KR100423436B1 - A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property - Google Patents

A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property Download PDF

Info

Publication number
KR100423436B1
KR100423436B1 KR10-1999-0063044A KR19990063044A KR100423436B1 KR 100423436 B1 KR100423436 B1 KR 100423436B1 KR 19990063044 A KR19990063044 A KR 19990063044A KR 100423436 B1 KR100423436 B1 KR 100423436B1
Authority
KR
South Korea
Prior art keywords
steel
bloom
casting
less
excellent fatigue
Prior art date
Application number
KR10-1999-0063044A
Other languages
Korean (ko)
Other versions
KR20010060638A (en
Inventor
배태철
나채봉
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0063044A priority Critical patent/KR100423436B1/en
Publication of KR20010060638A publication Critical patent/KR20010060638A/en
Application granted granted Critical
Publication of KR100423436B1 publication Critical patent/KR100423436B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 피로특성이 우수한 중탄소계 베어링강 제조방법에 관한 것이며, 그 목적하는 바는 강의 조성 및 제강, 연주, 강편 공정의 제조조건을 적절히 제어함으로써, 피로성능이 우수한 중탄소계 HUB 용 베어링강을 제조하고자 하는데 있다.The present invention relates to a method for manufacturing medium-carbon bearing steel with excellent fatigue properties, and its object is to provide a medium-carbon bearing for excellent fatigue performance by controlling the composition of steel and the manufacturing conditions of steelmaking, casting, and steel sheet processes. To manufacture steel.

상기 목적을 달성하기 위한 본 발명은 중량%로, C:0.40-0.70%, Si:0.10-0.40%, Mn:0.40-1.00%, P:0.015% 이하, S:0.010% 이하, Cr:0.10-0.40%, Total[O](총산소함량):10ppm 이하 및 나머지 Fe 와 기타 불가피한 불순물로 조성되는 용강을 로외정련공정에서 래들 슬래그(LADLE SLAG)의 염기도를 5-7로 확보하여 로외정련을 실시한 다음, 블룸 주조시 주조속도를 0.80-0.9M/min의 주조속도로 유지하여 블룸을 주조하고, 이렇게 주조된 블룸을 가열, 균열한 후, 압연을 행하는 것을 특징으로 하는 피로특성이 우수한 중탄소계 베어링강 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object by weight, C: 0.40-0.70%, Si: 0.10-0.40%, Mn: 0.40-1.00%, P: 0.015% or less, S: 0.010% or less, Cr: 0.10- Molten steel composed of 0.40%, Total [O] (total oxygen content) of 10 ppm or less and the remaining Fe and other unavoidable impurities was subjected to furnace external refining by securing 5-7 basicity of ladle slag in the furnace refining process. Next, during the bloom casting, the casting speed is maintained at a casting speed of 0.80-0.9 M / min, and the bloom is cast, and the thus-formed bloom is heated and cracked, followed by rolling. The point concerning bearing steel manufacturing methods is taken as the summary.

Description

피로특성이 우수한 중탄소계 베어링강 제조방법{A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property}A method for manufacturing bearing steels having excellent fatigue property}

본 발명은 피로성능이 우수한 자동차 HUB(Hub Unit Bearing)용 등으로 적용할 수 있는 중탄소계 베어링강의 제조방법에 관한 것으로서, 보다 상세하게는 강의 제강과정에서 최적의 합금성분을 채택하고, 연주공정에서 저속주조를 실시하여 피로성능을 개선한 베어링강을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a medium-carbon bearing steel that can be applied for automotive hub unit bearing (HUB) with excellent fatigue performance, and more particularly, adopts an optimum alloy component in steelmaking process, The present invention relates to a method for manufacturing bearing steel with improved fatigue performance by performing low speed casting in.

HUB용 베어링강은 다음과 같은 공정에 의해 빌레트(BILLET)로 제조되며, 이렇게 제조된 빌레트은 1,2차 수요가에 의해 환봉압연 및 HUB 외륜용 소재로 제조된다.The bearing steel for HUB is manufactured into BILLET by the following process, and the manufactured billet is made of round bar rolling and HUB outer ring material by the first and second demand.

[용선예비처리→전로취련→LF→RH→연주BLOOM→강편압연→BILLET(120x120mm)]Charter preliminary treatment → converter blow → LF → RH → performance BLOOM → rolled steel sheet → BILLET (120x120mm)]

[BILLET→환봉압연(23-40mm∮)→절단→열간단조→선삭→연삭→침탄처리 HUB 베어링 제조→피로시험(HUB Assembly 내구성 Test)][BILLET → Round Rolling (23-40mm∮) → Cutting → Hot Forging → Turning → Grinding → Carburizing HUB Bearing Manufacturing → Fatigue Test (HUB Assembly Durability Test)]

종래의 HUB 외륜용 베어링강 소재로는 구조용강재인 JS-S55C 강을 사용하였으며, 고청정강의 제조기술인 전로 켓취(CATCH) [C] 조업 및 슬래그(SLAG) 조성제어 등의 양산적용 기술이 정립되지 않아, 베어링강의 청정도 및 피로성능 척도인 Total[O](총산소함량)의 수준이 10-15ppm으로 높아 수요가의 품질요구를 만족하기가 어려웠다.The conventional bearing steel for outer ring of HUB was used as JS-S55C steel, which is a structural steel, and mass production application technology such as converter [C] operation and slag composition control, which is a manufacturing technology of high clean steel, was not established. The level of Total Oxygen (Total Oxygen Content), a measure of the cleanliness and fatigue performance of bearing steels, was 10-15 ppm, making it difficult to meet the demand for quality.

최근의 자동차 메이커(MAKER) 및 베어링 제조업체의 Total[O](총산소함량) 요구수준은 종래의 15ppm 이하에서 10ppm 이하로 보증품질강화 추세이다.Recently, the total [O] demand level of automobile makers (MAKER) and bearing manufacturers is increasing from 10ppm or less to 15ppm or less.

또한, 종래강의 경우 부분적인 25㎛ 이상의 대형의 비금속개재물 존재 문제점도 지속적으로 제기되어 왔다.In addition, in the case of conventional steel has also been continuously raised the problem of the presence of large non-metallic inclusions of more than 25㎛.

또한, 종래에는 불룸(BLOOM) 주조시 표면품질 향상을 위해 주조속도를 0.95-1.00M/min로 고속주조를 실시하여 내부편석 품질이 저하되는 문제점이 있었다.In addition, conventionally, high speed casting was performed at a casting speed of 0.95-1.00 M / min to improve surface quality during BLOOM casting.

이와같이 상기에 언급한 품질요인들은 HUB 베어링 제조후 자동차 장착시 조기에 피로파괴를 일으키는 주요 원인으로 나타났다.As described above, the above mentioned quality factors are the main cause of fatigue failure early in vehicle mounting after manufacturing HUB bearing.

본 발명자는 상기한 종래의 문제점들을 개선하기 위하여 연구와 시험생산을 행하고그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 강의 조성 및 제강, 연주, 강편 공정의 제조조건을 적절히 제어함으로써, 피로성능이 우수한 중탄소계 HUB 용 베어링강을 제조하고자 하는데, 그 목적이 있다.The present inventors have conducted research and test production in order to improve the above-mentioned problems, and the present invention has been proposed based on the results. The present invention provides a method of controlling the composition of steel and the manufacturing conditions of the steelmaking, rolling, and slab processes. To manufacture bearing steel for medium carbon-based hubs with excellent fatigue performance, its purpose is to manufacture.

도 1은 본 발명에 의한 빌레트 1/4t 부위의 비금속 개재물 조직을 보이는 조직사진Figure 1 is a tissue photograph showing the non-metallic inclusion tissue of the billet 1 / 4t site according to the present invention

도 1은 비교예에 의한 빌레트 1/4t 부위의 비금속 개재물 조직을 보이는 조직사진1 is a tissue photograph showing a non-metallic inclusion structure of the billet 1 / 4t region according to the comparative example

상기 목적을 달성하기 위한 본 발명은 중량%로, C:0.40-0.70%, Si:0.10-0.40%, Mn:0.40-1.00%, P:0.015% 이하, S:0.010% 이하, Cr:0.10-0.40%, Total[O](총산소함량):10ppm 이하 및 나머지 Fe 와 기타 불가피한 불순물로 조성되는 용강을 로외정련공정에서 래들 슬래그(LADLE SLAG)의 염기도를 5-7로 확보하여 로외정련을 실시한 다음, 블룸 주조시 주조속도를 0.80-0.9M/min의 주조속도로 유지하여 블룸을 주조하고, 이렇게 주조된 불룸을 가열, 균열한 후, 압연을 행하는 것을 특징으로 하는 피로특성이 우수한 중탄소계 베어링강 제조방법에 관한 것이다.The present invention for achieving the above object by weight, C: 0.40-0.70%, Si: 0.10-0.40%, Mn: 0.40-1.00%, P: 0.015% or less, S: 0.010% or less, Cr: 0.10- Molten steel composed of 0.40%, Total [O] (total oxygen content) of 10 ppm or less and the remaining Fe and other unavoidable impurities was subjected to furnace external refining by securing 5-7 basicity of ladle slag in the furnace refining process. Next, during the bloom casting, the casting speed is maintained at a casting speed of 0.80-0.9 M / min, and the bloom is cast, and the resulting bloom is heated and cracked, followed by rolling. A bearing steel manufacturing method.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 베어링강은 C:0.40-0.70%, Si:0.10-0.40%, Mn:0.40-1.00%, P:0.015% 이하, S:0.010% 이하, Cr:0.10-0.40%, Total[O](총산소함량):10ppm 이하 및 나머지 Fe 와 기타 불가피한 불순물로 제어된 용강을 이용하여 제조한다.Bearing steel of the present invention is C: 0.40-0.70%, Si: 0.10-0.40%, Mn: 0.40-1.00%, P: 0.015% or less, S: 0.010% or less, Cr: 0.10-0.40%, Total [O] (Total Oxygen Content) Manufactured using molten steel controlled to 10 ppm or less and the remaining Fe and other unavoidable impurities.

상기 탄소(C)는 경도향상에 기여하는 성분으로서 0.40% 이하에서는 HUB 내륜으로사용되는 강재(JS-SUJ2, 1.0%C-1.4%Cr 강)와의 열처리 경도를 맞추기 위해서는 과다한 침탄처리 시간과 비용이 소요되는 문제점이 있으며, 0.70% 이상에서는 소재 경도가 높아 가공상의 문제점으로 그 함량을 0.40-0.70% 로 제한하는 것이 바람직하다.The carbon (C) is a component contributing to the improvement of hardness, and in the case of 0.40% or less, excessive carburizing time and cost are required to match the heat treatment hardness of the steel (JS-SUJ2, 1.0% C-1.4% Cr steel) used as the inner ring of the HUB. There is a problem, and the material hardness is higher than 0.70%, it is preferable to limit the content to 0.40-0.70% due to processing problems.

상기 실리콘(Si)은 탈산효과를 위하여 첨가되는 원소로서, 과다 첨가시에는 베어링 제조과정에서 표면탈탄을 유발하여 가공성 및 침탄성 저하의 원인이 되므로 그 함량을 0.10-0.40% 로 제한하는 것이 바람직하다.The silicon (Si) is an element added for the deoxidation effect, and when excessively added, it causes surface decarburization in the bearing manufacturing process, causing deterioration of workability and carburizing property, and therefore it is preferable to limit the content to 0.10-0.40%. .

상기 망간(Mn)은 경하능을 향상시키는 원소로서 베어링의 최종 피로수명을 증가시키는 효과가 있으나, 1.00% 이상에서는 최종 베어링 제품의 인성을 저하하는 원인이 되므로 그 함량을 0.40-1.00% 로 제한하였다.The manganese (Mn) is an element that improves the hardenability, and has an effect of increasing the final fatigue life of the bearing. However, the content of the manganese (Mn) is limited to 0.40-1.00% because it causes the toughness of the final bearing product to be reduced. .

상기 인(P), 황(S)는 BLOOM 주조시 표면크랙, 내부크랙, 중심편석 등을 일으키게 되므로 그 함량을 각각 P:0.015 이하, S:0.010 이하로 제한한다.The phosphorus (P) and sulfur (S) causes surface cracks, internal cracks, center segregation, etc. during BLOOM casting, so the content is limited to P: 0.015 or less and S: 0.010 or less, respectively.

상기 크롬(Cr)은 경화능 향상 및 탄화물 형성을 조장하여 내마모성을 향상시키는데 0.10% 이하에서는 그 효과가 불충분하고, 0.40% 이상에서는 최종 제품의 인성열화와 생산단가의 증가에 따라 그 함량을 0.10-0.40% 로 제한하는 것이 바람직하다.The chromium (Cr) promotes hardenability and carbide formation to improve abrasion resistance. The effect is insufficient at 0.10% or less, and at 0.40% or more, the content thereof increases with the deterioration of toughness of the final product and the increase in production cost. It is preferable to limit to 0.40%.

상기 Total[O](총산소함량)는 강중의 비금속개재물 수준의 척도로서 강중의 Al, Ti 등과 결합하여 고경도의 비연신개재물을 형성하여 HUB 베어링의 조기 피로파괴를 유발하므로 그 함량을 10ppm 이하로 제한하는 것이 바람직하다.The total [O] (total oxygen content) is a measure of the level of non-metallic inclusions in the steel, and combines with Al, Ti, etc. in the steel to form high-strength non-stretched inclusions, which causes premature fatigue failure of the HUB bearing, so the content is less than 10 ppm. It is preferable to limit to.

상기의 조성으로 설계된 강은 전로 취련전에 용선예비설비(Hot Metal Pretreatment, Station)에서 부원료인 CaCO3, CaF2, 소결반광등을 투입 10분 이상 환류시켜 그 함량을 P ≤0.030, S ≤0.005 수준으로 낮추고, 1650℃ 이하의 저온출강을 하는 것이 바람직하다.The steel designed with the above composition was refluxed in hot metal pretreatment (Station) at the hot metal pretreatment (station) for 10 minutes or more by adding refractory materials such as CaCO 3 , CaF 2 , and sintered semi-reflective light. It is desirable to lower the temperature to 1,650 ° C. or lower, and to carry out low temperature casting.

그 이유는 기존대비 취련시간이 짧은 CATCH[C] 조업 과정에서 유해성분인 P, S 의 함량을 충분히 낮추기 어렵고 전로 취련후 출강시에는 강의 온도가 높을 시 P 가 다시 PICK-UP 되는 복 P 현상을 줄이기 위함이다.The reason for this is that it is difficult to sufficiently reduce the contents of harmful components P and S during the Catch [C] operation, which has shorter drilling time than before. To reduce.

이렇게 용선예비처리를 실시한 후 전로취련 과정에서는 강중의 탄소함량이 0.20% 이상에서 취련을 중지하는 CATCH[C] 조업을 실시하는 것이 바람직하다.After performing the charter preliminary treatment, it is preferable to perform the CATCH [C] operation in which the blowing is stopped at a carbon content of 0.20% or more in the converter blowing process.

그 이유는 베어링강과 같은 고청정강의 경우 종래와 같이 취련과정에서 강중의 탄소가 0(ZERO)이 될때까지 산소를 블로잉(BLOWING) 하여 강중의 Al, Ti 등과 화합하여 비금속 개재물을 다량 형성하므로 가능한한 0.20%C 이상에서 취련을 중지하여 산소 블로잉을 적게 함으로써 강중의 비금속 개재물을 줄일 수 있기 때문이다.The reason is that in the case of high-clean steel such as bearing steel, oxygen is blown until the carbon in the steel becomes zero (ZERO) in the drilling process as in the prior art, so as to form a large amount of non-metallic inclusions by combining with Al and Ti in the steel. This is because non-metallic inclusions in the steel can be reduced by stopping the blowing at 0.20% C or higher to reduce the oxygen blowing.

본 발명에서는 상기와 같은 용강을 이용하여, 로외정련공정에서 래들 슬래그(LADLESLAG)의 염기도를 5-7로 확보하여 로외정련을 실시한 다음, 불룸 주조시 주소속도를 0.80-0.9M/min의 주조속도로 유지하여 불룸을 주조하고, 이렇게 주조된 불룸을 가열, 균열한 후, 압연을 행한다.In the present invention, using the molten steel as described above, in the furnace refining process to ensure the basicity of the ladle slag (LADLESLAG) to 5-7 to perform the furnace external refining, then the casting speed of the bloom rate of 0.80-0.9M / min It maintains as it is, and casts a bloom, heats and cracks the thus produced bloom, and rolls.

상기 용강에는 강의 고청정성을 확보하기 위한 RH 탈가스 공정에서 생석회등의 부원료를 투입하여 슬래그 염기도 조성을 5-7 수준으로 확보한다.In the molten steel, a slag basic composition is secured at a level of 5 to 7 by adding a raw material such as quicklime in an RH degassing process to secure high cleanliness of the steel.

그 이유는 고청정 베어링강을 제조하기 위해서는 강중에 발생된 개재물들이 RH 탈가스 처리를 위한 용강 환류시 용강 상부에 형성되는 슬래그의 개재물 흡착능이 좋아야 되는데, 슬래그의 염기도 조성이 5-7 수준에서 고,액 공존의 저융점이 슬래그 형성이 가능하기 때문이다.The reason is that in order to manufacture high-clean bearing steel, the inclusions generated in the steel should have good adsorption capacity of the inclusions of slag formed on the molten steel at the time of reflux of molten steel for RH degassing treatment. It is because the low melting point of liquid coexistence can form slag.

상기와 같이 제조된 고청정강을 연주 블룸으로 주조하는데 주조속도는 0.80-0.85M/min으로 유지하는 것이 바람직하다.The high-purity steel produced as described above is cast into a playing bloom, but the casting speed is preferably maintained at 0.80-0.85 M / min.

그 이유는 너무 빠르면 중심편석이 증가하고, 너무 느리면 표면크랙의 발생이 우려되고 생산성이 저하되기 때문이다. 즉, 블룸 주조시 응고말기 지점에서 형성되는 P, S, Cr 등의 편석을 줄이기 위함이다. 이 같은 주조속도에 부가하여 용강과열도를 30℃ 이하로 유지하면 보다 우수한 효과를 얻을 수 있다.상기 용강과열도는 용강의 이론응고온도보다 용강의 온도를 얼마나 높게 관리하는지를 나타내는 정도이다.The reason is that if it is too fast, the center segregation increases, and if it is too slow, the surface cracks are concerned and productivity is lowered. That is, to reduce segregation of P, S, Cr, etc. formed at the end of the solidification during bloom casting. In addition to the casting speed, the molten steel superheat can be maintained at 30 ° C. or lower. A better effect can be obtained.

상기 가열과 균열은 주조된 블룸의 표면온도를 300-400℃로 보온 유지하여 강편 공장 가열로에 장입하여 1250-1280℃에서 3-4시간을 가열, 균열하는 것이 바람직하다.The heating and cracking is preferably maintained by heating the surface temperature of the cast bloom to 300-400 ℃ charged to a steel mill factory furnace, heating and cracking 3-4 hours at 1250-1280 ℃.

그 이유는 주조과정에서 블룸 중심부에 형성되는 P, S, C 등의 편석 및 Cr 탄화물등을 고온에서 장시간 확산처리함으로써 편석, 탄화물등의 저감에 유리하기 때문이다.This is because segregation such as P, S, C, etc. formed in the center of the bloom during the casting process and Cr carbide, etc. are diffused at a high temperature for a long time, which is advantageous for reducing segregation and carbides.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

고로-전로-연속주조법에 의해 하기표 1의 화학성분을 갖는 주편을 제조하였는데, 제조시 슬래그 조성을 하기표 2와 같았다.The slab having the chemical composition of Table 1 was prepared by the blast furnace-converter-continuous casting method, the slag composition was prepared as shown in Table 2 below.

순번turn CC SiSi MnMn PP SS S-AlS-Al CrCr 발명강Invention steel 1One 0.560.56 0.270.27 0.820.82 0.0110.011 0.0040.004 0.0280.028 0.130.13 22 0.550.55 0.230.23 0.840.84 0.0120.012 0.0030.003 0.0260.026 0.200.20 33 0.570.57 0.260.26 0.850.85 0.0100.010 0.0040.004 0.0260.026 0.250.25 44 0.550.55 0.250.25 0.830.83 0.0120.012 0.0050.005 0.0250.025 0.150.15 55 0.530.53 0.240.24 0.830.83 0.0100.010 0.0040.004 0.0260.026 0.180.18 비교강Comparative steel 66 0.530.53 0.240.24 0.810.81 0.0170.017 0.0100.010 0.0270.027 -- 77 0.550.55 0.250.25 0.830.83 0.0150.015 0.0110.011 0.0250.025 -- 88 0.560.56 0.260.26 0.850.85 0.0150.015 0.0120.012 0.0260.026 -- 99 0.550.55 0.240.24 0.830.83 0.0180.018 0.0130.013 0.0240.024 --

주편제조과정을 보다 상세히 설명하면 다음과 같다.The casting process is described in more detail as follows.

즉, 고로에서 만들어진 용선을 용선예비처리에서 탈인, 탈류하여 전로에 장입한 다음용강을 래들로 출강후 정련처리를 위해 하기표 2의 슬래그 조성하에서 RH 탈가스 처리를 실시하여 상기표 1과 같은 조성을 갖는 용강을 제조하였으며, 이때 생성되는 슬래그의 강중개재물 흡수능 향상을 위해 플럭스(FLUX) 등을 투입하여 슬래그 고염기도 조성을 확보하였다.That is, the molten iron made from the blast furnace is dephosphorized and deflowed in the molten iron preliminary treatment, charged to the converter, and then the molten steel is subjected to RH degassing under the slag composition shown in Table 2 below for laminating and refining the ladle. The molten steel was prepared, and the slag high base also secured the composition by introducing a flux (FLUX) to improve the absorption of the steel inclusions of the slag produced at this time.

상기 용강을 0.85m/min의 주조속도 및 25℃의 용강과열도 조건으로 연속주조하여 블룸을 만든 다음 블룸의 표면온도를 350℃로 유지한 상태로 강판가열로에 장입하여 1250℃에서 3시간 가열후 열간압연하여 빌레트로 제조하였으며, 청정도, Total[O](총산소함량) 및 비금속개재물 수준을 조사하여 그 결과를 하기표 3에 나타내었다.The molten steel was continuously cast at a casting speed of 0.85 m / min and a molten steel superheat condition of 25 ° C. to form a bloom, and then charged into a steel plate heating furnace at a temperature of 350 ° C. and heated at 1250 ° C. for 3 hours. After hot rolling, it was prepared as a bilet, and the cleanliness, Total [O] (total oxygen content) and nonmetallic inclusion levels were investigated and the results are shown in Table 3 below.

구분division 번호number CaOCaO Al2O3 Al 2 O 3 SiO2 SiO 2 MgOMgO CaO/SiO2 CaO / SiO 2 CaO/Al2O3 CaO / Al 2 O 3 발명강Invention steel 1One 52.552.5 30.330.3 9.19.1 5.55.5 5.85.8 1.71.7 22 53.253.2 28.428.4 8.68.6 5.65.6 6.26.2 1.91.9 33 53.653.6 32.832.8 8.88.8 5.95.9 6.16.1 1.61.6 44 51.851.8 29.529.5 8.98.9 5.35.3 5.85.8 1.81.8 55 54.254.2 31.031.0 8.58.5 6.06.0 6.46.4 1.71.7 비교강Comparative steel 66 54.154.1 16.716.7 19.819.8 6.16.1 2.72.7 3.23.2 77 54.554.5 16.016.0 18.518.5 6.36.3 2.92.9 3.43.4 88 53.053.0 18.118.1 17.517.5 6.06.0 3.03.0 2.92.9 99 55.255.2 16.616.6 17.017.0 6.16.1 3.23.2 3.33.3

구분division 번호number 청정도(%)cleanliness(%) Total[O](총산소함량).ppmTotal [O] .ppm 비금속개재물 (ASTM E45)Non-metallic Inclusions (ASTM E45) SulfideSulfide AluminaAlumina SilicateSilicate OxideOxide 발명강Invention steel 1One 0.030.03 88 1.0/0.51.0 / 0.5 0.5/0.00.5 / 0.0 0.0/0.00.0 / 0.0 0.5/0.00.5 / 0.0 22 0.030.03 77 1.0/0.51.0 / 0.5 0.5/0.00.5 / 0.0 0.0/0.00.0 / 0.0 0.5/0.00.5 / 0.0 33 0.040.04 77 0.5/0.00.5 / 0.0 0.5/0.50.5 / 0.5 0.0/0.00.0 / 0.0 0.5/0.00.5 / 0.0 44 0.040.04 88 1.0/0.51.0 / 0.5 1.0/0.51.0 / 0.5 0.0/0.00.0 / 0.0 0.5/0.50.5 / 0.5 55 0.030.03 99 1.0/0.51.0 / 0.5 0.5/0.00.5 / 0.0 0.0/0.00.0 / 0.0 0.5/0.00.5 / 0.0 비교강Comparative steel 66 0.060.06 1010 1.5/0.51.5 / 0.5 1.0/0.51.0 / 0.5 0.0/0.00.0 / 0.0 1.0/0.51.0 / 0.5 77 0.070.07 1212 1.0/0.51.0 / 0.5 0.5/0.50.5 / 0.5 0.0/0.00.0 / 0.0 0.5/0.50.5 / 0.5 88 0.050.05 1313 1.5/0.51.5 / 0.5 1.0/0.51.0 / 0.5 0.0/0.00.0 / 0.0 0.5/0.00.5 / 0.0 99 0.050.05 1111 1.5/0.51.5 / 0.5 1.0/0.51.0 / 0.5 0.0/0.00.0 / 0.0 1.0/0.51.0 / 0.5

상기표 3에서 알 수 있는 바와 같이, 본 발명의 조건을 만족하는 발명강의 경우는 Total[O](총산소함량)가 10ppm미만으로 우수하였고, 또한 청정도 및 비금속개재물에 있어서도 비교강보다 우수하였다.As can be seen in Table 3, in the case of the invention steel that satisfies the conditions of the present invention, Total [O] (total oxygen content) was less than 10 ppm, and also superior to the comparative steel in cleanliness and non-metallic inclusions. .

한편, 상기와 같은 공정으로 제조된 HUB 용 베어링강 빌레트를 1차 수요가 환봉압연 및 2차 수요가에서 베어링 단조, 조립후 HUB 베어링 어셈블리(Assembly) 상태에서 피로성능 시험을 행하고, 그 결과를 하기표 4에 나타내었다.Meanwhile, the bearing steel billet for HUB manufactured by the above process is subjected to the fatigue performance test in the state of HUB bearing assembly after the bearing is forged at the first demand and round bar rolling and the second demand, and then assembled. Table 4 shows.

구분division HUB 베어링 Assembly 피로성능 (앞차측/뒷차축)HUB Bearing Assembly Fatigue Performance (Front / Rear) 요구품질Quality requirements 33.3Hr 이상(=실자적용시 주행거리 22만km 상당)33.3Hr or more (= 220,000 km of mileage equivalent when applying a vehicle) 발명강Invention steel 43-72Hr / 41-65Hr43-72Hr / 41-65Hr 비교강Comparative steel 12-45Hr / 23-43Hr12-45Hr / 23-43Hr

상기표 4에서 알 수 있는 바와 같이, 본 발명의 조건을 만족하는 발명강은 요구품질을 만족할 뿐만아니라 강의 피로수명이 비교강보다 우수함을 알 수 있었다.As can be seen in Table 4, the invention steel that satisfies the conditions of the present invention was not only satisfies the required quality, it was found that the fatigue life of the steel is superior to the comparative steel.

이는 본 발명강(2) 및 비교강(8)의 빌레트 1/4t 부위의 비금속 개재물 조직을 비교한 도 1, 도 2을 보면 그 이유를 알 수 있는 것이다.This can be seen from Figures 1 and 2 comparing the non-metallic inclusion structure of the billet 1 / 4t region of the inventive steel (2) and comparative steel (8).

상술한 바와 같은 본 발명에 의하면, 강의 제강과정에서 최적의 합금성분을 채택하고, 제강취련과정에서 0.20%C 이상에서 켓취 [C] 조업을 실시하고, 로외정련 공정에서 RH 레이들 상부이 용강 슬래그의 조성을 고염기도로 확보하며, 연주공정에서 내부편석 저감을 위해 저속주조를 실시한 다음 강편공정에서 블룸 편석저감을 위한 고온확산 균열을 실시함으로써, 피로성능이 우수한 HUB용 베어링강의 빌레트를 제조할 수 있다.According to the present invention as described above, the optimum alloy component in the steelmaking process of the steel, adopting the [C] operation at 0.20% C or more during the steelmaking process, the upper part of the RH ladle in the furnace refining process of the molten steel slag It is possible to manufacture a billet of HUB bearing steel with excellent fatigue performance by securing the composition with a high base degree, performing low-speed casting to reduce internal segregation in the casting process, and then performing high-temperature diffusion cracking to reduce bloom segregation in the steel slab process.

Claims (3)

중량%로, C:0.40-0.70%, Si:0.10-0.40%, Mn:0.40-1.00%, P:0.015% 이하, S:0.010% 이하, Cr:0.10-0.40%, Total[O](총산소함량):10ppm 이하 및 나머지 Fe 와 기타 불가피한 불순물로 조성되는 용강을 로외정련공정에서 래들 슬래그의 염기도를 5-7로 확보하여 로외정련을 실시한 다음, 불룸 주조시 주조속도를 0.80-0.9M/min의 주조속도로 유지하여 불룸을 주조하고, 이렇게 주조된 불룸을 가열, 균열한 후, 압연을 행하는 것을 특징으로 하는 피로특성이 우수한 중탄소계 베어링강 제조방법By weight%, C: 0.40-0.70%, Si: 0.10-0.40%, Mn: 0.40-1.00%, P: 0.015% or less, S: 0.010% or less, Cr: 0.10-0.40%, Total [O] Oxygen content): The molten steel with 10ppm or less and the remaining Fe and other unavoidable impurities is subjected to external furnace refining by securing the basicity of ladle slag to 5-7 in the furnace external refining process, and then casting speed is 0.80-0.9M / A method for producing a medium carbon bearing steel having excellent fatigue characteristics, characterized in that the casting is performed at a casting speed of min and the rolling is performed after heating and cracking the cast bloom. 제 1 항에 있어서,The method of claim 1, 상기 블룸 주조는 용강과열도(△T)를 30℃ 이하로 유지하는 것임을 특징으로 하는 피로특성이 우수한 중탄소계 베어링강 제조방법The bloom casting is a method of manufacturing a medium-carbon bearing steel with excellent fatigue characteristics, characterized in that to maintain the molten steel superheat (ΔT) below 30 ℃ 제 1 항에 있어서,The method of claim 1, 상기 가열, 균열은 블룸을 표면온도 300-400℃ 보온 유지후 강편가열로에서 1250-1280℃, 3-4시간 확산처리하는 것임을 특징으로 하는 피로특성이 우수한 중탄소계 베어링강 제조방법The heating and cracking method for producing a medium carbon bearing steel having excellent fatigue properties, characterized in that the bloom is heat treated at 1250-1280 ° C. for 3-4 hours after maintaining the surface temperature of 300-400 ° C.
KR10-1999-0063044A 1999-12-27 1999-12-27 A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property KR100423436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063044A KR100423436B1 (en) 1999-12-27 1999-12-27 A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063044A KR100423436B1 (en) 1999-12-27 1999-12-27 A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property

Publications (2)

Publication Number Publication Date
KR20010060638A KR20010060638A (en) 2001-07-07
KR100423436B1 true KR100423436B1 (en) 2004-03-19

Family

ID=19630429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063044A KR100423436B1 (en) 1999-12-27 1999-12-27 A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property

Country Status (1)

Country Link
KR (1) KR100423436B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399640B (en) * 2016-09-19 2018-03-16 邢台钢铁有限责任公司 Control the method for refining of brittle inclusion in bearing steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294150A (en) * 1986-06-12 1987-12-21 Daido Steel Co Ltd High-quality bearing steel and its production
JPH03254342A (en) * 1990-03-03 1991-11-13 Kawasaki Steel Corp Manufacture of raw material for bearing having excellent service life to rolling fatigue
KR980002274A (en) * 1996-06-05 1998-03-30 서순화 Highly clean carburized bearing steel and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294150A (en) * 1986-06-12 1987-12-21 Daido Steel Co Ltd High-quality bearing steel and its production
JPH03254342A (en) * 1990-03-03 1991-11-13 Kawasaki Steel Corp Manufacture of raw material for bearing having excellent service life to rolling fatigue
KR980002274A (en) * 1996-06-05 1998-03-30 서순화 Highly clean carburized bearing steel and its manufacturing method

Also Published As

Publication number Publication date
KR20010060638A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
JP2024502743A (en) Steel for Zeppa type universal joint retainer and its manufacturing method
CN113234998A (en) Nb-Ti microalloyed high temperature resistant carburized gear steel and manufacturing method thereof
KR20230159857A (en) Steel for high-temperature carburized gear shafts and manufacturing method thereof
CN114941101B (en) Steel for bearing shaft of automobile engine and production method thereof
CN112899572A (en) High-performance QGLZ-X steel for non-quenched and tempered plastic machine tie bar and production method thereof
CN113403538A (en) High-contact fatigue performance wheel and production method thereof
CN114959415A (en) Manufacturing method of microalloyed wind power transmission gear steel
CN112981233B (en) Low-silicon medium-carbon gear steel suitable for cold forging processing and manufacturing method thereof
CN110029268A (en) A kind of low-temperature pressure container 09MnNiDR steel plate and manufacturing method for protecting center portion low-temperature flexibility
CN113528976A (en) Non-quenched and tempered bar without surface cracks and preparation method thereof
CN114134398A (en) Expansion-fracture connecting rod steel with yield ratio of 0.70-0.80 and manufacturing method thereof
CN109852872B (en) Steel for ball cage of automobile driving system and production method thereof
CN112410671A (en) Production method for producing steel for rim by adopting complex phase structure
CN109930063B (en) Steel for engineering machinery crawler chassis wheel body and production method thereof
CN115449704B (en) New energy automobile hub bearing steel and production method thereof
KR100423436B1 (en) A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property
CN115838900A (en) Preparation method of heat-treatment-free high-strength cold heading line steel
CN109371322A (en) Meet half axle-steel and its manufacturing method of immediate quenching technique
JPH0585629B2 (en)
KR100446649B1 (en) Method For Manufacturing Carbonitriding Bearing Steel
KR100470670B1 (en) Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate
KR100206353B1 (en) Method of high purity carbonization bearing steel and the same product
CN115323263B (en) Wear-resistant high-hardenability gear steel for rear axle reduction gearbox of truck and manufacturing method
CN115044827B (en) Production method of low-carbon gear steel free of isothermal annealing
WO2021256159A1 (en) Method for producing cast slab that serves as material for steel with high fatigue strength

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 16