KR100416518B1 - Manufacturing method of refining phospho-gypsum for cement - Google Patents

Manufacturing method of refining phospho-gypsum for cement Download PDF

Info

Publication number
KR100416518B1
KR100416518B1 KR10-2000-0054742A KR20000054742A KR100416518B1 KR 100416518 B1 KR100416518 B1 KR 100416518B1 KR 20000054742 A KR20000054742 A KR 20000054742A KR 100416518 B1 KR100416518 B1 KR 100416518B1
Authority
KR
South Korea
Prior art keywords
gypsum
phosphate
cement
produced
refined
Prior art date
Application number
KR10-2000-0054742A
Other languages
Korean (ko)
Other versions
KR20020021965A (en
Inventor
한동운
전종협
정진악
조남길
Original Assignee
태원물산주식회사
주식회사 다지원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 태원물산주식회사, 주식회사 다지원 filed Critical 태원물산주식회사
Priority to KR10-2000-0054742A priority Critical patent/KR100416518B1/en
Publication of KR20020021965A publication Critical patent/KR20020021965A/en
Application granted granted Critical
Publication of KR100416518B1 publication Critical patent/KR100416518B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/005Preparing or treating the raw materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 반수·이수석고법의 습식 인산제조공정에서 부산되는 석고를 정제하여 시멘트용 인산정제석고를 제조하는 방법이다.The present invention is a method for preparing a phosphate tablet gypsum for cement by refining gypsum by-produced in the process of wet phosphate gypsum.

종래의 시멘트용 인산정제석고의 제조방법은 원료인 부산석고가 이수석고법의 습식인산제조공정에서 부산되었기 때문에 부산석고중 불순물의 함량이 많아서 소성·조립공법 ( Onoda Refining Granulation Process) 와 세정·성형공법 (Washing Briquetting Proces)에 의하여 제조되었다.In the conventional method of preparing phosphate refined gypsum for cement, since Busan gypsum, which is a raw material, was produced in the wet phosphate manufacturing process of Isu Gypsum, there are a lot of impurities in Busan gypsum. (Washing Briquetting Proces).

그러나, 수년전 습식인산공장은 인산의 수율과 공정기능을 향상시키기 위하여 종래의 이수석고법 공정을 반수·이수법 공정으로 개수하여 이에서 부산되는 부산석고중의 불순물이 대폭 격감됨으로서 종래의 비능률적이고 비경제적인 공법의 의미가 없어졌다.However, a few years ago, wet phosphate plants were converted to half-water and half-water processes to improve the yield and process function of phosphoric acid, which drastically reduced impurities in Busan gypsum. The meaning of public methods has disappeared.

즉, 본 발명의 중화·고압증기법 또는 중화방법으로 능률적이고 경제적인 시멘트용 인산정제석고를 제조할 수 있게 되었다.That is, the phosphate refined gypsum for cement can be produced efficiently and economically by the neutralization, high pressure steam method or the neutralization method of the present invention.

Description

시멘트용 인산정제석고의 제조 방법{MANUFACTURING METHOD OF REFINING PHOSPHO-GYPSUM FOR CEMENT}Manufacturing method of phosphate refined gypsum for cement {MANUFACTURING METHOD OF REFINING PHOSPHO-GYPSUM FOR CEMENT}

본 발명은 시멘트용 인산정제석고의 제조방법에 관한 것으로서, 보다 상세하게는 반수, 이수 석고법의 습식 인산제조공정에서 부산되는 석고를 정제하여 시멘트용 인산정제석고를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing phosphate gypsum for cement, and more particularly, to a method for preparing phosphate gypsum for cement by refining gypsum by-produced in the wet phosphate manufacturing process of half-water, dihydrate gypsum.

일반적으로, 석고는 시멘트의 응결지연과 초기강도의 증진, 팽창 수축의 감소, 황산염에 대한 저항성의 증진 목적으로 사용되는 시멘트의 필수 원료의 하나이다.In general, gypsum is one of the essential raw materials for cement, which is used for the purpose of improving the cement coagulation delay and initial strength, reducing expansion shrinkage, and resistance to sulfates.

전에는 천연석고만이 시멘트 제조에 사용되었으나 1960년대 중반이후 습식 이수석고법 인산공장이 건설 가동되면서 인산 제조 공정에서 석고가 부산 되었다(이하 "인산부산석고"라 칭함). 이 인산부산석고는 품질이 우수하여(CaSO4·2H2O 90%이상) 시멘트용 석고로의 활용이 필연적이었는데, 직접 사용하기에는 적합치 않은 불순물(인산, 불산, 유기물등)이 소량 함유되어 있어 이에 대한 정제 방법이 필요 하였다.Previously, only natural gypsum was used to make cement, but since the mid-1960s, the wet and gypsum phosphoric acid plant was built and operated, resulting in the production of gypsum from the phosphoric acid manufacturing process (hereinafter referred to as "phosphate gypsum"). This phosphate gypsum is of high quality (more than 90% of CaSO 4 · 2H 2 O), which is inevitably used as a gypsum for cement, but contains a small amount of impurities (phosphate, hydrofluoric acid, organic matter, etc.) that are not suitable for direct use The purification method was needed.

이에 일본에서는 1957년 소성·조립공법(ONODA RefiningGranulation process)이 개발되어 상용화 되었고, 유럽에서는 세정·성형공법(Washing Briquetting process)이 개발되었다. 이 둘의 공법간에는 정제기술면(불순물의 처리방법, 제조 설비면)에서 상당한 차이가 있으나 서로의 정제된 제품의 품질면에서는 차이를 인정할 수 없는 수준이다. 아래의 표 1은 상기한 두 기존공법의 주된 정제 기술의 내용이다.In Japan, the ONODA RefiningGranulation process was developed and commercialized in 1957, and the Washing Briquetting process was developed in Europe. There is a significant difference between the two methods in terms of refining technology (treatment of impurities, manufacturing facilities), but the quality of each other's refined product cannot be recognized. Table 1 below shows the main purification techniques of the two existing methods.

그러나, 상기한 바와 같은 소성, 조립공법과 세정, 성형공법은 정제 시설면과 에너지 소비면에서 매우 비경제적인 문제점이 있다.또한, 소성, 조립 공정은 석고의 결정격자 사이에 끼어 있는 인산2석회를 정제하기 위하여 소성설비와 연료를 소비해야 하고 또 세정, 성형공법은 여러 단계의 세정설비와 폐수처리의 난점을 극복해야 하는 문제점이 있다.따라서, 본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로서, 소성, 조립공법과 세정, 성형공법은 정제 시설면과 에너지 소비면에서 매우 비경제적인면을 개선함과 아울러 소성, 조립 공정에서의 연료 소비 개선 및 세정, 성형공법에서의 세정설비와 폐수처리의 난점을 극복할 수 있는 시멘트용 인산정제석고의 제조방법을 제공함에 있다.상기한 목적을 실현하기 위하여 본 발명은, 반수 이수석고법 인산제조공정에서 부산되는 인산부산석고에 알카리재료를 3-6% 첨가하여 인산부산석고의 수소이온농도를 중성 내지 알카리성으로 중화시킨 후 3-5Kg/㎠의 증기압과 상기 증기압의 포화온도인 140℃가 되도록 하여 난용성 인산분을 용출시켜 불용상태의 인산3석회로 정제시켜 구성함을 특징으로 한다.However, the above-described firing, granulation method, washing method, and molding method have very uneconomical problems in terms of refining facilities and energy consumption. In addition, the firing and granulation process removes dicalcium phosphate sandwiched between crystal lattice of gypsum. In order to purify, it is necessary to consume the firing equipment and fuel, and the cleaning and molding method has to overcome the difficulties of the various stages of the cleaning equipment and wastewater treatment. Therefore, the object of the present invention is to solve the above problems. , Sintering, assembly, cleaning, and shaping methods are very economical in terms of refinery and energy consumption, as well as fuel consumption and sintering in sintering and assembly processes, and The present invention provides a method for producing a phosphate refined gypsum for cement that can overcome the difficulties. In order to realize the above object, the present invention provides a semi-finished gypsum. Alkaline materials are added to the phosphate phosphate gypsum produced in the process of phosphoric acid production to neutralize the hydrogen ion concentration of phosphate gypsum from neutral to alkaline, and then the vapor pressure of 3-5Kg / ㎠ and the saturation temperature of the steam pressure 140 It is characterized in that it is made to elute the poorly soluble phosphoric acid to be ℃ ℃ purified by tricalcium phosphate in an insoluble state.

본 발명은 반수·이수석고법의 습식 인산제조공정에서 부산되는 석고룰 정제하여 시멘트용 인산정제석고를 제조하는 방법이다.수년전, 국내의 인산공장은 인산의 수율과 공정기능을 향상시키기 위하여 종전의 이수석고법 공정을 반수·이수석고법 공정으로 개수하여 이로부터 부산되는 석고의 불순물이 아래의 표 2와 같이 현저히 격감하였다.인산부산석고 중에 함유되어 있는 불순물중 수용성 인산분(수용성 P2O5)과 난용성 인산분 중의 일부(CaH4(PO4)2·H2O), 수용성 불산분(HF, H2SiF6)은 알카리 첨가의 중화처리 만으로 정제가 가능하다.그러므로 반수·이수석고법에 의하여 부산되는 석고의 정제 공정과 설비는 매우 단순화될 수 있다.본 발명의 중화·고압증기 방법은 알카리 재료의 첨가 중화로 수용성 인산분과 난용성 인산분의 일부, 그리고 수용성 불산분을 정제하고, 석고의 결정격자 사이에 끼어 있는 인산 2석회(CaHPO4·2H2O)는 순간적인 고압 증기의 열충격으로 분해하여 불용 상태의 인산 3석회(Ca3(PO4)2)로 정제한다.그리고 중화방법은 알카리 재료의 첨가 중화만으로 수용성 불순물과 난용성 불순물의 일부를 불용 상태의 인산 3석회로 정제하는 방법이다. 중화처리 후에 잔존하는 석고의 결정격자 사이에 끼어 있는 인산 2석회의 양은 극히 적은량(0.15% 이하)인데 이로 인한 시멘트의 응결지연 영향은 감지할 수 없는 극히 미미한 영향이다. 이는 "실시예"의 실험에서도 실증되고 있다. 더욱이 시멘트에 석고의 첨가 목적이 시멘트의 응결지연 작용이므로 오히려 극소량의 인산분의 잔존은 시멘트의 응결조절에 유리할 수 있다. 제조공정은 아래의 그림 1과 같다.그림 1. 시멘트용 인산정제석고의 제조 공정도반수·이수석고법의 인산제조 공정에서 부산된 석고를 원료로 한 시멘트용 인산부산석고 정제 방법은 아래의 표 3과 같다.위의 두 방법에 의하여 제조된 시멘트용 인산정제석고의 화학성분은 아래의 표 4와 같다. 시멘트의 응결지연에 영향을 주는 수용성 인산분(수용성 P2O5)의 전부와 난용성 인산분중 인산 1석회(CaH4(PO4)2·H2O)를 알카리재료의 첨가 중화로 시멘트의 응결에 영향을 주지 못하는 불용성 상태의 인산 3석회(Ca3(PO4)2)로 바꾸어 놓았음을 알 수 있다.3. 실시 예1) 사용재료ⓛ석고실시 예에서 사용한 석고는 반수·이수 석고법의 인산제조 공정에서 부산된 석고를 본 발명의 중화·고압증기 방법으로 제조한 시멘트용 인산정제석고(NS)와 중화방법으로 제조된 시멘트용 인산정제석고(N), 그리고 기존의 공법인 소성·조립공정으로 제조된 시멘트용 인산정제석고(O), 3종의 석고를 비교 실험하였다. 이들의 화학성분은 아래의 표 5, 이들의 X-선 회절분석은 그림 2와 같다NS : 본 발명의 중화·고압증기 방법으로 제조된 시멘트용 인산정제석고N : 본 발명의 중화 방법으로 제조된 시멘트용 인산정제석고O : 기존의 소성·조립공법으로 제조된 시멘트용 인산정제석고그림 2. 석고의 XRD② 시멘트 클링커실시 예에 사용한 시멘트 클링커는 보통시멘트 클링커이고 이의 화학성분과 광물조성, 그리고 X-선 회절분석은 표 6, 그림 3과 같다.그림 3. 클링커의 XRD2) 시험용 시멘트1)-②항의 시멘트 클링커에 1)-①항의 석고를 각각 3.0%, 3.5%, 4.0%를 첨가 분쇄하여 시험용 시멘트로 하였다. 시험용 시멘트의 분말도와 SO3함량은 표 7과 같다.3) 시멘트의 물리성능아래의 표 8은 실험용 시멘트(표 7)의 물리성능이다.응결시간3종의 서로 다른 석고를 사용한 시멘트의 응결시간은 석고의 첨가량이 많을수록 지연되지만 석고의 종류에 따른 차는 인정할 수 없는 수준이며 이들 시멘트의 관리범위도 안정하다.압축강도3종의 서로 다른 석고를 사용한 시멘트의 압축강도는 차를 인정할 수 없는 수준이며, 모든 시멘트가 한국공업규격(KS)을 매우 만족시킨다.안정도석고의 종류와 첨가량에 관계없이 시멘트의 안정도는 차가 거의 없다. 모든 시멘트가 증기압 수열에 의한 팽창율 0.10%이하로서 한국공업규격(KS) 상한 0.80%보다 훨씬 낮은 값이다.4) 시멘트의 수화반응① 수화 생성물시멘트의 수화반응에 따른 수화 생성물을 X-선 회절분석(XRD)으로 검토하였다. 수화 생성물과 그 생성시기는 사용한 석고에 관계없이 모든 시멘트가 같은 경향을 보이고 있다. 수화 후 곧 알루미네이트 광물과 석고의 수화반응에 의하여 양은 적으나 에트린자이트(3CaO·Al2O3·3CaSO4·32H2O)가 생성되며 수화의 진행에 따라 칼슘실리케이트(Calcium silicate)도 겔 상태의 수화물과 수산화칼슘(Ca(OH2)을 생성한다.시멘트의 수화반응에 따른 수화 생성물을 아래의 그림 4(NS), 그림 5(N), 그림 6(O)와 같이 X-선 회절분석으로 검토하였다.그림 4. 시멘트(NS-35)의 수화생성물그림 5. 시멘트(N-35)의 수화생성물그림 6. 시멘트(O-35)의 수화생성물② 수화 반응열3종의 서로 다른 석고를 사용한 시멘트의 수화열의 곡선의 크기와 수화발열속도는 일치하여 차를 인정할 수 없다. 아래의 그림 7은 서로 다른 3종류의 석고를 사용한 시멘트의 수화열 곡선이다.그림 7. 시멘트의 수화열 곡선이상의 물리성능 실험에서 보는 바와 같이 본 발명의 방법으로 제조된 시멘트용 인산정제석고는 기존의 소성·조립공법에 의해 제조된 시멘트용 인산정제석고와 동일 수준의 품질임을 확인하였다.The present invention is a method for producing a phosphate refined gypsum for cement by refining gypsum rule produced in the wet phosphate manufacturing process of half-water and Isu gypsum. Several years ago, a domestic phosphate plant was developed to improve the yield and process function of phosphoric acid. The dihydrate gypsum process was divided into half and dihydrate gypsum processes, and the impurities of gypsum produced therefrom were significantly reduced as shown in Table 2 below. Water-soluble phosphate (water soluble P 2 O 5 ) and some of poorly soluble phosphate (CaH 4 (PO 4) 2 H 2 O) and water-soluble fluorine (HF, H 2 SiF 6) ) Can be purified only by neutralization of alkali addition. Therefore, the process and equipment for refining gypsum produced by the half-water and dihydrate gypsum method can be greatly simplified. Water soluble phosphate, a part of poorly soluble phosphate, and water soluble fluorine are refined, and dicalcium phosphate (CaHPO 4 · 2H 2 O) sandwiched between gypsum crystal lattice is decomposed by instantaneous high-pressure steam thermal shock. Purification with tricalcium phosphate (Ca 3 (PO 4 ) 2 ), and the neutralization method is a method of refining a part of water-soluble impurities and poorly soluble impurities with tricalcium phosphate in an insoluble state only by adding neutralization of alkali materials. The amount of dicalcite phosphate sandwiched between the crystal lattice of gypsum remaining after neutralization is very small (0.15% or less), and the effect of cement delaying condensation is very small. This is also demonstrated in the experiment of "Example". Moreover, since the purpose of adding gypsum to cement is to delay the coagulation of cement, the residual amount of phosphoric acid may be advantageous to control the coagulation of cement. The manufacturing process is shown in Figure 1. Figure 1. Manufacturing process diagram of phosphate refined gypsum for cement Table 3 below shows the method for refining phosphate gypsum for cement based on the gypsum produced by phosphate in the process of half-water and Isu gypsum. Chemical composition of phosphate tablets for cement prepared by the above two methods are shown in Table 4 below. All of the water-soluble phosphate (water soluble P 2 O 5 ) and the poorly soluble phosphate (CaH 4 (PO 4 ) 2 · H 2 O) that affect the coagulation delay of the cement are added to the It can be seen that it was changed to tricalcium phosphate (Ca 3 (PO 4 ) 2 ) in an insoluble state which does not affect the condensation of. 3. Example 1 Gypsum used in the Examples of Gypsum and Gypsum Phosphate Gypsum produced by the neutralization and high-pressure steam method of gypsum produced in the process of phosphate production of half-water and gypsum Three kinds of gypsum were prepared by the neutralization method, phosphate refined gypsum (N) for cement, and phosphate gypsum (O) for cement produced by the firing and assembly process. Their chemical composition is shown in Table 5 below, and their X-ray diffraction analysis is shown in Figure 2. NS: Phosphate refined gypsum for cement produced by the neutralization and high pressure steam method of the present invention N: The neutralization method of the present invention Phosphate refined gypsum for cement O: Phosphate refined gypsum for cement manufactured by conventional firing / assembly process Figure 2. XRD of Gypsum ② Cement Clinker The cement clinker used in the examples is ordinary cement clinker and its chemical composition, mineral composition and X-ray diffraction analysis are shown in Table 6 and Figure 3. Figure 3. XRD of the clinker 2) Test Cement 1) -② Gypsum of 1) -① was added and pulverized in the cement clinker of Clause 1) -② to make the test cement. The powder and SO 3 contents of the test cement are shown in Table 7. 3) Physical Performance of Cement Table 8 below shows the physical performance of experimental cement (Table 7). Settling time The settling time of cement using three different types of gypsum is delayed as the amount of added gypsum increases, but the difference according to the type of gypsum is unacceptable and the management range of these cements is stable. Compressive strength The compressive strength of cement using three different types of gypsum is unacceptable and all cements meet the KS. Regardless of the type and amount of gypsum, the stability of cement has little difference. All cements have an expansion rate of 0.10% or less, which is much lower than the Korean Industrial Standard (KS) upper limit of 0.80%. 4) Cement Hydration Reaction ① Hydration Product Hydration products according to the hydration reaction of cement were examined by X-ray diffraction analysis (XRD). The hydration products and the timing of their formation are the same for all cements, regardless of the gypsum used. Shortly after hydration, the amount of aluminate mineral and gypsum was small, but ethrinzite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) was produced. Calcium silicate was also formed as the hydration progressed. Gel hydrate and calcium hydroxide (Ca (OH 2 ) are produced. Hydration products according to hydration of cement are x-ray diffraction as shown in Figure 4 (NS), Figure 5 (N) and Figure 6 (O) below. Figure 4. Hydration products of cement (NS-35) Figure 5. Hydration Product of Cement (N-35) Figure 6. Hydration Product of Cement (O-35) ② The heat of hydration reaction The difference between the curve of the heat of hydration and the rate of heat of hydration of cement using three different gypsum cannot be recognized. Figure 7 below shows the hydration curves of cement using three different types of gypsum. As shown in the above physical performance experiment, it was confirmed that the phosphate refined gypsum for cement produced by the method of the present invention has the same quality as that of the cement phosphate refined gypsum prepared by the conventional firing and assembling method.

이상의 물리성능 실험에서 보는 바와 같이 본 발명의 방법으로 제조된 시멘트용 인산정제석고는 기존의 소성·조립공법에 의해 제조된 시멘트용 인산정제석고와 동일 수준의 품질임을 확인하였다.As shown in the above physical performance experiment, it was confirmed that the phosphate refined gypsum for cement produced by the method of the present invention has the same quality as that of the cement phosphate refined gypsum prepared by the conventional firing and assembling method.

Claims (2)

반수·이수석고법 인산제조공정에서 부산되는 인산부산석고에 알카리재료를 3-6% 첨가하여 인산부산석고의 수소이온농도를 중성 내지 알카리성으로 중화시킨 후 3-5㎏/㎠의 증기압과 상기 증기압의 포화온도인 140℃가 되도록 하여 난용성 인산분을 용출시켜 불용상태의 인산3석회로 정제시켜 구성함을 특징으로 하는 시멘트용 인산정제석고의 제조 방법.Alkaline material is added to Busan phosphate gypsum, which is produced in the half-water and gypsum phosphate manufacturing process, to neutralize the hydrogen ion concentration of phosphate gypsum from neutral to alkaline, and then the vapor pressure of 3-5 kg / ㎠ and the vapor pressure A method for producing a phosphate tablet for cement, characterized in that the soluble phosphate content is eluted to a saturation temperature of 140 ° C. and purified by three times insoluble phosphate. 삭제delete
KR10-2000-0054742A 2000-09-18 2000-09-18 Manufacturing method of refining phospho-gypsum for cement KR100416518B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0054742A KR100416518B1 (en) 2000-09-18 2000-09-18 Manufacturing method of refining phospho-gypsum for cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0054742A KR100416518B1 (en) 2000-09-18 2000-09-18 Manufacturing method of refining phospho-gypsum for cement

Publications (2)

Publication Number Publication Date
KR20020021965A KR20020021965A (en) 2002-03-23
KR100416518B1 true KR100416518B1 (en) 2004-01-31

Family

ID=19689191

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0054742A KR100416518B1 (en) 2000-09-18 2000-09-18 Manufacturing method of refining phospho-gypsum for cement

Country Status (1)

Country Link
KR (1) KR100416518B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470417B1 (en) * 2012-04-09 2014-12-09 유종희 Manufacturing method for fill material composition by using stabilized waste gypsum and the fill material composition manufactured by the method
KR20200131997A (en) 2019-05-15 2020-11-25 한동운 Refind Gypsum from phosphate for Cement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881459B1 (en) * 2015-03-06 2018-07-26 쌍용양회공업(주) The method of neutralization phospho-gypsum using Fluidized bed boiler Fly ash and use thereof
CN115677247A (en) * 2022-11-07 2023-02-03 中化学生态环境有限公司 Method for modifying phosphogypsum by alkaline oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR790001188Y1 (en) * 1977-02-22 1979-07-28 이창학 19-hle briequette combustion chamber
JPS5722118A (en) * 1980-07-14 1982-02-05 Onoda Cement Co Ltd Modifying method of gypsum formed in preparing phosphoric acid by wet process as by-product
KR850003356A (en) * 1983-10-17 1985-06-17 박광택 Manufacturing method of pollution-free gypsum
KR880009881A (en) * 1987-02-12 1988-10-05 박노빈 Manufacturing method of cement coagulant retardant (phosphate tablet for cement)
KR890003626A (en) * 1987-08-27 1989-04-15 이용섭 Neutralization method of phosphate gypsum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR790001188Y1 (en) * 1977-02-22 1979-07-28 이창학 19-hle briequette combustion chamber
JPS5722118A (en) * 1980-07-14 1982-02-05 Onoda Cement Co Ltd Modifying method of gypsum formed in preparing phosphoric acid by wet process as by-product
KR850003356A (en) * 1983-10-17 1985-06-17 박광택 Manufacturing method of pollution-free gypsum
KR880009881A (en) * 1987-02-12 1988-10-05 박노빈 Manufacturing method of cement coagulant retardant (phosphate tablet for cement)
KR890003626A (en) * 1987-08-27 1989-04-15 이용섭 Neutralization method of phosphate gypsum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470417B1 (en) * 2012-04-09 2014-12-09 유종희 Manufacturing method for fill material composition by using stabilized waste gypsum and the fill material composition manufactured by the method
KR20200131997A (en) 2019-05-15 2020-11-25 한동운 Refind Gypsum from phosphate for Cement

Also Published As

Publication number Publication date
KR20020021965A (en) 2002-03-23

Similar Documents

Publication Publication Date Title
KR101085044B1 (en) Inorgarnic binder for manufacturing secondary concrete product
CN106187052B (en) A kind of tobermorite type heat-insulating material and preparation method using calcium silicate slag preparation
CN101139198A (en) Chemical industrial gypsum building materials and method for manufacturing same
CN105294154A (en) High-recycling steam pressurized concrete block and preparation method thereof
CN104607144A (en) Structure self-growing aqueous phase phosphate radical adsorbing material and preparation method and application thereof
CN109942211A (en) A method of improving gypsum-slag cements early strength
Wang et al. Removal of Fe from fly ash by carbon thermal reduction
CN104261775B (en) A kind of heat insulation building block and preparation method thereof
KR100416518B1 (en) Manufacturing method of refining phospho-gypsum for cement
CN100471816C (en) Light red mud brick and its making process
CN106630703A (en) Method for preparing high-strength sulfate aluminum cement co-production sulfuric acid through calcining by steps
CN106316321B (en) Vapor-pressing plaster brick and preparation method thereof
CN1226222C (en) Method for producing building gypsum powder using phosphrus gypsum
CN108585575B (en) Cement retarder and preparation method and application thereof
CN111807745A (en) Modified phosphogypsum and preparation method thereof
KR20170090131A (en) Non-cement type binder composition
CN101549859B (en) Comprehensive utilization method of phosphogypsum and fag-end
CN102795825A (en) Baking-free brick or building block series product and manufacturing method
CN1830873B (en) Bricks made of magnesium slag and the production method therefor
CN101941806A (en) Method for utilizing composite reducing agent to decompose phosphogypsum
CN106365478B (en) A method of utilizing ardealite calcine by steps sulphate aluminium cement co-producing sulfuric acid
KR100710483B1 (en) Manufacturing method for ii-gypsum anhydrite
CN113354315B (en) Method for producing high-silicon sulphoaluminate cement by using phosphorus acid insoluble slag
CN104446070A (en) Comprehensive utilization method of phosphorus gypsum
CN107382117A (en) A kind of composite modified ardealite setting retarder for cement of perlite and low cost cement

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120713

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee