KR100432208B1 - Reducing the amount of components having low boiling points in liquefied natural gas - Google Patents

Reducing the amount of components having low boiling points in liquefied natural gas Download PDF

Info

Publication number
KR100432208B1
KR100432208B1 KR10-1998-0706574A KR19980706574A KR100432208B1 KR 100432208 B1 KR100432208 B1 KR 100432208B1 KR 19980706574 A KR19980706574 A KR 19980706574A KR 100432208 B1 KR100432208 B1 KR 100432208B1
Authority
KR
South Korea
Prior art keywords
fractionation column
natural gas
liquefied natural
pressure
low boiling
Prior art date
Application number
KR10-1998-0706574A
Other languages
Korean (ko)
Other versions
KR19990087179A (en
Inventor
비베카 야코바 엘리온
나겔포오르트 로버트 클라인
코르넬리스 얀 빈크
Original Assignee
쉘 인터내셔날 리써취 마트샤피지 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쉘 인터내셔날 리써취 마트샤피지 비.브이. filed Critical 쉘 인터내셔날 리써취 마트샤피지 비.브이.
Publication of KR19990087179A publication Critical patent/KR19990087179A/en
Application granted granted Critical
Publication of KR100432208B1 publication Critical patent/KR100432208B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Abstract

본 발명은 하기를 포함하는, 액화 천연 가스 (1) 내 저비점을 갖는 성분의 양을 감소시키는 방법에 관한 것이다:The present invention relates to a method for reducing the amount of a component having a low boiling point in liquefied natural gas (1), comprising:

액화 천연 가스를 액화압에서 외부 열교환기 (3) 의 고온측 (2) 으로 통과시켜 냉각된 액화 천연 가스 (6) 를 수득하고, 냉각된 액화 천연 가스를 중간압으로 동적 팽창 (9) 시키고, 저압으로 정적 팽창 (10) 시켜, 팽창된 유체 (15) 를 수득하고, 팽창된 유체를, 접촉 구획 (25) 이 분별 칼럼의 상부 및 하부 사이에 배열된 분별 칼럼 (20) 의 상부로 도입하고; 디렉트 사이드 스트림 (32) 를 저압에서 외부 열교환기 (3) 의 냉측 (30) 으로 통과시켜, 가열된 2상 유체 (36) 를 수득하고; 가열된 2상 유체를 분별 칼럼 (20) 의 하부 (28) 로 도입하여, 증기를 접촉 구획 (25) 를 통해 위쪽으로 흐르게 하고; 팽창된 유체의 액체를 접촉 구획 (25) 를 통해 아래쪽으로 흐르게 하고; 분별 칼럼 (20) 의 하부로부터 저비점을 갖는 성분의 감소된 함량을 갖는 액체 생성물 스트림을 회수하고, 분별 칼럼의 상부로부터 저비점을 갖는 성분이 풍부한 기체 스트림을 회수함.Passing the liquefied natural gas from the liquefaction pressure to the hot side 2 of the external heat exchanger 3 to obtain a cooled liquefied natural gas 6 and dynamically expanding the cooled liquefied natural gas to an intermediate pressure 9, Statically expanding 10 at low pressure to obtain expanded fluid 15 and introducing the expanded fluid to the top of the fractionation column 20 in which the contact segment 25 is arranged between the top and bottom of the fractionation column ; Passing the direct side stream (32) from the low pressure to the cold side (30) of the external heat exchanger (3) to obtain a heated two-phase fluid (36); Introducing a heated two-phase fluid into the lower portion 28 of the fractionation column 20 to cause the vapor to flow upwardly through the contact zone 25; Allowing the liquid of the expanded fluid to flow downward through the contact section 25; Withdrawing a liquid product stream having a reduced content of components having a low boiling point from the bottom of the fractionation column 20 and recovering a component rich stream having low boiling points from the top of the fractionation column.

Description

액화 천연 가스내의 저비점을 갖는 성분의 양을 감소시키는 방법 {REDUCING THE AMOUNT OF COMPONENTS HAVING LOW BOILING POINTS IN LIQUEFIED NATURAL GAS}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for reducing the amount of a component having a low boiling point in a liquefied natural gas (LACQUETED NATURAL GAS)

본 발명은 액화 천연 가스내의 저비점을 갖는 성분의 양을 감소시키는 방법에 관한 것이다. 저비점을 갖는 성분은 일반적으로, 질소, 헬륨 및 수소이며, 이들 성분은 또한 '경성분(light components)'이라 불리기도 한다. 이러한 방법에서, 액화 천연 가스를 액화압에서 액화하고, 이어서 액화 천연 가스의 압력을 감소시키고 분리하여, 저압에서 저비점을 갖는 성분의 감소된 함량을 갖는 액화 천연 가스를 수득하고, 이 액화 천연 가스를 추가로 처리하거나 저장할 수 있다. 따라서 상기 방법은 두 가지 목적을 충족시키는데, 첫째는, 액화 천연 가스의 압력을 저압으로 감소시키는 것이고, 둘째는, 액화 천연 가스로부터 저비점을 갖는 성분을 포함한 기체 스트림을 분리하여 남은 액화 천연 가스가 충분히 낮은 함량의 저비점을 갖는 성분을 갖도록 확실히 하는 것이다. 일반적으로, 저비점을 갖는 성분, 특히 질소의 함량은 2 내지 15 몰 % 이상에서 1 몰 % 미만으로 감소된다. 상기 방법은 때때로 엔드 플래쉬 방법 (end flash method) 이라고 불린다.The present invention relates to a method for reducing the amount of a component having a low boiling point in liquefied natural gas. The components with low boiling points are generally nitrogen, helium and hydrogen, and these components are also referred to as " light components ". In this way, liquefied natural gas is liquefied at the liquefying pressure and then the pressure of the liquefied natural gas is reduced and separated to obtain a liquefied natural gas having a reduced content of components having a low boiling point at low pressure, It can be further processed or stored. The method thus fulfills two objectives: first, to reduce the pressure of the liquefied natural gas to low pressure; second, to separate the liquefied natural gas from the liquefied natural gas, It is ensured to have a component having a low content of a low boiling point. In general, the content of components having a low boiling point, especially nitrogen, is reduced from 2 to 15 mol% to less than 1 mol%. This method is sometimes called the end flash method.

천연가스의 액화압은 일반적으로 3.0 내지 6.0 MPa 의 범위이다. 저압은 액화압 미만, 예를 들면 0.3 MPa 미만, 적당하게는 약 대기압, 0.10 내지 0.15 MPa 사이이다.The liquefaction pressure of the natural gas is generally in the range of 3.0 to 6.0 MPa. The low pressure is below the liquefaction pressure, for example below 0.3 MPa, suitably between about 0.10 and 0.15 MPa.

국제 특허 출원 공보 WO 제 93/08 436 호는 액화 천연 가스내의 저비점을 갖는 성분의 양을 감소시키는 방법에 관한 것이며, 이 방법은 하기 단계를 포함한다:International Patent Application Publication WO 93/08 436 relates to a method for reducing the amount of a component having a low boiling point in liquefied natural gas, the method comprising the steps of:

(a) 액화 천연 가스를 액화압에서 또는 중간압에서 외부 열교환기의 고온측으로 통과시켜 냉각된 액화 천연 가스를 수득하고, 냉각된 액화 천연 가스가 저압으로 팽창되도록 하여 팽창된 유체를 수득하고, 팽창된 유체를, 접촉 구획이 분별 칼럼의 상부와 하부 사이에 배열된 분별 칼럼의 상부로 도입함;(a) passing the liquefied natural gas at liquefying pressure or at an intermediate pressure to the high temperature side of the external heat exchanger to obtain cooled liquefied natural gas, causing the cooled liquefied natural gas to expand at low pressure to obtain an expanded fluid, Introducing the fluids into the top of the fractionation column in which the contact compartments are arranged between the top and bottom of the fractionation column;

(b) 액화 천연 가스 분획을 외부 열교환기의 냉측을 통해 분별 칼럼으로부터 회수하여 가열된 2상 유체를 수득함;(b) recovering the liquefied natural gas fraction from the fractionation column through the cold side of the external heat exchanger to obtain a heated two-phase fluid;

(c) 가열된 2상 유체를 분별 칼럼의 하부로 도입하고, 증기를 접촉 구획을 통하여 위쪽으로 흐르게 함;(c) introducing the heated two-phase fluid to the bottom of the fractionation column and allowing the vapor to flow upwardly through the contact section;

(d) 분별 칼럼의 상부에 도입된, 팽창된 유체의 액체를 접촉 구획을 통하여 아래쪽으로 흐르게 함;(d) causing the liquid of the expanded fluid, introduced at the top of the fractionation column, to flow downward through the contact section;

(e) 분별 칼럼의 하부로부터 저비점을 갖는 성분의 감소된 함량을 함유한 액체 생성물 스트림을 회수하고, 분별 칼럼의 상부로부터 저비점을 갖는 성분이 풍부한 기체 스트림을 회수함;(e) recovering a liquid product stream containing a reduced content of components having a low boiling point from the bottom of the fractionation column and withdrawing a component rich stream of gas having a low boiling point from the top of the fractionation column;

여기서, 액화압으로부터 중간압으로는 동적 팽창을 수행하고, 중간압으로부터 저압으로는 정적 팽창을 수행한다.Here, dynamic expansion is performed from the liquefied pressure to the intermediate pressure, and static expansion is performed from the intermediate pressure to the low pressure.

중간압은 액화압과 저압 사이이고, 동적 팽창중에 증발을 실질적으로 피할 수 있도록 선택된다.The intermediate pressure is between the liquefied pressure and the low pressure, and is selected so as to substantially avoid evaporation during dynamic expansion.

공지된 방법에서, 외부 열교환기에서 가열된, 분별 칼럼으로부터 회수된 분획은 스트립핑을 위한 증기를 제공한다. 이 분획은 접촉 구획내의 레벨에서 분별 칼럼으로부터 제거된 정상 사이드 스트림 (normal side stream) 이며, 상기 접촉 구획은 팽창된 유체가 분별 칼럼의 상부로 도입되는 레벨 아래에 배열된다. 예를 들어 접촉 구획이 접촉 트레이를 포함한다면, 분획을 인접한 접촉 트레이 사이의 레벨로부터 제거한다. 결과적으로, 분획은 그것이 분획 칼럼으로부터 제거되기 전에, 분별 칼럼을 통하여 상승하는 증기와 친밀하게 접촉된다. 이러한 친밀한 접촉의 결과로 물질 및 열이 액체와 증기 사이에서 교환된다. 따라서, 액체 조성이 변화될 뿐만 아니라, 액체가 가열된다.In the known process, the fraction recovered from the fractionation column heated in the external heat exchanger provides steam for stripping. This fraction is a normal side stream removed from the fractionation column at a level within the contact section and the contact section is arranged below the level at which the expanded fluid is introduced into the top of the fractionation column. For example, if the contact compartment includes a contact tray, the fraction is removed from the level between adjacent contact trays. As a result, the fraction is in intimate contact with the vapor rising through the fractionation column before it is removed from the fractionation column. As a result of this intimate contact, material and heat are exchanged between the liquid and the vapor. Thus, not only the liquid composition is changed, but also the liquid is heated.

본 명세서에서, 용어 '기체' 및 '증기'는 서로 구분없이 사용될 것이다.In this specification, the terms " gas " and " steam "

본 출원인은 상기 방법을 향상시키고, 이용가능한 가장 차가운 유체를 외부 열교환기의 냉측으로 통과시키는 방법을 제공하려 노력하였다.Applicants have sought to provide a method of improving the above method and passing the coldest available fluid through the cold side of the external heat exchanger.

이러한 목적을 위해, 본 발명에 따른 액화 천연 가스내의 저비점을 갖는 성분의 양을 감소시키는 방법은 하기 단계를 포함한다:To this end, a method for reducing the amount of a component having a low boiling point in liquefied natural gas according to the present invention comprises the following steps:

(a) 액화 천연 가스를 액화압에서 또는 중간압에서 외부 열교환기의 고온측으로 통과시켜 냉각된 액화 천연 가스를 수득하고, 냉각된 액화 천연 가스가 저압으로 팽창되도록 하여 팽창된 유체를 수득하고, 팽창된 유체를, 접촉 구획이 분별 칼럼의 상부와 하부 사이에 배열된 분별 칼럼의 상부로 도입함;(a) passing the liquefied natural gas at liquefying pressure or at an intermediate pressure to the high temperature side of the external heat exchanger to obtain cooled liquefied natural gas, causing the cooled liquefied natural gas to expand at low pressure to obtain an expanded fluid, Introducing the fluids into the top of the fractionation column in which the contact compartments are arranged between the top and bottom of the fractionation column;

(b) 디렉트 사이드 스트림을 저압에서 외부 열교환기의 냉측으로 통과시켜 가열된 2상 유체를 수득함 (상기 디렉트 사이드 스트림은 분별 칼럼내 접촉 구획의 상부 스트림 (upstream) 인 지점에서, 적당하게는 외부 열교환기의 하부 스트림(downstream) 이며 분별 칼럼내 접촉 구획의 상부 스트림인 지점에서 액화 천연 가스로부터 분리된 그의 액체 부분임);(b) passing the direct side stream from the low pressure to the cold side of the external heat exchanger to obtain a heated two-phase fluid, wherein the direct side stream is at an upstream upstream of the contact section in the fractionation column, The downstream portion of the heat exchanger and its liquid portion separated from the liquefied natural gas at a point upstream of the contact section in the fractionation column);

(c) 가열된 2상 유체를 분별 칼럼의 하부로 도입하고, 증기를 접촉 구획을 통하여 위쪽으로 흐르게 함;(c) introducing the heated two-phase fluid to the bottom of the fractionation column and allowing the vapor to flow upwardly through the contact section;

(d) 분별 칼럼의 상부에 도입된, 팽창된 유체의 액체를 접촉 구획을 통하여 아래쪽으로 흐르게 함;(d) causing the liquid of the expanded fluid, introduced at the top of the fractionation column, to flow downward through the contact section;

(e) 분별 칼럼의 하부로부터 저비점을 갖는 성분의 감소된 함량을 갖는 액체 생성물 스트림을 회수하고, 분별 칼럼의 상부로부터 저비점을 갖는 성분이 풍부한 기체 스트림을 회수함;(e) withdrawing a liquid product stream having a reduced content of components having a low boiling point from the bottom of the fractionation column, and withdrawing a component rich stream having a low boiling point from the top of the fractionation column;

여기서, 액화압으로부터 중간압으로는 동적 팽창을 수행하고, 중간압으로부터 저압으로는 정적 팽창을 수행한다.Here, dynamic expansion is performed from the liquefied pressure to the intermediate pressure, and static expansion is performed from the intermediate pressure to the low pressure.

본 발명의 이점은 분별 칼럼의 접촉 구획에 액체 로우드(load)를 감소시키고, 결과적으로 스트립핑 계수가 증가함으로써, 스트립핑 효율이 증가한다는 것이다.An advantage of the present invention is that the stripping efficiency is increased by reducing the liquid load in the contact section of the fractionation column and consequently increasing the stripping coefficient.

이제, 첨부한 도면을 참조하여 본 발명을 더욱 상세히 설명할 것이다.The present invention will now be described in more detail with reference to the accompanying drawings.

도1 은 본 발명의 첫번째 구현예를 나타내며;Figure 1 shows a first embodiment of the present invention;

도2 는 본 발명의 두번째 구현예를 나타내며;Figure 2 shows a second embodiment of the present invention;

도3 은 본 발명의 세번째 구현예를 나타내며;Figure 3 shows a third embodiment of the present invention;

도4 는 선 IV-IV 을 따라 확대하여 그린, 도 3 의 단면을 나타낸다.Fig. 4 shows a cross section of Fig. 3 drawn in an enlarged scale along line IV-IV.

도 1 을 참조한다. 액화 천연 가스를 액화압에서 도관 (1) 을 통하여 외부 열교환기 (3) 의 고온측 (2) 로 공급한다. 외부 열교환기 (3) 에서 액화 천연 가스를 간접 열교환기에 의해 냉각시켜 냉각된 액화 천연 가스를 수득한다. 냉각된 액화 천연 가스를 도관 (6) 을 통하여 팽창 단위(unit) (8) 로 공급하여 (이 팽창 단위 (8) 은 냉각된 액화 천연 가스를 액화압으로부터 중간압으로 동적 팽창시키는 터보 팽창기 (9) 의 형태로 액체를 동적 팽창시키는 장치 및 냉각된 액화 천연 가스를 중간압으로부터 저압으로 정적 팽창시키는 스로틀 밸브 (10) 을 포함한다.) 팽창된 유체를 수득한다. 터보 팽창기 (9) 및 스로틀 밸브 (10) 은 연결 도관 (13) 에 의해 연결되어 있다. 이어서, 팽창된 유체를 도관 (15) 를 통하여 저압에서 작동하는 분별 칼럼 (20) 으로 공급한다.Please refer to Fig. The liquefied natural gas is supplied from the liquefying pressure to the high temperature side (2) of the external heat exchanger (3) through the conduit (1). In the external heat exchanger (3), liquefied natural gas is cooled by an indirect heat exchanger to obtain cooled liquefied natural gas. The cooled liquefied natural gas is supplied to the expansion unit 8 through a conduit 6 which expands the turboexpander 9 which dynamically expands the cooled liquefied natural gas from the liquefied pressure to an intermediate pressure ) And a throttle valve 10 for static inflating the cooled liquefied natural gas from the intermediate pressure to a low pressure) to obtain an expanded fluid. The turboexpander (9) and the throttle valve (10) are connected by a connecting conduit (13). The expanded fluid is then fed through conduit 15 to fractionation column 20, which operates at low pressure.

팽창된 유체를 입구 (21) 을 통하여 분별 칼럼 (20) 의 상부 (22) 로 도입한다. 분별칼럼 (20) 은, 접촉 구획 (25) 가 분별 칼럼 (20) 의 상부 (22) 와 하부 (28) 사이에 배열되어 있다. 접촉 구획 (25) 는 축방향으로 간격을 두고 떨어진 다수의 접촉 트레이에 의하여, 또는 기체와 액체 사이의 친밀한 접촉을 제공하는 패킹물질에 의하여 형성될 수 있고, 접촉 트레이의 수 또는 패킹물질의 높이는 최소한 이론적 평형 단계, 적당하게는 3 내지 10 단계에 의해 제공되는 분별에 상응하는 분별을 제공하도록 선택된다.The inflated fluid is introduced into the upper portion 22 of the fractionation column 20 through the inlet 21. The fractionation column 20 is arranged such that the contact segment 25 is between the upper portion 22 and the lower portion 28 of the fractionation column 20. The contact zone 25 may be formed by a plurality of axially spaced apart contact trays or by a packing material providing intimate contact between the gas and the liquid and wherein the number of contact trays or the height of the packing material is at least Theoretically equilibrium stage, suitably from 3 to 10 stages.

외부 열교환기 (3) 에서, 액화 천연 가스를 저압에서, 외부 열교환기 (3) 의 냉측 (30) 을 통과하는 디렉트 사이드 스트림과의 간접 열 교환에 의해 냉각시켜 가열된 2상 유체를 수득한다.In the external heat exchanger 3, the liquefied natural gas is cooled at a low pressure by indirect heat exchange with a direct side stream passing through the cold side 30 of the external heat exchanger 3 to obtain a heated two-phase fluid.

냉각된 액화 천연 가스의 일부를 중간압에서 취하고 저온으로 정적 팽창시킴으로써 디렉트 사이드 스트림을 수득한다. 이 부분을 교차점 (31) 에서 냉각된 액화 천연 가스로부터 제거하여 스로틀 밸브 (34) 가 장착된 도관 (32) 를 통하여 열교환기 (3) 의 냉측 (30) 으로 공급한다.A portion of the cooled liquefied natural gas is taken at intermediate pressure and is subjected to static expansion at low temperature to obtain a direct side stream. This portion is removed from the liquefied natural gas cooled at the crossing point 31 and supplied to the cold side 30 of the heat exchanger 3 through the conduit 32 equipped with the throttle valve 34.

가열된 2상 유체를 저압에서 도관 (36) 을 통하여 분별 칼럼 (20) 으로 통과시키고, 이를 입구 (40) 을 통하여 분별 칼럼 (20) 의 하부 (28) 로 도입한다. 가열된 2상 유체로부터 증기를 접촉 구획 (25) 를 통하여 위쪽으로 흐르게 한다.The heated two-phase fluid is passed through the conduit 36 at low pressure to the fractionation column 20 and introduced into the lower portion 28 of the fractionation column 20 through the inlet 40. From the heated two-phase fluid, the vapor flows upwardly through the contact zone (25).

팽창된 유체의 액체를 접촉 구획 (25) 를 통하여 아래쪽으로, 증기에 대해 역흐름으로 흐르게 한다.Allowing the liquid of the expanded fluid to flow downwardly through the contact compartments 25, counter-current to the vapor.

저비점을 갖는 성분을 감소된 양으로 함유하는 액체 생성물 스트림을 도관 (45) 를 통하여 분별 칼럼 (20) 의 하부로부터 회수하고, 저비점을 갖는 성분이 풍부한 기체 스트림을 도관 (47) 을 통하여 분별 칼럼 (20) 의 상부로부터 회수한다.A liquid product stream containing a reduced amount of the component having a low boiling point is withdrawn from the bottom of the fractionation column 20 through the conduit 45 and a component rich stream having a low boiling point is passed through the fractionation column 20).

디렉트 사이드 스트림을 교차점 (13) 에서 냉각된 액화 천연 가스로부터 제거하고 이를 분별하지 않았으므로, 이는 가열되지 않은 것이다. 더욱이, 분별 칼럼을 통해 아래쪽으로 흐르는 액체의 양은 액화 천연 가스내의 액체의 양에서 디렉트 사이드 스트림의 양을 뺀 것이므로, 분별 칼럼내의 액체 로우드가 감소되며, 따라서 스트립핑 효율이 향상된다.It is not heated since the direct side stream has been removed from the cooled liquefied natural gas at the intersection 13 and it has not been discriminated. Moreover, the amount of liquid flowing downward through the fractionation column is subtracted from the amount of the direct side stream in the amount of liquid in the liquefied natural gas, so that the liquid level in the fractionation column is reduced, thus improving the stripping efficiency.

도 1 에 나타낸 바와 같이, 액화 천연 가스가 액화압에서 외부 열교환기 (3) 의 고온측 (2) 를 통과하도록, 터보 팽창기 (9) 를 외부 열교환기 (3) 의 하부 스트림에 배열한다. 대안적인 구현예 (나타내지 않음) 에서는, 액화 천연 가스가 중간압에서 외부 열교환기 (3) 의 고온측 (2) 를 통과하도록, 터보 팽창기를 직접열교환기의 상부 스트림에 배열한다.The turboexpander 9 is arranged in the downstream stream of the external heat exchanger 3 so that the liquefied natural gas passes through the hot side 2 of the external heat exchanger 3 at the liquefied pressure as shown in Fig. In an alternative embodiment (not shown), the turboexpander is arranged directly in the upstream stream of the heat exchanger so that the liquefied natural gas passes through the hot side 2 of the external heat exchanger 3 at an intermediate pressure.

이제, 본 발명의 대안적인 구현예를 나타내는 도 2 를 참조한다. 도 1 에 나타낸 부분에 해당하는 부분은 동일한 참조 번호를 갖는다.Reference is now made to Fig. 2, which represents an alternative embodiment of the present invention. Parts corresponding to those shown in Fig. 1 have the same reference numerals.

도 2 의 구현예는 디렉트 사이드 스트림을 다른 방법으로 수득한다는 점에서만 도 1 에 나타낸 것과 다르며, 나머지는 동일하므로, 통상적인 조작은 상세히 논의하지 않을 것이다. 도 2 의 구현예에서, 디렉트 사이드 스트림을 하기와 같이 수득한다. 중간압에서 냉각된 액화 천연 가스의 일부를 교차점 (31) 에서 냉각된 액화 천연 가스로부터 제거하고, 스로틀 밸브 (34) 가 장착된 도관 (32) 를 통하여 분리기 (50) 으로 공급한다. 분리기 (50) 에서, 증기를 상기 냉각된 액화 천연 가스의 일부로부터 제거하고, 이 액체를 도관 (51) 을 통하여 열교환기 (3) 의 냉측 (30) 으로 통과시킨다.The embodiment of FIG. 2 is different from that shown in FIG. 1 only in that the direct side stream is obtained in a different way, and the remainder are the same, so conventional operation will not be discussed in detail. In the embodiment of FIG. 2, the direct side stream is obtained as follows. A portion of the liquefied natural gas cooled at the intermediate pressure is removed from the cooled liquefied natural gas at the intersection 31 and supplied to the separator 50 through the conduit 32 equipped with the throttle valve 34. [ At the separator 50, the vapor is removed from a portion of the cooled liquefied natural gas and the liquid is passed through the conduit 51 to the cold side 30 of the heat exchanger 3.

적당하게는 증기를 도관 (52) 를 통과시키고, 이것이 분별 칼럼 (20) 으로 들어가기 전에, 교차점 (53) 에서 팽창된 유체에 첨가한다.Appropriately steam is passed through the conduit 52 and added to the expanded fluid at the crossing point 53 before it enters the fractionation column 20.

이제, 도 2 의 향상된 구현예를 도 3 및 도 4 를 참조하여 설명한다. 도 1 에 나타낸 부분에 해당하는 부분은 동일한 참조 번호를 가지며, 다른 특징을 갖는 조작만 설명할 것이다.Now, an improved implementation of Fig. 2 will be described with reference to Figs. 3 and 4. Fig. Parts corresponding to those shown in Fig. 1 have the same reference numerals, and only operations having different features will be described.

이 향상된 구현예에서, 분별 칼럼 (20) 의 상부 (22) 로부터 사이드 스트림을 회수함으로써 디렉트 사이드 스트림을 수득한다. 이 목적을 위해 부분적 인출(draw-off) 트레이 (60) 을, 팽창된 유체를 도입하는 레벨 아래이고 접촉 구획 (25) 위인, 분별 칼럼 (20) 의 상부 (22) 에 배열한다. 부분적 인출 트레이는중앙 트로프(trouph) (62) (도 4 참조) 및 중앙 트로프 (61) 안으로 열려진 다수의 사이드 트로프 (62) 를 포함한다. 분별 칼럼 (20) 은 부분적 인출 트레이 (60) 에 의해 수집된 액체를 회수하기 위한 출구 (나타내지 않음) 가 장착되어 있다.In this improved embodiment, the side stream is recovered from the upper portion 22 of the fractionation column 20 to obtain a direct side stream. For this purpose, a partial draw-off tray 60 is arranged in the upper portion 22 of the fractionation column 20 below the level of introduction of the inflated fluid and above the contact section 25. The partially withdrawal tray includes a central trough 62 (see FIG. 4) and a plurality of side troughs 62 open into the central trough 61. The fractionation column 20 is equipped with an outlet (not shown) for recovering the liquid collected by the partial withdrawal tray 60.

통상적인 조작 중에, 팽창된 유체를 입구 (21) 을 통하여 분별 칼럼 (20) 으로 도입하고, 액체 하부 스트림의 일부를 부분적 인출 트레이 (60) 에 의해 수집하고, 디렉트 사이드 스트림으로서 도관 (65) 를 통하여 외부 열교환기로 통과시킨다. 참조 번호 (60) 으로 지정한 부분적 인출 트레이는 친밀한 기체/액체 접촉을 제공하지 않는 트레이이다. 따라서, 이 트레이로부터 회수한 액체는 이 트레이로 들어가는 액체와 동일한 조성을 가지며, 결과적으로, 이 트레이를 떠나는 증기 및 액체는 서로 평형을 이루지 않는다. 그러므로, 이와 같은 부분적 인출 트레이는 이론적 평형 단계가 아니다.During normal operation, the inflated fluid is introduced through the inlet 21 into the fractionation column 20, a portion of the liquid bottoms stream is collected by the partial withdrawal tray 60, and the conduit 65 as the direct side stream Through an external heat exchanger. The partial withdrawal tray designated by reference numeral 60 is a tray that does not provide intimate gas / liquid contact. Thus, the liquid recovered from the tray has the same composition as the liquid entering the tray, and consequently, the vapor and liquid leaving the tray are not in equilibrium with each other. Therefore, such a partial withdrawal tray is not a theoretical equilibrium stage.

디렉트 사이드 스트림은 액화 천연 가스의 양을 기준으로 10 내지 60 몰 % 이다.The direct side stream is 10 to 60 mole percent based on the amount of liquefied natural gas.

공지된 방법에 대한 본 발명의 방법의 이점은, 외부 열교환기의 하부 스트림이며 분별 칼럼내 접촉 구획의 상부 스트림인 지점에서, 액화 천연 가스로부터 분리된 액화 천연 가스의 액체 부분인 디렉트 사이드 스트림을 분별하지 않으므로, 이것이 이용가능한 가장 차가운 스트림이라는 점이다.An advantage of the process of the invention over the known process is that it separates the direct side stream which is the liquid portion of the liquefied natural gas separated from the liquefied natural gas at the downstream of the external heat exchanger and upstream of the contact section in the fractionation column , This is the coldest stream available.

본 발명의 또 다른 이점은 분별 칼럼의 접촉 구획내 액체 로우드가 감소되고, 결과적으로 스트립핑 계수가 증가하며, 따라서 스트립핑 효율이 증가한다는 점이다.Another advantage of the present invention is that the liquid level in the contact section of the fractionation column is reduced, and as a result the stripping coefficient is increased, and thus the stripping efficiency is increased.

Claims (5)

액화 천연 가스내의 저비점을 갖는 성분의 양을 감소시키는 방법으로서, 하기를 포함하는 방법:A method for reducing the amount of a component having a low boiling point in liquefied natural gas, comprising: (a) 액화 천연 가스를 액화압에서 또는 중간압에서 외부 열교환기의 고온측으로 통과시켜 냉각된 액화 천연 가스를 수득하고, 냉각된 액화 천연 가스가 저압으로 팽창되도록 하여 팽창된 유체를 수득하고, 팽창된 유체를, 접촉 구획이 분별 칼럼의 상부와 하부 사이에 배열된 분별 칼럼의 상부로 도입함;(a) passing the liquefied natural gas at liquefying pressure or at an intermediate pressure to the high temperature side of the external heat exchanger to obtain cooled liquefied natural gas, causing the cooled liquefied natural gas to expand at low pressure to obtain an expanded fluid, Introducing the fluids into the top of the fractionation column in which the contact compartments are arranged between the top and bottom of the fractionation column; (b) 디렉트 사이드 스트림을 저압에서 외부 열교환기의 냉측으로 통과시켜 가열된 2상 유체를 수득함 (상기 디렉트 사이드 스트림은 분별 칼럼내 접촉 구획의 상부 스트림(upstream)인 지점에서, 적당하게는 외부 열교환기의 하부 스트림(downstream) 이며 분별 칼럼내 접촉 구획의 상부 스트림인 지점에서, 액화 천연 가스로부터 분리된 그의 액체 부분임);(b) passing the direct side stream from the low pressure to the cold side of the external heat exchanger to obtain a heated two-phase fluid, wherein the direct side stream is at an upstream upstream of the contact section in the fractionation column, Which is the downstream portion of the heat exchanger and is the liquid portion thereof separated from the liquefied natural gas at a point upstream of the contact section in the fractionation column); (c) 가열된 2상 유체를 분별 칼럼의 하부로 도입하고, 증기를 접촉 구획을 통하여 위쪽으로 흐르게 함;(c) introducing the heated two-phase fluid to the bottom of the fractionation column and allowing the vapor to flow upwardly through the contact section; (d) 분별 칼럼의 상부에 도입된, 팽창된 유체의 액체를 접촉 구획을 통하여 아래쪽으로 흐르게 함;(d) causing the liquid of the expanded fluid, introduced at the top of the fractionation column, to flow downward through the contact section; (e) 분별 칼럼의 하부로부터 저비점을 갖는 성분의 감소된 함량을 함유한 액체 생성물 스트림을 회수하고, 분별 칼럼의 상부로부터 저비점을 갖는 성분이 풍부한 기체 스트림을 회수함;(e) recovering a liquid product stream containing a reduced content of components having a low boiling point from the bottom of the fractionation column and withdrawing a component rich stream of gas having a low boiling point from the top of the fractionation column; 여기서, 액화압으로부터 중간압으로는 동적 팽창을 수행하고, 중간압으로부터 저압으로는 정적 팽창을 수행한다.Here, dynamic expansion is performed from the liquefied pressure to the intermediate pressure, and static expansion is performed from the intermediate pressure to the low pressure. 제 1 항에 있어서, 중간압에서 냉각된 액화 천연 가스의 일부를 취하여 저압으로 정적 팽창시킴으로써 디렉트 사이드 스트림을 수득하는 방법.The method according to claim 1, wherein a part of the liquefied natural gas cooled at an intermediate pressure is taken and is subjected to static expansion at low pressure to obtain a direct side stream. 제 1 항에 있어서, 디렉트 사이드 스트림이, 중간압에서 냉각된 액화 천연 가스의 일부를 취하여 저압으로 정적 팽창시켜 2상 유체를 수득하고, 2상 유체로부터 증기를 제거함으로써 수득된 액체인 방법.The method of claim 1, wherein the direct side stream is a liquid obtained by taking a portion of liquefied natural gas cooled at intermediate pressure and statically expanding to low pressure to obtain a two phase fluid and removing the vapor from the two phase fluid. 제 3 항에 있어서, 팽창된 유체가 분별 칼럼속으로 들어가기 전에, 증기를 팽창된 유체에 첨가하는 방법.4. The method of claim 3 wherein the steam is added to the expanded fluid before the expanded fluid enters the fractionation column. 제 1 항에 있어서, 사이드 스트림을 분별 칼럼의 상부로부터 회수함으로써 디렉트 사이드 스트림을 수득하는 방법.The method of claim 1, wherein the side stream is withdrawn from the top of the fractionation column to obtain a direct side stream.
KR10-1998-0706574A 1996-02-29 1997-02-27 Reducing the amount of components having low boiling points in liquefied natural gas KR100432208B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96200521 1996-02-29
EP96200521.1 1996-02-29

Publications (2)

Publication Number Publication Date
KR19990087179A KR19990087179A (en) 1999-12-15
KR100432208B1 true KR100432208B1 (en) 2004-07-16

Family

ID=8223727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0706574A KR100432208B1 (en) 1996-02-29 1997-02-27 Reducing the amount of components having low boiling points in liquefied natural gas

Country Status (11)

Country Link
US (1) US6014869A (en)
EP (1) EP0883786B1 (en)
JP (1) JP3895386B2 (en)
KR (1) KR100432208B1 (en)
CN (1) CN1145001C (en)
AU (1) AU699635B2 (en)
ES (1) ES2183136T3 (en)
ID (1) ID15984A (en)
MY (1) MY117906A (en)
NZ (1) NZ332054A (en)
WO (1) WO1997032172A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772896B1 (en) * 1997-12-22 2000-01-28 Inst Francais Du Petrole METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION
DE10125058B4 (en) * 2001-05-22 2014-02-27 Enocean Gmbh Thermally fed transmitter and sensor system
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
UA76750C2 (en) * 2001-06-08 2006-09-15 Елккорп Method for liquefying natural gas (versions)
EP1306632A1 (en) * 2001-10-25 2003-05-02 Shell Internationale Researchmaatschappij B.V. Process for liquefying natural gas and producing liquid hydrocarbons
US7078548B2 (en) * 2002-03-06 2006-07-18 The United States Of America As Represented By The Secretary Of The Navy Hyperbranched chemoselective silicon-based polymers for chemical sensor applications
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
EP1620687A4 (en) * 2003-02-25 2015-04-29 Ortloff Engineers Ltd Hydrocarbon gas processing
US6889523B2 (en) 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
CN100436988C (en) * 2004-07-01 2008-11-26 奥特洛夫工程有限公司 Liquefied natural gas processing
NZ549467A (en) * 2004-07-01 2010-09-30 Ortloff Engineers Ltd Liquefied natural gas processing
PE20060221A1 (en) * 2004-07-12 2006-05-03 Shell Int Research LIQUEFIED NATURAL GAS TREATMENT
KR101301013B1 (en) * 2004-09-14 2013-08-29 엑손모빌 업스트림 리서치 캄파니 Method of extracting ethane from liquefied natural gas
CN101027526B (en) * 2004-09-22 2010-12-08 弗劳尔科技公司 Configurations and methods for LPG and power cogeneration
US20090031754A1 (en) * 2006-04-22 2009-02-05 Ebara International Corporation Method and apparatus to improve overall efficiency of lng liquefaction systems
US7631516B2 (en) * 2006-06-02 2009-12-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US8590340B2 (en) * 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US8919148B2 (en) * 2007-10-18 2014-12-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9243842B2 (en) * 2008-02-15 2016-01-26 Black & Veatch Corporation Combined synthesis gas separation and LNG production method and system
KR100954960B1 (en) * 2008-02-28 2010-04-23 현대중공업 주식회사 Cold Heat Recovery System of Cryogenic Non-Condensable Gas for Offshore Liquefied Natural Gas Production Facility
KR100925658B1 (en) * 2008-03-17 2009-11-09 현대중공업 주식회사 Liquefied Natural Gas Production Facility Using Unified Heat Exchanger of Pre-heating for Supplying Liquefied Natural Gas with Fuel Gas and Pre-cooling for Producing Liquefied Natural Gas
KR100929097B1 (en) * 2008-03-17 2009-11-30 현대중공업 주식회사 LNG production equipment with a heat exchanger incorporating a preheating device for supplying liquefied petroleum gas and a precooling device for liquefied natural gas production
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
WO2010027986A1 (en) * 2008-09-03 2010-03-11 Ameringer Greg E Ngl extraction from liquefied natural gas
EP2342517A2 (en) * 2008-11-03 2011-07-13 Shell Internationale Research Maatschappij B.V. Method of rejecting nitrogen from a hydrocarbon stream to provide a fuel gas stream and an apparatus therefor
US8522574B2 (en) * 2008-12-31 2013-09-03 Kellogg Brown & Root Llc Method for nitrogen rejection and or helium recovery in an LNG liquefaction plant
GB2456691B (en) * 2009-03-25 2010-08-11 Costain Oil Gas & Process Ltd Process and apparatus for separation of hydrocarbons and nitrogen
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20100287982A1 (en) * 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US9021832B2 (en) * 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
MY160789A (en) 2010-06-03 2017-03-15 Ortloff Engineers Ltd Hydrocarbon gas processing
WO2012054729A2 (en) * 2010-10-20 2012-04-26 Kirtikumar Natubhai Patel Process for separating and recovering ethane and heavier hydrocarbons from lng
CA2819123C (en) 2010-10-26 2019-03-19 Kirtikumar Natubhai Patel Process for separating and recovering ngls from hydrocarbon streams
CA2909614C (en) 2013-04-22 2021-02-16 Shell Internationale Research Maatschappij B.V. Method and apparatus for producing a liquefied hydrocarbon stream
EP2796818A1 (en) 2013-04-22 2014-10-29 Shell Internationale Research Maatschappij B.V. Method and apparatus for producing a liquefied hydrocarbon stream
EP2857782A1 (en) 2013-10-04 2015-04-08 Shell International Research Maatschappij B.V. Coil wound heat exchanger and method of cooling a process stream
EP2957620A1 (en) 2014-06-17 2015-12-23 Shell International Research Maatschappij B.V. Method and system for producing a pressurized and at least partially condensed mixture of hydrocarbons
EP2957621A1 (en) 2014-06-17 2015-12-23 Shell International Research Maatschappij B.V. De-superheater system and compression system employing such de-superheater system, and method of producing a pressurized and at least partially condensed mixture of hydrocarbons
EP2977430A1 (en) 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. A hydrocarbon condensate stabilizer and a method for producing a stabilized hydrocarbon condenstate stream
EP2977431A1 (en) 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. A hydrocarbon condensate stabilizer and a method for producing a stabilized hydrocarbon condenstate stream
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915680A (en) * 1965-03-11 1975-10-28 Pullman Inc Separation of low-boiling gas mixtures
ES360027A1 (en) * 1967-11-15 1970-10-01 Messer Griesheim Gmbh Process for the improvement of the Rectification of Gas Mixtures
US3837172A (en) * 1972-06-19 1974-09-24 Synergistic Services Inc Processing liquefied natural gas to deliver methane-enriched gas at high pressure
US4273566A (en) * 1978-09-05 1981-06-16 Cabot Corporation Method and system for the fractionation of ethane-propane mixtures
US4453958A (en) * 1982-11-24 1984-06-12 Gulsby Engineering, Inc. Greater design capacity-hydrocarbon gas separation process
US4479871A (en) * 1984-01-13 1984-10-30 Union Carbide Corporation Process to separate natural gas liquids from nitrogen-containing natural gas
DE3531307A1 (en) * 1985-09-02 1987-03-05 Linde Ag METHOD FOR SEPARATING C (ARROW DOWN) 2 (ARROW DOWN) (ARROW DOWN) + (ARROW DOWN) HYDROCARBONS FROM NATURAL GAS

Also Published As

Publication number Publication date
WO1997032172A1 (en) 1997-09-04
AU699635B2 (en) 1998-12-10
EP0883786B1 (en) 2002-08-28
EP0883786A1 (en) 1998-12-16
NZ332054A (en) 1999-07-29
ES2183136T3 (en) 2003-03-16
JP2000505541A (en) 2000-05-09
US6014869A (en) 2000-01-18
AU1879297A (en) 1997-09-16
JP3895386B2 (en) 2007-03-22
MY117906A (en) 2004-08-30
CN1212756A (en) 1999-03-31
ID15984A (en) 1997-08-21
KR19990087179A (en) 1999-12-15
CN1145001C (en) 2004-04-07

Similar Documents

Publication Publication Date Title
KR100432208B1 (en) Reducing the amount of components having low boiling points in liquefied natural gas
EP0834046B1 (en) Method of liquefying and treating a natural gas
CA2186550C (en) Process and apparatus for the production of moderate purity oxygen
US4311496A (en) Preliminary condensation of methane in the fractionation of a gaseous mixture
US5120338A (en) Method for separating a multi-component feed stream using distillation and controlled freezing zone
US4878932A (en) Cryogenic rectification process for separating nitrogen and methane
US4843828A (en) Liquid-vapor contact method and apparatus
US5505049A (en) Process for removing nitrogen from LNG
JPS6214750B2 (en)
KR100313616B1 (en) Multiple column nitrogen generators with oxygen coproduction
US6578377B1 (en) Recovery of hydrogen and carbon monoxide from mixtures including methane and hydrocarbons heavier than methane
JPH067601A (en) Method of separating multiple component stream
USRE25193E (en) Method and apparatus for separating gaseous mixtures
EP0283213A2 (en) Process for the Recovery of Argon
US4407135A (en) Air separation process with turbine exhaust desuperheat
US6082134A (en) Process and apparatus for separating a gaseous mixture
US6327873B1 (en) Cryogenic rectification system for producing ultra high purity oxygen
KR100288569B1 (en) Single column cryogenic rectification system for lower purity oxygen production
US3102801A (en) Low temperature process
US4337072A (en) Method and apparatus for manufacturing ammonia synthesis gas from a stream of gas rich in hydrogen and a stream of nitrogen
CA2016668C (en) Air separation process with improved reboiler liquid cleaning circuit
GB1579553A (en) Process for separation of a feed gas mixture containing hydrogen carbon monoxide and methane
KR960003274B1 (en) Cryogenic air separation system with hybrid argon column
MXPA96004439A (en) Lightweight component washed in ale plaque decalor exchangers
MXPA97002046A (en) System for cryogenic rectification with power condensation in eta

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130419

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee