KR100422178B1 - Composition for inhibiting mycotoxin production - Google Patents

Composition for inhibiting mycotoxin production Download PDF

Info

Publication number
KR100422178B1
KR100422178B1 KR10-2001-0014518A KR20010014518A KR100422178B1 KR 100422178 B1 KR100422178 B1 KR 100422178B1 KR 20010014518 A KR20010014518 A KR 20010014518A KR 100422178 B1 KR100422178 B1 KR 100422178B1
Authority
KR
South Korea
Prior art keywords
production
apuratoxin
hexane
ethyl acetate
okratoxin
Prior art date
Application number
KR10-2001-0014518A
Other languages
Korean (ko)
Other versions
KR20020074632A (en
Inventor
최원식
Original Assignee
최원식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최원식 filed Critical 최원식
Priority to KR10-2001-0014518A priority Critical patent/KR100422178B1/en
Publication of KR20020074632A publication Critical patent/KR20020074632A/en
Application granted granted Critical
Publication of KR100422178B1 publication Critical patent/KR100422178B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 천연생리활성물질을 이용한 곰팡이독소생성저해제 조성물에 관한 발명으로, 더욱 상세하게는 후추추출물을 이용한 곰팡이독소생성저해제 조성물에 관한 발명이다.The present invention relates to a fungal toxin production inhibitor composition using a natural physiologically active substance, and more particularly, to a fungal toxin production inhibitor composition using a pepper extract.

Description

곰팡이 독소 생성저해제 조성물{Composition for inhibiting mycotoxin production}Composition for inhibiting mycotoxin production

본 발명은 천연생리활성물질을 이용한 곰팡이독소생성저해제 조성물에 관한 발명으로, 더욱 상세하게는 후추추출물을 이용한 곰팡이독소생성저해제 조성물에 관한 발명이다.The present invention relates to a fungal toxin production inhibitor composition using a natural physiologically active substance, and more particularly, to a fungal toxin production inhibitor composition using a pepper extract.

농작물의 경작시에 발생하는 식물병과 수확 후에 운반이나 저장중에 식물병에 의하여 야기하는 경제적인 손실은 약 5∼50%에 달하고 있다. 개발도상국에서는손실이 더욱 심각하여 농약을 사용하지 않고는 농사를 지을 수 없을 정도로 식물병원균에 의한 손실은 크다고 할 수 있다. (Agrios, G. N.InPlant Pathology, 4th Ed., Academic Press, pp 25-37, 1997. ; Oreke, E. C., Dehne, H. W., Schonbeck, F., and Weber, A. Crop production and crop protection: Estimated Losses in Major Food and Cash Crops. Elsevier, Amsterdam, 1994.) 후지타는 농약을 사용하지 않을 경우의 수확량과 출하금액의 감소를 조사하였는데 벼 및 맥류는 20∼30%의 감소를 나타내었으며, 사과와 복숭아는 전혀 수확할 수 없었으며, 다른 작물도 막대한 피해를 나타내었다고 보고하였다. 식물병해의 피해는 단순히 수량 감소뿐만 아니라 병원균이 생산하는 2차 대사산물에 의해 사람과 동물에 강한 독성 피해를 받는 것으로 알려져 있다. (Ames, B. N.Sci., 204, 587-593, 1979. ; Vesconder, R. F. and Golinski, P.InFusarium-mycotoxins, taxonomy and pathogenicity, ed. by J. Chelkowski, Amsterdam, Elsevier. pp. 1-39, 1989.)Plant diseases occurring during the cultivation of crops and economic losses caused by plant diseases during transportation or storage after harvesting amount to about 5 to 50%. In developing countries, losses are so severe that losses from phytopathogenic bacteria cannot be achieved without the use of pesticides. (Agrios, GN In Plant Pathology, 4th Ed., Academic Press, pp 25-37, 1997 .; Oreke, EC, Dehne, HW, Schonbeck, F., and Weber, A. Crop production and crop protection: Estimated Losses in Major Food and Cash Crops.Elsevier, Amsterdam, 1994.) Fujita investigated yields and shipments declines without pesticide use. Rice and varieties showed a 20-30% reduction, while apples and peaches did not. It could not be harvested, and other crops were reported to have caused enormous damage. The damage of plant diseases is known to be not only reduced in yield but also strongly toxic to humans and animals by secondary metabolites produced by pathogens. (Ames, BN Sci ., 204, 587-593, 1979 .; Vesconder, RF and Golinski, P. In Fusarium-mycotoxins, taxonomy and pathogenicity, ed. By J. Chelkowski, Amsterdam, Elsevier. Pp. 1-39, 1989.)

최근에는 선진국뿐만 아니라 농산물 수출국에서 농산물의 질적향상 및 품질보존에 직·간접적으로 악영향을 초래하는 중요한 요인중의 하나로 식물 병원성 곰팡이균에 의한 균 독소의 문제가 심각히 대두되고 있다.Recently, as one of the important factors causing direct and indirect adverse effects on the quality improvement and quality preservation of agricultural products, as well as developed countries, the problem of fungal toxin caused by phytopathogenic fungi has emerged seriously.

식물 병원성 곰팡이균 중에Aspergillus flavus에 의하여 생성되는 2차 대사산물인 아푸라톡신 B1(aflatoxin B1)은 무색, 무취한 균 독소이다. (Diner, U. L., Cole, R. J., Sanders, T. H., Payak, G. A., Lee, L. S., and Klich, M. A.Ann. Rev. phytopathol., 25, 249-270, 1987) 그 구조 및 생합성 과정을 도 3에 나타내었다.Ain phytopathogenic fungal secondary metabolites produced by the fungi Aspergillus flavus furanyl toxin B 1 (aflatoxin B 1) is a colorless, odorless, a fungus toxins. (Diner, UL, Cole, RJ, Sanders, TH, Payak, GA, Lee, LS, and Klich, MA Ann. Rev. phytopathol. , 25, 249-270, 1987) The structure and biosynthesis process are shown in FIG. It was.

아푸라톡신 B1과연관된 디후라노큐마린(difuranocoumarin)화합물들은사람과 동물에 대하여 돌연변이, 발암 및 기형을 유발시키는 것으로 알려져 있다. (Fugimoto, Y., Hampton, L. L., Writh, P. J., Wang, N. J., Xie, J. P., and Thorgenirsson, S. S.Cancer Res., 54, 281-285, 1994. ; Hosono, S., Chou, M. J., Lee, C. S., and Shin, C.Oncogene, 8, 491-496, 1993.) 특히 견과류와 같은 농산물의 오염은 많은 나라에서 주요관심인 동시에 수많은 연구가 이루어지고 있다. 이와 같이 유독한 아푸라톡신 B1을 생성하는A. flavus가 잘 번식하는 환경적인 요소, 진균에서 분비되는 종류, 독소의 생합성 과정, 독소가 사람과 동물에 미치는 영향 등에 많은 연구 결과가 보고되고 있다.Aspergillusspp.가 생성하는 다른 종류의 독소들에 관한 연구는 전세계적으로 아직 미비한 실정이며,Aspergillus ochraceus에 의하여 생성되는 오크라톡신(orchratoxin) A가 그 대표적인 예라고 할 수 있다. (Abarca, M. L., Bragular, M. R., and Castella, G.J. Food Prot., 60, 1580-1582, 1997.) 오크라톡신 A는 약 35년 전에 그 화학구조가 알려졌다. (Merwe, K. J., van der, Steyn, P. S. and Fourie, L.J. Chem. Soc., 7083-7088, 1965.) 현재는 작물, 견과류(Scott, P. M., Van-Waleek, W., Kennedy, B., and Anyeti, D.J. Agric. Food Chem., 20, 1103-1109, 1972. ; Krogh P., Hald, B., and Pederson, E. J.Acta Pathol. Microbiol. Scand.(B) Microbiol. Imminol., 81, 689-695, 1973.) 및 저장식품 (Ucno, T.CRC Crit. Rev. Toxicol., 14, 33-132,1985. ; Hohler, D.Z. Ernachrungswiss, 37, 2-12, 1998.) 등에서 발견되고 있으며, 고등생물에 있어 신장병, 간질환, 기형유발 및 면역억제 등을 유발시키는 것으로 알려져 있다.(Cole, R. J,. and Cox, R. H. Handbook of Toxic Fungal Metabolites, Academic Press, 1981.)Difuranocoumarin compounds associated with apuratoxin B 1 are known to cause mutations, carcinogenesis and malformations in humans and animals. (Fugimoto, Y., Hampton, LL, Writh, PJ, Wang, NJ, Xie, JP, and Thorgenirsson, SS Cancer Res ., 54, 281-285, 1994 .; Hosono, S., Chou, MJ, Lee, CS, and Shin, C. Oncogene , 8, 491-496, 1993.) Contamination of agricultural products, especially nuts, is a major concern in many countries and a great deal of research is being done. Many studies have been reported on the environmental factors such as A. flavus , which produces toxic apuratoxin B 1 , as well as the types of fungi, the biosynthetic processes of toxins, and the effects of toxins on humans and animals. . Aspergillus spp. Has yet to be studied about the different kinds of toxins produced by the world, and orchratoxin A produced by Aspergillus ochraceus is a representative example. (Abarca, ML, Bragular, MR, and Castella, G. J. Food Prot ., 60, 1580-1582, 1997.) Okratoxin A was known about 35 years ago in its chemical structure. (Merwe, KJ, van der, Steyn, PS and Fourie, L. J. Chem. Soc ., 7083-7088, 1965.) Currently crops and nuts (Scott, PM, Van-Waleek, W., Kennedy, B ., and Anyeti, D. J. Agric.Food Chem. , 20, 1103-1109, 1972; Krogh P., Hald, B., and Pederson, EJ Acta Pathol.Microbiol.Scand. (B) Microbiol.Imminol ., 81, 689-695, 1973.) and stored foods (Ucno, T. CRC Crit. Rev. Toxicol. , 14, 33-132,1985 .; Hohler, D. Z. Ernachrungswiss , 37, 2-12, 1998.), and is known to cause kidney disease, liver disease, malformation and immunosuppression in higher organisms (Cole, R. J ,. and Cox, RH Handbook of Toxic Fungal Metabolites, Academic Press). , 1981.)

오크라톡신 A는 아미드기에 인접한 탄소에 카르복실기가 치환된 L-페닐알라닌에 디하이드로이소큐마린(dihydroisocumarin)이 결합된 구조적인 특성을 가지고 있다.Ocratoxin A has a structural characteristic in which dihydroisocumarin is bonded to L-phenylalanine in which a carboxyl group is substituted on a carbon adjacent to an amide group.

오크라톡신 A를 산으로 처리하면 페닐알라닌과 이소큐마린이 생성된다. Stromer 등은 오크라톡신 A를 쥐, 돼지와 사람 간세포의 마이크로좀과 함께 NADPH와 산소하에서 반응시켜 (4R)-4-하이드록시오크라톡신 A와 (4S)-4-하이드록시오크라톡신 A등과 같은 두 가지 종류의 대사산물이 생성됨을 확인하였고, 토끼의 간을 사용하면 위의 두 가지 대사산물 이외에 10-하이드록시오크라톡신 A가 추가적으로 생성됨을 확인하였다. 이러한 생체 내 오크라톡신 A의 대사는 일산화탄소와 메트리아포넥(metryaponecm)에 의하여 저해되고 페노바비탈(phenobarbital)에 의하여 전 처리된 동물의 간을 사용할 때는 그 대사작용이 상승된다. 따라서 이러한 연구결과를 토대로 위의 대사산물들은 사이토크롬 P450에 의존한 모노옥시겐네이즈에 의하여 대사과정이 진행된다고 알려져 있으나 생체내에서의 생합성 경로는 아직 확실히 규명되지 않고 있다.Treatment of okratoxin A with acid produces phenylalanine and isocumarin. As Stromer et al by reacting NADPH and oxygen with a Ochratoxin A and rat, pig and human liver microsomal (4 R) -4- hydroxy Ochratoxin A and (4 S) -4- hydroxy Ochratoxin A It was confirmed that the same two kinds of metabolites were produced, and using the liver of rabbits, 10-hydroxyocratoxin A was additionally produced in addition to the above two metabolites. The metabolism of okratoxin A in vivo is inhibited by carbon monoxide and metricaponecm, and its metabolism is elevated when using livers of animals pretreated by phenobarbital. Therefore, based on these findings, the metabolites are known to be metabolized by monooxygenase, which depends on cytochrome P450, but the biosynthetic pathways in vivo have not been elucidated.

이러한 균 독소에 대하여 국내외적으로 많은 연구가 수행되어 왔으나 아직 우리나라에서는 포장에서부터 저장과 소비에 이르기까지 균에 의한 독소발생에 관여하는 생물 생태적인 요소 규명이 미진한 실정이다. 식물 병원성 곰팡이균 중에서 모든 종류의 작물에 아푸라톡신을 감염시키는Aspergillus spp.에 관해서 선진국등을 포함한 많은 나라에서 연구가 이루어지고 있는데, 이들 진균이 잘 번식하는 환경적인 요소, 진균에서 분비되는 종류, 독소의 생합성 과정, 독소가 인축에 미치는 영향 등에 많은 연구 결과가 보고되고 있다. 하지만 농산물에서 진균독소의 생성을 억제하는 방안이나 오염된 독소를 제거하는 분야에 관해서는 아직 그 연구가 미비한 상태이다. 흔히 진균독소의 생성을 방지하기 위해 살균제를 수확전후의 농산물에 주기적으로 살포하는 화학적 방제를 사용하고 있으나 이 과정에서 농약 성분이 농산물에 잔류, 오염되어 인축에 농약독성을 일으키게 될 염려가 높다.Although many studies have been carried out at home and abroad on these bacterial toxins, it is still insufficient to identify the bio-economic factors involved in the toxin generation by bacteria from packaging to storage and consumption. Among the plant pathogenic fungi, Aspergillus spp ., Which infects all kinds of crops, has been studied in many countries, including developed countries. Many studies have reported about the biosynthesis process of toxins and the effects of toxins on their contraction. However, the research on the method of suppressing the production of mycotoxins and the removal of contaminant toxins in agricultural products is insufficient. In order to prevent the production of mycotoxins, chemical control is used to periodically spray fungicides on pre- and post-harvest agricultural products, but there is a high possibility that pesticides will remain in the agricultural products and become contaminated, resulting in pesticide toxicity in humans.

또한 아프라톡신 등의 곰팡이독소의 오염을 방지하기 위한 최근의 외국의 연구들을 살펴보면 유전공학적인 방법을 이용하여 항곰팡이물질을 곡류에 집어 넣는 방법이 있다. 땅콩, 면, 호두 등에 라이틱 펩티드, 세균 엔도-키틴네이즈, 담배 오스모틴 등과 같은 여러 항곰팡이물질의 트랜스포메이션이 진행되었다(Cary, J. W. et al., p.16, Proceedings from the 7th Annual Aflatoxin Elim Workshop Meeting, St. Louis, 1994; Chlan, C. et al., p.15, Proceedings from the 7th Annual Aflatoxin Elim Workshop Meeting; Li, Z. et al., p.12, Proceedings from the 7th Annual Aflatoxin Elim Workshop Meeting). 그러나 그러한 항곰팡이물질이 Aspergillus에 의해 유발되는 독성에 대한 방어기작으로 작용한다는 결과가 아직 구체적으로 나온 것이 적다.In addition, the recent foreign studies to prevent the contamination of fungal toxins such as apratoxin, there is a way to put the anti-fungal substances in cereals using genetic engineering method. Transformation of various antifungal substances, such as lyctic peptides, bacterial endo-chitinases, tobacco osmotin, etc. (Cary, JW et al., P. 16, Proceedings from the 7th Annual Aflatoxin Elim) Workshop Meeting, St. Louis, 1994; Chlan, C. et al., P. 15, Proceedings from the 7th Annual Aflatoxin Elim Workshop Meeting; Li, Z. et al., P. 12, Proceedings from the 7th Annual Aflatoxin Elim Workshop Meeting). However, little is known about how such antifungal substances act as a defense against the toxicity caused by Aspergillus.

두 번째 방법은 생조절물질을 사용하여 아프라톡신의 생산을 조절하는 것 이다. 예를 들어 이러한 연구는 독성있는 세균과 경쟁하는 비독성 Aspergillus에 초점이 맞추어졌다. 그러나 토양에서 경쟁하는 미생물을 성장시키는 방법이 용이하지 않다는 보고가 있다(미국특허 제5,942,661호).The second method is to use bioregulators to regulate the production of apratoxin. For example, the study focused on non-toxic Aspergillus, which competes with toxic bacteria. However, it is reported that the method of growing the microorganisms competing in the soil is not easy (US Pat. No. 5,942,661).

따라서, 농산물에서 진균이 잘 자라지 못하게 하고, 진균독소를 생성하지 못하게 하는 천연물질을 개발할 필요성이 있다.Therefore, there is a need to develop natural substances that prevent fungi from growing and producing fungal toxins in agricultural products.

본 발명은 위에서 기술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 천연생리활성 물질을 이용하여 균 독소를 생성하는 식물병원균 특히Aspergillus spp. 방제제로 현재 사용되고 있는 유기 합성 농약의 대체제를 제공하는 것이다.The present invention has been made to solve the above-described problems, an object of the present invention is to produce a phytopathogen, especially Aspergillus spp . It is to provide an alternative to organic synthetic pesticides currently used as a control agent.

도 1은Aspergillus flavus에 대한 후추에서 추출한 메탄올 추출물의 항아푸라톡신 활성을 나타내는 그림이다.1 is a diagram showing the antiapuratoxin activity of the methanol extract extracted from the pepper against Aspergillus flavus .

도 2는Aspergillus ochraceus에 대한 후추에서 추출한 메탄올 추출물의 항오크라톡신 활성을 나타내는 그림이다.2 is a diagram showing the anti-kratoxin activity of the methanol extract extracted from the pepper against Aspergillus ochraceus .

도 3은 아푸라톡신 B1(aflatoxin B1)의 구조 및 생합성 과정을 나타낸 그림이다.3 is a diagram showing the structure and biosynthesis process of apuratoxin B 1 (aflatoxin B 1 ).

상기와 같은 목적을 달성하기 위하여 본 발명은 유효량의 후추추출물을 포함하는 곰팡이 독소 생성저해제 조성물을 제공한다.In order to achieve the above object, the present invention provides a fungal toxin production inhibitor composition comprising an effective amount of pepper extract.

본 발명에서 후추추출물은 헥산, 메탄올, 에탄올, 아세톤, 에칠아세테이트, 염화메틸렌, 클로로포름 및 그것의 혼합물 중에서 선택된 하나 이상의 용매로 추출한 것이 바람직하다.In the present invention, the pepper extract is preferably extracted with one or more solvents selected from hexane, methanol, ethanol, acetone, ethyl acetate, methylene chloride, chloroform and mixtures thereof.

또, 본 발명의 조성물은 헥산이나 메탄올을 이용한 후추 추출물을 사용하여도 곰팡이독소생성저해 효과가 우수하지만, 그것을 더욱 분리하여 활성성분으로 피페로타데키리딘 및 피페르론구민으로 구성된 군에서 선택된 하나 이상의 화합물 및 그 혼합물의 경우에는 더욱 바람직한 효과를 갖는다.In addition, the composition of the present invention is excellent in inhibiting fungal toxin production by using pepper extract using hexane or methanol, but is further separated from the one selected from the group consisting of piperottade Kiridine and piperongamine as active ingredients In the case of the above compound and its mixture, it has a more preferable effect.

또한 본 발명의 추출물의 가장 효율적인 농도범위는 1㎍/㎖에서 5㎎/㎖인 것을 확인하였다.In addition, it was confirmed that the most efficient concentration range of the extract of the present invention is 1 mg / ml to 5 mg / ml.

본 발명의 조성물은 여러 곰팡이 독소에 효과를 가지며 특히 아푸라톡신 또는 오크라톡신에는 뛰어난 효과를 갖는다. 이하 본 발명을 상세하게 설명한다.The compositions of the present invention have an effect on various fungal toxins and in particular have excellent effects on apuratoxins or okratoxins. Hereinafter, the present invention will be described in detail.

[아푸라톡신 B1생성저해 활성측정][Measurement of Apuratxin B 1 Production Inhibition Activity]

먼저, 아푸라톡신 B1생성저해 활성에 사용한 균주는Aspergillus flavusNRRL 2061로 미국농무성 북부지역 연구쎈타 (USDA, Peoria, IL, U.S.A)에서 분양 받았으며 동결건조된 균주는 agar-melt (MEA)배지에서 유지한다.First, Aspergillus flavus NRRL 2061 was used as a strain to inhibit apuratoxin B 1 production. Keep it.

실험방법은 대상 식물의 분말과 메탄올 조추출물 및 단일 화합물들을 PDA배지에 첨가하고 멸균한 후 각각의 60 mm 페트리디쉬에 10 ㎖씩 넣은 후 각 평판배지에 200개의A. flavusNRRL 2061 포자를 접종하고 30℃에서 7일간 배양시킨 후 아푸라톡신 B1의 정량분석을 위한 시료로 사용한다. 대조군으로는 시료가 첨가되지 않은 PDA 배지를 사용하였다. 각 농도별로 3회 반복한다.The test method was to add powder, methanol crude extract and single compound of the target plant to PDA medium, sterilize, put 10 ml into each 60 mm Petri dish, and inoculate 200 A. flavus NRRL 2061 spores into each plate medium. After 7 days of incubation at 30 ℃ is used as a sample for quantitative analysis of apuratoxin B 1 . PDA medium without a sample was used as a control. Repeat three times for each concentration.

아푸라톡신 B1의 정량분석은 각각의 평판배지를 50 ㎖의 메탄올로 추출한 후 1 ㎖을 취해 40℃에서 질소가스 주입 하에 농축한다. 농축액을 200 ㎕의 헥산과 동량의 trifluoroacetic acid를 사용하여 상온에서 10분간 고정시키고 40℃에서 질소가스 주입 하에 재농축 한다. 그 농축액을 1 ㎖의 H2O:CH3CN (9:1) 혼합용매에 용해시킨 후 20 ㎕를 HPLC에 주입한다. 사용된 HPLC (Hewelett Packard 1050)의 이동상은 H2O:methanol:CH3CN (60:20:20), 1.0 ㎖/min 유속으로 50 mm guard column (Ranin Instrument Co. MA, U.S.A)과 C185 ㎛ microsorb column (4.6 × 250 ㎜) (Alltech Co. IL, U.S.A.) 사용하여 용출시킨다. 365∼455 nm에서 형광검출기를 사용하여 생성된 아푸라톡신 B1양을 측정한다. 아푸라톡신 B1의 피크는 6.3근처에서 나타난다.Quantitative analysis of apuratoxin B 1 is performed by extracting each plate medium with 50 ml of methanol, then taking 1 ml and concentrating under nitrogen gas injection at 40 ° C. The concentrate was fixed for 10 minutes at room temperature using 200 μl of hexane and the same amount of trifluoroacetic acid and reconcentrated at 40 ° C. under nitrogen gas injection. The concentrate was dissolved in 1 ml of H 2 O: CH 3 CN (9: 1) mixed solvent, and 20 µl was injected into HPLC. The mobile phase of HPLC (Hewelett Packard 1050) used was H 2 O: methanol: CH 3 CN (60:20:20), 50 mm guard column (Ranin Instrument Co. MA, USA) and C 18 at a flow rate of 1.0 ml / min. Eluate using a 5 μm microsorb column (4.6 × 250 mm) (Alltech Co. IL, USA). The amount of apuratoxin B 1 produced is measured using a fluorescence detector at 365 to 455 nm. The peak of apuratoxin B 1 appears around 6.3.

A. flavus에 의해서 생성되는 아푸라톡신 B1에 대한 시료의 아푸라톡신 B1생성저해 활성 정도는 생성저해 활성의 결과를 대조군에 대한 저해율(%)로 나타냈다. 저해율(%) 계산식은 식 1과 같다. The degree of inhibitory activity of apuratoxin B 1 production of the sample against the apuratoxin B 1 produced by A. flavus indicated the inhibition rate (%) relative to the control group. The inhibition rate (%) calculation formula is shown in Equation 1.

저해율(%) = [(A-B)/A] × 100 ------- (식 1)% Inhibition = [(A-B) / A] × 100 ------- (Equation 1)

A는 대조군의 아푸라톡신 B1생성량, B는 시료처리된A. flavus에서 아푸라톡신 B1생성량이다.A is the production amount of apuratoxin B 1 of the control group, B is the production amount of apuratoxin B 1 in the sampled A. flavus .

[Ochratoxin A 생성저해 활성측정][Ochratoxin A Production Inhibition Activity Measurement]

먼저 오크라톡신 A 생성저해 활성에 사용한 균주는Aspergillus ochraceusNRRL 3174로 미국농무성 북부지역 연구쎈타 (USDA, Peoria, IL, U.S.A)에서 분양받았고, 동결건조된 균주는 agar-melt (MEA) 배지에서 유지한다.First, strains used to inhibit the production of okratoxin A were distributed by Aspergillus ochraceus NRRL 3174 in the US Department of Agriculture, North America, USDA, Peoria, IL, USA, and lyophilized strains were maintained in agar-melt (MEA) medium. .

실험방법은A. ochraceus를 MEA 배지에서 7일간 포자형성이 잘 되도록 배양시킨 후, 생성된 포자는 0.01% (v/v) 멸균된 Tween 80 용액을 사용하여 수거하여멸균된 cheese cloth를 사용하여 여과한다. 포자의 농도는 MEA 배지 상에서 계수 한 후 펩톤-물(0.1%, w/v)을 희석액으로 사용한다. 평판배지는 25℃에서 3일간 배양시켰고, 각 평판배지당 약 106/㎖의 포자를 함유한다.Experimental method was incubated for 7 days in sporulation of A. ochraceus in MEA medium, and the resulting spores were collected using 0.01% (v / v) sterilized Tween 80 solution and filtered using a sterilized cheese cloth. do. Spore concentration was counted on MEA medium and then peptone-water (0.1%, w / v) was used as diluent. Plate medium was incubated at 25 ° C. for 3 days and contained about 10 6 / ml spores per plate medium.

오크라톡신 A 생성을 위하여 yeast-extract-sucrose (YES) 배지를 기본배지로 사용하였다. 50 ㎖의 YES 배지를 삼각플라스크에 부은 후 121℃에서 15분간 멸균시켰다. 각 시료들을 농도별로 각각의 삼각플라스크에 첨가한 후, 포자 현탁액 (1×106포자/㎖)을 접종하여 25℃에서 7일간 배양시킨다. 모든 실험은 3회 반복한다.Yeast-extract-sucrose (YES) medium was used as a basic medium for the production of okratoxin A. 50 ml of YES medium was poured into a Erlenmeyer flask and sterilized at 121 ° C. for 15 minutes. Each sample was added to each Erlenmeyer flask by concentration, and then inoculated with a spore suspension (1 × 10 6 spores / ml) and incubated at 25 ° C. for 7 days. All experiments are repeated three times.

오크라톡신 A의 분석은 생성되어진 오크라톡신 A는 클로로포름을 사용하여 추출한 후 각 추출물들을 질소가스 주입 하에 농축시키고, 그 농축액을 phenylacetic acid:H2O (99:1) 용액으로 재 용해시킨다. 각 처리된 시료 용액은 실리카겔 60으로 처리된 TLC 판에서 오크라톡신A 표준용액과 함께 톨루엔:에틸아세테이트:포름산(60:30:10)의 전개용매를 사용하여 전개 시킨다. TLC 판에 나타난 오크라톡신 A는 CHR-스칸 덴시토메터(Engineering Co. Budapest, Hungary)를 사용하여 그 양을 측정한다.The analysis of okratoxin A was performed by extracting the generated okratoxin A using chloroform, and each extract was concentrated under nitrogen gas injection, and the concentrate was re-dissolved with phenylacetic acid: H 2 O (99: 1) solution. Each treated sample solution was developed on a TLC plate treated with silica gel 60 using a developing solvent of toluene: ethylacetate: formic acid (60:30:10) together with okratoxin A standard solution. Ocratoxin A shown on the TLC plate was measured using CHR-Scan densitometer (Engineering Co. Budapest, Hungary).

A. ochraceus가 생성하는 오크라톡신 A에 대한 시료의 ochratoxin A의 생성억제 효과에 대한 결과는 대조군에 대한 저해율(%)로 나타낸다. 저해율(%) 계산식은 식 2와 같다. The results of the inhibitory effect of ochratoxin A on the production of O. latoxin A produced by A. ochraceus are expressed as% inhibition to the control group. The inhibition rate (%) calculation formula is the same as that of Equation 2.

저해율(%) = [(A-B)/A] × 100 ----- (식 2)% Inhibition = [(A-B) / A] × 100 ----- (Equation 2)

A는 대조군의 오크라톡신 A의생성량, B는 시료처리된A. ochraceus에서오크라톡신 A의생성량이다.A is the production amount of okratoxin A in the control group, B is the production amount of okratoxin A in the sample A. ochraceus .

[극성에 따른 순차적 용매 분획][Sequential Solvent Fraction According to Polarity]

후추 열매의 메탄올 조추출물 20 g을 800 ㎖의 증류수에 녹인 후, 2,000 ㎖ 분획깔대기에 부은 다음, 동량의 헥산을 넣어 잘 섞이도록 흔들어 물층과 헥산층으로 분리하며, 이 과정을 반복하여 헥산층 1,600 ㎖를 얻는다. 남아있는 물층에 클로로포름 800 ㎖를 2회 반복하여 클로로포름층 1,600 ㎖를 얻고. 다시 남아 있는 물층에 에틸아세테이트 800 ㎖를 2회 반복하여 에틸아세테이트층 1,600 ㎖와 물층을 얻으며, 마지막 단계로서 상기와 같은 방법으로 하여 부탄올 1,600 ㎖와 물층을 얻는다. 이중 물층은 동결건조기를 이용하여 진공감압하여 물을 제거하였으며, 헥산층, 클로로포름층, 에틸아세테이트층 및 부탄올층을 감압 농축하여 각 분획을 생물검정, 분리 및 정제의 시료로 사용한다.20 g of methanol crude extract of black pepper was dissolved in 800 ml of distilled water, poured into a 2,000 ml separatory funnel, and then shaken to add the same amount of hexane. The mixture was separated into a water layer and a hexane layer, and the process was repeated. Obtain ml. Repeat 800 ml of chloroform twice in the remaining water layer to obtain 1600 ml of chloroform layer. In the remaining water layer, 800 ml of ethyl acetate was repeated twice to obtain 1,600 ml of ethyl acetate layer and water layer. As a final step, 1,600 ml of butanol and water layer were obtained in the same manner as described above. The water layer was vacuum-reduced using a lyophilizer to remove water, and the hexane layer, the chloroform layer, the ethyl acetate layer and the butanol layer were concentrated under reduced pressure to use each fraction as a sample for bioassay, separation and purification.

[실리카겔 컬럼크로마토그래피에 의한 분리][Separation by Silica Gel Column Chromatography]

극성에 따른 순차적 용매 분획중 살충 및 살균 활성이 가장 우수한 헥산층을 실리카겔 컬럼크로마토그래피로 분리한다. 유리관 칼럼 (5.5 × 70 cm, PTEE end plate 부착)을 시료의 양에 따라 선택하여 사용하며, 실리카겔양은 시료양의 50∼60배로 한다. 주 전개용매는 헥산:에틸아세테이트 (10:1, 8:1, 6:1. 4:1, 3:1과 1:1), 에틸아세테이트 또는 에틸아세테이트:메탄올 (1:1)로 용출시켜 분획한다. 시료가 전개용매에 녹지 않을 경우 아세톤이나 메탄올에 녹인 후 소량의 실리카겔을 조금 넣은 후 농축시켜 직접 흡착시킨다.The hexane layer having the best insecticidal and bactericidal activity among the sequential solvent fractions according to polarity is separated by silica gel column chromatography. Glass tube column (5.5 × 70 cm, PTEE end plate attached) is selected and used according to the amount of the sample. The amount of silica gel is 50 to 60 times the amount of the sample. The main developing solvent was eluted with hexane: ethyl acetate (10: 1, 8: 1, 6: 1. 4: 1, 3: 1 and 1: 1), eluted with ethyl acetate or ethyl acetate: methanol (1: 1). do. If the sample does not dissolve in the developing solvent, dissolve it in acetone or methanol, add a small amount of silica gel, and concentrate it.

분취한 시료는 박층크로마토그래피 (TLC)에 의해 헥산:에틸아세테이트 (5:1), 에틸아세테이트 또는 에틸아세테이트:메탄올 (1:1)을 부피비로 섞어 전개 한 다음, TLC (SIL G/UV254, 0.25 mm layer with fluorescent indicator, Machereynagel Co. Germany)상에 전개된 띠들을 UV 램프(UVGL-58, UV-254/366 nm, UVP Inc. U.S.A)로 확인하며, 동일 스팟으로 확인되면 서로 합쳐 감압농축한 후 HPLC에 의한 분리, 정제의 시료로 사용한다.The collected sample was developed by thin layer chromatography (TLC) by mixing hexane: ethyl acetate (5: 1), ethyl acetate or ethyl acetate: methanol (1: 1) in a volume ratio, and then using TLC (SIL G / UV 254 , Strips developed on a 0.25 mm layer with fluorescent indicator, Machereynagel Co. Germany are identified by UV lamps (UVGL-58, UV-254 / 366 nm, UVP Inc. USA), and when identified as identical spots After separation by HPLC, it is used as a sample for purification.

이하, 본 발명을 비한정적인 실시예를 통하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail through non-limiting examples.

[실시예 1]Example 1

후추 (Piper retrofractumVahl.) 열매에서 아푸라톡신 B1,ochratoxin A 생성 저해 성분의 분리 및 동정Isolation and Identification of Apuratoxin B 1 , ochratoxin A Formation Inhibitors from Black Pepper ( Piper retrofractum Vahl.) Fruit

후추열매의 메탄올 조추출물 및 핵산 분획물에서A. flavus가 생산하는 아푸라톡신 B1 A. ochraceus가 생산하는 ochratoxin A의 생성 억제 활성을 보였기 때문에 메탄올 조추출물의 헥산분획물을 아푸라톡신 B1,ochratoxin A 생성 저해 성분의 분리 및 동정을 위한 시료로 사용하였다.From Methanol Crude Extracts and Nucleic Acid Fractions of Black Pepper FruitsA. flavusProduces Apuratoxin BOneand A. ochraceusHexane fraction of methanol crude extract was apuratoxin B because it showed the inhibitory activity of ochratoxin A production.OneIt was used as a sample for the isolation and identification of, ochratoxin A production inhibitory components.

헥산분획물 (3.8 g)을 실리카겔 컬럼크로마토그래피로 분리하였다. 주 전개용매인 헥산, 헥산:에틸아세테이트 (10:1, 3:1과 1:1), 에틸아세테이트, 에틸아세테이트:메탄올 (1:1) 그리고 메탄올을 사용하여 용출시킨 각 분획을 감압증류한 후 생물검정의 시료로 사용하였다. 생물검정 결과 헥산:에틸아세테이트 (3:1) 분획에서 가장 높은 아푸라톡신 B1과ochratoxin A 생성 저해효과를 나타내었다.Hexane fraction (3.8 g) was separated by silica gel column chromatography. After distilling under reduced pressure for each fraction eluted using hexane, hexane: ethyl acetate (10: 1, 3: 1 and 1: 1), ethyl acetate, ethyl acetate: methanol (1: 1) and methanol as the main developing solvents, It was used as a sample of bioassay. Bioassay showed the highest inhibitory effect on the production of afuratoxin B 1 and ochuratoxin A in the hexane: ethyl acetate (3: 1) fraction.

1차 실리카겔 컬럼크로마토그래피로 분리한 활성분획인 헥산:에틸아세테이트 (3:1) 분획을 헥산:에틸아세테이트 (8:1, 6:1, 4:1과 1:1)의 혼합용매로 용출시킨 후, 분취한 시료는 박층크로마토그래피 (TLC)에 의해 헥산:에틸아세테이트 (5:1), 에틸아세테이트 또는 에틸아세테이트:메탄올 (1:1)을 부피비로 섞어 전개 한 다음, TLC 판에 전개된 띠들을 UV lamp로 확인하였으며, 동일 spot으로 확인되면 서로 합쳐 감압농축한 후 아푸라톡신 B1,ochratoxin A 생성저해 활성검정을 실시하였다. 그 결과 헥산:에틸아세테이트 (4:1) 분획에서 강한 활성을 나타내었기 때문에 이 분획을 분취용 고속액체크로마토그래피에 의한 분리, 정제의 시료로 사용하였다The hexane: ethyl acetate (3: 1) fraction, an active fraction separated by primary silica gel column chromatography, was eluted with a mixed solvent of hexane: ethyl acetate (8: 1, 6: 1, 4: 1 and 1: 1). Subsequently, the collected sample was developed by thin layer chromatography (TLC), mixed with hexane: ethyl acetate (5: 1), ethyl acetate or ethyl acetate: methanol (1: 1) in a volume ratio, and then developed on a TLC plate. They were identified by a UV lamp, and when identified as the same spot, they were combined under reduced pressure, and then subjected to apuratxin B 1 and ochratoxin A production inhibition activity assay. As a result, the hexane: ethyl acetate (4: 1) fraction showed strong activity, and this fraction was used as a sample for separation and purification by preparative high performance liquid chromatography.

2차 실리카겔 컬럼크로마토그래피 (prep-HPLC)를 사용하여 분리한 활성 분획층을 먼저 UV spectrophotometer를 이용하여 최대 흡수파장을 검색하였으며 (λmax= 260 nm에서), 분취용 고속액체크로마토그래피를 사용하여 분리, 정제하였다.The active fraction layer separated by secondary silica gel column chromatography (prep-HPLC) was first searched for the maximum absorption wavelength by UV spectrophotometer (λ max = 260 nm), and preparative high performance liquid chromatography was used. Isolate and purify.

분리 및 정제된 화합물을 분석용 고속액체크로마토그래피 (HPLC)를 이용하여 그 순도를 확인하였다.The purity of the isolated and purified compound was analyzed using high performance liquid chromatography (HPLC).

후추열매의 메탄올 조추출물의 헥산분획물로부터 크로마토그래피와 분광학적인 방법을 이용하여 아푸라톡신 B1과ochratoxin A 생성 저해효과가 뛰어난 piperidine 알칼로이드계의 화합물인 piperine [화합물Ⅰ,(2E,4E) -N-[5-(3,4-methylenedioxy-phenyl)-2,4-pentadienoyl]piperidine], pipernonaline[화합물Ⅱ,(2E,8E)-N-[9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]piperidine],piperettine[화합물Ⅲ,(2E,4E,6E)-N-[7- (3,4- methylenedioxyphenyl)-2,4,6-heptatrienoyl]piperidine]과 piperoctadecalidine [화합물Ⅳ (2E,4E,12Z)-N-(2,4,12-octadecatrienoyl) piperidine] 그리고 pyridone 알칼로이드계 화합물인 piperlongumine [화합물Ⅴ,N-(3,4,5-trimethoxycinnamoyl)-Δ3-pyridin-2-one]을 최종 분리 및 정제하였다.Using chromatographic and spectroscopic methods from the hexane fraction of a methanol crude extract of the pepper fruit ah furanyl toxin B 1 and ochratoxin A production-inhibiting effect of compounds of the type excellent piperidine alkaloid piperine [compound Ⅰ, (2 E, 4 E ) - N - [5- (3,4- methylenedioxyphenyl) -2,4-pentadienoyl] piperidine], pipernonaline [ compound ⅱ, (2 E, 8 E ) - N - [9- (3,4-methylenedioxyphenyl) -2,8-nonadienoyl] piperidine], piperettine [ compound ⅲ, (2 E, 4 E , 6 E) - N - [7- (3,4- methylenedioxyphenyl) -2,4,6-heptatrienoyl] piperidine] and piperoctadecalidine [compound ⅳ (2 E, 4 E, 12 Z) - N - (2,4,12-octadecatrienoyl) piperidine] and the pyridone compound of ⅴ alkaloid piperlongumine [compound, N - (3,4,5-trimethoxycinnamoyl) -Δ 3 -pyridin-2-one] was finally isolated and purified.

[표 1]Aspergillus flavus에 대한 후추(Piper retrofractumVahl.)의 항아프라톡신 활성TABLE 1 Antiapratoxin Activity of Black Pepper ( Piper retrofractum Vahl.) On Aspergillus flavus

농도(㎍/㎖)Concentration (µg / ml) 아푸라톡신 B1생성의 저해Inhibition of Apuratoxin B 1 Production 250250 -- 500500 ++ 10001000 ++++ 20002000 ++++++ 40004000 ++++++++ 50005000 ++++++++

상기 표1에서 ++++ ; 100∼80%, +++ ; 80∼60%, ++ ; 60∼40%, + ; 40∼20%, - ; 20∼0%을 의미한다.++++ in Table 1; 100 to 80%, +++; 80 to 60%, ++; 60 to 40%, +; 40 to 20%,-; It means 20 to 0%.

[표 2]Aspergillus flavus에 대한 후추의 여러 용매추출분획의 항아푸라톡신 활성Table 2 Anti-apuratoxin Activity of Various Solvent Extraction Fractions of Pepper on Aspergillus flavus

분획Fraction 아푸라톡신 B1생성의 저해Inhibition of Apuratoxin B 1 Production 농도 (㎍/㎖)Concentration (μg / ml) 20002000 10001000 헥산Hexane ++++++++ ++++++++ 클로로포름chloroform -- -- 에틸아세테이트Ethyl acetate -- -- 부탄올Butanol -- -- water -- --

표 2에서 ++++ 는 아푸라톡신 B1생성이 100∼80%, +++는 80∼60%, ++는 60∼40%, +는 40∼20%, -는 20∼0%저해되었음을 나타낸다.In Table 2 ++++ is ah furanyl toxin B 1 generated 100-80%, +++ is 80-60%, ++ is 60-40%, + is 40-20%, - a 20-0% Inhibited.

[표 3]Aspergillus ochraceus에 대한 후추의 항오크라톡신 활성TABLE 3 Anti-Okratoxin Activity of Black Pepper Against Aspergillus ochraceus

농도(㎍/㎖)Concentration (µg / ml) 오크라톡신 A생성의 저해Inhibition of Okratoxin A Production 250250 -- 500500 -- 10001000 ++ 20002000 ++++ 40004000 ++++++++ 50005000 ++++++++

표 3에서 ++++ 는 오크라톡신 A 생성이 대조군에 비해 100∼80%, +++는 80∼60%, ++는 60∼40%, +는 40∼20%, -는 20∼0%저해되었음을 나타낸다.In Table 3, ++++ shows 100-80% of okratoxin A production, +++ 80-60%, ++ 60-40%, + 40-40%,-20-20 % Deterioration is indicated.

[표 4]Aspergillus ochraceus에 대한 후추의 여러 용매추출분획의 항오크라톡신활성Table 4 Anti-Okratoxin Activity of Various Solvent Extraction Fractions of Pepper on Aspergillus ochraceus

분획Fraction 오크라톡신 A 생성의 저해Inhibition of Okratoxin A Production 농도 (㎍/㎖)Concentration (μg / ml) 20002000 10001000 헥산Hexane ++++++++ ++++++ 클로로포름chloroform -- -- 에틸아세테이트Ethyl acetate -- -- 부탄올Butanol -- -- water -- --

표 4에서 ++++ 는 오크라톡신 A 생성이 대조군에 비해 100∼80%, +++는 80∼60%, ++는 60∼40%, +는 40∼20%, -는 20∼0%저해되었음을 나타낸다.In Table 4, ++++ is 100-80% of okratoxin A production, 80-60% of +++, 60-40% of ++, 40-20% of +, and 20-0 of -0. % Deterioration is indicated.

[표 5] 피페린(piperine)에 대한13C 및1H-NMR (CDCl3) 데이터TABLE 5 13 C and 1 H-NMR (CDCl 3 ) data for piperine

번호number 피페린(Piperine)Piperine 13C 13 C 1H 1 H 1One 165.2165.2 -- 22 120.0120.0 6.36 1Hd(J= 14.6 Hz)6.36 1H d ( J = 14.6 Hz) 33 142.3142.3 7.31 1Hm 7.31 1H m 44 125.3125.3 6.64 1Hm 6.64 1H m 55 138.0138.0 6.65 1Hm 6.65 1H m 1'One' 130.9130.9 -- 2'2' 105.5105.5 6.88 1Hd(J= 1.6 Hz)6.88 1H d ( J = 1.6 Hz) 3'3 ' 148.1148.1 -- 4'4' 148.0148.0 -- 5'5 ' 108.3108.3 6.67 1Hd(J= 8.0 Hz)6.67 1 H d ( J = 8.0 Hz) 6'6 ' 122.3122.3 6.79 1Hdd(J= 1.6, 8.0 Hz)6.79 1H dd ( J = 1.6, 8.0 Hz) -OCH2O--OCH 2 O- 101.2101.2 5.86 2Hs 5.86 2H s 1"One" 43.043.0 3.48 2Hbr s 3.48 2H br s 2"2" 25.725.7 1.49 2Hm 1.49 2H m 3"3 " 24.524.5 1.56 2Hm 1.56 2H m 4"4" 26.926.9 1.49 2Hm 1.49 2H m 5"5 " 47.147.1 3.48 2Hbr s 3.48 2H br s

[화학식 1] 후추(Piper retrofractumVahl.)에서 분리한 피페린의 구조Structure of piperin isolated from pepper ( Piper retrofractum Vahl.)

[표 6] 피페르노나린(pipernonaline)에 대한13C 및1H-NMR (CDCl3) 데이터TABLE 6 13 C and 1 H-NMR (CDCl 3 ) data for pipernonaline

번호number 피페르노나린(Pipernonaline)Pipeernonaline 13C 13 C 1H 1 H 1One 165.2165.2 -- 22 120.5120.5 5.90 1Hd(J= 15.0 Hz)5.90 1H d ( J = 15.0 Hz) 33 145.2145.2 6.80 1Hdt(J= 15.0, 4.0 Hz)6.80 1H dt ( J = 15.0, 4.0 Hz) 44 32.232.2 6.64 1Hm 6.64 1H m 55 27.927.9 6.65 1Hm 6.65 1H m 66 28.928.9 77 32.632.6 88 128.6128.6 6.07 1Hdt(J= 6.6, 15.4)6.07 1H dt ( J = 6.6, 15.4) 99 129.5129.5 6.32 1Hd(J= 15.4)6.32 1H d ( J = 15.4) 1'One' 132.2132.2 -- 2'2' 105.2105.2 6.90 1Hd(J= 1.6 Hz)6.90 1H d ( J = 1.6 Hz) 3'3 ' 146.5146.5 -- 4'4' 147.9147.9 -- 5'5 ' 108.0108.0 6.71 1Hd(J= 8.0 Hz)6.71 1H d ( J = 8.0 Hz) 6'6 ' 120.1120.1 6.76 1Hd(J= 1.5 8.0 Hz)6.76 1H d ( J = 1.5 8.0 Hz) -OCH2O--OCH 2 O- 100.8100.8 5.92 2Hs 5.92 2H s 1"One" 42.942.9 3.48 2Hbr s 3.48 2H br s 2"2" 26.526.5 1.49 2Hm 1.49 2H m 3"3 " 24.624.6 1.56 2Hm 1.56 2H m 4"4" 25.625.6 1.49 2Hm 1.49 2H m 5"5 " 46.646.6 3.48 2Hbr s 3.48 2H br s

[화학식 2] 후추에서 분리한 피페르노나린의 구조[Formula 2] The structure of piperonarin isolated from pepper

[표 7] 피페레틴(Piperettine)에 대한13C 및1H-NMR (CDCl3) 데이터TABLE 7 13 C and 1 H-NMR (CDCl 3 ) data for Piperettine

번호number 피페레틴(Piperettine)Piperettine 13C 13 C 1H 1 H 1One 165.5165.5 -- 22 120.2120.2 6.34 1Hd(J= 14.6 Hz)6.34 1 H d ( J = 14.6 Hz) 33 142.2142.2 7.33 1Hdd(J= 11.4, 14.6 Hz)7.33 1H dd ( J = 11.4, 14.6 Hz) 44 130.5130.5 6.39 1Hdd(J= 11.4, 14.0 Hz)6.39 1H dd ( J = 11.4, 14.0 Hz) 55 139.2139.2 6.62 1Hdt(J= 14.0, 10.0 Hz)6.62 1H dt ( J = 14.0, 10.0 Hz) 66 126.8126.8 6.64 1Hdd(J= 15.0, 10.0 Hz)6.64 1H dd ( J = 15.0, 10.0 Hz) 77 135.4135.4 6.57 1Ht(J= 15.0 Hz)6.57 1H t ( J = 15.0 Hz) 1'One' 131.6131.6 -- 2'2' 105.6105.6 6.94 1Hd(J= 1.6 Hz)6.94 1H d ( J = 1.6 Hz) 3'3 ' 147.9147.9 -- 4'4' 147.9147.9 -- 5'5 ' 108.6108.6 6.74 1Hd(J= 8.0 Hz)6.74 1H d ( J = 8.0 Hz) 6'6 ' 122.2122.2 6.84 1Hdd(J= 1.6, 8.0 Hz)6.84 1H dd ( J = 1.6, 8.0 Hz) -OCH2O--OCH 2 O- 101.3101.3 5.94 2Hs 5.94 2H s 1"One" 43.443.4 3.48 2Hbr s 3.48 2H br s 2"2" 25.725.7 1.48-1.60 2Hm 1.48-1.60 2H m 3"3 " 24.824.8 1.61-1.70 2Hm 1.61-1.70 2H m 4"4" 26.826.8 1.48-1.60 2Hm 1.48-1.60 2H m 5"5 " 47.047.0 3.61 2Hbr s 3.61 2H br s

[화학식 3] 후추에서 분리한 피페레틴의 구조Structure of Piperetin Isolated from Pepper

[표 8] 피페로타데키리딘(Piperoctadecalidine)의13C 및1H-NMR (CDCl3)데이터Table 8 13 C and 1 H-NMR (CDCl 3 ) data of Piperoctade calidine

번호number 피페로타데키리딘(Piperoctadecalidine)Piperoctade calidine (Piperoctadecalidine) 13C 13 C 1H 1 H 1One 165.2165.2 -- 22 118.3118.3 6.27 1Hd(J= 14.8 Hz)6.27 1H d ( J = 14.8 Hz) 33 142.5142.5 7.24 1Hdd(J= 14.8, 10.6 Hz)7.24 1H dd ( J = 14.8, 10.6 Hz) 44 128.6128.6 6.16 1Hdd(J= 15.1, 10.6 Hz)6.16 1H dd ( J = 15.1, 10.6 Hz) 55 124.1124.1 6.04 1Hm 6.04 1H m 66 32.732.7 2.14 1Hm 2.14 1H m 7∼127-12 28.9∼29.528.9 to 29.5 1.42∼1.281.42-1.28 1313 26.926.9 2.00 1Hm 2.00 1H m 1414 129.7129.7 5.35 1Hm 5.35 1H m 1515 129.3129.3 5.35 1Hm 5.35 1H m 1616 28.628.6 2.00 1Hm 2.00 1H m 1717 22.622.6 1.28 1H overlap1.28 1H overlap 1818 15.515.5 0.90 3Ht(J= 7.3 Hz)0.90 3H t ( J = 7.3 Hz) 1'One' 46.546.5 3.61 2Hbr s 3.61 2H br s 2'2' 26.426.4 3'3 ' 24.424.4 1.65∼1.56 6Hm 1.65 ~ 1.56 6H m 4'4' 25.425.4 5'5 ' 42.942.9 3.49 2Hbr s 3.49 2H br s

[화학식 4] 후추에서 분리한 피페로타데키리딘의 구조[Formula 4] structure of piperotta de Kiridin isolated from pepper

[표 9] 피페르론구민(Piperlongumine)에 대한13C 및1H-NMR (CDCl3)데이터Table 9 13 C and 1 H-NMR (CDCl 3 ) data for Piperlongumine

번호number 피페로구민(Piperlongumine)Piperogumin (Piperlongumine) 13C 13 C 1H 1 H 1One -- 22 166.7166.7 -- 33 126.5126.5 6.02 1Hdt(J= 9.7, 1.8 Hz)6.02 1H dt ( J = 9.7, 1.8 Hz) 44 146.4146.4 6.95 1Hdt(J= 9.7, 4.2 Hz)6.95 1H dt ( J = 9.7, 4.2 Hz) 55 25.225.2 2.45 2Hm 2.45 2H m 66 42.142.1 4.04 2Ht(J= 6.3 Hz)4.04 2H t ( J = 6.3 Hz) 77 169.7169.7 -- 88 121.7121.7 7.41 1Hd(J= 15.6 Hz)7.41 1 H d ( J = 15.6 Hz) 99 144.5144.5 7.68 1Hd(J= 15.6 Hz)7.68 1 H d ( J = 15.6 Hz) 1010 131.3131.3 -- 1111 106.0106.0 6.80s 6.80 s 1212 154.1154.1 -- 1313 141.5141.5 -- 1414 154.1154.1 -- 1515 106.0106.0 6.80s 6.80 s -OCH3 -OCH 3 56.6, 61.556.6, 61.5 3.38s, 3.89s 3.38 s , 3.89 s

[화학식 5] 후추에서 분리한 피페로구민의 구조Structure of Piperogumin Isolated from Pepper

[실시예 2]Example 2

아푸라톡신 B1생성저해 활성Inhibitory Activity of Apuratoxin B 1 Production

후추열매의 헥산분획으로부터 분리, 정제한 화합물들의 아푸라톡신 B1생성저해활성 검정은 1,000, 500, 250, 100, 50 ㎍/㎖의 농도에서 실시하였으며 그 결과는 표 10과 같다.Apuratoxin B 1 inhibitory activity assay of the purified and isolated hexane fraction of black pepper was carried out at the concentrations of 1,000, 500, 250, 100, 50 ㎍ / ㎖ and the results are shown in Table 10.

각 화합물들에 대한 아푸라톡신 B1생성저해활성 검정결과 piperine, pipernonaline과 piperettine이 1,000 ㎍/㎖의 농도에서 각각53, 56, 52%의 생성억제 효과를, 500 ㎍/㎖에서는 34, 34, 35%의 생성억제 효과를 나타내었고, 250 ㎍/㎖에서는 10, 25, 9%의 생성억제 효과를 나타내었다. 그러나 100과 50 ㎍/㎖의 농도에서는 세 가지 화합물에 대한 생성억제 활성을 나타내지 않았다. Piperoctadecalidine과 piperlongumine은 1,000 ㎍/㎖의 농도에서 100%의 생성억제 효과를 나타내었다. Piperoctadecalidine은 100 ㎍/㎖에서 50%의 생성억제 효과를, 50 ㎍/㎖에서는 27%의 생성억제 효과를 나타내었다. Piperlongumine의 경우에는 100 ㎍/㎖에서 78%의 생성억제 효과를, 50 ㎍/㎖에서 50% 이상의 생성저해 효과를 나타내어 아푸라톡신 B1생성억제 활성이 가장 우수한 것을 확인하였다.Apuratoxin B 1 production inhibitory activity assay for each compound resulted in piperine, pipernonaline and piperettine inhibitory effects of 53, 56, 52% at concentrations of 1,000 μg / ml, and 34, 34, at 500 μg / ml, respectively. The production inhibitory effect was 35%, and the production inhibitory effect was 10, 25, and 9% at 250 µg / ml. However, the concentrations of 100 and 50 μg / ml did not show production inhibitory activity for the three compounds. Piperoctadecalidine and piperlongumine showed 100% production inhibition effect at the concentration of 1,000 ㎍ / mL. Piperoctadecalidine showed a 50% production inhibition effect at 100 µg / ml and a 27% production inhibition effect at 50 µg / ml. In the case of Piperlongumine, 78% of the production inhibitory effect at 100 μg / ml and 50% or more of the inhibitory effect was confirmed that the apuratoxin B 1 production inhibitory activity was the best.

[실시예 3]Example 3

Ochratoxin A 생성저해 활성Inhibitory Activity of Ochratoxin A Production

후추열매의 헥산분획으로부터 분리, 정제한 화합물들 의 생성저해 활성검정은 1,000, 500, 250, 100 ㎍/㎖의 농도에서 실시하였으며 그 결과는 표 11과 같다.The inhibitory activity assay for the production of compounds isolated and purified from the hexane fraction of black pepper was carried out at the concentrations of 1,000, 500, 250, 100 ㎍ / ㎖ and the results are shown in Table 11.

각 화합물들에 대한 ochratoxin A 생성저해활성 검정결과 piperine은 1,000 ㎍/㎖의 농도에서 50%, piperettine은 500 ㎍/㎖에서 50%의 생성억제 효과를 나타냈으며, pipernonaline과 piperoctadecalidine도 유사한 효과를 같은 농도에서 나타내었다. 반면에 piperlongumine은 250 ㎍/㎖에서 50% 이상의 생성저해 효과를나타내어 ochratoxin A 생성저해 활성이 가장 우수한 것을 확인하였다.The ochratoxin A inhibitory activity assay for each compound showed 50% of piperine at 50 ㎍ / mL and 50% of piperettine at 50 ㎍ / mL, respectively, and pipernonaline and piperoctadecalidine showed similar effects. It is shown in. On the other hand, piperlongumine exhibited more than 50% inhibitory effect at 250 ㎍ / ㎖, it was confirmed that the best ochratoxin A inhibitory activity.

[표 10]Aspergillus flavus에 대한 후추에서 추출한 화합물의 항아푸루톡신 활성Table 10. Anti-Apurutin Activity of Compounds Extracted from Black Pepper against Aspergillus flavus

화합물compound 농도(㎍/㎖)Concentration (µg / ml) 아푸라톡신 B1생성Production of apuratoxin B 1 아푸라톡신 생성량 (㎍/plate)Apuratoxin production amount (㎍ / plate) 저해율 (%)Inhibition rate (%) 대조군Control 62.0 ± 0.762.0 ± 0.7 피페린Piperine 1,000500250100501,00050025010050 29.1 ± 0.2*40.9 ± 2.4*55.7 ± 1.9*61.9 ± 2.1*62.4 ± 2.5* 29.1 ± 0.2 * 40.9 ± 2.4 * 55.7 ± 1.9 * 61.9 ± 2.1 * 62.4 ± 2.5 * 5334100053341000 피페르노나린Piperonarin 1,000500250100501,00050025010050 27.4 ± 0.8*35.3 ± 1.2*46.4 ± 0.7*55.1 ± 1.8*62.1 ± 2.1* 27.4 ± 0.8 * 35.3 ± 1.2 * 46.4 ± 0.7 * 55.1 ± 1.8 * 62.1 ± 2.1 * 564325110564325110 피페레틴Piperetin 1,000500250100501,00050025010050 29.6 ± 2.1*40.2 ± 1.2*56.7 ± 2.5*61.9 ± 2.3*61.6 ± 2.2* 29.6 ± 2.1 * 40.2 ± 1.2 * 56.7 ± 2.5 * 61.9 ± 2.3 * 61.6 ± 2.2 * 52359005235900 피페로타데키리딘Piperotade Kiridine 1,000500250100501,00050025010050 0.0 ± 0.00**7.1 ± 1.5*15.8 ± 2.0*31.1 ± 1.7*45.2 ± 1.9* 0.0 ± 0.00 ** 7.1 ± 1.5 * 15.8 ± 2.0 * 31.1 ± 1.7 * 45.2 ± 1.9 * 1008874502710088745027 피페르론구민Piperongamine 1,000500250100501,00050025010050 0.0 ± 0.00**3.1 ± 0.2*6.4 ± 1.2*13.9 ± 1.4*30.5 ± 2.1* 0.0 ± 0.00 ** 3.1 ± 0.2 * 6.4 ± 1.2 * 13.9 ± 1.4 * 30.5 ± 2.1 * 1009590785110095907851

[표 11]Aspergillus ochraceus에 대한 후추에서 추출한 화합물의 항오크라톡신 활성Table 11 Anti-Okratoxin Activity of Compounds Extracted from Black Pepper against Aspergillus ochraceus

화합물compound 농도(㎍/㎖)Concentration (µg / ml) 오크라톡신 A 생성Okratoxin A production 톡신의 양(㎍/plate)Amount of toxin (μg / plate) 저해율(%)% Inhibition 대조군Control 23.0 ± 0.623.0 ± 0.6 피페린Piperine 1,0005002501001,000500250100 10.1 ± 0.7*15.9 ± 2.1*18.6 ± 0.9*22.7 ± 4.110.1 ± 0.7 * 15.9 ± 2.1 * 18.6 ± 0.9 * 22.7 ± 4.1 50321915032191 피페르노라린Pipenorraline 1,0005002501001,000500250100 9.8 ± 1.3*15.3 ± 2.2*17.2 ± 3.7*20.1 ± 4.0* 9.8 ± 1.3 * 15.3 ± 2.2 * 17.2 ± 3.7 * 20.1 ± 4.0 * 5734251357342513 피페레틴Piperetin 1,0005002501001,000500250100 8.7 ± 2.1*10.2 ± 1.2*15.4 ± 2.5*19.1 ± 5.2* 8.7 ± 2.1 * 10.2 ± 1.2 * 15.4 ± 2.5 * 19.1 ± 5.2 * 6256331762563317 피페로타데키리딘Piperotade Kiridine 1,0005002501001,000500250100 5.3 ± 0.8**10.2 ± 1.7*13.7 ± 2.5*15.9 ± 2.9* 5.3 ± 0.8 ** 10.2 ± 1.7 * 13.7 ± 2.5 * 15.9 ± 2.9 * 8056403180564031 피페르론구민Piperongamine 1,0005002501001,000500250100 0.2 ± 0.01**5.6 ± 0.4*10.3 ± 0.9*12.4 ± 2.4* 0.2 ± 0.01 ** 5.6 ± 0.4 * 10.3 ± 0.9 * 12.4 ± 2.4 * 9976554699765546

상기의 실시예 등에서 알 수 있는 바와 같이, 본 발명의 조성물은 뛰어난 항아푸라톡신 활성 및 항오크라톡신 활성을 가져서, 기존의 화학방제제를 대체할 천연생리활성물질로 작용할 수 있다.As can be seen in the above examples, the composition of the present invention has excellent anti-apuratoxin activity and anti-otratoxin activity, and can act as a natural physiologically active substance to replace the conventional chemical control agent.

Claims (5)

피페로타데키리딘 또는 피페르론구민을 유효성분으로 하는 곰팡이 독소 생성저해제.Inhibitor of fungal toxin production using piperotade Kiridine or piperongamine as an active ingredient. 삭제delete 삭제delete 삭제delete 제 1 항에 있어서,The method of claim 1, 상기의 곰팡이 독소는 아푸라톡신 또는 오크라톡신인 것을 특징으로 하는 곰팡이 독소 생성저해제.The fungal toxin is a fungal toxin production inhibitor, characterized in that the auratoxin or okra toxin.
KR10-2001-0014518A 2001-03-21 2001-03-21 Composition for inhibiting mycotoxin production KR100422178B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0014518A KR100422178B1 (en) 2001-03-21 2001-03-21 Composition for inhibiting mycotoxin production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0014518A KR100422178B1 (en) 2001-03-21 2001-03-21 Composition for inhibiting mycotoxin production

Publications (2)

Publication Number Publication Date
KR20020074632A KR20020074632A (en) 2002-10-04
KR100422178B1 true KR100422178B1 (en) 2004-03-10

Family

ID=27698080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0014518A KR100422178B1 (en) 2001-03-21 2001-03-21 Composition for inhibiting mycotoxin production

Country Status (1)

Country Link
KR (1) KR100422178B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467948A (en) * 2022-01-27 2022-05-13 青岛农业大学 Application of piperine in preparation of bacteriostatic agent for preventing and treating tomato pathogenic bacteria

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349875A (en) * 1991-05-27 1992-12-04 Nippon Shiyotsuken Kk Production of food preservability improver
JPH10210958A (en) * 1997-01-29 1998-08-11 Aramitsuku:Kk Quality keeping agent for food
US6063381A (en) * 1993-05-19 2000-05-16 Staggs; Jeff J. Therapeutic uses of pungent botanicals and their related compounds
US6231865B1 (en) * 1998-03-26 2001-05-15 Safer Gro Laboratories, Inc. Natural pesticide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349875A (en) * 1991-05-27 1992-12-04 Nippon Shiyotsuken Kk Production of food preservability improver
US6063381A (en) * 1993-05-19 2000-05-16 Staggs; Jeff J. Therapeutic uses of pungent botanicals and their related compounds
JPH10210958A (en) * 1997-01-29 1998-08-11 Aramitsuku:Kk Quality keeping agent for food
KR19980070030A (en) * 1997-01-29 1998-10-26 다카야스 오쿠보 Quality preservative and quality preservation zone of food
US6231865B1 (en) * 1998-03-26 2001-05-15 Safer Gro Laboratories, Inc. Natural pesticide

Also Published As

Publication number Publication date
KR20020074632A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
Ghasemi et al. Parsiguine, a novel antimicrobial substance from Fischerella ambigua
Stadler et al. Fatty acids and other compounds with nematicidal activity from cultures of Basidiomycetes
Stierle et al. Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata
Tiedje et al. Degradation of alachlor by a soil fungus, Chaetomium globosum
YOUNG et al. Ursolic acid inhibits aflatoxin B1-induced mutagenicity in a Salmonella assay system
Vargas-Arispuro et al. Antifungal lignans from the creosotebush (Larrea tridentata)
Phay et al. An antifungal compound from roots of Welsh onion
EP2601840B1 (en) Chemical and biological agents for the control of molluscs
US4731366A (en) Discorhabdin compositions and their methods of use
EP0060121B1 (en) Cyclic peptide and its use as a fungicide
KR19980702014A (en) Antimicrobial terpene compound and preparation method thereof
Rieger et al. Caripyrin, a new inhibitor of infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae
Picman et al. Inhibition of fungal growth by selected sesquiterpene lactones
KR100422178B1 (en) Composition for inhibiting mycotoxin production
Verma et al. Comparative evaluation of physiological and biochemical changes in black pepper plants infected by Colletotrichum siamense in response to Trichoderma viride and T. harzianum application
Conn et al. Resistance to Rhizoctonia solani and presence of antimicrobial compounds in Camelina sativa roots
US4929270A (en) Method of inducing chlorosis in a knapweed plant
KR100214802B1 (en) Antibiotics isolated from magnolia sieboldii
KR100634402B1 (en) Composition comprising an extract of turmeric or demethoxycurcumin for controlling anthracnoses of red pepper
Von Wallbrunn et al. Phytotoxic chaetoglobosins are produced by the plant pathogen Calonectria morganii (anamorph Cylindrocladium scoparium)
Barrera-Necha et al. Antifungal activity against postharvest fungi by extracts and compounds of Pithecellobium dulce seeds (huamuchil)
KR100832745B1 (en) Composition for controlling plant diseases which comprises lignan compounds, resorcinol compounds or nutmeg extract and method for controlling plant disease using same
KR100688907B1 (en) Composition comprising an extract of turmeric or curcuminoids for controlling rice blast
KR100444124B1 (en) Composition for inhibiting mycotoxin production
KR100424394B1 (en) Antifungal composition for control of plant powdery mildew comprising chrysophanol or parietin as active ingredient

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee