KR100417685B1 - A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs - Google Patents

A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs Download PDF

Info

Publication number
KR100417685B1
KR100417685B1 KR10-1999-0059914A KR19990059914A KR100417685B1 KR 100417685 B1 KR100417685 B1 KR 100417685B1 KR 19990059914 A KR19990059914 A KR 19990059914A KR 100417685 B1 KR100417685 B1 KR 100417685B1
Authority
KR
South Korea
Prior art keywords
activated carbon
pitch
catalyst
carbon fiber
producing
Prior art date
Application number
KR10-1999-0059914A
Other languages
Korean (ko)
Other versions
KR20010060414A (en
Inventor
홍익표
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR10-1999-0059914A priority Critical patent/KR100417685B1/en
Publication of KR20010060414A publication Critical patent/KR20010060414A/en
Application granted granted Critical
Publication of KR100417685B1 publication Critical patent/KR100417685B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 활성 탄소섬유계 분해 촉매의 제조 방법에 관한 것으로서, 미분으로 분쇄한 핏치를 구리, 코발트, 크롬 화합물의 수용액에 함침하는 단계, 상기의 혼합물을 핏치의 연화 온도 이하에서 건조시키는 단계, 상기 건조된 혼합물을 금속 화합물이 균일하게 분산된 핏치 섬유를 제조하기 위하여 용융 방사하는 단계 및 상기 제조된 핏치 섬유를 통상의 방법으로 안정화시키는 단계를 포함하는 활성 탄소계 유기염소화합물 분해 촉매의 제조 방법 및 그 제조 방법으로 제조된 촉매로서, 촉매의 비표면적을 넓힘으로써 기존에 비해 더욱 효율적으로 폴리클로로디벤조파라다이옥신(PCDD)을 분해할 수 있는 촉매에 관한 것이다.The present invention relates to a method for producing an activated carbon fiber-based decomposition catalyst, comprising the steps of impregnating a fine powder pulverized in an aqueous solution of copper, cobalt, chromium compounds, drying the mixture below the softening temperature of the pitch, A method of producing an activated carbon-based organochlorine decomposition catalyst comprising the step of melt spinning the dried mixture to produce a pitch fiber in which the metal compound is uniformly dispersed and stabilizing the prepared pitch fiber in a conventional manner; and As a catalyst produced by the production method, the present invention relates to a catalyst capable of decomposing polychlorodibenzoparadioxin (PCDD) more efficiently than before by increasing the specific surface area of the catalyst.

Description

활성 탄소 섬유계 유기 염소 화합물 분해 촉매의 제조 방법{A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs}A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs}

본 발명은 활성 탄소 섬유계 분해 촉매의 제조 방법에 관한 것으로서, 더욱 상세하게는 활성 탄소 섬유의 제조에 있어서 핏치 분말에 수용성의 금속을 함침시킨 후 건조하여 상기 금속을 분산시켜 폴리클로로디벤조파라다이옥신(PCDD)의 분해가 가능한 활성 탄소 섬유계 분해 촉매의 제조 방법에 관한 것이다.The present invention relates to a method for producing an activated carbon fiber-based decomposition catalyst, and more particularly, in the production of activated carbon fibers, a pitch powder is impregnated with a water-soluble metal and dried to disperse the metal to disperse the polychlorodibenzoparadioxin. A method for producing an activated carbon fiber-based decomposition catalyst capable of decomposing (PCDD).

유기 염소 화합물은 농약 등의 제조시 불순물로 혼입되거나 쓰레기 소각로 등에서 주로 PVC 등의 합성 수지의 소각시에 생성되는 유독성 물질로서 주로 폴리클로로디벤조파라다이옥신(PCDD; Dioxin), 폴리클로로디벤조퓨란(PCDF), 폴리클로로비페닐(PCB) 등을 들 수 있는데 이는 700 ℃ 이상의 고온으로 반응시키면 분해되나 이 정도의 고온으로 처리하려면 추가적인 공정 및 에너지가 소요되게 된다.The organic chlorine compound is a toxic substance that is mixed with impurities in the manufacture of agrochemicals or is produced during the incineration of synthetic resins such as PVC mainly in waste incinerators. PCDF), polychlorobiphenyl (PCB), and the like, which are decomposed when reacted at a high temperature of 700 ° C. or higher, but additional processing and energy are required to process at such a high temperature.

따라서, 반응 온도를 300 ℃ 이하 정도의 낮은 온도에서 열처리하도록 하면 요구되는 에너지를 감소시킬 수 있다. 이에 관하여는 Hiraoka 등에 의해 Chemosphere, Vol. 19, Nos. 1-6, p 361-366, 1989에 허니컴 형태의 백금 촉매를이용하는 방법이 제안되고 있으나 촉매 특성상 처리 비용이 상당히 높은 단점이 있다.Therefore, when the reaction temperature is heat-treated at a temperature as low as 300 ° C or less can reduce the required energy. In this regard, see Hiraoka et al., Chemosphere, Vol. 19, Nos. 1-6, p 361-366, 1989 has proposed a method using a honeycomb-type platinum catalyst, but there is a disadvantage in that the treatment cost is considerably high.

또한, Hagenmaier 등에 의해 Organohalogen Compound 3, p 65-68에 발표한 것처럼 400 ℃ 이하의 온도에서 TiO2계 촉매를 이용하여 다이옥신(Dioxin)을 분해한 결과를 나타내고 있으나 이는 촉매의 비표면적이 작으므로 효과적인 분해가 어려운 단점이 있었다.In addition, as shown by Hagenmaier et al. In Organohalogen Compound 3, p 65-68, it shows the result of decomposing dioxins using TiO 2 -based catalysts at temperatures below 400 ° C. It was difficult to disassemble.

대한민국특허 출원번호 제96-67966호, 제96-68742호에서는 핏치계 활성 탄소 섬유를 촉매로 하여 PCDD를 효과적으로 분해할 수 있으며 구리, 코발트를 표면에 담지할 경우 활성 탄소 섬유의 자체 촉매 작용과 넓은 비표면적에 의한 각 금속의 촉매 촉진 작용에 의하여 분해 효율이 향상된다는 것이 발표되어 있다.In Korean Patent Application Nos. 96-67966 and 96-68742, the pitch of activated carbon fibers can be used as a catalyst to effectively decompose PCDD. When copper and cobalt are supported on the surface, the self-catalytic action of the activated carbon fibers and the It is reported that the decomposition efficiency is improved by the catalyst promoting action of each metal by the specific surface area.

그러나, 이 방법은 활성 탄소 섬유를 사용하므로 활성탄계에 비하여 비교적 효율이 높기는 하나 표면에만 촉매 성분이 함침되어 있으며 또한 미세 기공만으로 이루어져 있는 활성 탄소 섬유의 표면에 불균일하게 금속 혼합물이 함침되는 경우 미세 기공을 폐쇄하게 되어 비표면적이 현저히 저하되며 미세공 내부로 금속 성분이 확산되지 못하므로 촉매의 활성을 충분히 발휘하지 못하게 되며 결과적으로 활성 탄소 섬유의 다공성의 장점을 충분히 발휘하지 못한다는 문제점이 있었다.However, since this method uses activated carbon fibers, the catalyst component is impregnated only on the surface of the activated carbon fiber, which is relatively more efficient than the activated carbon system, and finely impregnated with the metal mixture on the surface of the activated carbon fiber composed of only micropores. As the pores are closed, the specific surface area is remarkably lowered, and the metal component is not diffused into the micropores, thereby insufficiently exhibiting the activity of the catalyst. As a result, there is a problem in that the porosity of the activated carbon fibers is not sufficiently exhibited.

본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로서, 핏치를 사용하여 탄소 섬유를 제조하는 경우 금속 화합물을 섬유 표면뿐만 아니라 내부에 균일하게 분산시켜 촉매의 비표면적을 넓힘으로써 폴리클로로디벤조파라다이옥신(PCDD)을 분해하는 촉매의 제조 방법을 제공하는 것이다.The present invention has been made to solve the above problems, when producing a carbon fiber by using a pitch, polychlorodibenzoparadioxin by spreading the specific surface area of the catalyst by uniformly dispersing the metal compound in the interior as well as the fiber surface It is to provide a method for producing a catalyst for decomposing (PCDD).

본 발명은 상기한 바와 같은 목적을 달성하기 위하여,The present invention to achieve the object as described above,

a) 미분으로 분쇄한 핏치를 구리, 코발트, 크롬 화합물의 수용액에 함침하는 단계;a) impregnating a pitch pulverized into fine powder into an aqueous solution of a copper, cobalt and chromium compound;

b) 상기의 혼합물을 핏치의 연화 온도 이하에서 건조시키는 단계;b) drying said mixture below the softening temperature of the pitch;

c) 상기 건조된 혼합물을 금속 화합물이 균일하게 분산된 핏치 섬유를 제조하기 위하여 용융 방사하는 단계; 및c) melt spinning the dried mixture to produce pitch fibers in which metal compounds are uniformly dispersed; And

d) 상기 제조된 핏치 섬유를 공기 분위기에서 안정화시키는 단계d) stabilizing the prepared pitch fibers in an air atmosphere

를 포함하는 활성 탄소 섬유계 분해 촉매의 제조 방법을 제공한다.It provides a method for producing an activated carbon fiber-based decomposition catalyst comprising a.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 핏치는 단독으로 사용하여 핏치 섬유를 제조할 수 있는 물성의 것이면 석유계나 콜타르계 모두 사용이 가능하나 등방성 핏치를 원료로 사용하는 것이 바람직하다.If the pitch used in the present invention is a physical property that can be used to produce pitch fibers alone, both petroleum and coal tar can be used, but isotropic pitch is preferably used as a raw material.

상기 원료 핏치의 연화점은 150 내지 350 ℃인 것이 바람직하다.It is preferable that the softening point of the said raw material pitch is 150-350 degreeC.

통상의 탄소 섬유나 활성 탄소 섬유의 제조에 있어서 원료 핏치의 연화점이 너무 낮을 경우 수율이 낮고 최종 제품의 인장 강도 등의 기계적 물성이 저하되므로 150 ℃ 이하이면 바람직하지 않고, 특히 본 발명에서는 연화점이 낮을 경우 금속 성분이 함침, 건조된 후 방사 과정에서 재용융되므로 이 단계에서 함침된 성분과 핏치와의 상분리가 일어나지 않도록 비교적 높은 연화점의 핏치를 사용하는 것이 바람직하다. 또한, 핏치의 연화점이 너무 높을 경우에는 활성화에 유리한 조직 구조인 등방성을 유지하기가 곤란하므로 바람직하지 않으나 350 ℃ 이하인 경우에는 일부만 이방성화되어 활성화가 가능하므로 바람직하며, 등방성이 유지되며 충분히 방사가 가능하도록 용융되는 핏치의 경우에는 연화점의 제한은 없다.If the softening point of the raw material pitch is too low in the production of ordinary carbon fibers or activated carbon fibers, the yield is low and the mechanical properties such as tensile strength of the final product are lowered. In this case, since the metal component is re-melted in the spinning process after being impregnated and dried, it is preferable to use a pitch of relatively high softening point so that phase separation between the impregnated component and the pitch does not occur in this step. In addition, when the softening point of the pitch is too high, it is difficult to maintain isotropy, which is a tissue structure that is advantageous for activation. However, when the pitch is less than 350 ° C., it is preferable because only part is anisotropic and activation is possible, and isotropy is maintained and sufficient spinning is possible. In the case of pitch melted so that there is no limitation of the softening point.

핏치는 가능한 한 미분쇄하는 것이 많은 양의 금속 성분을 함침시킬 수 있고 또한 금속 성분이 촉매 내에서의 균일하게 분포될 수 있으므로 바람직하다.Pitch is preferred because pulverizing as much as possible can impregnate a large amount of the metal component and also distribute the metal component uniformly in the catalyst.

상기 핏치를 이용한 탄소 섬유에 금속 성분의 분산을 위한 금속 화합물로는 수용성 구리, 코발트, 크롬계의 화합물을 포화 수용액 상으로 하여 이를 탄소 섬유에 함침시킨다.As a metal compound for dispersing a metal component in the carbon fiber using the pitch, water-soluble copper, cobalt, and chromium-based compounds are impregnated into the carbon fiber in the form of a saturated aqueous solution.

상기 함침된 혼합물을 방사에 앞서 핏치가 용융되지 않는 온도에서 핏치의 연화 온도 이하로 건조시킨다. 핏치의 연화점이 낮은 경우에 진공 건조 등의 수단을 이용하면 낮은 온도에서 효과적으로 건조시킬 수 있다.The impregnated mixture is dried below the softening temperature of the pitch at a temperature at which the pitch does not melt prior to spinning. When the softening point of the pitch is low, it is possible to effectively dry at low temperature by using means such as vacuum drying.

건조된 핏치는 통상의 탄소 섬유의 제조 방법에서의 방사 방법인 용융 방사 및 원심 방사 등의 방법에 의하여 방사하면 되나 용융 방사 방법이 바람직하고, 방사 내의 용융 상태의 부분을 적게 하여 용융된 핏치 중에서 함침된 금속 성분과 핏치와의 상분리를 최소화하는 것이 바람직하다.The dried pitch may be spun by methods such as melt spinning and centrifugal spinning, which are spinning methods in ordinary carbon fiber manufacturing methods, but melt spinning methods are preferred, and the impregnated in the molten pitch is made by reducing the part of the molten state in spinning. It is desirable to minimize the phase separation of the metal component and the pitch.

방사된 후의 핏치 섬유는 공기 분위기에서 안정화시키고, 탄화 및 활성화시켜 활성 탄소 섬유로 제조한다. 필요에 따라서는 제조된 활성 탄소 섬유 촉매를 다시 함침시켜 금속 성분의 함량을 높여서 사용하는 것도 가능하나 이때에는 세공을 폐쇄시킬 수 있으므로 과도하게 처리하는 것은 바람직하지 않다.Pitch fiber after spinning in the air atmosphere Stabilized, carbonized and activated to make activated carbon fibers. If necessary, it is also possible to increase the content of the metal component by impregnating the prepared activated carbon fiber catalyst again, but at this time, it is not preferable to overtreat because the pores can be closed.

상기 통상의 활성 탄소 섬유의 제조 방법은 200 내지 300 ℃ 정도의 산화 분위기에서 1 내지 10 시간 열처리하여 안정화하는 방법과 700 내지 1000 ℃의 온도에서 불활성 분위기에서 탄화한 후 700 내지 1000 ℃ 온도의 수증기 또는 이산화탄소나 공기 분위기에서 활성화하는 방법을 포함하며 이때 탄화 과정을 생략하고 직접 활성화시키면 탄화 및 활성화가 동시에 일어나나 이때에는 별도로 탄화시킬 때와 비교하여 수율이 저하될 수도 있으므로 바람직하지 않다.The conventional method for producing activated carbon fibers is a method of stabilizing by heat treatment for 1 to 10 hours in an oxidizing atmosphere of about 200 to 300 ℃ and carbonization in an inert atmosphere at a temperature of 700 to 1000 ℃ steam or at a temperature of 700 to 1000 ℃ It includes a method of activating in a carbon dioxide or air atmosphere, and if the carbonization process is omitted and directly activated, carbonization and activation occur at the same time, but this is not preferable because the yield may be lower than when carbonized separately.

본 발명의 활성 탄소 섬유계 분해 촉매는 탄소 섬유 표면 및 내부에 구리, 코발트 및 크롬이 균일하게 분포되므로 비표면적이 넓어져 폴리클로로파라다이옥신(PCDD)을 효율적으로 분해할 수 있다.In the activated carbon fiber-based decomposition catalyst of the present invention, copper, cobalt, and chromium are uniformly distributed on the surface and inside of the carbon fiber, so that the specific surface area is increased, so that polychloroparadioxin (PCDD) can be efficiently decomposed.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 다만, 하기하는 실시예는 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐 본 발명이 하기하는 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are only presented to aid the understanding of the present invention, and the present invention is not limited to the following examples.

실시예 1Example 1

연화점 210 ℃인 등방성 코울타르 핏치를 325 Mesh 이하(44 ㎛ 이하)로 미분쇄하고 황산 구리[CuSO4ㆍ5H2O]의 포화 수용액에 함침한 후 50 ℃에서 진공 건조한 것을 용융 방사기에서 235 ℃에서 방사하여 황산 구리가 섬유 내부에 균일하게 분산된 핏치 섬유를 제조하였다. 이 섬유를 공기 분위기에서 240 ℃에서 3 시간 열안정화한 후 질소 가스 분위기에서 800 ℃에서 30 분간 탄화하여 탄소 섬유를 제조하였다. 이것을 900 ℃에서 1 시간 동안 과잉량의 수증기 분위기에서 활성화하여 활성 탄소 섬유계 촉매를 제조하였다. 제조된 활성 탄소 섬유의 비표면적은 1520 ㎡/g을 나타내었다.Isotropic coultar pitch with a softening point of 210 ° C was pulverized to 325 mesh or less (44 μm or less), impregnated in a saturated aqueous solution of copper sulfate [CuSO 4 ㆍ 5H 2 O], and then vacuum dried at 50 ° C at 235 ° C in a melt spinning machine. Spinning produced pitch fibers in which copper sulfate was uniformly dispersed in the fiber. The fibers were thermally stabilized at 240 ° C. for 3 hours in an air atmosphere and then carbonized at 800 ° C. for 30 minutes in a nitrogen gas atmosphere to prepare carbon fibers. It was activated at 900 ° C. for 1 hour in an excess of steam atmosphere to prepare an activated carbon fiber-based catalyst. The specific surface area of the prepared activated carbon fibers was 1520 m 2 / g.

이 활성 탄소 섬유계 촉매를 이용하여 Hagenmaier 등의 Organohalogen Compound 3, p 65-68에 따라 모델 가스로서 PCDD보다 분해되기 어려운 화합물인 테트라클로로에틸렌(Tetrachloroethylene)을 기화시켜 1000 ppm의 농도로 유지시킨 기체와 300 ℃에서 반응시키고 반응 후 기체의 조성을 기체 크로마토그래피 방법에 의하여 연속 분석하였다. 촉매의 충진 밀도는 0.2 g/㎤가 되도록 유지하였으며 이때의 공간 속도는 2500 h-1으로 하였다. 그 결과 공급 기체의 초기 농도에 비하여 90 %의 분해율을 나타내었다.Using this activated carbon fiber catalyst, according to Organohalogen Compound 3 of Hagenmaier et al. The reaction was carried out at 300 ° C. and the composition of the gas after the reaction was analyzed by gas chromatography. The packing density of the catalyst was maintained at 0.2 g / cm 3 and the space velocity at this time was 2500 h −1 . As a result, the decomposition rate was 90% compared to the initial concentration of the feed gas.

실시예 2Example 2

상기 실시예 1에서 황산 구리 수용액 대신에 질산 코발트[Co(NO3)2ㆍ6H2O]를 사용하는 것 이외에는 실시예 1과 동일한 방법으로 활성 탄소 섬유계 촉매를 제조하였다. 제조된 활성 탄소 섬유의 비표면적은 1492 ㎡/g을 나타내었다.An activated carbon fiber catalyst was prepared in the same manner as in Example 1, except that cobalt nitrate [Co (NO 3 ) 2 .6H 2 O] was used instead of the aqueous copper sulfate solution in Example 1. The specific surface area of the prepared activated carbon fibers was 1492 m 2 / g.

이 활성 탄소 섬유계 촉매를 이용하여테트라클로로에틸렌(Tetrachloroethylene)을 기화시켜 1000 ppm의 농도로 유지시킨 기체와 300 ℃에서 반응시키고 반응 후의 기체의 조성을 기체 크로마토그래피 방법에 의하여 연속 분석하였다. 촉매의 충진 밀도는 0.2 g/㎤가 되도록 유지하였으며, 이때의 공간 속도는 2500 h-1으로 하였다. 그 결과 공급 기체의 초기 농도에 비하여 81 %의 분해율을 나타내었다.Using this activated carbon fiber catalyst, tetrachloroethylene was vaporized and reacted with a gas maintained at a concentration of 1000 ppm at 300 ° C., and the composition of the gas after the reaction was continuously analyzed by a gas chromatography method. The packing density of the catalyst was maintained to be 0.2 g / cm 3, and the space velocity at this time was 2500 h −1 . As a result, the decomposition rate was 81% compared to the initial concentration of the feed gas.

실시예 3Example 3

상기 실시예 1에서 황산 구리 수용액 대신에 질산 크롬(Ⅲ)[CrN3O9ㆍ9H2O]를 사용하는 것 이외에는 실시예 1과 동일한 방법으로 활성 탄소 섬유계 촉매를 제조하였다. 제조된 활성 탄소 섬유의 비표면적은 1555 ㎡/g을 나타내었다.An activated carbon fiber catalyst was prepared in the same manner as in Example 1, except that chromium (III) [CrN 3 O 9 .9H 2 O] was used instead of the aqueous copper sulfate solution in Example 1. The specific surface area of the prepared activated carbon fibers was 1555 m 2 / g.

상기 활성 탄소 섬유계 촉매를 이용하여 테트라클로로에틸렌(Tetrachloroethylene)을 기화시켜 1000 ppm의 농도로 유지시킨 기체와 300 ℃에서 반응시키고 반응 후의 기체의 조성을 기체 크로마토그래피 방법에 의하여 연속 분석하였다. 촉매의 충진 밀도는 0.2 g/㎤가 되도록 유지하였으며, 이때의 공간 속도는 2500 h-1으로 하였다. 그 결과 공급 기체의 초기 농도에 비하여 92 %의 분해율을 나타내었다.Tetrachloroethylene was vaporized using the activated carbon fiber catalyst to react with a gas maintained at a concentration of 1000 ppm at 300 ° C., and the composition of the gas after the reaction was continuously analyzed by a gas chromatography method. The packing density of the catalyst was maintained to be 0.2 g / cm 3, and the space velocity at this time was 2500 h −1 . As a result, the decomposition rate was 92% compared to the initial concentration of the feed gas.

비교예 1Comparative Example 1

상기 실시예 1의 연화점이 210 ℃인 등방성 콜타르 핏치를 325 Mesh 이하(44 ㎛ 이하)로 미분쇄하고 용융 방사기에서 235 ℃에서 방사하여 핏치 섬유를 제조하였다. 이 섬유를 실시예 1과 동일한 조건인 공기 분위기에서 240 ℃에서 3 시간열안정화하고 질소 가스 분위기에서 800 ℃에서 30 분간 탄화하여 탄소 섬유를 제조하였다. 이것을 900 ℃에서 1 시간 동안 과잉량의 수증기 분위기에서 활성화하여 활성 탄소 섬유계 촉매를 제조하였다. 제조된 활성 탄소 섬유의 비표면적은 1565 ㎡/g을 나타내었다. 이 활성 탄소 섬유를 황산 구리[CuSO4ㆍ5H2O]의 포화 수용액에 함침한 후 150 ℃에서 2 시간 건조하였다. 이 단계에서의 활성 탄소 섬유계 촉매의 비표면적은 1138 ㎡/g으로 약 27 % 감소하였다.Pitch fibers were prepared by pulverizing an isotropic coal tar pitch having a softening point of 210 ° C. to 325 mesh or less (44 μm or less) and spinning at 235 ° C. in a melt spinning machine. The fibers were heat stabilized at 240 ° C. for 3 hours in an air atmosphere having the same conditions as in Example 1, and carbonized at 800 ° C. for 30 minutes in a nitrogen gas atmosphere to prepare carbon fibers. It was activated at 900 ° C. for 1 hour in an excess of steam atmosphere to prepare an activated carbon fiber-based catalyst. The specific surface area of the prepared activated carbon fibers was 1565 m 2 / g. This activated carbon fiber was impregnated into a saturated aqueous solution of copper sulfate [CuSO 4 .5H 2 O], and then dried at 150 ° C. for 2 hours. The specific surface area of the activated carbon fiber catalyst at this stage was reduced by about 27% to 1138 m 2 / g.

상기 활성 탄소 섬유계 촉매를 이용하여 테트라클로로에틸렌을 기화시켜 1000 ppm의 농도로 유지시킨 기체와 300 ℃에서 반응시키고 반응 후 기체의 조성을 기체 크로마토그래피의 방법에 의하여 연속 분석하였다. 촉매의 충진 밀도는 0.2 g/㎤가 되도록 유지하였으며 이 때의 공간 속도는 2500 h-1으로 하였다. 그 결과 공급 기체의 초기 농도에 비하여 72 %의 분해율을 나타내었다.Tetrachloroethylene was vaporized using the activated carbon fiber catalyst to react with a gas maintained at a concentration of 1000 ppm at 300 ° C., and the composition of the gas after the reaction was continuously analyzed by gas chromatography. The packing density of the catalyst was maintained at 0.2 g / cm 3 and the space velocity at this time was 2500 h −1 . As a result, the decomposition rate was 72% compared to the initial concentration of the feed gas.

본 발명에 따른 활성 탄소계 촉매를 이용하는 경우 촉매의 비표면적이 넓어져 PCDD의 분해율이 약 10 내지 20 %까지 기존의 경우보다 증가하였음을 알 수 있으므로, 기존의 방법에 비해 매우 양호한 효율로 PCDD를 분해할 수 있다.In the case of using the activated carbon catalyst according to the present invention, since the specific surface area of the catalyst is widened, it can be seen that the decomposition rate of the PCDD is increased by about 10 to 20%, compared to the conventional case. Can be disassembled.

Claims (4)

삭제delete a) 미분으로 분쇄한 핏치를 구리, 코발트, 크롬 화합물의 수용액에 함침하는 단계;a) impregnating a pitch pulverized into fine powder into an aqueous solution of a copper, cobalt and chromium compound; b) 상기의 혼합물을 핏치의 연화 온도 이하에서 건조시키는 단계;b) drying said mixture below the softening temperature of the pitch; c) 상기 건조된 혼합물을 금속화합물이 균일하게 분산된 핏치 섬유를 제조하기 위하여 용융 방사하는 단계; 및c) melt spinning the dried mixture to produce pitch fibers in which metal compounds are uniformly dispersed; And d) 상기 제조된 핏치 섬유를 공기 분위기에서 안정화시키는 단계d) stabilizing the prepared pitch fibers in an air atmosphere 를 포함하는 것을 특징으로 하는 활성 탄소계 분해 촉매의 제조 방법.Method for producing an activated carbon-based decomposition catalyst comprising a. 제2항에 있어서,The method of claim 2, 상기 원료 핏치의 연화점은 150 내지 350 ℃인 활성 탄소계 분해 촉매의 제조 방법.The softening point of the raw material pitch is 150 to 350 ℃ a method for producing an activated carbon decomposition catalyst. 제2항 또는 제3항의 제조방법에 따라 제조된 활성 탄소계 분해 촉매.Activated carbon-based decomposition catalyst prepared according to the method of claim 2 or 3.
KR10-1999-0059914A 1999-12-21 1999-12-21 A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs KR100417685B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059914A KR100417685B1 (en) 1999-12-21 1999-12-21 A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059914A KR100417685B1 (en) 1999-12-21 1999-12-21 A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs

Publications (2)

Publication Number Publication Date
KR20010060414A KR20010060414A (en) 2001-07-07
KR100417685B1 true KR100417685B1 (en) 2004-02-11

Family

ID=19627722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0059914A KR100417685B1 (en) 1999-12-21 1999-12-21 A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs

Country Status (1)

Country Link
KR (1) KR100417685B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130327A (en) * 1975-05-08 1976-11-12 Toyobo Co Ltd Activated carbon fibers containing metallic oxide
JPS6485137A (en) * 1987-09-26 1989-03-30 Osaka Gas Co Ltd Active carbon fiber capable of adsorbing nitric oxide and manufacture thereof
JPH03265510A (en) * 1990-03-13 1991-11-26 Osaka Gas Co Ltd Production of metal-contg. activated carbon
JPH08259957A (en) * 1995-03-27 1996-10-08 Osaka Gas Co Ltd Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber
JPH09296328A (en) * 1996-05-07 1997-11-18 Petoca:Kk Microbicidal activated carbon fiber and its production
KR19980015479A (en) * 1996-08-22 1998-05-25 문영수 A PROCESS FOR PREPARING HYDROPHOBIC CATALYST FOR REMOVING A BAD SMELL
JPH11226394A (en) * 1998-02-12 1999-08-24 Unitika Ltd Adsorbing material for low-concentration organic chlorine compound
KR19990068472A (en) * 1999-05-24 1999-09-06 유승곤 Silver-containing activated carbon fiber
JPH11240708A (en) * 1998-02-27 1999-09-07 Adooru:Kk Fibrous activated carbon
KR100328092B1 (en) * 1997-12-24 2002-05-09 신현준 A preparation method of decomposition catalyst of activated carbon based chlorinated organic compound

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130327A (en) * 1975-05-08 1976-11-12 Toyobo Co Ltd Activated carbon fibers containing metallic oxide
JPS6485137A (en) * 1987-09-26 1989-03-30 Osaka Gas Co Ltd Active carbon fiber capable of adsorbing nitric oxide and manufacture thereof
JPH03265510A (en) * 1990-03-13 1991-11-26 Osaka Gas Co Ltd Production of metal-contg. activated carbon
JPH08259957A (en) * 1995-03-27 1996-10-08 Osaka Gas Co Ltd Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber
JPH09296328A (en) * 1996-05-07 1997-11-18 Petoca:Kk Microbicidal activated carbon fiber and its production
KR19980015479A (en) * 1996-08-22 1998-05-25 문영수 A PROCESS FOR PREPARING HYDROPHOBIC CATALYST FOR REMOVING A BAD SMELL
KR100328092B1 (en) * 1997-12-24 2002-05-09 신현준 A preparation method of decomposition catalyst of activated carbon based chlorinated organic compound
JPH11226394A (en) * 1998-02-12 1999-08-24 Unitika Ltd Adsorbing material for low-concentration organic chlorine compound
JPH11240708A (en) * 1998-02-27 1999-09-07 Adooru:Kk Fibrous activated carbon
KR19990068472A (en) * 1999-05-24 1999-09-06 유승곤 Silver-containing activated carbon fiber

Also Published As

Publication number Publication date
KR20010060414A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US7727932B2 (en) Activated carbon fibers and engineered forms from renewable resources
EP1341719B1 (en) Activated carbon for odor control and method for making same
US5614459A (en) Process for making activated charcoal
US5965479A (en) Activated carbon and process for producing the same
US5344630A (en) Deep oxidation of halogenated organics with porous carbonaceous materials
CA1236488A (en) Process for the destruction of toxic organic products
US20100028245A1 (en) Activated charcoal production
JP3979837B2 (en) Method for producing dioxin removal catalyst
Lai et al. Review of oil palm-derived activated carbon for CO2 capture
CN111547720A (en) Method for removing water antibiotics by using heterogeneous atom doped porous biomass carbon material
EP0725036B1 (en) Activated carbon and process for producing the same
KR100417685B1 (en) A method of preparing an activated carbon fiber based catalyst for decomposition of PCDDs
KR100328092B1 (en) A preparation method of decomposition catalyst of activated carbon based chlorinated organic compound
JPH08208211A (en) Activated carbon
CN114471460A (en) Demercuration adsorbent and preparation method thereof
KR102335494B1 (en) Activated carbon fiber with metal for the removal of harmful material, and method for preparation the same
JPH0280315A (en) Granulated active carbon
CN114789051B (en) Desulfurization, denitrification and vanadium carbon catalyst regeneration method for reducing dioxin release
JPH0966231A (en) Activated carbon
JP3521730B2 (en) How to remove organic chlorine compounds
JPH0967111A (en) Production of activated carbon
WO2000016898A1 (en) Catalyst for decomposing chlorinated organic compound
KR20010046104A (en) Catalyst for reduction of toxic organic compounds from incinerator flue gas and preparing process thereof
JP2524442B2 (en) Method for producing porous carbon material
Rozhan et al. Investigation on activated carbon derived from municipal solid waste for leachate treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee