KR100420595B1 - Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method - Google Patents

Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method Download PDF

Info

Publication number
KR100420595B1
KR100420595B1 KR10-2002-0058281A KR20020058281A KR100420595B1 KR 100420595 B1 KR100420595 B1 KR 100420595B1 KR 20020058281 A KR20020058281 A KR 20020058281A KR 100420595 B1 KR100420595 B1 KR 100420595B1
Authority
KR
South Korea
Prior art keywords
saturated polyester
weight
silica particles
polymer
ethylene glycol
Prior art date
Application number
KR10-2002-0058281A
Other languages
Korean (ko)
Other versions
KR20030007241A (en
Inventor
김순식
조덕재
이진우
Original Assignee
주식회사 새 한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새 한 filed Critical 주식회사 새 한
Priority to KR10-2002-0058281A priority Critical patent/KR100420595B1/en
Priority to DE10250401A priority patent/DE10250401A1/en
Priority to JP2002352939A priority patent/JP3662563B2/en
Publication of KR20030007241A publication Critical patent/KR20030007241A/en
Application granted granted Critical
Publication of KR100420595B1 publication Critical patent/KR100420595B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 플라스틱병, 플라스틱컵 등의 각종 용기 등에 널리 사용되고 있는 플라스틱 용기용 포화 폴리에스테르 및 그 제조방법에 관한 것으로서, 특히 기존의 범용 제품에 비해 내열성과 가스차단성 등의 물성을 향상시키는데 그 목적이 있는 것이다.The present invention relates to a saturated polyester for a plastic container widely used in various containers such as plastic bottles, plastic cups, and the like, and to a method of manufacturing the same, particularly to improve physical properties such as heat resistance and gas barrier properties, compared to conventional general-purpose products. It is.

본 발명은 DMT 공법 또는 TPA 공법에 의해 플라스틱 용기용 폴리에스테르를 제조함에 있어서, 에스테르 교환 반응 또는 에스테르화 반응을 거쳐 축중합 반응을 통하여 폴리에스테르 합성시 나노 크기의 구형 실리카를 첨가하여 반응시키는 것을 특징으로 한 것으로서, 이와 같이 제조함에 의해 폴리머 내에 나노 크기의 실리카 입자를 분산시킴으로서 포화폴리에스테르의 기계적 물성을 향상시킬 뿐만 아니라 내열성과 가스차단성을 향상시켜 각종 과즙음료,맥주,녹차,쌀음료등의 용기로 유용하게 사용될수 있다.The present invention is to prepare a polyester for a plastic container by the DMT method or TPA method, the reaction by adding a nano-sized spherical silica during the synthesis of the polyester through a polycondensation reaction through a transesterification reaction or esterification reaction In this way, by dispersing nano-sized silica particles in the polymer by the preparation as described above, not only the mechanical properties of the saturated polyester are improved, but also the heat resistance and gas barrier property are improved, and various containers for juice drinks, beer, green tea, rice beverage, etc. This can be useful.

Description

내열성 및 가스차단성이 우수한 플라스틱 용기용 포화 폴리에스테르 및 그 제조방법{Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method}Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method}

본 발명은 플라스틱병, 플라스틱컵 등의 각종 용기 등에 널리 사용되고 있는 플라스틱 용기용 포화 폴리에스테르에 관한 것으로서, 특히 고분자 체인내에 나노 단위 크기의 실리카 입자를 존재시켜 내열성 및 가스차단성을 향상시킨 포화 폴리에스테르 및 그 제조방법에 관한 것이다.The present invention relates to a saturated polyester for a plastic container widely used in various containers such as plastic bottles, plastic cups, etc., and particularly, a saturated polyester having nano-sized silica particles in a polymer chain to improve heat resistance and gas barrier properties. It relates to a manufacturing method.

포화 폴리에스테르는 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT)등과 같이 주쇄에 에스테르 결합을 갖는 직쇄상의 열가소성 폴리머로서, 치수 안정성, 내후성, 표면 평활성이 우수하고 투명하고 광택이 있는 외관을 지녀 합성섬유, 필름, 용기, 하우징류 등의 성형품으로 널리 사용되고 있다.Saturated polyester is a linear thermoplastic polymer having an ester bond in the main chain, such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc., and has excellent dimensional stability, weather resistance, surface smoothness, and a transparent and glossy appearance. It is widely used as a molded article such as synthetic fibers, films, containers, and housings.

그러나, 이러한 포화 폴리에스테르는 낮은 글라스전이온도(Tg)와 일부기체의 통과성으로 인하여 내열성 및 가스차단성이 불량하여 각종 과즙음료, 맥주, 녹차, 쌀음료 등의 용기로 사용하기에는 문제점이 있다.However, these saturated polyesters have poor heat resistance and gas barrier properties due to low glass transition temperature (Tg) and the permeability of some gases, and thus have problems in being used as containers for various juice drinks, beer, green tea, rice drinks, and the like.

상기 문제점을 해결하기 위한 방법으로 종래에는 폴리에틸렌나프탈레이트 (PEN) 수지 혹은 폴리에틸렌나프탈레이트와 폴리에틸렌테레프탈레이트의 혼합 폴리머가 제안되었고 일부 상용화 되어 있는 실정이다. 그러나, 폴리에틸렌나프탈레이트 수지는 그 가격이 일반 폴리에틸렌테레프탈레이트에 비해 월등이 높아 경제성이 떨어지고 또한 재활용시 문제점을 지닌다. 또 다른 방법으로 일본 공개특허 1997-290457호에서와 같이 PET병의 성형시 이축 연신을 하여 배향결정화를 높여 내열성과 투명성 그리고 기체 차단성을 개선하는 방법이 있다. 그러나 상기 방법으로 병을 만들때는 배향결정화도를 전체적으로 40% 이상 올리는 것이 어려우며, 이로 인해 92℃ 이상의 높은 온도로 충진하는 음료의 경우에는 사용할수 없는 것으로 알려져 있으며, 또한 낮은 온도로 충진할 경우에는 생산성이 떨어지는 문제점이 있다.As a method for solving the above problem, a polyethylene naphthalate (PEN) resin or a mixed polymer of polyethylene naphthalate and polyethylene terephthalate has been proposed and some commercially available. However, the polyethylene naphthalate resin is higher in price than the general polyethylene terephthalate, so it is economically inferior and has problems in recycling. As another method, as in Japanese Patent Laid-Open Publication No. 1997-290457, there is a method of improving the heat-resistance, transparency, and gas barrier properties by increasing the orientation crystallization by biaxial stretching during the molding of PET bottles. However, when making bottles by the above method, it is difficult to raise the degree of orientation crystallization by more than 40% as a whole, which is why it is not known to be used for beverages filled with high temperatures of 92 ° C. or higher. There is a problem falling.

본 발명의 목적은 나노 크기의 실리카 입자를 폴리에스테르 폴리머에 균일하게 분산시킴에 의해 배향 결정화도를 40% 이상으로 올릴 수 있어 내열성의 향상이 이루어지고 또한 실리카 입자가 폴리머 내에 존재함에 의해 가스차단성이 향상된 특성을 지닌새로운 플라스틱 용기용 포화 폴리에스테르 및 그 제조방법을 제공하는데 있다.An object of the present invention is to uniformly disperse the nano-sized silica particles in the polyester polymer to increase the orientation crystallinity to 40% or more to improve heat resistance and to improve gas barrier properties by the presence of silica particles in the polymer The present invention provides a novel saturated polyester for plastic container and its manufacturing method.

본 발명은 에스테르 교환반응 또는 에스테르화 반응을 거쳐 축중합 반응을 통해 얻어지는 통상의 포화 폴리에스테르에 있어서, 평균입경이 3∼100nm크기의 실리카 입자를 대략 0.002중량%∼10중량% 함유한 것을 특징으로 하는 포화 폴리에스테르 및 그 제조방법에 관한 것이다.The present invention is a general saturated polyester obtained through a condensation polymerization reaction through a transesterification reaction or an esterification reaction, characterized in that it contains about 0.002% to 10% by weight of silica particles having an average particle diameter of 3 to 100nm. It relates to a saturated polyester and a method for producing the same.

이하에서 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 포화 폴리에스테르는 방향족디카르본산 또는 에스테르 형성 유도체와 에틸렌글리콜을 주요 출발원료로 하여 만들어지지만 또 다른 제 3의 성분을 포함할 수 있다. 이때 방향족 디카르본산 성분으로는 이소프탈산, 테레프탈산, 2,6-나프탈렌디카르본산, 프탈산, 아디프산, 세바신산 등에서 선택된 1종 또는 2종 이상의 혼합물이 사용될 수 있고, 글리콜 성분으로는 주요성분인 에텔렌글리콜 외에 프로필렌글리콜, 부탄디올, 1,4-사이클로헥산디메탄올, 네오펜틸글리콜 등이 소량 사용될 수 있다.Saturated polyesters in the present invention are made from aromatic dicarboxylic acid or ester forming derivatives and ethylene glycol as the main starting material, but may comprise another third component. At this time, one or two or more kinds selected from isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, phthalic acid, adipic acid and sebacic acid may be used as the aromatic dicarboxylic acid component. In addition to phosphorus ethylene glycol, a small amount of propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, and the like may be used.

본 발명에 사용되는 포화 폴리에스테르에는 필요에 따라 열안정제, 브로킹방지제, 산화방지제, 대전방지제, 자외선흡수제 등과 같은 첨가제가 포함될 수 있다.The saturated polyester used in the present invention may include additives such as heat stabilizers, anti-broking agents, antioxidants, antistatic agents, ultraviolet absorbers and the like as necessary.

본 발명에서는 상기와 같은 출발 원료들을 사용해 포화 폴리에스테르를 합성시 나노크기의 실리카 입자를 첨가하는데, 이때 나노크기의 실리카 입자는 반응물내에서 나노크기의 상태로 유지되어야 한다.In the present invention, when the saturated polyester is synthesized using the starting materials as described above, nano-sized silica particles are added, wherein the nano-sized silica particles should be kept in the nano-sized state in the reactant.

본 발명에서 나노크기의 실리카 입자는 일반적으로 나트륨 실리케이트(Na4Si)를 물과 반응시켜 규산소다를 제조한 다음 양이온 교환수지 칼럼(Column)을 통과시켜 산화나트륨을 양이온 교환수지에 흡착시켜 제거함에 의해 얻어진다. 이때 얻어지는 실리카 입자의 경우는 입경이 대략 0.5nm∼1.0nm 범위로서 이를 성장시켜 원하는 크기의 나노 실리카 입자를 얻을 수 있다.In the present invention, the nano-sized silica particles are generally prepared by reacting sodium silicate (Na 4 Si) with water to produce sodium silicate, and then passing through a cation exchange resin column to remove sodium oxide by adsorbing the cation exchange resin. Obtained by In the case of the silica particles obtained at this time, the particle size is in the range of approximately 0.5nm to 1.0nm to grow it can be obtained nano-silica particles of the desired size.

나노 크기의 실리카 입자는 물속에서 분산성이 양호하지만 물의 끓는점이 낮아 물이 증발할 경우에는 즉시 응집되는 성질이 있으므로 에틸렌글리콜이나 부탄디올과 같이 온도가 높은 액체에 보관하기도 한다. 특히 포화 폴리에스테르의 경우에는 원료인 에틸렌글리콜(EG)에 분산시킴으로서 분산 유지와 반응시 부반응을 최소화 할 수 있다. 또한 나노 크기의 실리카 입자는 한 종류의 단독 사용하거나 평균입경이 다른 2가지 이상의 입자를 혼합해서 사용하는 것이 가능하며, 슬러리 용액으로 사용되는 액체도 단독 혹은 2가지 이상의 액체를 혼합해서 사용하는 것도 가능하다.Nano-sized silica particles have good dispersibility in water, but the low boiling point of water tends to aggregate immediately when water evaporates, so they may be stored in high temperature liquids such as ethylene glycol or butanediol. Particularly, in the case of saturated polyester, by dispersing in ethylene glycol (EG) as a raw material, side reactions can be minimized when maintaining the dispersion and reacting. In addition, nano-sized silica particles may be used alone or in combination of two or more particles having different average particle diameters. The liquid used as a slurry solution may be used alone or in combination of two or more liquids. Do.

상기 나노 크기의 실리카 입자 투입량은 포화 폴리에스테르의 폴리머 기준으로 0.002중량% 이상 10중량%이하의 범위가 바람직하며, 보다 바람직하기로는 0.005중량% 이상 6중량%이하 범위이다. 투입량이 20 ppm 미만으로 하면 물성 개선효과가 미흡하며, 10 중량% 초과 투입시는 폴리머 내에서 균일하게 분산되기가 어려우며 입자응집으로 인해 투명성이 저하된다. 본 발명에서는 또한 실리카 입자의 평균입경은 3∼100nm 범위가 적합한데, 평균입경이 100 nm를 초과하면 투명성이 극히 나빠지며, 3nm 미만의 것을 사용하면 입자의 표면장력등으로 인해 분산이 어럽고 투명성이 나빠지는 등의 문제점이 있다.The nano-sized silica particles are preferably added in an amount of 0.002% by weight or more and 10% by weight or less, more preferably 0.005% by weight or more and 6% by weight or less, based on the polymer of the saturated polyester. If the input amount is less than 20 ppm, the effect of improving physical properties is insufficient, and when it is added more than 10% by weight, it is difficult to be uniformly dispersed in the polymer, and the transparency decreases due to particle aggregation. In the present invention, the average particle diameter of the silica particles is also suitable in the range of 3 to 100 nm, the transparency is very poor when the average particle diameter exceeds 100 nm, the dispersion is difficult and transparent due to the surface tension of the particles when less than 3 nm is used There are problems such as deterioration.

본 발명에서는 상기 나노 크기의 입자 첨가시, 예를 들어, 인산, TMP(Tri Methyl Phosphate), TEP(Tri Ethy Phosphate), TPP(Tri Phenyl Phosphate)등과 같은 인계 화합물을 함께 첨가하는 것도 가능하며, 이러한 경우 인계화합물은 수지의 색상을 향상시키는 효과를 얻을 수 있다. 이러한 인계 화합물의 첨가량은 금속 이온과의 당량비를 감안해 첨가량을 조절하는 것이 좋은데, 대략 폴리머를 기준으로 하여 인 함유량이 0.01중량% 내지 0.1중량% 범위가 되도록 첨가하는 것이 바람직하다.In the present invention, when adding the nano-sized particles, for example, it is also possible to add a phosphorus compound such as phosphoric acid, Tri Methyl Phosphate (TPM), Tri Ethy Phosphate (TEP), Tri Phenyl Phosphate (TPP), etc. In this case, the phosphorus compound may obtain an effect of improving the color of the resin. The addition amount of the phosphorus compound is preferably adjusted in consideration of the equivalence ratio with the metal ions, but is preferably added so that the phosphorus content is in the range of 0.01% by weight to 0.1% by weight based on the polymer.

전술한 바와 같이 나노 크기의 실리카 입자의 분산성 향상을 위해 입자를 물, 에틸렌글리콜 혹은 부탄디올 등의 단독 물질이나 2가지 이상의 혼합물에 분산시킨 슬러리 상태로 투입하는 것이 좋으며, 슬러리중의 나노 실리카 농도는 슬러리 기준으로 3 중량% 내지 30 중량%범위가 좋으며, 더욱 좋기로는 5 중량%내지 20 중량%범위이다. 3 중량% 미만이 되면 너무 많은 양의 슬러리가 투입되어 부반응이 많으며, 30 중량% 초과시는 입자의 분산성이 나빠지며 이 때문에 조대입자가 많이 형성된다.분산성 향상을 위해 일반적으로 입자 크기가 작으면 작을수록 낮은 농도의 슬러리로 만드는 것이 좋으며, 입자 크기가 커지면 슬러리 중의 입자 농도를 올릴 수 있다.As described above, in order to improve dispersibility of nano-sized silica particles, it is preferable to add the particles in a slurry state in which the particles are dispersed in water, ethylene glycol or butanediol, or a mixture of two or more thereof. It is preferably in the range of 3% to 30% by weight, more preferably in the range of 5% to 20% by weight based on the slurry. When the amount is less than 3% by weight, too much slurry is added to cause a lot of side reactions, and when the amount is more than 30% by weight, the dispersibility of the particles is deteriorated, and thus coarse particles are formed. The smaller it is, the better it is to make a slurry of low concentration, and the larger the particle size, the higher the concentration of particles in the slurry.

나노 크기의 실리카 입자 슬러리를 폴리에스테르 합성시 첨가하는 경우 그 첨가방법은 나노 크기의 입자가 응집되지 않도록 하는 것이 중요하다. 본 발명에서는 에틸렌글리콜(EG)과 테레프탈산(TPA) 혹은 디메틸테레프탈레이트(DMT)의 몰비(E/T)를 DMT공법에서는 1.8∼ 2.5 정도로 하는 것이 좋으며, TPA공법에서는 1.3∼ 2.5 정도로 하는 것이 좋다. 입자 분산성을 향상시키기 위해 특별히 본 발명에서 별도로 제한은 두지 않으나, DMT(Dimethylterephthalate)공법의 경우에는 수분산 상태의 슬러리가 투입되면 반응에 큰 문제가 생기므로 에틸렌글리콜(EG)이나 부탄디올(BD)와 같은 액체로 분산시키는 것이 바람직하다.TPA(Terephthalic Acid)공법에서는 일반적으로 슬러리 내에 물이 일부 함유되어도 반응상에 큰 문제는 없다.하지만 기본적으로는 입자 분산에 있어서 TPA공법은 DMT공법에 비해 분산성이 떨어진다.When the nano-sized silica particle slurry is added during the synthesis of the polyester, it is important that the addition method is such that the nano-sized particles do not aggregate. In the present invention, the molar ratio (E / T) of ethylene glycol (EG) and terephthalic acid (TPA) or dimethyl terephthalate (DMT) is preferably about 1.8 to 2.5 in the DMT method, and about 1.3 to 2.5 in the TPA method. In order to improve particle dispersibility, there is no particular limitation in the present invention, but in the case of DMT (Dimethylterephthalate) method, when a slurry is dispersed in water, a large problem occurs in the reaction, such as ethylene glycol (EG) or butanediol (BD). In the TPA (Terephthalic Acid) process, it is generally not a big problem in the reaction even if some water is contained in the slurry.However, in terms of particle dispersion, the TPA method is more effective than the DMT method. Acidity drops.

이하에서 실시예 및 비교예를 들어 본 발명을 좀 더 구체적으로 설명하나, 이들에 의해 본 발명이 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[실시예 1]Example 1

100중량부의 디메틸테레프탈레이트(DMT), 64중량부의 에틸렌글리콜(EG)을 반응기에 넣어 교반시키면서 안티몬트리옥사이드 0.03 중량부, 망간아세테이트4수화물 0.06 중량부를 에틸렌글리콜 3중량부에 분산시켜 반응기에 투입한 다음, 가열하여 130℃에서 230℃로 승온시키며 4시간동안 에스테르 교환반응을 실시하여 BHT(B-1)를 만들었다. 평균입경 50 nm 크기의 실리카 입자가 10 중량% 함유된 에틸렌글리콜 슬러리를 0.5 ㎛ 여과 구멍 크기의 필터로 여과하여 슬러리(S-1)를 만들었다. (B-1)의 온도가 235℃정도에서 트리메틸포스페이트(TMP) 0.03중량부를 에틸렌글리콜 2 중량부에 희석시켜 투입한 다음 준비한 (S-1)슬러리 20중량부를 서서히 투입하였다. 상기 BHT를 3 ㎛ 여과 구멍을 갖는 필터로 여과한 다음 가열하여 50분에 걸쳐 235℃에서 285℃까지 승온한 후 3시간동안 축중합 반응을 실시하여 표 1에 나타낸 바와 같은 물성을 지닌 폴리머를 만든후 이를 절단하여 칩으로 만들었다 (P-1-1). 이어서 상기 칩(CHIP)을 일반고상중합기에 넣고 고상중합하여 표1에 나타낸 바와같은 물성을 지닌 폴리머를 만들었다 (P-1-2). 또한 상기 (P-1-2) 폴리머를 사용해 페트(PET) 내열병 블로기(Blow Machine)를 사용해 500㏄ 내열페트병(P-1-3)을 제조하였다.100 parts by weight of dimethyl terephthalate (DMT) and 64 parts by weight of ethylene glycol (EG) were added to the reactor while stirring and 0.03 parts by weight of antimony trioxide and 0.06 parts by weight of manganese acetate tetrahydrate were dispersed in 3 parts by weight of ethylene glycol and added to the reactor. Next, the mixture was heated to 130 ° C. to 230 ° C., and subjected to transesterification for 4 hours, thereby making BHT (B-1). An ethylene glycol slurry containing 10% by weight of silica particles having an average particle size of 50 nm was filtered through a filter having a size of 0.5 μm filtration pore to make slurry (S-1). When the temperature of (B-1) was about 235 ° C, 0.03 parts by weight of trimethyl phosphate (TMP) was diluted with 2 parts by weight of ethylene glycol, and then 20 parts by weight of the prepared (S-1) slurry was gradually added. The BHT was filtered through a filter having a 3 μm filtration hole, and heated to raise the temperature from 235 ° C. to 285 ° C. over 50 minutes, and then subjected to a polycondensation reaction for 3 hours to form a polymer having physical properties as shown in Table 1. It was then cut into chips (P-1-1). Subsequently, the chip (CHIP) was placed in a general solid state polymerizer to solidify the polymer to form a polymer having physical properties as shown in Table 1 (P-1-2). In addition, a 500 kPa heat resistant PET bottle (P-1-3) was prepared using a PET heat bottle blow machine using the (P-1-2) polymer.

[실시예 2]Example 2

실시예 1에서 나노입자 슬러리(S-1) 1 중량부를 235℃ BHT에 투입하여 축중합을 실시한 것 이외에는 실시예 1과 동일하게 실시하였다.In Example 1, 1 part by weight of nanoparticle slurry (S-1) was added to 235 ° C. BHT, and condensation polymerization was carried out in the same manner as in Example 1.

[실시예 3]Example 3

실시예 1에서 평균입경 50nm 크기의 실리카 입자 대신에 평균입경 15㎚ 크기의실리카 입자를 사용하여 슬러리(S-1) 을 만든것 외에는 실시예 1과 동일하게 실시하였다.A slurry (S-1) was prepared in the same manner as in Example 1 except that silica particles having an average particle size of 15 nm were used instead of silica particles having an average particle size of 50 nm.

[실시예 4]Example 4

실시예 3에서 나노입자 슬러리(S-1) 1중량부를 235℃ BHT에 투입하여 축중합을 실시한 것 이외에는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that 1 part by weight of the nanoparticle slurry (S-1) was charged to 235 ° C. BHT and subjected to condensation polymerization.

[실시예 5]Example 5

100중량부의 테레프탈산, 75중량부의 에틸렌글리콜을 반응기에 넣어 교반하면서 가열하여 30℃에서 230℃로 승온시키며 6시간 동안 에스테르화 반응을 실시하여 BHT를 만든 후 EG와 TPA의 몰비가 2.0 인 슬러리 175중량부를 2시간에 걸쳐 투입을 한 다음 1시간30분 동안 온도를 230℃로 유지하면서 추가반응을 시켰다. 이후에 생성된 BHT 175 중량부를 3.0 ㎛ 여과 구멍을 갖는 필터로 여과하여 축중합 반응기로 이액하였다. 이액을 종료한후 폴리머 기준으로 0.02중량%의 인산을 투입한후 폴리머 기준으로 0.015중량%의 안티몬트리옥사이드를 소량의 에틸렌글리콜에 희석하여 투입하였다. 그리고 평균입경 15 ㎚ 크기의 실리카 입자를 사용하여 에틸렌글리콜에 10 중량%의 슬러리를 만들고 0.5㎛ 구멍크기를 갖는 필터로 여과하여 만든 슬러리(S-2)를 230℃의 BHT에 20 중량부 투입하였다. 이어서 상기 BHT를 가열하여 50분에 걸쳐 230℃에서 285℃까지 승온한후 3시간동안 축중합 반응을 실시하여 표1에 나타낸 바와 같은 물성을 지닌 폴리머를 만들고 이를 칩상으로 절단하였다 (P-5-1). 이어서 상기 칩(CHIP)을 일반고상중합기에 넣고 고상중합하여 표1에 나타낸 바와 같은 물성을 지닌 폴리머를 만들었다(P-5-2). 또한 페트(PET) 내열병 블로기를 사용해 500 ㏄ 내열페트병(P-5-3)을 제조하였다.100 parts by weight of terephthalic acid and 75 parts by weight of ethylene glycol were added to the reactor and heated with stirring to raise the temperature from 30 ° C. to 230 ° C., followed by an esterification reaction for 6 hours to produce BHT, followed by slurry 175 weight with a molar ratio of EG and TPA of 2.0. After adding the part over 2 hours, the reaction was carried out while maintaining the temperature at 230 ° C. for 1 hour 30 minutes. Thereafter, 175 parts by weight of the produced BHT was filtered through a filter having a 3.0 µm filtration hole, and was transferred to a condensation polymerization reactor. After the completion of the solution, 0.02% by weight of phosphoric acid was added on a polymer basis, and 0.015% by weight of antimony trioxide on a polymer basis was diluted and added to a small amount of ethylene glycol. In addition, 20 parts by weight of a slurry (S-2), which was prepared by preparing a 10 wt% slurry in ethylene glycol using a silica particle having an average particle size of 15 nm and filtered through a filter having a 0.5 μm pore size, was added to BHT at 230 ° C. . Subsequently, the BHT was heated to raise the temperature from 230 ° C. to 285 ° C. over 50 minutes, and then subjected to a condensation polymerization reaction for 3 hours to prepare a polymer having physical properties as shown in Table 1, and cut it into chips (P-5-). One). Subsequently, the chip (CHIP) was placed in a general solid state polymerizer to obtain a polymer having physical properties as shown in Table 1 (P-5-2). In addition, a 500 mm heat resistant PET bottle (P-5-3) was prepared using a PET heat bottle blower.

[실시예 6]Example 6

실시예 5에서 나노입자 슬러리(S-2) 1중량부를 235℃ BHT에 투입하여 축중합을 실시한 것 이외에는 실시예 5와 동일하게 실시하였다.Example 5 was carried out in the same manner as in Example 5, except that 1 part by weight of the nanoparticle slurry (S-2) was charged in 235 ° C. BHT and subjected to condensation polymerization.

[실시예 7]Example 7

실시예 5에서 평균입경 15nm 크기의 실리카 입자 대신에 평균입경 3 ㎚ 크기의 실리카 입자를 사용하여 슬러리(S-2)를 만든것 외에는 실시예 5와 동일하게 실시하였다.A slurry (S-2) was prepared in the same manner as in Example 5 except that silica particles having an average particle diameter of 3 nm were used instead of silica particles having an average particle diameter of 15 nm.

[실시예 8]Example 8

실시예 7에서 나노입자 슬러리(S-2) 0.05 중량부를 235℃ BHT에 투입하여 축중합을 실시한 것 외에는 실시예 7과 동일하게 실시하였다.In Example 7, the same procedure as in Example 7 was carried out except that 0.05 parts by weight of the nanoparticle slurry (S-2) was added to 235 ° C. BHT for condensation polymerization.

[실시예 9]Example 9

실시예 5에서 평균입경 15nm크기의 실리카 입자 대신에 평균입경 100 ㎚ 크기의 실리카 입자를 사용하여 만든 슬러리(S-2) 50 중량부를 230℃ BHT에 첨가한 후 축중합 반응을 실시한 것 외에는 실시예 5와 동일하게 실시하였다.Except that after the addition of 50 parts by weight of the slurry (S-2) made of silica particles having an average particle size of 100 nm instead of silica particles having an average particle size of 15 nm in 230 ℃ BHT and then subjected to a condensation polymerization reaction. It carried out similarly to 5.

[실시예 10]Example 10

실시예 5에서 평균입경 15nm크기의 실리카 입자 대신에 평균입경 100 ㎚ 크기의 실리카 입자를 사용하여 만든 슬러리(S-2) 0.05 중량부를 235℃ BHT에 투입하여 축중합을 실시한 것 외에는 실시예 5와 동일하게 실시하였다.In Example 5, 0.05 parts by weight of the slurry (S-2) made of silica particles having an average particle size of 100 nm in place of silica particles having an average particle diameter of 15 nm was added to 235 ° C. BHT to carry out condensation polymerization. It carried out similarly.

[비교예1]Comparative Example 1

100중량부의 테레프탈산, 75중량부의 에틸렌글리콜을 반응기에 넣어 교반하면서 가열하여 230℃로 승온시키며 6시간 동안 에스테르화 반응을 실시하여 BHT를 만든 후, EG와 TPA의 몰비가 2.0 인 슬러리 175중량부를 2시간에 걸쳐 투입을 한 다음 1시간30분 동안 온도를 230℃로 유지하면서 추가반응을 시켰다. 이어서 생성된 BHT 175 중량부를 3.0 ㎛ 여과 구멍을 갖는 필터로 여과하여 축중합 반응기로 이액하였다. 이액이 종료된후 폴리머 기준으로 0.02중량%의 인산을 투입한후 폴리머 기준으로 0.015중량%의 안티몬트리옥사이드를 소량의 에틸렌글리콜에 희석하여 투입한 후 가열하여 50분에 걸쳐 230℃에서 285℃까지 승온한후 3시간동안 축중합 반응을 실시하여 표1에 나타낸 바와 같이 물성을 지닌 폴리머를 만들고 이를 칩상으로 절단하였다(P-11-1). 이어서 상기 칩을 일반고상중합기에 넣고 고상중합하여 표1에 나타낸 물성을 지닌 폴리머를 만들었다(P-11-2). 이어서 상기 폴리머 (P-11-2)로 페트 내열병블로기를 사용해 500cc 내열페트병(P-11-3)을 만들었다100 parts by weight of terephthalic acid and 75 parts by weight of ethylene glycol were added to the reactor and heated with stirring to raise the temperature to 230 ° C., followed by esterification for 6 hours to produce BHT. Then, 175 parts by weight of a slurry having a molar ratio of EG and TPA of 2.0 was 2 After the addition over time, the reaction was carried out while maintaining the temperature at 230 ℃ for 1 hour 30 minutes. Subsequently, 175 parts by weight of the produced BHT was filtered through a filter having a 3.0 μm filtration hole and transferred to a condensation polymerization reactor. After the completion of this solution, 0.02% by weight of phosphoric acid was added to the polymer, and 0.015% by weight of antimony trioxide was diluted and added to a small amount of ethylene glycol based on the polymer, followed by heating, followed by heating from 230 ° C to 285 ° C over 50 minutes. After raising the temperature, a polycondensation reaction was performed for 3 hours to prepare a polymer having physical properties as shown in Table 1, and cut it into chips (P-11-1). Subsequently, the chip was placed in a general solid state polymerizer to obtain a polymer having physical properties shown in Table 1 (P-11-2). Subsequently, 500cc heat-resistant PET bottle (P-11-3) was made using PET heat-resistant blower with the polymer (P-11-2).

[비교예 2]Comparative Example 2

실시예 5에서 평균입자 15nm 크기의 실리카 입자 대신에 평균입경 200 ㎚ 크기의 실리카 입자를 사용해 슬러리(S-2)를 만든것 이외에는 실시예 5와 동일하게 실시하였다.In Example 5, the same procedure as in Example 5 was carried out except that the slurry (S-2) was made of silica particles having an average particle size of 200 nm instead of the silica particles having an average particle size of 15 nm.

[비교예 3]Comparative Example 3

비교예 2에서 평균입경 200 ㎚ 크기의 실리카 입자를 사용해 만든 슬러리(S-2) 1 중량부를 235℃ BHT에 투입하여 축중합을 실시한 것 이외에는 비교예 2와 동일하게실시하였다.Comparative Example 2 was carried out in the same manner as in Comparative Example 2 except that 1 part by weight of the slurry (S-2) made of silica particles having an average particle diameter of 200 nm was added to 235 ° C. BHT and subjected to condensation polymerization.

[비교예 4][Comparative Example 4]

평균입경 2 ㎚ 크기의 실리카 입자가 폴리머 기준으로 100 ppm 함유되도록 한 것 이외에는 실시예 5와 동일하게 액상중합을 실시하였으나, 폴리머 내에서 실리카 입자들이 3 mm 정도 크기의 이물로 존재하여 고상중합을 실시하지 않았다.Liquid phase polymerization was carried out in the same manner as in Example 5 except that 100 ppm of silica particles having an average particle diameter of 2 nm were contained, but the solid phase polymerization was carried out by the presence of foreign particles having a size of about 3 mm in the polymer. Did not do it.

상기 실시예 및 비교예에서 얻어진 폴리머 및 내열 페트병의 물성을 측정하여 하기의 표1에 나타내었다.The physical properties of the polymer and the heat-resistant PET bottle obtained in Examples and Comparative Examples were measured and shown in Table 1 below.

[표 1]TABLE 1

[표 1]TABLE 1

상기 표1에서 측정된 내열성 및 O2가스차단성은 하기 방법에 의해 측정하였다.The heat resistance and O 2 gas barrier properties measured in Table 1 were measured by the following method.

- 내열성-Heat resistance

내열성을 나타내는 내열온도는 초기 내열온도로서 정해진 온도로 물을 가열한 다음, 병에 순간 충진을 하여 병의 형태안정성을 측정하였다.The heat resistance temperature indicating heat resistance was measured as the initial heat resistance temperature by heating the water to a predetermined temperature and then filling the bottle instantaneously to measure the shape stability of the bottle.

-O2가스 차단성-O 2 gas barrier properties

병을 에폭시로 산소차단을 시킨다음 질소를 병속으로 일정속도로 집어넣고 동시에 일정속도로 밖으로 유출시키면서 질소속에 포함된 산소 농도를 측정하여 하루동안 병의 외부로부터 내부로 통과한 량을 계산하였다.After the bottle was oxygen-blocked with epoxy, nitrogen was put into the bottle at a constant rate and at the same time flowed out at a constant rate, and the oxygen concentration contained in the nitrogen was measured to calculate the amount of passage through the outside of the bottle during the day.

상기 실시예 및 비교예에서도 확인되듯이 본 발명에 따른 포화 폴리에스테르는 나노 크기의 실리카 입자의 존재에 의해 내열성과 O2와 같은 가스들의 가스차단성이 향상되어 음료나 각종 식품의 용기로 사용되는 페트병 등으로 유용하게 사용될 수 있다.As can be seen from the above examples and comparative examples, the saturated polyester according to the present invention is a PET bottle which is used as a container for beverages or various foods by improving the heat resistance and gas barrier properties of gases such as O 2 due to the presence of nano-sized silica particles. It may be usefully used as such.

Claims (7)

방향족 디카르본산 및 에틸렌 글리콜을 주요성분으로 하여 에스테르 교환반응 또는 에스테르화 반응을 거쳐 축중합 반응 및 고상 중합을 통해 얻어지며 고유 점도가 0.70∼0.90 범위이고 주쇄에 에스테르 결합을 지닌 통상의 포화 폴리에스테르에 있어서, 평균입경이 3∼100㎚크기의 범위에 있는 실리카 입자가 폴리머 기준으로 0.002중량% 이상 10중량% 이하 함유되어 있는 것을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르.It is obtained by transcondensation polymerization and solid-state polymerization with aromatic dicarboxylic acid and ethylene glycol as main components, through transesterification or esterification, and is a general saturated polyester having an intrinsic viscosity in the range of 0.70 to 0.90 and an ester bond in the main chain. The saturated polyester for plastic containers in which the average particle diameter contains the silica particle in the range of 3-100 nm size in 0.002 weight% or more and 10 weight% or less on a polymer basis. 제1항에 있어서, 포화 폴리에스테르는 폴리에틸렌테레프탈레이트인 것을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르.The saturated polyester for plastic container according to claim 1, wherein the saturated polyester is polyethylene terephthalate. 제1항에 있어서, 실리카 입자는 나트륨 실리케이트를 물과 반응시켜 규산소다를 제조한 후 양이온교환수지 칼럼을 통과시켜 산화나트륨을 제거함에 의해 얻어지는 실리카 입자를 성장시켜 제조된 것임을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르.2. The plastic container according to claim 1, wherein the silica particles are prepared by growing silica particles obtained by reacting sodium silicate with water to produce sodium silicate, and then passing through a cation exchange resin column to remove sodium oxide. Saturated polyester. 방향족 디카르본산 및 에틸렌 글리콜을 주요 성분으로하여 에스테르 교환반응 또는 에스테르화 반응을 거쳐 축중합 반응 및 고상 중합을 통해 얻어지며 고유 점도가 0.70∼0.90의 포화 폴리에스테르를 제조함에 있어서, 평균입경이 3∼100nm인 실리카 입자를 합성 반응중에 첨가하는 것을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르 제조방법.Aromatic dicarboxylic acid and ethylene glycol are the main components, which are obtained through transesterification and solidification polymerization through transesterification or esterification, and have an intrinsic viscosity of 0.70 to 0.90. A method for producing a saturated polyester for plastic containers, wherein silica particles of ˜100 nm are added during the synthesis reaction. 제4항에 있어서, 실리카 입자는 3∼30중량%의 실리카 입자를 함유한 슬러리 용액으로 만들어 첨가하는 것을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르 제조방법.The method for producing saturated polyester for plastic containers according to claim 4, wherein the silica particles are made into a slurry solution containing 3 to 30% by weight of silica particles. 제5항에 있어서, 슬러리 용액에 사용되는 용매는 에틸렌 글리콜 임을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르 제조방법.6. The method of claim 5 wherein the solvent used in the slurry solution is ethylene glycol. 제 4 항에 있어서, 실리카 입자의 첨가량은 폴리머 기준으로 0.002중량% 이상 10중량% 이하 범위인 것을 특징으로 하는 플라스틱 용기용 포화 폴리에스테르 제조방법.The method according to claim 4, wherein the silica particles are added in a range of 0.002% by weight to 10% by weight based on the polymer.
KR10-2002-0058281A 2002-09-26 2002-09-26 Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method KR100420595B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2002-0058281A KR100420595B1 (en) 2002-09-26 2002-09-26 Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method
DE10250401A DE10250401A1 (en) 2002-09-26 2002-10-29 Saturated polyester with good heat resistance and gas isolation for plastic container and its preparation
JP2002352939A JP3662563B2 (en) 2002-09-26 2002-12-04 Method for producing saturated polyester composition for plastic containers having excellent heat resistance and gas barrier properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2002-0058281A KR100420595B1 (en) 2002-09-26 2002-09-26 Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method
DE10250401A DE10250401A1 (en) 2002-09-26 2002-10-29 Saturated polyester with good heat resistance and gas isolation for plastic container and its preparation
JP2002352939A JP3662563B2 (en) 2002-09-26 2002-12-04 Method for producing saturated polyester composition for plastic containers having excellent heat resistance and gas barrier properties

Publications (2)

Publication Number Publication Date
KR20030007241A KR20030007241A (en) 2003-01-23
KR100420595B1 true KR100420595B1 (en) 2004-03-02

Family

ID=32872354

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0058281A KR100420595B1 (en) 2002-09-26 2002-09-26 Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method

Country Status (3)

Country Link
JP (1) JP3662563B2 (en)
KR (1) KR100420595B1 (en)
DE (1) DE10250401A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199636B2 (en) * 2007-10-10 2013-05-15 三井化学株式会社 Thermoplastic resin composition and molded article thereof
JP2010100756A (en) * 2008-10-24 2010-05-06 Teijin Fibers Ltd Polyester composition and bottle
JP5290702B2 (en) * 2008-10-28 2013-09-18 帝人株式会社 Polyester composition and bottle
CN114044892B (en) * 2021-12-02 2022-09-16 浙江佳人新材料有限公司 Process for producing film-grade copolyester chips by chemical cyclic regeneration method
CN114921067A (en) * 2022-05-23 2022-08-19 东莞市锦源高分子科技有限公司 PET (polyethylene terephthalate) high-transparency smooth master batch and production process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645922A (en) * 1979-09-21 1981-04-25 Kuraray Co Ltd Production of silica-containing polyester

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69420884T2 (en) * 1993-04-02 2000-03-16 Fuji Photo Film Co Ltd Magnetic tape cassette with reduced electrostatic charge
KR950003339A (en) * 1993-07-15 1995-02-16 박홍기 Biaxially oriented polyester film
JP3231245B2 (en) * 1996-08-30 2001-11-19 セイコーエプソン株式会社 Recording medium having gloss layer
US6323271B1 (en) * 1998-11-03 2001-11-27 Arteva North America S.A.R.L. Polyester resins containing silica and having reduced stickiness
FR2807049B1 (en) * 2000-03-29 2002-06-21 Tergal Fibres COMPOSITIONS BASED ON POLYESTERS PRESENTING IMPROVED THERMOMECHANICAL PROPERTIES AND METHOD FOR MANUFACTURING THESE COMPOSITIONS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645922A (en) * 1979-09-21 1981-04-25 Kuraray Co Ltd Production of silica-containing polyester

Also Published As

Publication number Publication date
KR20030007241A (en) 2003-01-23
JP3662563B2 (en) 2005-06-22
DE10250401A1 (en) 2004-05-19
JP2004182904A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
US7129317B2 (en) Slow-crystallizing polyester resins
US7094863B2 (en) Polyester preforms useful for enhanced heat-set bottles
KR101336581B1 (en) A manufacturing method of co-polyester resins for clear mono-layer containers with improved gas barrier characteristics
JP5933158B2 (en) Method for producing polyester barrier resin without solid phase polymerization, co-polyester resin produced by the method, and transparent single layer container produced from the co-polyester resin
US8338505B2 (en) Alumina-enhanced polyester resins and methods for making the same
US8791225B2 (en) Titanium-nitride catalyzed polyester
US9382028B2 (en) Opaque polyester containers
US20110212282A1 (en) Polyester Resins for High-Strength Articles
US8524343B2 (en) Polyester resins for high-efficiency injection molding
TWI529195B (en) Polyester resin
JP2009052041A (en) Method for producing polyester
KR100420595B1 (en) Saturated polyester for plastic containers with excellent heat-resistence and gas barrier properties and its manufacturing method
JP2005213292A (en) Polyester resin composition and polyester molding comprising the same
JP2005220234A (en) Polyester resin, polyester resin composition comprising the same and polyester molding
KR100392101B1 (en) Saturated polyester with excellent crystalization property for molding
CN1193058C (en) Saturated polyester with good heat resistance and imporosity used for plastic container and its preparing method
US7176274B1 (en) Saturated polyester for plastic containers with excellent heat resistance and gas impermeability and method for manufacturing the same
RU2238284C2 (en) Saturated complex polyester for making plastic container with high thermal stability and gas impermeability and method for it preparing
MXPA06011692A (en) Methods of making titanium-catalyzed polyethylene terephthalate resins.
KR101319236B1 (en) Polyester resin containing the nanoparticles and the preparing process thereof
JP3954515B2 (en) Saturated polyester
JP2010100756A (en) Polyester composition and bottle
JP2005206747A (en) Polyester resin, polyester resin composition composed thereof, and polyester molded item
JP2004026853A (en) Polyester composition lowering uv-ray transmittance and pet-bottle produced therefrom
JP2005281381A (en) Polyester and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120217

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee