.Provided is a method for forming a corrosion resistant coating layer on a steel sheet by coating the corrosion resistant paint composition of the present invention on a metal steel sheet to a dry coating thickness of 5-20㎛ and dried at room temperature.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 의한 내식성 도료조성물로 형성된 피막을 갖는 강판은 자외선 조사시 피막에 함유되어 있는 이산화티탄에서 방출되는 광전자에 의한 음극보호기능으로 금속의 부식이 장기간 방지된다.Steel sheet having a coating formed of a corrosion-resistant coating composition according to the present invention is a negative electrode protection function by the photoelectrons emitted from the titanium dioxide contained in the coating during ultraviolet irradiation to prevent metal corrosion for a long time.

또한, 아연입자와 황산의 산촉매작용에 의해 아연이 실리케이트 용매 조직속에 결합하여 코팅층에 유연성을 부여하며 따라서 코팅층의 크랙을 방지하고 소재금속의 밀착력 및 코팅층의 내구성이 증대된다.In addition, zinc is bound to the silicate solvent structure by acid catalysis of zinc particles and sulfuric acid, thereby providing flexibility to the coating layer, thereby preventing cracking of the coating layer, and increasing adhesion of the material metal and durability of the coating layer.

금속의 부식현상은 전자와 이온의 움직임에 따른 전기화학적 현상이며 방식기법으로는 아연도금강판과 같이 전기화학적으로 금속의 전위를 음의 방향으로 변화시키는 음극방식이 주로 사용된다.Corrosion of metals is an electrochemical phenomenon caused by the movement of electrons and ions. As the anticorrosive method, a cathode method that electrochemically changes the potential of metal in the negative direction such as a galvanized steel sheet is mainly used.

본 발명의 이산화티탄을 함유하는 코팅피막에 자외선이 조사되면 자외선에 의해 이산화티탄 함유 코팅피막층내의 전자가 여기되고 정공(e-h쌍 발생)이 생성된다. 그 후, 표면반발작용(repulsion)에 의해 전자와 정공이 분리(charge separation)되고 분리된 전자는 소재강판으로 이동(전자확산(electron diffusion))하여 소재강판에서 음극보호작용을 나타낸다.When ultraviolet rays are irradiated to the coating film containing the titanium dioxide of the present invention, electrons in the titanium dioxide-containing coating film layer are excited by the ultraviolet rays to generate holes (e-h pair generation). Subsequently, electrons and holes are separated by charge repulsion, and the separated electrons move to the material steel sheet (electron diffusion) to exhibit a cathodic protection effect on the material steel sheet.

이 때, 상기 전자확산에 의한 전자의 소재강판으로의 이동은 광음극 보호 방식의 중요한 단계로 이산화티탄 코팅층의 전자이동성과 코팅층/소재강판의 계면현상에 따라 달라진다. 따라서, 산화티탄 코팅층은 전도성을 갖어야 한다.At this time, the movement of the electrons to the material steel plate by the electron diffusion is an important step of the photocathode protection method is dependent on the electron mobility of the titanium dioxide coating layer and the interfacial phenomenon of the coating layer / material steel sheet. Therefore, the titanium oxide coating layer should have conductivity.

또한, 불순물 함량이 많으면 여기된 광전자의 소재금속으로의 이동성이 나빠져 음극보호 효과가 저하된다.In addition, when the impurity content is large, the mobility of the excited photoelectrons to the material metal is deteriorated, and the negative electrode protection effect is lowered.

이산화타탄 함유 조성물을 사용하여 강판에 피막을 형성하는 경우, 별도의 열처리공정을 행하면 소재강판의 여러 가지 원소가 이산화티탄 함유 피막층내부로 확산되어 피막층에서 불순물로 작용한다. 따라서, 코팅공정중 소재금속의 여러 가지 원소가 코팅피막층으로 확산되는 것을 방지하기 위해 코팅층 형성시 별도의 열처리 공정 없이 상온에서 피막코팅층을 형성하여야 한다.When a film is formed on a steel sheet using a titanium dioxide-containing composition, when a separate heat treatment process is performed, various elements of the raw material steel sheet diffuse into the titanium dioxide-containing film layer and act as impurities in the film layer. Therefore, in order to prevent the diffusion of various elements of the raw metal into the coating layer during the coating process, the coating layer should be formed at room temperature without a separate heat treatment process when forming the coating layer.

또한, 제조공정중 가열공정이 있으면 코팅의 성능에 편차가 있으며 따라서 대형강 구조물에는 적용하기 불가능한 문제가 있다.In addition, if there is a heating step in the manufacturing process there is a variation in the performance of the coating and therefore there is a problem that is not applicable to large steel structures.

본 발명에서는 상온건조형 산화티탄 함유 도료조성물을 사용하고 이에 조사되는 방사선에 의해 발생하는 광전자에 의해 전자가 강판을 희생방식하는 것과 같은 금속강판의 부식이 방지된다.In the present invention, corrosion of a metal sheet such as electrons sacrificing the steel sheet is prevented by the photoelectrons generated by the radiation irradiated thereto using a room temperature dry type titanium oxide-containing paint composition.

본 발명의 내식성 및 소재금속에 대한 밀착성이 우수한 도료조성물은 안료로서 이산화티탄과 아연분말, 무기계 실리케이트 용매 및 황산으로 구성된다.The paint composition having excellent corrosion resistance and adhesion to a raw metal is composed of titanium dioxide and zinc powder, an inorganic silicate solvent, and sulfuric acid as pigments.

이산화티탄은 자외선에 조사되면 광전자를 방출하는 광촉매 작용을 하며 여기된 광전자는 하기 화학식 1과 같이 주위 분위기와 연속적인 산화반응 및 환원반응을 일으켜 항균, 유기물 분해 및 탈취효과 뿐만 아니라 음극방식효과를 나타낸다.Titanium dioxide acts as a photocatalyst that emits photoelectrons when irradiated with UV light, and the excited photoelectrons cause continuous oxidation and reduction reactions with the surrounding atmosphere as shown in Chemical Formula 1 below to exhibit antibacterial, organic decomposition and deodorization effects as well as cathodic protection effects. .

TiO2의 광음극보호 반응Photocathode protection of TiO 2

TiO2----> ne- TiO 2 ----> ne -

2H2O + 4h+---> O2+4H+(산화반응)2H 2 O + 4h + ---> O 2 + 4H + (oxidation reaction)

O2+ 4h++ 4e----> 2H2O (환원반응) O 2 + 4h + + 4e - ---> 2H 2 O ( reduction)

이산화티탄은 평균입경이 30-70nm인 것이 사용된다. 입경이 30nm이하인 이산화티탄은 실질적으로 제조하기가 어려워 적용할 수 없으며, 70nm이상의 입경을 갖는 이산화티탄을 사용하는 경우 이산화티탄의 표면적이 감소하므로 광촉매 작용에 비효과적이다.Titanium dioxide has an average particle diameter of 30-70 nm. Titanium dioxide having a particle diameter of 30 nm or less is difficult to apply because it is difficult to manufacture substantially, and when titanium dioxide having a particle diameter of 70 nm or more is used, the surface area of titanium dioxide is reduced, which is ineffective for photocatalytic action.

아연으로는 평균입경이 1-5㎛인 아연분말이 사용된다. 입경이 1㎛미만인 아연은 실질적으로 제조하기가 어려워 적용할 수 없으며, 본 발명에 도료조성물로 두께가 최소 5㎛인 박막을 형성함으로 아연입자의 크기가 크면 아연입자가 코팅층 밖으로 노출되어 코팅층에 결함을 유발하며 아연분말의 입자가 작을수록 무기 실리케이트 용액과의 반응면적이 넓어지는 장점이 있다.As the zinc, zinc powder having an average particle diameter of 1-5 탆 is used. Zinc having a particle diameter of less than 1 μm is practically difficult to apply and cannot be applied. Forming a thin film having a thickness of at least 5 μm as a coating composition according to the present invention, if the size of the zinc particles is large, the zinc particles are exposed out of the coating layer and are defective in the coating layer. The smaller the particles of the zinc powder has the advantage of wider reaction area with the inorganic silicate solution.

아연은 하기 식 2와 같이 실리케이트 조직속에 결합하여 코팅층에 유연성을 부여하여 코팅층이 갈라지거나 소재금속과 박리되는 것을 방지한다.Zinc binds to the silicate structure as shown in Equation 2 below to give flexibility to the coating layer to prevent the coating layer from cracking or peeling from the material metal.

[Si-O-Zn-O-Si]n [Si-O-Zn-O-Si] n

이산화티탄 입자와 아연분말은 이산화티탄 입자:아연분말이 1:0.01-0.05중량비로 혼합된다. 안료중 아연분말의 함량이 너무 적으면 코팅 강도 및 코팅/소재금속과의 접착력 증대효과가 없으며, 아연분말의 함량이 너무 많으면 코팅층의 광전자 방출효과가 적어진다.The titanium dioxide particles and the zinc powder are mixed with titanium dioxide particles: zinc powder in a ratio of 1: 0.01-0.05 by weight. If the content of zinc powder in the pigment is too small, there is no effect of increasing the coating strength and adhesion to the coating / material metal, and if the content of zinc powder is too large, the photoelectron emission effect of the coating layer is reduced.

용매로는 무기계 실리케이트가 사용된다. 이는 도막을 형성하는 기능을 하며 또한 결합제로서 작용하고 코팅층에 전도성을 부여한다. 즉, 실리케이트 용매는 이산화티탄의 광촉매 작용에 의해 발생하는 광전자가 소재강판으로 잘 이동할 수 있도록 도와주는 역할을 한다. 무기계 실리케이트 용매로는 용매가 안료와 용이하게 혼합되도록 실리케이트가 용제에 용해된 액체상태의 실리케이트 용액을 사용한다. 보다 구체적으로는 약 20-30%의 실리케이트 용액이 사용된다. 실리케이트 용액의 농도가 20%미만인 경우, 결합능력이 저하되어 도막이 부서지기 쉬우며 30%이상인경우에는 상대적인 이산화티탄의 양이 적어져 광촉매 작용을 발휘하기 어려우며 도막형을 형성하기 어렵다.As the solvent, an inorganic silicate is used. It functions to form a coating and also acts as a binder and imparts conductivity to the coating layer. In other words, the silicate solvent serves to help the photoelectrons generated by the photocatalytic action of titanium dioxide to move to the material steel sheet. As the inorganic silicate solvent, a liquid silicate solution in which the silicate is dissolved in a solvent is used so that the solvent is easily mixed with the pigment. More specifically, about 20-30% of the silicate solution is used. When the concentration of the silicate solution is less than 20%, the coating capacity is easily broken due to a decrease in binding capacity, and when the concentration of the silicate solution is 30% or more, it is difficult to exert a photocatalytic action due to a small amount of titanium dioxide.

실리케이트 용액은 용제로는 도막형성시 사용하는 일반적인 유기용제가 사용될 수 있다. 예를 들어, 상기 용제로는 알코올, 아세테이트 및 크실렌 등의 유기용제를 포함한다.As the silicate solution, a general organic solvent used for forming a coating film may be used as the solvent. For example, the solvent includes organic solvents such as alcohol, acetate, and xylene.

상기 무기 실리케이트 용매와 이산화티탄과 아연분말이 혼합된 안료(이하, '혼합안료'라 한다.)는 1:0.5-1중량비로 혼합된다. 용매인 실리케이트 용액의 양이 너무 많은 경우에는 단위 부피당 상대적인 안료량이 적어 광촉매 작용 및 광음극보호성능을 발휘하기 어렵고 용매의 양이 너무 적으면 도막내 기공이 많아 수분, 산소 및 기타 부식성 이온들이 쉽게 도막에 침투되며 도막강도가 약해져 도막이 부서지기 쉬우므로 코팅 도막의 내구성이 저하된다.Pigments (hereinafter, referred to as 'mixed pigments') in which the inorganic silicate solvent, titanium dioxide and zinc powder are mixed are mixed in a 1: 0.5-1 weight ratio. If the amount of silicate solution as a solvent is too large, the relative amount of pigment per unit volume is difficult to exhibit photocatalytic action and photocathodic protection performance. If the amount of solvent is too small, pores in the film are large and moisture, oxygen and other corrosive ions are easily coated. It penetrates into and the coating film strength is weakened, so the coating film is brittle, so the durability of the coating film is lowered.

황산은 산촉매작용에 의해 도막의 건조를 촉진하는 한편, SiO2망상구조의 형성을 돕는다. 황산은 도료 조성물의 총중량을 기준으로 0.1-0.2중량%로 첨가된다. 황산이 0.1중량%이하로 첨가되는 경우, 산촉매작용을 나타내지 못하여 도막 건조촉진 효과가 없으며, 0.2중량%이상으로 첨가되는 경우에는 건조도막 형성 후, 도막에 균열이 발생한다.Sulfuric acid promotes drying of the coating film by acid catalysis while helping to form SiO 2 network. Sulfuric acid is added at 0.1-0.2% by weight based on the total weight of the coating composition. When sulfuric acid is added at 0.1% by weight or less, there is no acid catalyst action and there is no effect of promoting the drying of the coating film. When the sulfuric acid is added at 0.2% by weight or more, cracking occurs in the coating film after forming the dry coating film.

나아가, 상기 도료조성물에 도막의 강도를 보강하고 도장시 흐름을 방지하기위해 체질안료가 첨가될 수 있다. 체질안료로는 산화알미늄, 탄산칼륨 및 마이카(Si)등을 단독으로 또는 혼합하여 사용될 수 있다. 체질안료는 도료조성물의 중량을 기준으로 5-10중량%로 첨가된다. 10중량%이상 과량으로 첨가되면 방식성능이 감소될 수 있다.Furthermore, an extender pigment may be added to the paint composition to reinforce the strength of the coating film and to prevent flow during coating. As an extender pigment, aluminum oxide, potassium carbonate, mica (Si), or the like may be used alone or in combination. The extender pigment is added in an amount of 5-10% by weight based on the weight of the paint composition. If it is added in excess of 10% by weight, the anticorrosive performance may be reduced.

금속표면에 본 발명의 도료조성물을 코팅함으로써 별도의 열처리 공정없이 금속강판에 피막이 형성되며 이와 같은 피막층을 갖는 강판은 종래의 이산화티탄광촉매 작용 코팅적용 분야인 항균, 유기물 분해, 탈휘효과등이 요구되는 분야에 사용될 수 있을 뿐만 아니라 이산화티탄에서 여기된 광전자에 의한 음극보호작용에 의해 금속의 부식이 방지된다.By coating the coating composition of the present invention on the metal surface, a film is formed on the metal steel sheet without a separate heat treatment process, and the steel sheet having such a coating layer is required for antimicrobial, organic substance decomposition, and devolatilization effects, which are conventional titanium dioxide photocatalytic coating applications. Not only can it be used in the field but also corrosion of metal is prevented by cathodic protection action by photoelectron excited in titanium dioxide.

금속표면에 본 발명의 도료조성물로 형성되는 코팅피막층은 건조시 코팅두께가 5-20㎛, 바람직하게는 5-10㎛가 되도록 코팅한다. 건조 코팅피막층의 두께가 5㎛미만으로 형성되는 경우에는 코팅피막층이 너무 얇아 금속강판에 완전한 코팅층을 형성하기 어려우며 따라서 내구성이 저하되고 이산화티탄의 양 또한 적어서 내식성이 저하된다. 건조 코팅피막층의 두께가 20㎛이상인 경우에는 코팅피막층이 너무 두꺼워 코팅층과 금속소재와의 전도성 및 내식성이 저하되며 자외선에 의한 광촉매작용 또한 20㎛이상의 두께까지 영향을 미치지 못한다.The coating film layer formed of the coating composition of the present invention on the metal surface is coated so that the coating thickness is 5-20 μm, preferably 5-10 μm when dried. When the thickness of the dry coating layer is less than 5 μm, the coating layer is so thin that it is difficult to form a complete coating layer on the metal sheet. Therefore, the durability is lowered and the amount of titanium dioxide is also low, which lowers the corrosion resistance. When the thickness of the dry coating film layer is 20㎛ or more, the coating film layer is so thick that the conductivity and corrosion resistance of the coating layer and the metal material are degraded, and the photocatalytic effect of ultraviolet rays does not affect the thickness of 20㎛ or more.

나아가, 코팅 조성물을 사용하여 코팅피막을 형성하는 경우 별도의 열처리공정없이 상온, 즉 약 10-30℃의 상온에서 건조시킴으로써 코팅피막이 형성된다.Furthermore, when the coating film is formed using the coating composition, the coating film is formed by drying at room temperature, that is, about 10-30 ° C. without a separate heat treatment process.

본 발명에서는 상기와 같이 별도의 열처리 공정없이 상온에서 코팅피막이 형성됨으로 소지금속의 원자가 코팅피막층으로 확산되지 않으며, 따라서 이산화티탄 코팅층내에 불순물이 함유되지 않고 광촉매 작용에 의한 광전자가 소재강판으로 이동할 때 불순물에 의한 방해가 없으므로 우수한 전도성 및 음극보호작용을 나타낸다.In the present invention, since the coating film is formed at room temperature without a separate heat treatment process as described above, atoms of the base metal do not diffuse into the coating film layer, and thus, impurities are not contained in the titanium dioxide coating layer and impurities when the photoelectron moves to the material steel sheet by photocatalytic action. Since there is no interference by, it shows excellent conductivity and cathodic protection.

도 1은 본 발명에 의한 내식성 코팅강판의 방식원리는 나타내는 측단면도이다. 본 발명에 의해 강판상에 형성된 이산화티탄 안료를 함유하는 코팅피막층은 도 1에 나타낸 바와 같은 희생방식(음극보호)에 의해 강판의 부식을 방지한다.Figure 1 is a side cross-sectional view showing the anticorrosive principle of the corrosion-resistant coated steel sheet according to the present invention. The coating film layer containing the titanium dioxide pigment formed on the steel sheet according to the present invention prevents corrosion of the steel sheet by the sacrificial method (cathode protection) as shown in FIG.

즉, 이산화티탄이 함유되어 있는 코팅피막에 자외선이 조사되면 자외선에 의해 이산화티탄 함유 코팅피막층내의 전자가 여기되고 그 후, 표면반발작용에 의해 전자와 정공이 분리되며 분리된 전자는 소재강판으로 이동하여 소재강판에서 음극보호작용을 나타낸다.That is, when ultraviolet rays are irradiated to the coating film containing titanium dioxide, electrons in the titanium dioxide-containing coating film layer are excited by the ultraviolet rays, and then the electrons and holes are separated by the surface repulsion action, and the separated electrons move to the material steel sheet. It shows a cathodic protection effect on the steel sheet.

나아가, 본 발명에 의한 이산화티탄 및 아연을 함유하는 피막코팅층은 미세한 아연입자가 실리케이트 조직속에 결합되어 코팅층에 유연성을 부여함으로 장기간 코팅층내부에 크랙을 발생하지 않고 우수한 코팅층과 금속소재의 접착력을 갖는다.Furthermore, the film coating layer containing titanium dioxide and zinc according to the present invention has excellent adhesion between the coating layer and the metal material without causing cracks in the coating layer for a long time because fine zinc particles are bonded to the silicate structure to impart flexibility to the coating layer.

이러한 이산화티탄으로부터의 광전자 여기는 자외선 뿐만 아니라 태양광등의자연광에 의해서도 발생한다.Photoelectron excitation from titanium dioxide is generated not only by ultraviolet light but also by natural light such as sunlight.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예 1Example 1

하기 표 1의 조성으로 도료조성물을 제조하여 436 스테인레스강에 약 25℃ 실온에서 스프레이 코팅하여 건조코팅피막의 두께가 10㎛인 코팅층을 형성하였다. 황산은 도료조성물의 총중량을 기준으로 0.15중량%로 발명예 1-3 및 비교예의 각 도료조성물에 첨가하였다.To the coating composition was prepared in the composition of Table 1 and spray-coated to 436 stainless steel at about 25 ℃ room temperature to form a coating layer having a thickness of 10㎛ dry coating film. Sulfuric acid was added to each of the paint compositions of Inventive Examples 1-3 and Comparative Examples at 0.15% by weight based on the total weight of the paint composition.

도료성분Paint Ingredients 발명예 1Inventive Example 1 발명예 2Inventive Example 2 발명예 3Inventive Example 3 비교예Comparative example 안료의 혼합중량비Mixed weight ratio of pigment TiO2입자*1 TiO 2 Particles * 1 1One 1One 1One 1One 아연분말(입경 1-5㎛)Zinc powder (particle size 1-5㎛) 0.010.01 0.020.02 0.040.04 -- 건조도막중 안료:용매의 혼합중량비Pigment in dry coating: Mixing weight ratio of solvent 전체안료Whole pigment 0.50.5 0.740.74 0.90.9 0.740.74 실리케이트 용매Silicate solvent 1One 1One 1One 1One

*DEGUSA에서 제조된 제품번호 P-25의 이산화티탄분말(평균입경 50nm)* Titanium dioxide powder (average particle size 50nm) of product number P-25 manufactured by DEGUSA

그 후, 이산화티탄함유 코팅피막의 광음극보호 반응에 의한 방식성능은 자외선을 조사하였을 때와 자외선을 조사하지 않은 경우 코팅된 강판의 자연전위를 표준전극(SCE)장치로 측정하여 평가하였다.Then, the anticorrosive performance of the titanium dioxide-containing coating film by the photocathodic protection reaction was evaluated by measuring the natural potential of the coated steel sheet with a standard electrode (SCE) device when irradiated with ultraviolet rays and when not irradiated with ultraviolet rays.

자외선을 조사한 경우와 조사하지 않은 경우의 자연전위를 비교하기 위해, 외부의 빛을 차단한 상태에서의 자연전위 및 160와트의 수은전구를 사용하여 자외선을 조사한 경우 코팅피막층을 갖는 강판의 자연전위를 측정하였으며 그 결과를 하기 표 2에 나타내었다.In order to compare the natural potential with and without ultraviolet rays, the natural potential of the steel sheet with the coating film layer when the ultraviolet rays were irradiated using the natural potential and the 160 watt mercury bulb with the external light blocked. It was measured and the results are shown in Table 2 below.

자연전위 측정결과Natural potential measurement result 시편분류Specimen Classification 자외선 없음(vs. SCE) mVNo UV (vs. SCE) mV 자외선 조사(vs. SCE) mVUV irradiation (vs. SCE) mV 발명예 1Inventive Example 1 -75-75 -545-545 발명예 2Inventive Example 2 -123-123 -590-590 발명예 3Inventive Example 3 -159-159 -550-550 비교예Comparative example -53-53 -590-590

또한, 30일동안 건조한 후 코팅피막층과 소재금속의 박리 및 코팅층의 균열 현상 유무를 육안관찰하였으며 그 결과를 하기 표 3에 나타내었다.In addition, after drying for 30 days, the coating film layer and the material metal peeling and the presence of cracking of the coating layer was visually observed and the results are shown in Table 3 below.

시편Psalter 발명예 1Inventive Example 1 발명예 2Inventive Example 2 발명예 3Inventive Example 3 비교예Comparative example 건조 30일 후코팅층 박리현상Drying after 30 days of coating layer O ××

◎: 코팅층 박리현상이 없고 매우양호◎: No coating layer peeling phenomenon and very good

O: 코팅층 박리현상 없음O: No coating layer peeling phenomenon

×: 코팅층박리X: coating layer peeling

상기 표 2 및 3에 나타낸 바와 같이 이산화티탄과 아연이 함유된 광촉매 내식성 도료조성물로 코팅층을 형성하여 건조 후 30일 경과시에도 코팅층 박리현상 없는 우수한 피막코팅층 형성하였으며 또한 코팅층에 자외선 조사시 -500mV 음전위의 자연전위를 갖게되어 효과적으로 강판을 음극보호할 수 있어 장기적인 철강제품의 내식성향상 및 코팅성이 우수함을 알 수 있다.As shown in Tables 2 and 3, a coating layer was formed of a photocatalyst anticorrosive coating composition containing titanium dioxide and zinc, thereby forming an excellent coating layer without peeling of the coating layer even after 30 days of drying. It has a natural potential of, so that it can effectively protect the negative electrode of the steel sheet, it can be seen that the corrosion resistance and coating properties of the steel products in the long term is excellent.

한편, 안료로서 이산화티탄만이 사용된 비교예의 경우는 강판에 대한 광음극보호성은 우수하나 건조후 장기간 경과시 코팅층이 박리되었다.On the other hand, in the comparative example in which only titanium dioxide was used as the pigment, the photocathode protection of the steel sheet was excellent, but the coating layer was peeled off after a long time after drying.

본 발명의 도료조성물로 형성된 피막코팅층은 이산화티탄의 광촉매 작용에 의해 항균, 방오 및 탈취효과 뿐만 아니라 광음극방식으로 소재금속 강판의 부식을 방지한다. 또한, 아연분말에 의해 피막코팅층의 유연성 및 소재금속과의 밀착성이 개선된다.The coating layer formed of the coating composition of the present invention prevents the corrosion of the material metal steel sheet by photocathode as well as antibacterial, antifouling and deodorizing effect by the photocatalytic action of titanium dioxide. In addition, the zinc powder improves the flexibility of the coating layer and adhesion to the raw metal.

Claims (3)

이산화티탄:아연분말이 1:0.01-0.05중량비로 혼합된 안료 및 무기계 실리케이트 용매 및 황산용액으로 구성되며, 이산화티탄은 평균입자직경이 30-70nm이고 아연분말은 평균입자직경이 1-5㎛이며, 상기 용매:이산화티탄과 아연분말의 혼합안료는 1:0.5-1중량비로 혼합되며 황산은 도료조성물의 총중량을 기준으로 0.1-0.2중량%인 내식성 도료조성물.Titanium dioxide: zinc powder is composed of 1: 0.01-0.05 weight ratio of pigment, inorganic silicate solvent and sulfuric acid solution, titanium dioxide has an average particle diameter of 30-70nm and zinc powder has an average particle diameter of 1-5㎛. , The solvent: titanium dioxide and zinc powder mixed pigment is mixed in a 1: 0.5-1 weight ratio and sulfuric acid is 0.1-0.2% by weight based on the total weight of the paint composition of the corrosion-resistant paint composition. 제 1항에 있어서, 상기 내식성 도료조성물은 산화알루미늄, 탄산칼륨 및 마이카 로부터 선택된 체질안료를 상기 도료조성물의 총중량을 기준으로 5-10중량%포함 함을 특징으로 하는 도료조성물.The paint composition according to claim 1, wherein the corrosion resistant paint composition comprises 5-10% by weight of a extender pigment selected from aluminum oxide, potassium carbonate and mica based on the total weight of the paint composition. 금속강판에 청구항 1항 또는 2항의 내식성 도료조성물을 건조코팅두께가 5-20㎛가 되도록 코팅한 후 상온에서 건조시켜 강판상에 내식성 코팅층을 형성하는 방법.A method of forming a corrosion resistant coating layer on a steel sheet by coating the corrosion resistant paint composition of claim 1 or 2 on a metal steel sheet to a dry coating thickness of 5-20㎛ and dried at room temperature.
KR10-2000-0080757A 2000-12-22 2000-12-22 A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM KR100435422B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0080757A KR100435422B1 (en) 2000-12-22 2000-12-22 A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0080757A KR100435422B1 (en) 2000-12-22 2000-12-22 A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM

Publications (2)

Publication Number Publication Date
KR20020051490A KR20020051490A (en) 2002-06-29
KR100435422B1 true KR100435422B1 (en) 2004-06-10

Family

ID=27684966

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0080757A KR100435422B1 (en) 2000-12-22 2000-12-22 A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM

Country Status (1)

Country Link
KR (1) KR100435422B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870011211A (en) * 1986-05-20 1987-12-21 오까모도 가네오 Decontamination Paint Composition
KR940005834A (en) * 1992-07-28 1994-03-22 아끼자와 다까시 Titanium Oxide Particles and Film Production Method
WO1997010185A1 (en) * 1995-09-15 1997-03-20 Rhodia Chimie Titanium dioxide-based photocatalytic coating substrate, and titanium dioxide-based organic dispersions
KR19980087179A (en) * 1997-05-20 1998-12-05 가나이 쯔도무 Articles with low temperature cure high active oxide photocatalyst thin films
JPH11302596A (en) * 1998-04-20 1999-11-02 Kansai Paint Co Ltd Harmful substance-decomposable coating composition and substrate applying the same composition
KR100244663B1 (en) * 1996-12-18 2000-03-02 이구택 The coating layer treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870011211A (en) * 1986-05-20 1987-12-21 오까모도 가네오 Decontamination Paint Composition
KR940005834A (en) * 1992-07-28 1994-03-22 아끼자와 다까시 Titanium Oxide Particles and Film Production Method
WO1997010185A1 (en) * 1995-09-15 1997-03-20 Rhodia Chimie Titanium dioxide-based photocatalytic coating substrate, and titanium dioxide-based organic dispersions
KR100244663B1 (en) * 1996-12-18 2000-03-02 이구택 The coating layer treatment
KR19980087179A (en) * 1997-05-20 1998-12-05 가나이 쯔도무 Articles with low temperature cure high active oxide photocatalyst thin films
JPH11302596A (en) * 1998-04-20 1999-11-02 Kansai Paint Co Ltd Harmful substance-decomposable coating composition and substrate applying the same composition

Also Published As

Publication number Publication date
KR20020051490A (en) 2002-06-29

Similar Documents

Publication Publication Date Title
Liu et al. Gold nanocluster sensitized TiO 2 nanotube arrays for visible-light driven photoelectrocatalytic removal of antibiotic tetracycline
Ito et al. Preparation of highly photocatalytic nanocomposite films consisting of TiO2 particles and Zn electrodeposited on steel
US20130115308A1 (en) Doped material
JP3584935B1 (en) Base coating composition for photocatalytic coating film, photocatalytic coated product, and method for producing photocatalytic coated product
KR100435422B1 (en) A COATING COMPOSITION FOR ANTI-CORROSION CONTAINING TiO2 AND Zn AND A METHOD FOR FORMING COATING BY USING THEM
JP3261909B2 (en) Member having catalyst containing fine metal particles and method for producing the same
KR20020051506A (en) A coating composition for anti-corrosion containing tio2 and a method for forming coating by using them
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
Miyoshi et al. Photochemical properties of PbS Microcrystallites prepared in Nafion
CN106928765B (en) Photocatalyst additive and application method of hydrophilic coating containing same
JP3678227B2 (en) Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material
KR101350961B1 (en) Coating method for metal sheet and metal sheet manufactured by the same
KR101449187B1 (en) Method for reducing graphene using light
Kawahara et al. A Large-Area Patterned TiO 2/SnO 2 Bilayer Type Photocatalyst Prepared by Gravure Printing
CN107057446B (en) Photocatalyst additive and application method of hydrophilic coating containing same
KR100435423B1 (en) Measuring method of Anti-corrosion performance for photocatalytic effect coating
JP2009144199A (en) Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same
JP3840517B2 (en) Anticorrosion structure
KR100800588B1 (en) The manufacturing process of titanium dioxide catalyst for sunlight reactive type
US20200070124A1 (en) Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body
US20050129853A1 (en) Nano photocatalyst coating procedure
CN106916481A (en) A kind of application method of photocatalyst additive and the hydrophilic coating containing the additive
KR101558923B1 (en) Composite Coating Plate With Titania And Method For Producing The Same
JP4588164B2 (en) Pre-coated metal plate and manufacturing method thereof
KR100998685B1 (en) Compostion for photoanode of solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080603

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee