KR100433644B1 - Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same - Google Patents

Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same Download PDF

Info

Publication number
KR100433644B1
KR100433644B1 KR1020030068128A KR20030068128A KR100433644B1 KR 100433644 B1 KR100433644 B1 KR 100433644B1 KR 1020030068128 A KR1020030068128 A KR 1020030068128A KR 20030068128 A KR20030068128 A KR 20030068128A KR 100433644 B1 KR100433644 B1 KR 100433644B1
Authority
KR
South Korea
Prior art keywords
mixture
weight
carrier
activated carbon
parts
Prior art date
Application number
KR1020030068128A
Other languages
Korean (ko)
Inventor
이수철
김동진
Original Assignee
주식회사 에취켓
주식회사 에코비젼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에취켓, 주식회사 에코비젼 filed Critical 주식회사 에취켓
Priority to KR1020030068128A priority Critical patent/KR100433644B1/en
Application granted granted Critical
Publication of KR100433644B1 publication Critical patent/KR100433644B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE: Provided is a method of preparing porous foamed polymer support carrier for a bio-filter by which provided porous support carrier is able to biologically remove bad smell materials and volatile organic compounds with high efficiency. CONSTITUTION: The method comprises steps of (a) after mixing 5-9 wt.% of a foamable polymer selected from the group consisting of polyvinylacetal, polyurethane, polystyrene and polyethylene, 5-9 wt.% of aldehyde-based compound and 72-88 wt.% of water, mixing it with 2-10 wt.% of activated carbon powder and/or zeolite to obtain a first mixture; (b) mixing each 1-30 parts by weight of soluble starch and/or dextrin with 100 parts by weight of the first mixture to obtain a second mixture; (c) heating the second mixture at a temperature of 60-80°C to melt; (d) adding 10-30 parts by weight of a decomposable foaming agent and an acid to 100 parts by weight of the molten second mixture to obtain a third mixture; (e) after putting the third mixture in a mold, reacting it at a temperature of 50-80°C to obtain a sponge foam or non-woven fabric type support carrier; and (f) washing the obtained sponge foam or non-woven fabric type support carrier to remove the starch and/or dextrin.

Description

활성탄 및 제올라이트와 함께 발포된 바이오필터용 다공성 고분자 담체 및 그 제조방법 {Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same}Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same}

본 발명은 하수처리장, 분뇨처리장, 축산폐수처리장, 음식물쓰레기처리장 등의 각종 환경기초시설 및 석유화학공장, 도장공장 등의 각종 산업시설에서 배출되는 악취물질과 휘발성유기화합물(VOCs) 등을 생물학적인 방법으로 제거하기 위한 바이오필터(biofilter)용 다공성 발포 고분자 담체 및 그 제조방법에 관한 것으로서, 상세하게는 생물친화적인 고분자 소재에 발포제와 함께 활성탄분말, 제올라이트분말, 가용성 물질 등을 적절히 혼합하고, 발포량 및 발포속도를 조절하여 비표면적이 크고 탁월한 친수성 및 다공성의 open cell 구조를 형성하며 활성탄, 제올라이트 등에 의해 미세기공이 잘 발달될 뿐 아니라 활성탄분말과 제올라이트분말 등의 탈리현상이 발생하지 않는 다공성 발포 고분자 담체 및 그 제조방법에 관한 것이다.The present invention biologically removes odorous substances and volatile organic compounds (VOCs) emitted from various environmental base facilities such as sewage treatment plant, manure treatment plant, livestock wastewater treatment plant, food waste treatment plant, and various industrial facilities such as petrochemical plant and painting plant. The present invention relates to a porous foamed polymer carrier for biofilter for removal by a method and a method for manufacturing the same, and more particularly, to a bio-friendly polymer material, an activated carbon powder, a zeolite powder, a soluble substance, etc. are mixed with a blowing agent and foamed. By controlling the amount and foaming speed, it has a large specific surface area and forms an excellent hydrophilic and porous open cell structure.It is well developed fine pores by activated carbon, zeolite, etc., and porous foam that does not cause desorption of activated carbon powder and zeolite powder. A polymer carrier and a method for producing the same.

현재의 탈취기술로는 크게 활성탄흡착법, 약액세정법, 오존산화법, 연소탈취(소각)법 등의 물리·화학적인 처리방법과 바이오필터(biofilter), 토양미생물처리법, 폭기조탈취법 등의 생물학적처리방법이 이용되고 있다. 하지만 활성탄흡착법은 정기적으로 고가의 활성탄을 교체하여야 하기 때문에 비경제적이며 약액세정법은 과다한 약품소모로 인해 운전비가 과다하게 소요되고 2차 오염물질이 발생한다. 오존산화법은 오존에 의한 산화작용을 이용하여 악취성분을 산화분해시키는 것이지만 오존 자체에 의한 은폐효과를 병용하는 탈취법으로 잔류오존의 문제를 가지고 있다. 연소탈취법은 2차 대기오염을 발생시킨다.Current deodorization technologies include physical and chemical treatment methods such as activated carbon adsorption, chemical liquid cleaning, ozone oxidation, combustion deodorization (incineration), and biological treatment methods such as biofilter, soil microbial treatment, and aeration tank deodorization. It is used. However, activated carbon adsorption is inexpensive because expensive activated carbon must be replaced on a regular basis, and the chemical liquid cleaning method requires excessive operating costs and secondary pollutants due to excessive chemical consumption. Ozone oxidation method is to oxidatively decompose malodorous components by oxidizing by ozone, but there is a problem of residual ozone as a deodorization method that uses a concealment effect by ozone itself. Combustion deodorization produces secondary air pollution.

또한 생물학적처리방법 중 토양미생물처리법과 폭기조탈취법은 전체 시스템의 압력손실이 높고 장치의 단위 면적 당 처리 가능한 폐가스의 양이 매우 적기 때문에 동력비가 많이 소요되고 넓은 부지가 필요한 단점이 있다. 따라서 초기투자비 및 운전비가 저렴하여 타 탈취방법에 비하여 매우 경제적이며 비선택적으로 다양한 악취 및 휘발성유기화합물의 처리가 용이하고, 처리 후 2차 오염물질이 거의 발생하지 않는 바이오필터 기술이 널리 이용되고 있다.In addition, the soil microbial treatment method and aeration tank deodorization method of the biological treatment method has the disadvantage of requiring a lot of power costs and a large site because the pressure loss of the entire system is high and the amount of waste gas that can be treated per unit area of the device is very small. Therefore, the initial investment cost and operation cost are low, and it is very economical compared to other deodorization methods, and it is easy to treat various odors and volatile organic compounds, and biofilter technology that generates little secondary pollutants after treatment is widely used. .

담체에 부착된 미생물에 의한 분해작용을 이용하는 생물학적 탈취방법인 바이오필터는 기상의 악취나 휘발성유기화합물이 반응기내로 유입되고 담체 주위에 형성된 biofilm의 경계면을 통과하게 된다. 이때 악취나 휘발성유기화합물은 biofilm 속으로 흡수되고 미생물로 확산되어 최종적으로 미생물에 의해 분해된다.The biofilter, which is a biological deodorization method using decomposition by microorganisms attached to the carrier, introduces gaseous odors or volatile organic compounds into the reactor and passes through the interface of the biofilm formed around the carrier. At this time, odors or volatile organic compounds are absorbed into the biofilm, diffused into the microorganisms, and finally decomposed by the microorganisms.

따라서 바이오필터는 오염물질의 부하, 수분, 온도, pH, 영양원, 가스의 전처리 등이 중요한 운전인자이며, 특히 고효율의 미생물 부착 담체의 선정이 무엇보다 중요하다. 바이오필터를 효과적으로 운전하기 위해서는 담체 재질을 선정하는데 있어 다음의 몇 가지 사항에 유의하여야 한다.Therefore, biofilter is an important driving factor such as pollutant loading, moisture, temperature, pH, nutrient source, gas pretreatment, and the like. In order to operate the biofilter effectively, several things should be noted in selecting the carrier material.

첫째, 오염물질의 분해율을 높게 유지하기 위해서는 담체내에 상주하는 미생물들에 대한 최적 조건을 만들어 주어야 하며 이를 위해 활성유지에 필수요소인 수분의 보유력이 높아야 하고, 둘째 담체재질의 입도 분포와 다공구조가 될 수 있는 한 많은 반응면적을 제공하여 미생물 부착 및 생장을 위한 영역의 확보와 미생물과 처리오염물의 흡착율이 높아야 하며, 셋째 압력손실을 낮게 유지할 수 있으며 체류시간 감소 방지를 위해 공극율이 높으면서 압축되는 정도가 최소로 유지되어야 하며, 넷째 미생물의 성장으로 인한 중량증가를 지지할 수 있는 충분한 강도 및 가벼워야 하는 조건을 동시에 충족시켜야 하며, 마지막으로 담체의 분해 및 기계적 마모가 발생하지 않고 물리, 화학적으로 안정하여 보수관리 및 교체빈도를 줄여야 한다.First, in order to maintain high decomposition rate of pollutants, it is necessary to make optimum conditions for the microorganisms resident in the carrier. To this end, the retention of moisture, which is essential for maintaining the active material, must be high. Second, the particle size distribution and the porous structure of the carrier material It should provide as much reaction area as possible to secure the area for microbial attachment and growth, and high adsorption rate of microorganisms and treated contaminants. Third, the pressure loss can be kept low and the degree of compression with high porosity to prevent residence time reduction. Must be kept to a minimum, and at the same time, sufficient strength and light conditions to support the weight increase due to the growth of microorganisms must be met at the same time. Finally, physical and chemical stability without decomposing the carrier and mechanical abrasion occurs. Therefore, maintenance and replacement frequency should be reduced.

초기 바이오필터의 담체로는 주로 토양 및 초탄(peat moss), 나무껍질(bark), 퇴비 등 자연물질을 원료로 사용한 가공 및 무가공의 형태가 주로 이용되었다. 그러나, 이들은 대부분이 유기성 재료들로 구성되어 초기에는 높은 물리적 흡착 및 양호한 수분 보유력으로 높은 제거율을 보이나, 담체자체의 분해가 일어나고 압밀에 의해 압력손실이 빠르게 증가하며 공기의 흐름이 담체층으로 일정하게 유입되지 않는 편류현상이 발생하여 담체의 보수 및 교체 주기가 짧은 단점이 있다. 또한 세라믹과 같은 무기성재료 담체의 경우는 주로 biotrickling filter system을 적용하기 때문에 오염물질의 물에 대한 용해도가 높은 경우에 적합하며 다량의 용수 및 생물막 형성에 필요한 질소, 인, 무기염류 등이 필요로 하고, 이에 따라 폐수가 다량 발생할 수 있으며 담체의 비중이 높아 바이오필터 설계시 하중에 신중해야 하는 단점이 있다.As the carriers of early biofilters, mainly processed and unprocessed forms using natural materials such as soil, peat moss, bark and compost as raw materials were used. However, most of them are composed of organic materials, which initially show high removal rate due to high physical adsorption and good water retention, but the decomposition of the carrier itself occurs, the pressure loss increases rapidly due to consolidation, and the flow of air is consistent with the carrier layer. There is a shortcoming that the maintenance and replacement cycle of the carrier is short because the drift phenomenon does not flow. In addition, in the case of inorganic material carriers such as ceramics, the biotrickling filter system is mainly applied, so it is suitable for the high solubility of pollutants in water, and it requires nitrogen, phosphorus, and inorganic salts necessary for the formation of a large amount of water and biofilm. As a result, a large amount of waste water may be generated, and the specific gravity of the carrier may be high.

따라서 앞에서 언급한 담체의 선정조건에 가장 근접하고 단위 무게당 미생물의 활성이 좋고 유지관리가 용이한 담체의 선정을 위해 합성물질을 미생물의 특성에 맞게 물리, 화학적으로 가공한 발포 고분자 담체의 연구가 많이 진행되었다.Therefore, in order to select a carrier that is closest to the selection conditions of the above-mentioned carrier and has good microbial activity per unit weight and is easy to maintain, research on foamed polymer carriers in which the synthetic material is physically and chemically processed in accordance with the characteristics of the microorganism is carried out. A lot has gone on.

하지만 발포 고분자계 담체도 원하는 모양으로의 제조가 용이하며 매우 가볍고 수분함유율이 높으며 공극율이 커서 바이오필터 담체로써의 몇 가지 주요한 요건은 충족되나, 그 자체로는 비표면적이 크지 않고 물리/화학적으로 불안정하며 미생물과 오염물질의 흡착능력이 없어 미생물의 부착 및 성장이 느리고 오염물의 과부하 및 빈부하시에 대한 완충능력이 떨어진다.However, foamed polymer carriers are easy to manufacture in the desired shape, are very light, have a high water content, and have high porosity, so that some major requirements as biofilter carriers are fulfilled, but the specific surface area is not large in itself and is physically / chemically unstable. It does not have the ability to adsorb microorganisms and contaminants, so the attachment and growth of microorganisms is slow and the buffer capacity against overload and poor load of contaminants is low.

특히, 암모니아, 황화수소와 같은 무기성악취가스를 제거하는 것으로 알려진 성장속도가 느린 독립영양미생물의 부착 및 생장이 용이하지 않은 단점이 지적되었다. 따라서 이러한 단점을 보완하고자 최근, 고분자 스폰지(폴리우레탄) 또는 플라스틱과 같은 인공물에 점토성 물질을 코팅하거나 미분활성탄을 코팅하는 기술이 개발되었으나, 오히려 접착제 등에 의해 비표면적이 축소되는 문제점이 발생하기도 하였다.In particular, it was pointed out that the slow growth of independent nutrient microorganisms known to remove inorganic malodorous gases such as ammonia and hydrogen sulfide are not easy to grow and grow. Therefore, in order to make up for these drawbacks, a technique of coating a clay material or coating finely divided activated carbon on an artificial material such as a polymer sponge (polyurethane) or a plastic has been developed, but a problem that a specific surface area is reduced due to an adhesive or the like has arisen. .

이에 본 발명자들은 각종 환경기초시설 및 산업시설에서 배출되는 악취물질과 휘발성 유기화합물(VOCs)을 생물학적인 방법으로 제거하기 위한 다공성의 담체에 있어서, 표면에 코팅하는 종래의 기술로부터 탈리현상이나 미세세공이 접착제에 의해 막히는 현상 등의 문제를 개선하기 위하여 예의 노력한 결과, 활성탄분말과 제올라이트분말을 고분자물질에 같이 혼합 발포하여 다공성 발포 고분자 담체를 제조하고, 기존의 담체들과의 비교실험을 통하여 본 발명에 따른 담체의 우수성과 실용성을 입증함으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have found that the porous carrier for biologically removing odorous substances and volatile organic compounds (VOCs) discharged from various environmental foundations and industrial facilities, and has been removed from the conventional technology to coat the surface from the conventional technology Efforts have been made to improve the problems such as clogging caused by the adhesive. As a result, the activated carbon powder and the zeolite powder are mixed and foamed together with a polymer material to prepare a porous foamed polymer carrier, and the present invention is carried out by comparison with existing carriers. The present invention has been completed by demonstrating the superiority and practicality of the carrier according to the present invention.

결국 본 발명의 주된 목적은 기계적 강도와 내구성이 우수하고 물리, 화학, 생물학적으로 안정하면서도 물성이 우수할 뿐 아니라 물리적으로 미생물과 오염물질을 흡착하여 뛰어난 제거율을 나타내고, 충격부하 등에 안정적이며 기존의 바이오필터에 비해 짧은 체류시간에도 높은 처리효율을 보이는 바이오필터용 담체 및 그 제조방법을 제공하는데 있다.After all, the main object of the present invention is not only excellent mechanical strength and durability, but also physically, chemically and biologically stable, but also excellent in physical properties, physically adsorbing microorganisms and contaminants, and exhibiting excellent removal rate, stable load, etc. The present invention provides a carrier for a biofilter and a method of manufacturing the same, which show high processing efficiency even with a short residence time compared to a filter.

도 1a는 본 발명에 따른 다공성 발포 고분자 담체를 100배 확대한 전자현미경 사진이다.Figure 1a is an electron micrograph at 100 times magnification of the porous foam polymer carrier according to the present invention.

도 1b는 본 발명에 따른 다공성 발포 고분자 담체를 300배 확대한 전자현미경 사진이다.Figure 1b is an electron microscope photograph of a 300 times magnification of the porous foam polymer carrier according to the present invention.

도 1c는 미생물이 부착된 다공성 발포 고분자 담체의 단면을 3000배 확대한 전자현미경 사진이다.Figure 1c is an electron micrograph of a 3000 times magnification of the cross section of the porous foamed polymer carrier attached to the microorganism.

도 2a는 일반 다공성 발포 고분 담체가 충진된 암모니아가스 제거용 바이오필터에서 운전 50일 경과 후 담체에 부착된 미생물의 FISH 결과 사진이다.Figure 2a is a FISH result photograph of the microorganisms attached to the carrier after 50 days of operation in the ammonia gas removal biofilter filled with a porous porous foam polymer carrier.

도 2b는 활성탄분말과 제올라이트분말을 코팅한 다공성 발포 고분자 담체가 충진된 암모니아가스 제거용 바이오필터에서 운전 50일 경과 후 담체에 부착된 미생물의 FISH 결과 사진이다.2b is a FISH result photograph of microorganisms attached to the carrier after 50 days of operation in the ammonia gas removal biofilter filled with the activated carbon powder and the zeolite powder coated porous foam polymer carrier.

도 2c는 활성탄분말과 제올라이트분말을 혼합하여 발포한 다공성 고분자 담체가 충진된 암모니아가스 제거용 바이오필터에서 운전 50일 경과 후 담체에 부착된 미생물의 FISH 결과 사진이다.Figure 2c is a FISH result photograph of the microorganisms attached to the carrier after 50 days of operation in the ammonia gas removal biofilter filled with a porous polymer carrier foamed by mixing activated carbon powder and zeolite powder.

상기한 목적을 달성하기 위하여 본 발명은 (a) 폴리비닐아세탈, 폴리우레탄, 폴리스틸렌 및 폴리에틸렌으로 구성된 군에서 선택된 어느 하나의 발포성 고분자 5∼9중량%, 알데히드계 화합물 5∼9중량% 및 물 72∼88중량%를 혼합한 다음, 2∼10중량%의 활성탄분말 및/또는 제올라이트분말을 혼합하여 제1혼합물을 얻는 단계, (b) 상기 제1혼합물에 가용성 물질인 전분 및/또는 덱스트린을 제1혼합물 100중량부에 대하여 각각 1∼30중량부 혼합하여 제2혼합물을 수득하는 단계, (c) 상기 제2혼합물을 60∼80℃로 가열하여 용융시키는 단계, (d) 상기 용융된 혼합물에 제2혼합물 100중량부에 대하여 10∼30중량부의 분해형 발포제와 산을 첨가하여 제3혼합물을 수득하는 단계, (e) 상기 제3혼합물을 주형에 투입하고 50∼80℃에서 반응시켜 스폰지 폼 또는 부직포 형태의 담체를 수득하는 단계 및 (f) 상기 수득된 스폰지 폼 또는 부직포 형태의 담체를 세척하여 전분 및/또는 덱스트린을 용출 제거하는 단계를 포함하는 바이오필터용 다공성 발포 고분자 담체의 제조방법을 제공한다.In order to achieve the above object, the present invention (a) any one of 5 to 9% by weight of the expandable polymer selected from the group consisting of polyvinyl acetal, polyurethane, polystyrene and polyethylene, 5 to 9% by weight of the aldehyde compound and water 72 Mixing ~ 88% by weight, followed by mixing 2-10% by weight of activated carbon powder and / or zeolite powder to obtain a first mixture, (b) removing starch and / or dextrin, which are soluble substances, into the first mixture. 1 to 30 parts by weight of each mixture, to 1 to 30 parts by weight of the mixture to obtain a second mixture, (c) heating the second mixture to 60 ~ 80 ℃ to melt, (d) to the molten mixture 10 to 30 parts by weight of a decomposable blowing agent and an acid are added to 100 parts by weight of the second mixture to obtain a third mixture. (E) The third mixture is added to a mold and reacted at 50 to 80 ° C. to form a sponge. Or carriers in the form of nonwovens To obtain and (f) provides the obtained sponge form or the method of bio-filter porous cellular polymeric carrier to clean the carrier of non-woven fabric form includes removing dissolution of starch and / or dextrin.

본 발명에 있어서, 상기 주형은 가로, 세로 및 높이가 10mm 내지 20mm인 육면체 형태 또는 직경이 10mm 내지 20mm인 원형 모형인 것을 특징으로 할 수 있다.In the present invention, the mold may be characterized in that the hexahedron shape having a horizontal, vertical and height of 10mm to 20mm or a circular model having a diameter of 10mm to 20mm.

본 발명에 있어서, 상기 제2혼합물은 전분 및/또는 덱스트린 이외에 알긴산소오다, CMC(carboxymethyl cellulose) 및 CMS(carboxymethyl starch) 중에서 선택되는 적어도 하나 이상의 물질을 제1혼합물 100중량부에 대하여 1∼30중량부 함유하는 것임을 특징으로 할 수 있다.In the present invention, the second mixture is at least one substance selected from the group consisting of sodium alginate, CMC (carboxymethyl cellulose) and CMS (carboxymethyl starch) in addition to starch and / or dextrin, 1 to 30 parts by weight based on 100 parts by weight of the first mixture. It can be characterized by containing a weight part.

본 발명은 또한, 상기 방법에 의해 제조된 활성탄분말과 제올라이트분말을 함유하고 내부공극률이 95%이상인 것을 특징으로 하는 바이오필터용 다공성 발포 고분자 담체를 제공한다.The present invention also provides a porous foamed polymer carrier for a biofilter containing an activated carbon powder and a zeolite powder prepared by the above method and having an internal porosity of 95% or more.

본 발명에 따른 다공성의 발포 고분자 담체는 폴리비닐아세탈, 폴리우레탄, 폴리스틸렌 또는 폴리에틸렌 등을 원료로 가공한 스폰지폼 또는 부직포의 형태로써 발포제와 함께 활성탄분말, 제올라이트분말, 가용성물질 등을 투입하고 발포시킴으로써 활성탄분말, 제올라이트분말 등이 담체에 혼합되고 탈리현상이 발생하지 않으며 발포제에 의해 형성된 0.5mm 이상의 큰 셀, 가용성 물질에 의해 형성된 0.5mm 미만의 중간 셀, 활성탄분말, 제올라이트분말 등에 의한 미세세공이 고르게 분포하고 있어 매우 큰 비표면적을 형성하는 특징이 있다.Porous foamed polymer carrier according to the present invention in the form of sponge foam or non-woven fabric processed from polyvinyl acetal, polyurethane, polystyrene or polyethylene as a raw material by adding activated carbon powder, zeolite powder, soluble material and the like together with the blowing agent and foaming Activated charcoal powder, zeolite powder, etc. are mixed in the carrier, no detachment occurs, and large pores more than 0.5mm formed by blowing agent, intermediate cells less than 0.5mm formed by soluble substance, activated carbon powder, zeolite powder, etc. It is distributed and has the characteristic of forming a very large specific surface area.

본 발명을 폴리비닐알콜(PVA) 수지를 이용한 다공성 발포 고분자 담체의 제조방법으로써 더욱 상세하게 설명한다. 먼저 PVA(polyvinyl alcohol), 포름알데히드(formaldehyde), 활성탄분말, 제올라이트분말 및 물을 혼합하되 스폰지의 기계적 강도를 위해 PVA 수지의 배합비를 5중량% 이상으로 하고, 생산원가 및 발포의 용이성을 고려하여 9중량% 이하로 하는 것이 바람직하다.The present invention will be described in more detail as a method for producing a porous foamed polymer carrier using polyvinyl alcohol (PVA) resin. First, PVA (polyvinyl alcohol), formaldehyde (formaldehyde), activated carbon powder, zeolite powder and water are mixed, but the mixing ratio of PVA resin is 5% by weight or more for the mechanical strength of the sponge, considering the production cost and ease of foaming It is preferable to set it as 9 weight% or less.

본 발명에서는 알데히드계 화합물로 포름알데히드를 사용하였으나, 아세트알데히드, 프로피온알데히드, 부틸알데히드, 발레르알데히드 등을 사용할 수도 있다. 활성탄분말 및 제올라이트분말은 미세기공의 발달을 위해 가능한 많이 포함시키는 것이 바람직할 수 있으나, PVA의 경우 활성탄분말과 제올라이트분말의 함량이 전체의 10중량%를 넘으면 발포가 어려우며 2중량% 이하일 경우 미세세공이 충분히 형성되지 못한다.In the present invention, formaldehyde is used as the aldehyde-based compound, but acetaldehyde, propionaldehyde, butylaldehyde, valeraldehyde and the like can also be used. It may be desirable to include activated carbon powder and zeolite powder as much as possible for the development of micropores, but in case of PVA, when the content of activated carbon powder and zeolite powder is more than 10% by weight of the total, it is difficult to foam and the micropore is less than 2% by weight. This is not formed sufficiently.

이때, 상기 활성탄분말은 야자각과 역청탄을 각각 미분쇄하고 750∼1050℃ 의 온도범위에서 불연소화합방식인 수증기부활법으로 활성화시켜 제조한 것을 부피비로써 1:1로 혼합하여 사용한다. 활성탄분말은 고른 발포를 위해 200∼800mesh 범위의 입도가 바람직하며, 비표면적은 약 800∼1,000m2/g, 요오드흡착력은 950∼1,000mg/g에 것을 이용한다. 또한 제올라이트분말은 clinoptilolite라 불리는 천연 제올라이트나 hydrogel공정에 의해 알루미늄 용액과 실리카 용액을 혼합시켜 겔(gel)상태를 만든 후 수열반응을 통하여 합성된 제올라이트가 주로 이용되며 140∼1,000mesh 범위의 입도가 바람직하고, 비표면적은 약 800∼1,000m2/g, 이온교환용량은 약 1.6∼2.0meq/g에 이른다. 유기용매(포름알데히드)는 5중량% 이하에서는 PVA와의 아세탈반응이 충분히 일어나지 않고 9중량% 이상이면 과량 주입되는 것이다. 이에 물은 72∼88중량%를 혼합하는 것이 바람직하다.At this time, the activated charcoal powder is finely pulverized coconut shell and bituminous coal, respectively, and is prepared by activating by steam regeneration of the non-combustion method in the temperature range of 750 ~ 1050 ℃ mixed 1: 1 by volume. Activated carbon powder has a particle size in the range of 200 to 800 mesh for even foaming, specific surface area is about 800 ~ 1,000m 2 / g, iodine adsorption power is used at 950 ~ 1,000mg / g. In addition, the zeolite powder is a natural zeolite called clinoptilolite or a mixture of an aluminum solution and a silica solution by a hydrogel process to form a gel state, and then a zeolite synthesized through hydrothermal reaction is mainly used. The specific surface area is about 800 to 1,000 m 2 / g and the ion exchange capacity is about 1.6 to 2.0 meq / g. If the organic solvent (formaldehyde) is 5% by weight or less, an acetal reaction with PVA does not sufficiently occur, and an excess amount of the organic solvent (formaldehyde) is 9% by weight or more. It is preferable to mix 72-88 weight% of water in this.

상기 배합원료를 혼합한 후, 혼합된 제1혼합물 100중량부에 대하여 가용성물질인 전분 및 덱스트린을 각각 1∼30중량부 혼합하고 알긴산소오다, CMC(carboxymethyl cellulose) 및 CMS(carboxymethyl starch) 중에서 적어도 하나 이상을 선택하여 제1혼합물 100중량부에 대하여 1∼30중량부 첨가하여 제2혼합물을 수득한 다음, 60∼80℃로 가열하여 용융시킨다. 상기한 전분과 덱스트린에 의해 형성되는 셀의 크기는 전분이나 덱스트린의 입자가 용출되는 그대로 형성되기 때문에 그 크기가 0.5mm 이하로써 스폰지의 중간셀의 필요에 따라 그 투여량을 조절할 수 있다. 또한 알긴산소다, CMC 및 CMS는 유화제의 일종으로 발포제 의해 생성되는 셀이 고르게 분산형성되도록 하여 제품의 질을 향상시킨다.After mixing the blended raw materials, 1-30 parts by weight of soluble starch and dextrin were respectively mixed with respect to 100 parts by weight of the mixed first mixture, and at least one of sodium alginate, CMC (carboxymethyl cellulose) and CMS (carboxymethyl starch) One or more is selected and 1-30 parts by weight is added to 100 parts by weight of the first mixture to obtain a second mixture, which is then heated to 60-80 ° C. to melt. Since the size of the cell formed by the starch and dextrin is formed as the starch or dextrin particles are eluted, the size of the cell can be adjusted according to the needs of the intermediate cell of the sponge with a size of 0.5 mm or less. In addition, sodium alginate, CMC and CMS is a kind of emulsifier to improve the quality of the product by uniformly dispersing the cells produced by the blowing agent.

용융 후에, 산에 의해 분해되어 가스를 발생시키는 분해형 발포제와 산을 첨가한다. 분해형 발포제로는 TSH(toluene sulfonyl hydrazide), ADCA(azodicarbonamaid), DPT(dinitroso pentamethylene tetramine), OBSH(benzenesulfonyl hydrazide) NaHCO3,CaCO3,Al분말, Zn분말, Mg분말 등을 를사용할 수 있고, 산으로는 황산 또는 염산을 사용할 수 있다. 제2혼합물 100중량부에 대하여 상기 분해형 발포제를 10∼30중량부 첨가한 다음, 황산 또는 염산을 10∼30중량부 첨가하여 제3혼합물을 수득한다. 상기 발포제는 산에 의해 분해되어 가스를 발생시키는 이때 공극률을 극대화하기 위해서는 발포제를 10중량부 이상으로 하는 것이 바람직하며, 30중량부 이상이면 스폰지 폼의 표면이 매우 거칠어지게 되므로 바람직하지 않다. 또한 황산과 염산은 폼 형성시 촉매작용을 한다.After melting, a decomposable blowing agent and an acid which are decomposed by the acid to generate a gas are added. Toluene sulfonyl hydrazide (TSH), azodicarbonamaid (ADCA), dinitroso pentamethylene tetramine (DPT), benzenesulfonyl hydrazide (OBSH) NaHCO 3, CaCO 3, Al powder, Zn powder, Mg powder, etc. As the acid, sulfuric acid or hydrochloric acid may be used. 10-30 parts by weight of the decomposition type blowing agent is added to 100 parts by weight of the second mixture, and then 10-30 parts by weight of sulfuric acid or hydrochloric acid is added to obtain a third mixture. In order to maximize the porosity at this time, the blowing agent is decomposed by acid to generate gas, and the blowing agent is preferably 10 parts by weight or more, and preferably 30 parts by weight or more because the surface of the sponge foam becomes very rough. Sulfuric acid and hydrochloric acid also catalyze the foam formation.

상기 제3혼합물을 금형에 투입하고 50∼80℃로 가열하여 약 24시간 정도 반응시켜 폼을 형성시킨다. 상기 반응에 의하여, 가용성물질인 전분과 덱스트린이 가수분해되며, 폴리비닐알콜과 포름알데히드가 아세탈반응을 일으켜 폴리비닐아세탈이 생성된다. 또한 상기 반응에 의하여, 산에 의해 발포제가 분해되어 가스가 생성되고, 상기 생성된 가스에 의해 가스셀이 형성되어 폼이 만들어지게 된다.The third mixture is introduced into a mold, heated to 50 to 80 ° C., and reacted for about 24 hours to form a foam. By this reaction, starch and dextrin, which are soluble substances, are hydrolyzed, and polyvinyl alcohol and formaldehyde cause acetal reaction to produce polyvinyl acetal. In addition, by the reaction, the blowing agent is decomposed by the acid to generate gas, and the gas cell is formed by the generated gas to form a foam.

상기 형성된 폼을 물로 세척하여 가용성물질인 전분과 덱스트린을 용출 제거하면 다양한 크기의 셀을 형성한 스폰지 폼이 제조된다.The formed foam is washed with water to elute and remove soluble starch and dextrin to form a sponge foam having cells of various sizes.

이렇게 제조된 다공성 발포 고분자 담체는 함수율과 흡착능력이 뛰어나 기 때문에 인위적으로 배양된 미생물 배양조 및 각종 환경기초시설, 산업시설에서 운영되고 있는 오/폐수 처리시설의 생물반응조(폭기조)에 24시간 정도만 담지하여도 미생물의 접종이 훌륭하게 이루어지며 뛰어난 악취 및 휘발성유기화합물 제거용 생물고정화 담체의 역할을 수행할 수 있다.The porous foamed polymer carrier prepared in this way has excellent water content and adsorption capacity, so it is only 24 hours in the biological reaction tank (aeration tank) of artificially cultured microbial culture tank, various environmental foundation facilities, and industrial wastewater treatment facilities. Even if it is supported, the inoculation of microorganisms is excellent, and it can serve as an excellent bio-immobilization carrier for removing odor and volatile organic compounds.

본 발명에 의한 활성탄분말과 제올라이트분말이 동시에 발포된 다공성의 고분자 담체의 단면을 확대한 현미경사진을 도 1a(×100배), 1b(×300배)에 나타냈다. 또한 암모니아가스 제거용 바이오필터에서 운전 50일 경과 후 다공성 발포 고분자 담체에 부착된 미생물의 전자현미경사진을 도 1c(×3,000배)에 나타냈다.1A (x100x) and 1b (x300x) of the micrograph which enlarged the cross section of the porous polymeric carrier which foamed the activated carbon powder and zeolite powder by this invention simultaneously are shown. In addition, electron micrographs of the microorganisms attached to the porous foamed polymer carrier after 50 days of operation in the ammonia gas removal biofilter are shown in FIG. 1C (× 3,000 times).

상기와 같은 방법으로 제조된 활성탄분말 및 제올라이트분말이 혼합된 다공성 발포 고분자 담체는 0.5mm이상의 큰 셀에서부터 0.5mm 미만의 중간셀 및 미세세공에 이르기까지 비표면적이 극대화되었다. 또한 공극율(porosity) 시험을 위해 정확히 절단된 100mm(가로)×100mm(세로)×100mm(높이)의 정육면체 폴리비닐아세탈 스폰지 폼을 물에 24시간 담가둔 후 이를 꺼내어 110℃에서 24시간 건조하여 흡수되었던 물의 건조 전 후 중량을 확인하고 이를 바탕으로 건조된 수분이 포함되었던 체적의 계산을 통해 공극률을 시험한 결과, 공극률이 96±0.5%로써 95% 이상이었다.The porous foamed polymer carrier mixed with the activated carbon powder and zeolite powder prepared by the above method maximized the specific surface area from large cells of 0.5 mm or more to intermediate cells and micropores of less than 0.5 mm. In addition, 100 mm (width) × 100 mm (length) × 100 mm (height) cube polyvinyl acetal sponge foam that has been accurately cut for porosity testing is immersed in water for 24 hours, taken out, dried at 110 ° C for 24 hours, and absorbed. The porosity was tested by checking the weight before and after drying the water, and calculating the volume containing the dried water, and the porosity was 96 ± 0.5%, which was 95% or more.

따라서 본 발명에 의한 활성탄분말과 제올라이트분말이 동시에 발포된 다공성의 고분자 담체는 미생물이 부착할 수 있는 충분한 공간 및 내부로의 물질전달률이 높아 호기성 미생물에 의한 악취 및 휘발성유기화합물의 뛰어난 생분해가 일어나며 친수성을 갖고 각각의 셀이 상호 연결되어 있으며 활성탄분말 및 제올라이트분말에 의한 물리적 흡착이 일어나기 때문에 외부의 급격한 반응(오염물의 충격부하)에 있어서도 미생물의 보호막 역할을 한다. 또한 내마모성 및 물리적 강도를 향상시켜 기계적 강도와 내구성이 우수하다.Therefore, the porous polymer carrier foamed simultaneously with the activated carbon powder and zeolite powder according to the present invention has a high enough space for microorganisms to attach and high material transfer rate to the inside, resulting in excellent biodegradation of odor and volatile organic compounds by aerobic microorganisms, and hydrophilicity. Each cell is interconnected with each other, and physical adsorption by activated carbon powder and zeolite powder occurs, thus acting as a protective film of microorganisms in external rapid reaction (impact load of contaminants). In addition, it has excellent mechanical strength and durability by improving wear resistance and physical strength.

이는 기존의 발포성 고분자 담체가 원하는 모양으로 제조가 가능하며 매우 가볍고 수분함유율이 높으며 공극률이 커서 바이오필터 담체로써의 몇 가지 요건은 충족되나, 그 자체로는 비표면적이 작고 흡착능력이 없어 초기 미생물의 부착 및안정화 기간이 매우 길고 빈부하, 충격부하 등에 의한 완충능력이 없으며 미생물의 활성 저하 시 정상화 기간이 매우 길고 물리/화학적으로 불안정하며 특히, 암모니아, 황화수소 등을 제거하는 것으로 알려진 성장속도가 느린 독립영양미생물의 부착 및 생장이 용이하지 않은 단점을 크게 개선한 것이다.It is possible to manufacture the existing foamable polymer carrier in the desired shape, and it is very light, has a high water content, and has a large porosity, so that some requirements of the biofilter carrier are satisfied. Very long period of adhesion and stabilization, no buffering capacity due to poor load, impact load, etc., normalization period is very long when the activity of microorganism decreases, and physical / chemical instability, especially slow growth rate known to remove ammonia, hydrogen sulfide, etc. It is a significant improvement in the disadvantages of difficult attachment and growth of nutrient microorganisms.

또한 이러한 단점을 보완하고자 고분자 스폰지 또는 인공물에 점토성 물질을 코팅하거나 미분활성탄을 코팅하는 기술이 오히려 접착제 등에 의해 비표면적이 축소되거나 활성탄분말, 제올라이트분말이 떨어져 나가는 문제점이 발생하기도 하였는데, 본 발명에 의한 다공성 발포 고분자 담체는 활성탄분말과 제올라이트분말이 담체에 혼합되어 발포됨으로써 접착제 등에 의한 비표면적의 축소나 활성탄분말, 제올라이트분말이 떨어져 나가는 등의 문제점이 원천적으로 발생되지 않는다.In addition, in order to compensate for these disadvantages, a technique of coating a clay material on a polymer sponge or an artificial material or coating fine powdered activated carbon has a problem that the specific surface area is reduced or the activated carbon powder and the zeolite powder fall off due to an adhesive. In the porous foamed polymer carrier, the activated carbon powder and the zeolite powder are mixed with the foam and foamed, so that problems such as reduction of specific surface area due to an adhesive or separation of the activated carbon powder and zeolite powder do not occur.

따라서 상기와 같은 방법으로 제조된 활성탄분말 및 제올라이트분말이 혼합된 다공성 발포 고분자 담체는 각종 환경기초시설 및 산업시설에서 발생하는 악취 및 휘발성유기화합물 처리를 위한 바이오필터용 담체로 이용될 수 있으며 상기 바이오필터는 혼합오염가스에 포함된 입자성 오염물질 제거장치, 일차 처리된 오염가스를 바이오필터 하부 혹은 상부로 이동시키는 이송부, 상기 발명에 의한 다공성 발포 고분자 담체가 충진되는 바이오필터 하우징, pH 및 온도가 자동 조절되며 담체에 부착된 미생물에 수분 및 영양제가 자동으로 공급되는 장치가 포함되는 것을 특징으로 하며 미생물은 발효조에 의해 순수 배양된 미생물들이나 각종 환경기초시설 및 산업시설의 생물학적 오/폐수처리장치의 생물반응조(폭기조)에서 획득한 미생물을 접종하여 사용한다.Therefore, the porous foamed polymer carrier mixed with activated carbon powder and zeolite powder prepared by the above method may be used as a biofilter carrier for treating odor and volatile organic compounds generated in various environmental foundations and industrial facilities. The filter is a particulate contaminant removal device included in the mixed pollutant gas, a transfer unit for moving the primary treated pollutant gas to the lower or upper biofilter, the biofilter housing filled with the porous foam polymer carrier according to the invention, pH and temperature is It is characterized in that it is automatically controlled and includes a device for automatically supplying the moisture and nutrients to the microorganisms attached to the carrier, the microorganism is a microorganisms purely cultured by fermentation tanks or biological waste / wastewater treatment apparatus of various environmental basic facilities and industrial facilities Inoculate the microorganisms obtained from the bioreactor (aeration tank) use.

이하 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 예시적인 목적일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.The present invention will be described in detail through the following examples. However, these examples are only for the purpose of understanding the present invention, the scope of the present invention is not limited by these examples.

<실시예 1><Example 1>

악취 및 휘발성유기화합물 제거를 위한 바이오필터 시스템에서 활성탄분말과 제올라이트분말이 포함된 다공성 발포 고분자 담체로써는 폴리비닐아세탈, 폴리우레탄, 폴리스틸렌 또는 폴리에틸렌 등의 스폰지폼 또는 부직포형태가 사용될 수 있다. 기계적 마모는 담체의 수명과 밀접한 관계가 있으며 그 원인은 고분자의 재질에 기인하는 경우가 대부분이다.In the biofilter system for removing odors and volatile organic compounds, sponge foam or nonwoven fabric such as polyvinyl acetal, polyurethane, polystyrene or polyethylene may be used as the porous foamed polymer carrier including activated carbon powder and zeolite powder. Mechanical wear is closely related to the life of the carrier and the cause is mostly due to the material of the polymer.

따라서 본 실험에서는 국내등록특허 346915호에 따른 폴리비닐아세탈 담체와 폴리우레탄 담체 및 독일 Linde사의 Linpor 담체에 대한 기계적 마모 실험을 수행하였다. 실험은 한국화학시험연구원에서 담체를 평가하는 방법으로 콘크리트재질의 폭기조(5L)를 제작하였고 가혹조건을 제공하기 위하여 표면처리를 하지 않았으며 산기석을 이용하여 공기를 주입하되, 가혹조건을 제공하기 위하여 일반 활성오니공정에서의 공기 주입량에 200배에 해당하는 공기를 공급하였다. 실험기간은 담체의 외각 부분에 마모의 형태가 관찰될 수 있는 최소 기간인 100일로 설정하였다. 상기 3가지 담체의 모서리 부분에서의 평균 마모길이를 Image analysis가 장착된 현미경을 이용하여 측정한 결과 표 1과 같았다. 본 발명에서 비교대상으로 사용한폴리비닐아세탈 담체는 국내등록특허 제346915에 기재된 방법으로 제조한 것이다.Therefore, in this experiment, a mechanical wear test was performed on a polyvinyl acetal carrier and a polyurethane carrier according to Korean Patent No. 346915 and a Linpor carrier of Linde, Germany. The experiment was carried out to evaluate the carrier by the Korea Research Institute for Chemical Testing, and the aeration tank (5L) made of concrete was made and surface treatment was not performed to provide harsh conditions. Air was injected using acid stones to provide harsh conditions. For this purpose, 200 times of air was supplied to the air injection amount in the general activated sludge process. The test period was set to 100 days, the minimum period in which the form of wear could be observed on the outer part of the carrier. The average wear lengths at the corners of the three carriers were measured using a microscope equipped with image analysis. The polyvinyl acetal carrier used as a comparison in the present invention is prepared by the method described in Korean Patent No. 346915.

담체의 재질에 따른 마모도 실험결과Wear test results according to the material of the carrier 폴리비닐아세탈 담체Polyvinyl acetal carrier 폴리우레탄 담체Polyurethane carrier Linpor 담체Linpor carrier 실험기간 100일 경과 후마모길이(mm)Abrasion length after 100 days of testing period (mm) 0.14000.1400 0.35520.3552 0.41280.4128

PVA 재질의 발포 고분자 담체가 마모도 실험 결과, 폴리우레탄 담체 및 Linpor 담체에 비해 내마모성이 우수한 것으로 나타났다. PVA 재질의 발포 고분자 담체는 천연해면체의 조직으로 물을 흡수한 상태에서의 비중이 물과 가까우며 Rubber, 폴리우레탄 스폰지 등의 기존 담체의 재질과 달라, 내약품성 및 내마모성이 매우 강하며 자연 상태에서 가수분해되지 않는 특징을 가지고 있고, 접촉각이 매우 작아 친수성 재질로써 타 고분자계 담체에 비해 미생물의 부착 및 성장이 우수하다는 기존의 연구결과와 많은 부분이 일치한다. 그러나 발포 고분자 담체의 재질은 PVA로 한정되지 않으며, 폴리우레탄, 폴리스틸렌 또는 폴리에틸렌 등을 사용하여 제조한 발포 고분자 담체를 단독으로 사용할 수도 있고, 혹은 PVA를 사용하여 제조된 발포 고분자 담체와 혼합하여 사용할 수도 있다.As a result of the abrasion test of the foamed polymer carrier made of PVA, it was found to be more wear resistant than the polyurethane carrier and the Linpor carrier. The foamed polymer carrier made of PVA is a natural spongy tissue, which has a specific gravity close to water in the state of absorbing water, and is different from that of conventional carriers such as rubber and polyurethane sponge, and is highly resistant to chemicals and abrasion. It has a characteristic that it does not decompose, and the contact angle is very small, which is in agreement with the existing research results that the adhesion and growth of microorganisms are superior to other polymer carriers as hydrophilic materials. However, the material of the foamed polymer carrier is not limited to PVA, and the foamed polymer carrier prepared using polyurethane, polystyrene or polyethylene may be used alone, or may be mixed with the foamed polymer carrier manufactured using PVA. have.

<실시예 2><Example 2>

본 발명에 의한 발포 고분자 담체를 충진한 바이오필터를 이용하여악취가스(암모니아 가스)의 제거실험을 실시하였다. 활성탄분말과 제올라이트분말이 포함되지 않은 다공성의 폴리비닐아세탈 고분자 발포 담체와 활성탄분말 및 제올라이트분말이 각각 5%씩 접착제에 의해 코팅된 폴리비닐아세탈 고분자 발포 담체, 그리고 활성탄분말 및 제올라이트분말을 각각 5%씩 같이 혼합하여 발포한 폴리비닐아세탈 고분자 담체를 이용하였으며 춘천시 하수처리장에서 채취한 MLSS 4,500mg/L의 활성슬러지에 24시간 담지시켜 폭기시킨 후 각각 유효부피(working volume) 5L의 바이오필터에 충진하고 3일 동안 암모니아 30 ppmv를 넣어주며 미생물의 안정화 기간을 거친 후 50일 동안 암모니아 50∼200ppmv을 각각 넣어 악취가스의 제거율을 관찰하였다.Removal experiments of odor gas (ammonia gas) were carried out using a biofilter filled with a foamed polymer carrier according to the present invention. Porous polyvinyl acetal polymer foam carrier without activated carbon powder and zeolite powder, polyvinyl acetal polymer foam carrier coated with 5% activated carbon powder and zeolite powder, and 5% of activated carbon powder and zeolite powder, respectively Polyvinyl acetal polymer carriers were mixed and foamed together, and were filled in MLSS 4,500mg / L activated sludge collected in Chuncheon-si sewage treatment plant for 24 hours, aerated and filled in 5L biofilters of working volume. 30 ppmv of ammonia was added for 3 days, and 50 to 200 ppmv of ammonia was added for 50 days after the stabilization period of the microorganism, respectively, and the removal rate of the odor gas was observed.

반응기내 공탑체류시간은 5초로 조정하였으며 아크릴 재질의 반응기 유입구와 유출구의 시료채취구에서 각각 암모니아가스의 농도를 측정하였다. 측정방법은 검지관법으로 가스텍(GASTEC, Japan)을 이용하여 매일 측정하였다. 표 2에 상기 기간 동안 실시한 암모니아 제거율을 나타냈다.The tower residence time in the reactor was adjusted to 5 seconds and the concentration of ammonia gas was measured at each of the inlet and outlet samples of the acrylic reactor. The measuring method was measured daily using gastec (GASTEC, Japan) as a detection tube method. Table 2 shows the ammonia removal rates performed during this period.

활성탄분말 및 제올라이트분말의 첨가형태에 따른 평균 암모니아 제거율Average Ammonia Removal Rate by Addition Type of Activated Carbon Powder and Zeolite Powder 암모니아 농도Ammonia concentration 일반 PVA 담체 (국내등록특허346915호)General PVA Carrier (Domestic Registration No. 346915) 활성탄 5% 및 제올라이트 5% 코팅 PVA 담체Activated Carbon 5% and Zeolite 5% Coated PVA Carrier 활성탄 5% 및 제올라이트 5% 혼합 PVA 담체(본 발명)5% activated carbon and 5% zeolite mixed PVA carrier (invention) 50 ppmv50 ppmv 62%62% 94%94% 100%100% 100 ppmv100 ppmv 70%70% 88%88% 99%99% 150 ppmv150 ppmv 88%88% 83%83% 99%99% 200 ppmv200 ppmv 79%79% 89%89% 98%98%

본 발명에 따른 활성탄분말과 제올라이트분말을 혼합하여 발포한 다공성의 폴리비닐아세탈 고분자 담체가 충진된 암모니아가스 제거용 바이오필터에서는 같은 기간 다른 담체를 이용한 바이오필터에 비해 가동 초기부터 평균 98% 이상으로 월등히 우수한 암모니아가스 제거율을 나타냈다. 또한 일반 폴리비닐아세탈 담체가 초기에 50∼100 ppmv의 비교적 낮은 농도 구간에서 저조한 제거율을 나타내고 나머지 활성탄분말 및 제올라이트분말이 첨가된 폴리비닐아세탈 고분자가 충진된 바이오필터에서 높은 제거율을 나타낸 것은 초기 물리적인 흡착과 미생물의 빠른 부착에 기인된 것으로 보인다.Ammonia gas removal biofilter filled with porous polyvinyl acetal polymer carrier foamed by mixing activated carbon powder and zeolite powder according to the present invention is superior to the average of more than 98% from the beginning of operation compared to the biofilter using other carriers in the same period. Excellent ammonia gas removal rate was shown. In addition, general polyvinyl acetal carrier showed a low removal rate at a relatively low concentration range of 50 to 100 ppmv initially and high removal rate in a biofilter filled with polyvinyl acetal polymer to which the remaining activated carbon powder and zeolite powder were added. It appears to be due to adsorption and rapid attachment of microorganisms.

<실시예 3><Example 3>

실시예 2에 따른 암모니아가스 제거용 바이오필터의 가동 50일 후, 활성탄분말과 제올라이트분말이 포함되지 않은 다공성의 폴리비닐아세탈 고분자 발포 담체와 활성탄분말 및 제올라이트분말이 각각 5%씩 접착제에 의해 코팅된 폴리비닐아세탈 고분자 발포 담체, 그리고 활성탄분말 및 제올라이트분말을 각각 5%씩 같이 혼합하여 발포한 폴리비닐아세탈 고분자 담체에 부착된 복합미생물의 관찰을 위하여 최신의 분자생물학적 기술의 하나인 rRNA oligonucleotide probe와 결합된 FISH (Fluorescence in situ hybridization) 기법을 이용하였다. 본 방법은 특정 미생물의 정성, 정량을 위한 최신의 분자생물학적 기법중 하나이다.After 50 days of operation of the biofilter for removing ammonia gas according to Example 2, the porous polyvinyl acetal polymer foam carrier without activated carbon powder and zeolite powder, activated carbon powder and zeolite powder were each coated with adhesive by 5%. Combined with rRNA oligonucleotide probe, one of the latest molecular biology techniques for the observation of complex microorganisms attached to polyvinyl acetal polymer foam carrier and activated polyvinyl acetal polymer carrier mixed with activated carbon powder and zeolite powder. Fluorescence in situ hybridization (FISH) was used. This method is one of the latest molecular biological techniques for the qualitative and quantitative determination of specific microorganisms.

실험은 각각의 바이오필터에서 담체 20개씩을 채취하여 가볍게 증류수로 세척한 다음, 이를 50ml cornical tube에 넣고 강하게 vortexing하여 생물막을 분리한 후 4% paraformaldehyde 용액에서 4℃로 유지하면서, 1시간 동안 고정하였다. Phosphate-buffered saline (PBS) 용액으로 2∼3차례 세척한 후 gelatin으로 코팅된 슬라이드에 고정된 생물막을 부착시켜 최종적으로 에탄올 희석액(50, 80, 100%)으로 탈수화 과정을 수행하였다.In the experiment, 20 carriers were collected from each biofilter, washed with distilled water, and then placed in a 50ml cornical tube and strongly vortexed to separate the biofilm, followed by fixing at 4 ° C. in 4% paraformaldehyde solution for 1 hour. . After washing 2-3 times with Phosphate-buffered saline (PBS) solution, the biofilms were fixed on gelatin-coated slides and finally dehydrated with ethanol dilutions (50, 80, 100%).

실험에 사용한 oligonucleotide probe는 기존에 보고된 bacteria 검출을 위한 probe EUB338과 일반적인 암모니아 산화균의 검출을 위한 probe NSO1125를 사용하였으며 fluorescein isothiocyanate(FITC), hyrophilic sulfoindocyanine dye(CY3, CY5)로 형광 label하여 합성하였다(MWG Biotech, German).The oligonucleotide probe used in the experiments was synthesized by using the previously reported probe EUB338 for detecting bacteria and probe NSO1125 for detecting ammonia oxidative bacteria, and fluorescent labeling with fluorescein isothiocyanate (FITC) and hyrophilic sulfoindocyanine dye (CY3, CY5). (MWG Biotech, German).

고정과 탈수화 과정의 전처리를 거친 시료는 hybridization buffer(0.9M NaCl, 20mM Tris-HCl, 0.01% SDS)와 probe로 hybridization chamber에서 46℃, 90분 동안 반응시켰다. Probe 농도는 25∼50ng/L로 일정하게 유지하였다. Hybridization이 끝난 후 미리 예열된 washing buffer(20mM Tris-HCl, 0.01% SDS)로 가볍게 헹구어 48℃에서 10분 동안 세정시켜 주었다. 반응이 끝난 시료를 증류수로 가볍게 헹구어 washing buffer를 제거한 다음, 공기 건조시킨 후 25㎕의 mounting medium으로 처리하였다.Samples that had undergone the fixation and dehydration pretreatment were reacted with a hybridization buffer (0.9M NaCl, 20 mM Tris-HCl, 0.01% SDS) and a probe at 46 ° C for 90 minutes in a hybridization chamber. Probe concentration was kept constant at 25-50 ng / L. After the hybridization was rinsed lightly with pre-heated washing buffer (20mM Tris-HCl, 0.01% SDS) for 10 minutes at 48 ℃. After the reaction, the sample was lightly rinsed with distilled water to remove the washing buffer, air dried and treated with 25 μl of mounting medium.

미생물의 관찰은 Zeiss Axiovert 형광현미경과 Kr/Ar ion laser(Excitation wave length 494, 550, 650 ㎚)가 장착된 MRS-1024(Bio-Rad, U.K.) confocal laser scanning microscope(CLSM)를 사용하였다.Microorganisms were observed using a Zeiss Axiovert fluorescence microscope and an MRS-1024 (Bio-Rad, U.K.) confocal laser scanning microscope (CLSM) equipped with a Kr / Ar ion laser (Excitation wave length 494, 550, 650 nm).

도 2a는 활성탄분말과 제올라이트분말이 포함되지 않은 다공성의 폴리비닐아세탈 고분자 발포 담체에 부착된 미생물의 FISH 결과이고, 도 2b는 활성탄분말 및제올라이트분말이 각각 5%씩 접착제에 의해 코팅된 폴리비닐아세탈 고분자 발포 담체에 부착된 미생물의 FISH 결과이다. 또한 도 2c는 본 발명에 의한 활성탄분말 및 제올라이트분말을 각각 5%씩 같이 혼합하여 발포한 폴리비닐아세탈 고분자 발포 담체에 부착된 미생물의 FISH 결과 사진으로써, probe EUB338에 의해 전체 박테리아에 선택적으로 결합된 것은 붉은색으로 나타났고, probe NSO1125에 의해 암모니아를 산화하는 미생물들은 노란색으로 나타났다.Figure 2a is a FISH result of microorganisms attached to a porous polyvinyl acetal polymer foam carrier containing no activated carbon powder and zeolite powder, Figure 2b is a polyvinyl acetal coated with an adhesive 5% each activated carbon powder and zeolite powder FISH results of microorganisms attached to the polymeric foam carrier. In addition, Figure 2c is a FISH result photograph of the microorganism attached to the polyvinyl acetal polymer foam carrier foamed by mixing together 5% activated carbon powder and zeolite powder according to the present invention, selectively bound to all bacteria by probe EUB338 It is red and the microorganisms that oxidize ammonia by probe NSO1125 are yellow.

이상의 결과에서 활성탄분말과 제올라이트분말이 포함되지 않은 다공성의 폴리비닐아세탈 고분자 발포 담체에는 활성탄분말 및 제올라이트분말이 각 5% 씩 첨가된 담체에 비해 30∼40%의 전체 미생물이 서식하는 것으로 나타났으며, 암모니아 산화세균은 매우 적은 수로 분포하는 것을 확인할 수 있었다. 또한 활성탄분말 및 제올라이트분말이 5% 씩 코팅된 다공성의 폴리비닐아세탈 고분자 발포 담체의 경우, 활성탄분말 및 제올라이트분말을 각각 5%씩 같이 혼합하여 발포한 폴리비닐아세탈 고분자 발포 담체에 비해, 전체 미생물의 수가 90% 이상으로 거의 유사한 수치를 보였으나, 도 2c에서 보는 바와 같이, 암모니아 산화 미생물의 수는 육안으로도 상당히 적다는 것을 확인할 수 있었다.From the above results, it was found that the porous polyvinyl acetal polymer foam carrier without activated carbon powder and zeolite powder incubated 30 to 40% of all microorganisms compared to the carrier with 5% activated carbon powder and zeolite powder. , Ammonia oxidizing bacteria was found to be distributed in a very small number. In addition, in the case of porous polyvinyl acetal polymer foam carrier coated with 5% of activated carbon powder and zeolite powder, compared to polyvinyl acetal polymer foam carrier foamed by mixing 5% of activated carbon powder and zeolite powder together, Although the number was almost similar to more than 90%, as shown in Figure 2c, it was confirmed that the number of ammonia-oxidizing microorganisms is very small even with the naked eye.

<실시예 4><Example 4>

본 발명에 의한 발포 고분자 담체를 충진한 바이오필터를 이용하여 휘발성유기화합물(BTEX류)의 제거실험을 실시하였다. 실험을 위해 담체에 접종된 미생물은 선택적으로 배양된 3종류의Pseudomonassp.으로써, 미생물동정분류시스템(MIDI)에의해 분류되었으며, 표 3과 같은 BTEX 화합물에 대하여 40시간 배양 후에 미생물의 저항성과 toluene, ethyl-benzene 등의 기질 이용활성을 나타냈다.Removal experiments of volatile organic compounds (BTEXs) were carried out using a biofilter filled with a foamed polymer carrier according to the present invention. The microorganisms inoculated on the carrier for the experiment were three kinds of selectively cultured Pseudomonas sp., Which were classified by the microbiological identification classification system (MIDI). , substrates such as ethyl-benzene were used.

BTEX 화합물의 저항성과 toluene, ethyl-benzene의 기질이용 활성Resistance of BTEX Compound and Substrate Utilization Activity of Toluene and Ethyl-benzene 미생물microbe 저항성Resistance 기질이용활성Substrate utilization activity BenzeneBenzene TolueneToluene Ethyl-BenzeneEthyl-benzene XyleneXylene Toluene100 ppmToluene 100 ppm Toluene1000 ppmToluene 1000 ppm Ethyl-Benzene100 ppmEthyl-Benzene 100 ppm Ethyl-Benzene1000 ppmEthyl-Benzene 1000 ppm Pseudomonassp. T4 Pseudomonas sp. T4 -- ++++ ++++ ++++ <1<1 <35<35 <1<1 <35<35 Pseudomonas putidatype A1. V6 Pseudomonas putida type A1. V6 -- ++ ++ ++++ <1<1 <35<35 <1<1 <35<35 Pseudomonas putidatype A1. V16 Pseudomonas putida type A1. V16 -- ++ ++ ++++ <1<1 <35<35 <1<1 <35<35

+: Positive growth; ++: Positive high growth; -: Negative growth.+: Positive growth; ++: Positive high growth; -: Negative growth.

실험은 활성탄분말과 제올라이트분말이 포함되지 않은 다공성의 폴리비닐아세탈 고분자 발포 담체와 활성탄분말 및 제올라이트분말이 각각 5%씩이 접착제에 의해 코팅된 폴리비닐아세탈 고분자 발포 담체, 그리고 활성탄분말 및 제올라이트분말을 각각 5%씩 같이 혼합하여 발포한 폴리비닐아세탈 고분자 담체를 각각 유효부피(working volume) 5L의 바이오필터에 충진하고 선택적으로 발효조에서 배양된 3종류의Pseudomonassp. 배양액을 500mL씩 각각 접종하였다.The experiments were carried out using a porous polyvinyl acetal polymer foam carrier without activated carbon powder and zeolite powder, polyvinyl acetal polymer foam carrier coated with 5% of activated carbon powder and zeolite powder, and activated carbon powder and zeolite powder, respectively. Each of the polyvinyl acetal polymer carriers mixed and foamed together by 5% was filled in a 5L biofilter with a working volume, and three kinds of Pseudomonas sp. Each culture was inoculated with 500 mL each.

상기 실험에서는 휘발성유기화합물로 toluene을 이용하였고, 반응기에 일정한 속도로 toluene을 공급하기 위하여 syringe pump와 air pump를 이용하였으며, 바이오필터에는 상향류식으로 공급하였다. 톨루엔(toluene)과 함께 주입되는 공기는 조절밸브를 통하여 반응기내의 체류시간을 조절하였다. 바이오필터에 toluene을 200∼1,000ppmv의 농도로 공급하였고, 공탑체류시간은 10초로 유지하였다.In the experiment, toluene was used as a volatile organic compound, a syringe pump and an air pump were used to supply toluene at a constant rate to the reactor, and the biofilter was supplied in an upflow manner. Air injected with toluene controlled the residence time in the reactor through a control valve. Toluene was supplied to the biofilter at a concentration of 200 to 1,000 ppmv, and the tower residence time was maintained at 10 seconds.

바이오필터의 유입구와 유출구에 가스 포집관을 설치하여 toluene의 분해율을 GC(HP6890 series; Flame Ionization Detector)를 이용하여 측정하였다. 또한 미생물의 호흡과 toluene 분해에 의한 반응기내의 pH를 저하를 막기 위해 영양배지에 1N NaOH용액과 K2HPO4, KH2PO4를 투여하여 pH 저하를 막았다.Decomposition rate of toluene was measured by using GC (HP6890 series; Flame Ionization Detector) by installing gas collection pipes at the inlet and outlet of the biofilter. In addition, 1N NaOH solution, K 2 HPO 4 , and KH 2 PO 4 were administered to the nutrient medium to prevent the pH in the reactor caused by microbial respiration and toluene degradation.

표 4는 톨루엔의 농도에 따른 제거율을 나타낸 것으로 각 결과는 초기 10일간의 미생물 안정화 기간을 거친 후 농도별로 20일간의 운전결과의 평균값이다. 본 발명에 의한 활성탄분말 및 제올라이트분말을 각각 5%씩 같이 혼합하여 발포한 폴리비닐아세탈 고분자 담체가 충진된 바이오필터에서 가장 우수한 톨루엔 제거율을 나타냈다.Table 4 shows the removal rate according to the concentration of toluene, and each result is the average value of 20 days of operation results by concentration after the initial microbial stabilization period of 10 days. The most effective toluene removal rate was shown in the biofilter filled with polyvinyl acetal polymer carrier foamed by mixing the activated carbon powder and the zeolite powder, respectively, by 5%.

활성탄, 제올라이트 분말에 첨가형태에 따른 평균 톨루엔 제거율Average Toluene Removal Rate by Activated Carbon and Zeolite Powder 톨루엔 농도Toluene concentration 일반 PVA 담체 (국내등록특허 346915호)General PVA Carrier (Domestic Patent No. 346915) 활성탄 5% 및 제올라이트 5% 코팅 PVA 담체Activated Carbon 5% and Zeolite 5% Coated PVA Carrier 활성탄 5% 및 제올라이트 5% 혼합 PVA 담체 (본 발명)5% activated carbon and 5% zeolite mixed PVA carrier (invention) 200 ppmv200 ppmv 76%76% 95%95% 100%100% 500 ppmv500 ppmv 85%85% 92%92% 100%100% 800 ppmv800 ppmv 80%80% 88%88% 98%98% 1,000 ppmv1,000 ppmv 76%76% 82%82% 95%95%

이상에서 상세히 설명하고 입증하였듯이, 본 발명에 따라 제공되는 활성탄분말과 제올라이트 분말이 혼합되어 발포된 다공성의 고분자 담체는 활성탄분말과 제올라이트분말을 표면에 코팅한 종래 담체에서 나타나는 탈리현상이나 미세세공이 접착제에 의해 막히는 현상 등의 문제를 개선하였다.As described and demonstrated in detail above, the porous polymer carrier foamed by mixing the activated carbon powder and the zeolite powder provided according to the present invention has a detachment phenomenon or micropore adhesive appearing in a conventional carrier coated on the surface of the activated carbon powder and zeolite powder. Problems such as clogging due to the above were improved.

또한 매우 가볍고 탁월한 친수성 및 다공성의 open cell 구조를 형성하며 비표면적이 매우 크고 물질전달률이 우수한 본 발명의 담체는 기계적 강도와 내구성이 우수하고 물리, 화학, 생물학적으로 안정하면서도 물성이 우수할 뿐 아니라 물리적으로 미생물과 오염물질을 흡착하여 뛰어난 제거율과 안정성을 제공한다. 또한 상기 담체가 충진되어 있는 바이오필터는 압력손실이 낮아 기존의 바이오필터에 비해 짧은 체류시간에도 높은 처리효율을 보여 좁은 부지면적 및 낮은 초기투자비를 필요로 하고 동력비 등을 줄일 수 있다.In addition, the carrier of the present invention forms a very light and excellent hydrophilic and porous open cell structure, the specific surface area and excellent material transfer rate is excellent in mechanical strength and durability, physically, chemically and biologically stable, but also excellent physical properties Adsorption of microorganisms and contaminants provides excellent removal rate and stability. In addition, the biofilter filled with the carrier has a low pressure loss, and thus shows a high processing efficiency even in a short residence time, compared to conventional biofilters, requiring a narrow land area and a low initial investment cost, and reducing power costs.

Claims (7)

다음의 단계를 포함하는 바이오필터용 다공성 발포 고분자 담체의 제조방법:Method for producing a porous foam polymer carrier for biofilter comprising the following steps: (a) 폴리비닐아세탈, 폴리우레탄, 폴리스틸렌 및 폴리에틸렌으로 구성된 군에서 선택된 어느 하나의 발포성 고분자 5∼9중량%, 알데히드계 화합물 5∼9중량% 및 물 72∼88중량%를 혼합한 다음, 2∼10중량%의 활성탄분말 및/또는 제올라이트분말을 혼합하여 제1혼합물을 얻는 단계;(a) 5-9% by weight of any expandable polymer selected from the group consisting of polyvinyl acetal, polyurethane, polystyrene and polyethylene, 5-9% by weight of aldehyde compounds and 72-88% by weight of water, and then Mixing 10 wt% activated carbon powder and / or zeolite powder to obtain a first mixture; (b) 상기 제1혼합물에 가용성 물질인 전분 및/또는 덱스트린을 제1혼합물 100중량부에 대하여 각각 1∼30중량부 혼합하여 제2혼합물을 수득하는 단계;(b) mixing 1 to 30 parts by weight of starch and / or dextrin, which are soluble substances in the first mixture, based on 100 parts by weight of the first mixture, respectively, to obtain a second mixture; (c) 상기 제2혼합물을 60∼80℃로 가열하여 용융시키는 단계;(c) heating the second mixture to 60-80 ° C. to melt it; (d) 상기 용융된 혼합물에 제2혼합물 100중량부에 대하여 10∼30중량부의 분해형 발포제와 산을 첨가하여 제3혼합물을 수득하는 단계;(d) adding 10-30 parts by weight of the decomposable blowing agent and an acid with respect to 100 parts by weight of the second mixture to obtain a third mixture; (e) 상기 제3혼합물을 주형에 투입하고 50∼80℃에서 반응시켜 스폰지 폼 또는 부직포 형태의 담체를 수득하는 단계; 및(e) adding the third mixture to a mold and reacting at 50 to 80 ° C. to obtain a carrier in the form of a sponge foam or a nonwoven fabric; And (f) 상기 수득된 스폰지 폼 또는 부직포 형태의 담체를 세척하여 전분 및/또는 덱스트린을 용출 제거하는 단계.(f) eluting off the starch and / or dextrin by washing the obtained carrier in the form of a sponge or nonwoven fabric. 삭제delete 삭제delete 제1항에 있어서, 상기 제2혼합물은 전분 및/또는 덱스트린 이외에 알긴산소오다, CMC(carboxymethyl cellulose) 및 CMS(carboxymethyl starch) 중에서 선택되는 적어도 하나 이상의 물질을 제1혼합물 100중량부에 대하여 1∼30중량부 함유하는 것임을 특징으로 하는 방법.The method of claim 1, wherein the second mixture comprises at least one material selected from sodium alginate, carboxymethyl cellulose (CMC) and carboxymethyl starch (CMS) in addition to starch and / or dextrin, based on 100 parts by weight of the first mixture. 30 parts by weight of the method characterized by containing. 삭제delete 제1항에 있어서, 상기 주형은 가로, 세로 및 높이가 10mm 내지 20mm인 육면체 형태 또는 직경이 10mm 내지 20mm인 원형 모형인 것을 특징으로 방법.The method of claim 1, wherein the mold is a hexahedron shape having a width, length, and height of 10 mm to 20 mm, or a circular model having a diameter of 10 mm to 20 mm. 삭제delete
KR1020030068128A 2003-10-01 2003-10-01 Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same KR100433644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030068128A KR100433644B1 (en) 2003-10-01 2003-10-01 Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030068128A KR100433644B1 (en) 2003-10-01 2003-10-01 Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same

Publications (1)

Publication Number Publication Date
KR100433644B1 true KR100433644B1 (en) 2004-06-01

Family

ID=37340970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030068128A KR100433644B1 (en) 2003-10-01 2003-10-01 Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR100433644B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951109B1 (en) * 2009-09-07 2010-04-07 서현화 A microorganism carrier and its manufacturing method
KR101279579B1 (en) 2012-07-06 2013-06-27 청호환경개발주식회사 A manufacturing method of a porous aggregate to remove a bad smell of wastewater and the porous aggregate
KR20160096352A (en) * 2015-02-05 2016-08-16 충남대학교산학협력단 The foam-type ion-exchange filter and a method for producing
KR101808561B1 (en) * 2016-03-23 2017-12-13 주식회사 산청 Absorbent for cbrn-agent and adsorption filter for toxic agent thereby, and protective suit for toxic-agent and filter manufacturing method therefor
KR101891525B1 (en) * 2017-12-11 2018-08-27 (주) 삼진정밀 Apparatus for manufacturing carrier floating biological slime for sticking and culture of microorganism for waste water treatment
RU2681906C2 (en) * 2015-07-21 2019-03-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ" (СПбГАУ) Method for obtaining filter element based on a porous polyvinylformal
KR102016146B1 (en) * 2019-07-10 2019-10-23 한국환경평가기술 주식회사 The manufacturing method of composition for bio filter for improving air pollution by removing odour and organic volatile compounds
KR20220046282A (en) 2020-10-07 2022-04-14 가천대학교 산학협력단 Functional material having pollution reduction performance and manufactuging method for the same
CN115521564A (en) * 2022-10-12 2022-12-27 华邦古楼新材料有限公司 PVA composite porous material and application

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951109B1 (en) * 2009-09-07 2010-04-07 서현화 A microorganism carrier and its manufacturing method
KR101279579B1 (en) 2012-07-06 2013-06-27 청호환경개발주식회사 A manufacturing method of a porous aggregate to remove a bad smell of wastewater and the porous aggregate
KR20160096352A (en) * 2015-02-05 2016-08-16 충남대학교산학협력단 The foam-type ion-exchange filter and a method for producing
KR101664363B1 (en) * 2015-02-05 2016-10-11 충남대학교산학협력단 The foam-type ion-exchange filter and a method for producing
RU2681906C2 (en) * 2015-07-21 2019-03-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ" (СПбГАУ) Method for obtaining filter element based on a porous polyvinylformal
KR101808561B1 (en) * 2016-03-23 2017-12-13 주식회사 산청 Absorbent for cbrn-agent and adsorption filter for toxic agent thereby, and protective suit for toxic-agent and filter manufacturing method therefor
KR101891525B1 (en) * 2017-12-11 2018-08-27 (주) 삼진정밀 Apparatus for manufacturing carrier floating biological slime for sticking and culture of microorganism for waste water treatment
KR102016146B1 (en) * 2019-07-10 2019-10-23 한국환경평가기술 주식회사 The manufacturing method of composition for bio filter for improving air pollution by removing odour and organic volatile compounds
KR20220046282A (en) 2020-10-07 2022-04-14 가천대학교 산학협력단 Functional material having pollution reduction performance and manufactuging method for the same
CN115521564A (en) * 2022-10-12 2022-12-27 华邦古楼新材料有限公司 PVA composite porous material and application
CN115521564B (en) * 2022-10-12 2024-03-15 华邦古楼新材料有限公司 PVA composite porous material and application

Similar Documents

Publication Publication Date Title
Cohen Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review
Pai et al. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate
CN111530272A (en) Biological deodorization filler and trickling filter tower for removing garbage leachate odor by using same
AU2017413373A1 (en) Method and device for bioremediation of water body
KR100433644B1 (en) Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same
JP3965006B2 (en) Foam carrier for microbial immobilization treatment, and waste water such as organic waste water and eutrophication water using the same
CN112551703A (en) Porous slow-release carbon source filler and preparation method and application thereof
KR100528358B1 (en) Biofilter System for Removal of Odor Gases and Volatile Organic Compounds
US6133004A (en) Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin
CN110465184A (en) Deodorant filler and preparation method thereof, deodorization device and deodorizing methods and application
CN101172211B (en) Method for purifying malodorous gas by regulating biogum filling material
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
CN116144641A (en) Immobilized microorganism microbial agent hydrogel sphere and preparation method and application thereof
KR200341511Y1 (en) Biofilter System for Removal of Odor Gases and Volatile Organic Compounds
KR200189472Y1 (en) Carrier for processing waste water
KR100337657B1 (en) Carrier of biofilter system for gas purifying and a preparing method thereof
KR100513268B1 (en) Method and System of odor removal using distillery waste and earthworm cast
KR100928445B1 (en) Microorganism carriers for biofilter and preparing method thereof
KR100435252B1 (en) A waste water disposal plant
KR100971605B1 (en) Yeast-immobilized polymer packing materials for the removal of odor and VOC, and its operating method
KR200308241Y1 (en) System of odor removal using distillery waste and earthworm cast
JPH0365208B2 (en)
CN116605997A (en) Sewage treatment material, preparation method and application thereof
Hsu et al. Entrapped mixed microorganisms to treat organic wastewater from food industry
JPH0768282A (en) Wastewater treatment apparatus

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130516

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140519

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160519

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170512

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 16