KR100415629B1 - Method for molecular nitrogen implantation dosage monitoring - Google Patents

Method for molecular nitrogen implantation dosage monitoring Download PDF

Info

Publication number
KR100415629B1
KR100415629B1 KR10-2002-0007858A KR20020007858A KR100415629B1 KR 100415629 B1 KR100415629 B1 KR 100415629B1 KR 20020007858 A KR20020007858 A KR 20020007858A KR 100415629 B1 KR100415629 B1 KR 100415629B1
Authority
KR
South Korea
Prior art keywords
implanted
molecular nitrogen
oxide layer
semiconductor wafers
thickness
Prior art date
Application number
KR10-2002-0007858A
Other languages
Korean (ko)
Other versions
KR20030019054A (en
Inventor
엔쭌-야오
Original Assignee
프로모스 테크놀로지즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프로모스 테크놀로지즈 인코포레이티드 filed Critical 프로모스 테크놀로지즈 인코포레이티드
Publication of KR20030019054A publication Critical patent/KR20030019054A/en
Application granted granted Critical
Publication of KR100415629B1 publication Critical patent/KR100415629B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명은 분자질소 주입량을 평가하는 방법에 관한 것이다. 반도체웨이퍼들에는 우선 다양한 농도의 분자질소가 주입된다. 주입후, 주입된 웨이퍼들과 비주입된 웨이퍼는 열처리를 하여 산화물층을 성장시킨다. 다양한 주입량을 가진 상기 웨이퍼들상의 산화물층 두께가 측정된다. 웨이퍼들상에 주입된 질소는 산화물층의 성장을 억제하기 때문에, 억제비는 두께변화를 나타내는 주입 및 비주입된 반도체웨이퍼들 사이의 산화물층의 두께차로부터 계산된다. 그런다음, 억제비와 분자질소의 투입량 사이의 관계식이 세워진다. 가공웨이퍼상의 산화물층의 기설정된 두께를 성장시키는 데 필요한 분자질소 투입량은 상기 관계식내에 기설정된 두께를 입력함으로써 계산되어진다.The present invention relates to a method for evaluating molecular nitrogen injection amount. The semiconductor wafers are first injected with various concentrations of molecular nitrogen. After implantation, the implanted wafers and non-implanted wafers are heat treated to grow an oxide layer. The oxide layer thicknesses on the wafers with varying dosages are measured. Since nitrogen implanted on the wafers inhibits the growth of the oxide layer, the inhibition ratio is calculated from the thickness difference of the oxide layer between the implanted and non-implanted semiconductor wafers showing the thickness change. Then, a relationship between the inhibition ratio and the input of molecular nitrogen is established. The molecular nitrogen input amount required to grow the predetermined thickness of the oxide layer on the processed wafer is calculated by inputting the predetermined thickness in the above relation.

Description

분자질소 주입량을 검사하기 위한 방법 {METHOD FOR MOLECULAR NITROGEN IMPLANTATION DOSAGE MONITORING}METHOD FOR MOLECULAR NITROGEN IMPLANTATION DOSAGE MONITORING}

본 발명은 반도체제조에 있어서의 이온주입에 관한 것으로, 특히 반도체 웨이퍼들(Wafers)상에 분자질소의 주입량을 평가하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ion implantation in semiconductor manufacturing, and more particularly to a method for evaluating the amount of molecular nitrogen implanted on semiconductor wafers.

일반적으로, 이온주입은 집적회로들을 제조하는 동안 반도체들 내부로 외부물질을 삽입하기 위하여 사용된다. 반도체 내부로 삽입되는 외부원자들은 비소, 인, 붕소와 같은 불순물들(Dopants)이다. 이러한 원자들의 주입량은 보편적으로 웨이퍼들상에서의 저항에 의하거나 써머-웨이브사(Therma-Wave, INc.)의 써머-프로브(Therma-Probe? 500; TP500)와 같은 측정도구에 의하여 측정된다.In general, ion implantation is used to insert foreign materials into semiconductors during fabrication of integrated circuits. External atoms inserted into the semiconductor are impurities such as arsenic, phosphorus and boron. The implantation of these atoms is commonly measured by resistance on wafers or by a measuring tool such as Therma-Wave, Inc. (Therma-Probe® 500; TP500).

그러나, 분자질소(N2) 주입후에 웨이퍼들상의 저항은 너무 높아서 측정될 수 없다. 그러므로, 써머-웨이브사의 TP500과 같은 도구가 분자질소주입농도의 측정을 위하여 사용된다. 그러나, TP500의 정밀도는 고유의 바이어스(Bias)때문에 만족적이지 못하다.However, after molecular nitrogen (N 2 ) implantation, the resistance on the wafers is too high to be measured. Therefore, a tool such as Thermo-Wave's TP500 is used for the determination of the molecular nitrogen injection concentration. However, the precision of the TP500 is not satisfactory because of the inherent bias.

도 1은 질소주입량과 측정된 TW신호값들 사이의 관계곡선을 보여준다. 여기서, TW신호값들은 TP500 주입측정도구에 의해 얻어진 것이다. 보편적으로, 측정도구 TP500은 3-6%의 고유의 편차를 가지고 있다. 도 1에 나타난 결과에서 알 수 있는 바와 같이, 주입량변화비는 1E12/per-TW이고, 이것은 분자질소주입량과 측정된 TW신호값들 사이의 선형 관계가 분자질소의 주입량을 검사하는 용도로서는 이상적이지 못하다는 것을 의미한다.Figure 1 shows the relationship curve between the nitrogen injection amount and the measured TW signal values. Here, the TW signal values are obtained by the TP500 injection measuring tool. In general, the measuring instrument TP500 has an inherent deviation of 3-6%. As can be seen from the results shown in FIG. 1, the injection rate change ratio is 1E12 / per-TW, which is a linear relationship between the molecular nitrogen injection amount and the measured TW signal values, which is not ideal for the purpose of examining the injection amount of molecular nitrogen. It means no.

도 2에서는 분자질소주입에 대한 다른 평가가 나타나 있다. 도 2의 곡선(Curve)은 다양한 주입전압에 대한 급속열처리(Rapid Thermal Process)후에 측정된 TW신호값들을 나타낸다. 급속열처리는 1100℃에서 수행되고, 그 주입량은 2E14/㎤이다. 이 TW신호값들은 여전히 TP500 주입측정도구에 의해서 얻어진 값이다. 측정된 TW신호값들과 주입전압들 사이의 관계는 도 1에 나타낸 측정된 TW신호값들과 주입량들 사이보다 더 직선적인 상관관계를 보인다. 그러나, 도 2의 곡선은 실제적인 주입농도가 다른 주입전압들에서 변화하기 때문에 분자질소주입의 검사용으로는 적합하지 않다.2 shows another assessment of molecular nitrogen injection. The curve of FIG. 2 shows TW signal values measured after a rapid thermal process for various injection voltages. Rapid heat treatment is performed at 1100 ° C., and the injection amount is 2E14 / cm 3. These TW signal values are still obtained by the TP500 injection measurement tool. The relationship between the measured TW signal values and the injection voltages shows a more linear correlation than the measured TW signal values and the injection amounts shown in FIG. 1. However, the curve of FIG. 2 is not suitable for the inspection of molecular nitrogen injection because the actual injection concentration changes at different injection voltages.

본 발명의 목적은 질소 주입량을 더 정밀하고 비파괴적으로 검사하기 위한 방법을 제공하는 데 있다.It is an object of the present invention to provide a method for more precisely and nondestructively testing nitrogen injection amount.

본 발명의 다른 목적은 분자질소 주입량과 열처리후 산화물층의 두께 사이의 관계를 구축하는 데 있다.Another object of the present invention is to establish a relationship between the amount of molecular nitrogen injected and the thickness of the oxide layer after heat treatment.

본 발명의 또다른 목적은 분자질소 주입량과 열처리후 산화물층의 두께 사이의 관계를 사용하여 분자질소주입을 검사하는 데 있다.Another object of the present invention is to examine molecular nitrogen injection using the relationship between the molecular nitrogen injection amount and the thickness of the oxide layer after heat treatment.

본 발명의 또다른 목적은 분자질소 주입량과 열처리후 산화물층의 두께 사이의 관계를 사용하여 주입도구의 안정성을 검사하는 데 있다.Another object of the present invention is to examine the stability of the injection tool using the relationship between the molecular nitrogen injection amount and the thickness of the oxide layer after heat treatment.

도 1은 질소 주입량과 써멀-웨이브 측정값들(TW신호) 사이의 관계곡선을 보여준다.1 shows a relationship curve between nitrogen injection amount and thermal-wave measurements (TW signal).

도 2는 급속열처리후 측정된 TW값들과 다양한 주입전압들 사이의 관계를 보여준다.2 shows the relationship between the TW values measured after rapid heat treatment and various injection voltages.

도 3은 본 발명의 일실시예에 따른 분자질소 주입량들과 웨이퍼들상의 산화물층의 억제비 사이의 관계곡선들(Relation Curves)을 보여준다.FIG. 3 shows the relation curves between the molecular nitrogen injection amounts and the inhibition ratio of the oxide layer on the wafers according to an embodiment of the present invention.

도 4는 본 발명의 일실시예에 따른 분자질소 주입전압들과 웨이퍼들상의 산화물층의 억제비 사이의 관계곡선들을 보여준다.4 shows the relationship curves between molecular nitrogen injection voltages and the suppression ratio of oxide layers on wafers according to one embodiment of the invention.

상기 목적을 달성하기 위하여, 분자질소 주입량과 산화물층 두께 사이의 관계가 구축된다. 우선, 다양한 농도의 분자질소가 반도체웨이퍼들에 주입된다. 주입후, 그 주입된 웨이퍼들과 비주입된 웨이퍼를 산화물층을 성장시키기 위하여 열처리한다. 다양한 주입량이 적용된 웨이퍼들상의 산화물층의 두께가 측정된다. 웨이퍼들상에 주입된 질소는 산화물층의 성장을 억제한다. 그러므로, 주입량을 더많이 할수록, 웨이퍼들상의 산화물층은 더 얇아지게 된다. 억제비는 두께변화를 보여주는 주입 및 비주입된 반도체웨이퍼들 사이의 산화물층의 두께차로부터 계산되어진다. 그럼으로써, 억제비와 분자질소의 주입량 사이의 관계식이 세워진다.In order to achieve the above object, a relationship between the molecular nitrogen injection amount and the oxide layer thickness is established. First, various concentrations of molecular nitrogen are injected into semiconductor wafers. After implantation, the implanted wafers and non-implanted wafers are heat treated to grow an oxide layer. The thickness of the oxide layer on the wafers with varying dosages was measured. Nitrogen implanted on the wafers inhibits the growth of the oxide layer. Therefore, the higher the injection amount, the thinner the oxide layer on the wafers. The inhibition ratio is calculated from the thickness difference of the oxide layer between the implanted and non-implanted semiconductor wafers showing the thickness change. This establishes a relationship between the inhibitory ratio and the amount of molecular nitrogen injected.

본 발명의 일 측면에 있어서, 산화물두께의 억제비와 분자질소의 주입량 사이의 관계는 기설정된 산화물두께의 성장에 필요한 분자질소의 주입량을 예상하는 데 이용될 수 있다. 가공웨이퍼상에 산화물층을 소정두께로 성장시키는 데 필요한 분자질소의 투입량은 위 관계식에 상기 소정두께를 입력함으로써 추정된다.In one aspect of the invention, the relationship between the inhibition ratio of the oxide thickness and the injection amount of molecular nitrogen can be used to estimate the injection amount of molecular nitrogen necessary for the growth of the predetermined oxide thickness. The amount of molecular nitrogen required for growing the oxide layer to a predetermined thickness on the processed wafer is estimated by inputting the predetermined thickness in the above relation.

본 발명의 다른 측면에 있어서, 억제비와 분자질소의 투입량 사이의 관계는 또한 이온주입기의 안정성을 평가하는 데 이용될 수 있다. 검사웨이퍼는 기설정된 투입량의 분자질소가 주입되고 나서, 열처리에 들어가 검사웨이퍼의 표면상에 산화물층을 성장시키게 된다. 분자질소 추정투입량은 위 관계식에 검사웨이퍼상의 산화물층 두께를 입력함으로써 계산되어질 수 있다. 분자질소 추정투입량과 검사웨이퍼의 기설정된 분자질소 투입량 사이의 편차를 평가하여, 그 편차가 특정범위보다 더 크다면 이온주입기는 비안정적이다.In another aspect of the invention, the relationship between the inhibitory ratio and the molecular nitrogen input can also be used to assess the stability of the ion implanter. The test wafer is injected with a predetermined amount of molecular nitrogen, and then subjected to heat treatment to grow an oxide layer on the surface of the test wafer. The estimated molecular nitrogen dose can be calculated by entering the oxide layer thickness on the test wafer in the above relation. Deviation between the estimated molecular nitrogen dose and the predetermined amount of molecular nitrogen input to the test wafer is assessed and the ion implanter is unstable if the deviation is greater than the specified range.

본 발명은 상세한 설명과 첨부도면으로부터 보다 잘 이해될 수 있을 것이다. 본 발명은 첨부된 도면들 및 상세한 설명에 의해서 한정되지 않는다.The invention will be better understood from the detailed description and the accompanying drawings. The invention is not limited by the accompanying drawings and the description.

본 발명의 일실시예에 있어서, 일련의 반도체웨이퍼들 또는 칩들은 다양한 투입량의 분자질소가 주입된다. 그럼, 그 주입된 반도체웨이퍼들과 주입되지 않은반도체웨이퍼는 웨이퍼들의 표면에 산화물층을 성장시키기 위하여 급속열처리 혹은 노내에서의 가열과 같은 열처리에 들어간다. 이때, 주입되지 않은 웨이퍼의 조건들은 주입된 것들과 주입공정을 제외하고는 모두 동일하다. 산화후, 웨이퍼들의 산화층의 두께가 측정된다. 반도체웨이퍼들상의 산화물층의 성장은 웨이퍼들상에 주입되는 분자질소를 증가시킴에 의하여 억제되기 때문에, 산화물층 두께의 억제비(Sr)는 다음과 같이 계산될 수 있다.In one embodiment of the invention, a series of semiconductor wafers or chips are injected with various amounts of molecular nitrogen. The implanted semiconductor wafers and the non-implanted semiconductor wafers then enter heat treatments such as rapid heat treatment or heating in a furnace to grow an oxide layer on the surfaces of the wafers. In this case, the conditions of the non-injected wafer are the same except for the implanted ones and the implantation process. After oxidation, the thickness of the oxide layer of the wafers is measured. Since the growth of the oxide layer on the semiconductor wafers is inhibited by increasing the molecular nitrogen injected onto the wafers, the suppression ratio Sr of the oxide layer thickness can be calculated as follows.

Sr = 1-([Tox W/N2]/[Tox WO/N2]), orSr = 1-([Tox W / N 2 ] / [Tox WO / N 2 ]), or

Sr = {([Tox WO/N2]-[Tox W/N2])/[Tox WO/N2]}Sr = {([Tox WO / N 2 ]-[Tox W / N 2 ]) / [Tox WO / N 2 ]}

여기서, Tox WO/N2: 비주입 웨이퍼상의 산화물층 두께이고, Tox W/N2: 주입 웨이퍼들상의 산화물층 두께이다.Where Tox WO / N 2 is the oxide layer thickness on the non-implanted wafer and Tox W / N 2 is the oxide layer thickness on the implanted wafers.

질소의 느린 산화율 때문에, 웨이퍼들상의 산화물 성장은 질소주입에 의해서 억제된다. 산화물층의 두께의 억제비는 분자질소의 주입량과 상관관계가 있다. 주입량이 증가될 때, 웨이퍼들상의 산화물층의 두께는 감소할 것이다. 도 3은 본 발명의 일실시예에 따른 분자질소 주입량과 산화물층 두께의 억제비 사이의 관계곡선을 보여준다. 여기서, X-축은 분자질소의 주입량을 나타내고, Y-축은 산화물층 두께의 억제비를 나타낸다. 도 3에 있어서 곡선 3a는 1150℃ 의 급속열처리에 의해 성장된 산화결과를 나타내고, 곡선 3b는 가열노내에서 성장된 산화결과를 보여준다. 곡선 3a 및 3b에서 이온주입기의 주입전압은 12KeV로 고정되어 있다.Because of the slow oxidation rate of nitrogen, oxide growth on wafers is inhibited by nitrogen injection. The inhibition ratio of the thickness of the oxide layer is correlated with the injection amount of molecular nitrogen. As the implantation amount is increased, the thickness of the oxide layer on the wafers will decrease. Figure 3 shows the relationship between the molecular nitrogen injection amount and the inhibition ratio of the oxide layer thickness in accordance with an embodiment of the present invention. Here, the X-axis represents the injection amount of molecular nitrogen, and the Y-axis represents the inhibition ratio of the oxide layer thickness. In FIG. 3, the curve 3a shows the oxidation result grown by the rapid heat treatment at 1150 ° C, and the curve 3b shows the oxidation result grown in the heating furnace. In curves 3a and 3b, the implantation voltage of the ion implanter is fixed at 12 KeV.

도 3에서 보여지는 결과로부터 알 수 있는 바와 같이, 곡선 3a 및 3b는 낮은주입량(6E14/㎤ 이하) 영역Ⅰ에서는 직선으로 나타난다. 분자질소의 주입량이 위치Ⅲ 6E14/㎤이하일 때, 산화물층의 억제비는 주입량과 정비례 관계가 있다. 그러나, 주입량이 영역Ⅱ처럼 너무 높을 경우(6E14/㎤ 이상), 산화물층의 억제비는 대응적으로 증가하지는 않을 것이다. 산화물층의 억제비는 높은 주입량하에서 안정화되는 경향이 있다.As can be seen from the results shown in Fig. 3, curves 3a and 3b appear as straight lines in the region of low injection amount (6E14 / cm 3 or less). When the injection amount of molecular nitrogen is below position III 6E14 / cm 3, the inhibition ratio of the oxide layer is directly proportional to the injection amount. However, if the injection amount is too high as in region II (6E14 / cm 3 or more), the suppression ratio of the oxide layer will not correspondingly increase. The inhibition ratio of the oxide layer tends to be stabilized under a high injection amount.

도 4는 본 발명의 일실시예에 따른 분자질소 주입전압과 산화물층의 억제비 사이의 관계곡선을 보여준다. 분자질소의 주입량은 2E14/㎤으로 고정되고, 웨이퍼들은 일련의 주입전압하에서 주입된다. 도 4에서 X-축은 이온주입기의 주입전압을 나타내고, Y-축은 산화물층 두께의 억제비를 나타낸다. 곡선 4a는 1100℃의 급속 열처리에 의해 성장된 산화결과이고, 곡선 4b는 가열노에서 성장된 산화결과이다.Figure 4 shows the relationship curve between the molecular nitrogen injection voltage and the suppression ratio of the oxide layer according to an embodiment of the present invention. The injection amount of molecular nitrogen is fixed at 2E14 / cm 3, and wafers are injected under a series of injection voltages. In FIG. 4, the X-axis represents the injection voltage of the ion implanter, and the Y-axis represents the suppression ratio of the oxide layer thickness. Curve 4a is the result of oxidation grown by rapid heat treatment at 1100 ° C., and curve 4b is the result of oxidation grown in a heating furnace.

도 4에서, 곡선 4a 및 4b는 평평한 선형이고, 그것은 억제비에 관하여 주입전압변화의 영향이 거의 없다는 것을 의미한다. 도 3 및 도 4의 결과로부터, 산화물층 두께의 억제비가 단지 분자질소의 주입량에 관계하지, 주입전압에는 관계하지 않는다는 것이 명백하다.In Fig. 4, curves 4a and 4b are flat linear, which means that there is little influence of the injection voltage change with respect to the suppression ratio. It is clear from the results of Figs. 3 and 4 that the suppression ratio of the oxide layer thickness is only related to the injection amount of molecular nitrogen and not to the injection voltage.

이상 설명한 도 3에 도시된 관계곡선들은 분자질소의 주입량을 검사하는 데 사용될 수 있다. 본 발명의 일실시예에서, 도 3에 나타낸 바와 같이 억제비와 분자질소의 주입량 사이의 관계는 산화물을 기설정된 두께로 성장시키는 데 필요한 분자질소의 투입량을 예상하는 데에 사용된다. 가공웨이퍼상에 산화물층을 기설정된 두께로 성장시키는 데 필요한 분자질소 투입량은 그 관계식으로부터 계산된다. 계산된 억제비는 기설정된 두께에 따라서 얻어질 수 있고, 그리고 나서 주입량은 도 3내의 곡선 3a 및 3b의 선형영역에서 보간될(interpolated) 수 있다. 게다가, 곡선 3a 및 3b에 따르면, 가공웨이퍼의 계산된 억제비가 크고 그럼으로써 곡선 3a 혹은 3b의 선형영역을 벗어나면, 가공웨이퍼상의 산화물층의 두께는 매우 얇고, 요구되는 분자질소의 최소 주입량은 6E14/㎤가 된다.The relationship curves shown in FIG. 3 described above can be used to examine the injection amount of molecular nitrogen. In one embodiment of the present invention, the relationship between the inhibitory ratio and the amount of molecular nitrogen injected as shown in FIG. 3 is used to estimate the amount of molecular nitrogen required to grow the oxide to a predetermined thickness. The molecular nitrogen input required to grow the oxide layer to a predetermined thickness on the processing wafer is calculated from the relational equation. The calculated inhibition ratio can be obtained according to the predetermined thickness, and the dosage can then be interpolated in the linear region of curves 3a and 3b in FIG. 3. Furthermore, according to curves 3a and 3b, if the calculated inhibition ratio of the processed wafer is large and thus out of the linear region of curve 3a or 3b, the thickness of the oxide layer on the processed wafer is very thin, and the minimum amount of molecular nitrogen required is 6E14. / Cm 3.

본 발명의 다른 실시예에 있어서, 도 3에서 억제비와 분자질소의 주입량 사이의 관계는 또한 이온주입기의 안정성을 평가하는 데 사용된다. 검사웨이퍼에는 기설정된 투입량의 분자질소가 주입되고 나서, 검사웨이퍼의 표면상에 산화물층을 성장시키기 위하여 열처리가 수행된다. 그리고 나서, 검사웨이퍼상의 산화물층의 두께가 측정된다. 억제비는 측정된 두께에 따라서 계산될 수 있다. 그럼, 분자질소 추정투입량은 도 3의 관계곡선들에 검사웨이퍼의 억제비를 보간함으로써 계산된다. 기설정된 투입량과 검사웨이퍼의 분자질소 추정투입량 사이의 차이는 편차를 보인다. 이온주입기는 만약 편차가 특정범위보다 더 크다면 불안정한 것으로 간주하여, 그 이온주입기를 이용한 공정의 진행을 중단한 다음 정확도 조정을 해야 한다.In another embodiment of the present invention, the relationship between the inhibition ratio and the amount of molecular nitrogen injected in FIG. 3 is also used to evaluate the stability of the ion implanter. After a predetermined amount of molecular nitrogen is injected into the test wafer, heat treatment is performed to grow an oxide layer on the surface of the test wafer. Then, the thickness of the oxide layer on the inspection wafer is measured. The inhibition ratio can be calculated according to the measured thickness. Then, the estimated molecular nitrogen dose is calculated by interpolating the suppression ratio of the test wafer to the relationship curves of FIG. The difference between the predetermined input and the estimated input of molecular nitrogen to the test wafer shows a deviation. The ion implanter should be considered unstable if the deviation is greater than a certain range, stop the process using the ion implanter and adjust the accuracy.

본 발명의 바람직한 실시예에 대한 위의 서술은 예를 들기 위한 목적으로 기재되었을 뿐이다. 상기 교시에 비추어 자명한 변경이나 변화가 가능하다. 본 실시예는 본 발명의 원리를 가장 잘 나타낼 목적으로 선택되어 묘사되었고, 당업자는그 실질적인 응용으로부터 본 발명을 이용하여 다양한 실시예들과 예상되는 특별한 사용에 적합한 다양한 변경들을 수행할 수 있다. 그런 모든 변경들 및 변화들은 공정하고 법적이고 공평하게 부여된 넓이로 번역될 때 첨부된 청구항들에 정의된 본 발명의 범위내에 있다.The above description of the preferred embodiment of the present invention has been described only for the purpose of example. Obvious modifications or variations are possible in light of the above teachings. This embodiment has been chosen and depicted for the purpose of best illustrating the principles of the invention, and those skilled in the art can make various modifications suitable for various embodiments and particular applications contemplated using the invention from its practical application. All such modifications and variations are within the scope of the invention as defined in the appended claims when translated into fair, legal and equitable breadth.

Claims (8)

일련의 주입량들을 갖는 분자질소를 기설정된 주입전압으로 다수의 반도체웨이퍼들 내부로 주입하는 단계;Implanting molecular nitrogen having a series of injection amounts into a plurality of semiconductor wafers at a predetermined injection voltage; 상기 반도체웨이퍼들 및 비주입된 반도체웨이퍼를 열처리하여 상기 반도체웨이퍼들의 각 표면상에 산화물층을 성장시키는 단계;Heat treating the semiconductor wafers and the non-implanted semiconductor wafers to grow an oxide layer on each surface of the semiconductor wafers; 상기 반도체웨이퍼들 표면상의 상기 산화물층 두께를 측정하는 단계;Measuring a thickness of the oxide layer on a surface of the semiconductor wafers; 상기 주입 및 비주입된 반도체웨이퍼들 사이의 산화물층의 두께 차이로부터 억제비를 계산하는 단계;Calculating a suppression ratio from a thickness difference of an oxide layer between the implanted and non-implanted semiconductor wafers; 상기 억제비와 상기 분자질소 주입량 사이의 관계식을 세우는 단계; 및Establishing a relationship between the inhibition ratio and the molecular nitrogen injection amount; And 상기 관계식내에 기설정된 두께를 대입하여, 가공웨이퍼상에 기설정된 두께의 산화물층을 성장시키는 데 필요한 분자질소 추정주입량을 계산하는 단계를 포함하는 분자질소 주입량을 추정하는 방법.Calculating an estimated molecular nitrogen injection amount required to grow an oxide layer having a predetermined thickness on a processing wafer by substituting a predetermined thickness in the relational equation. 제 1항에 있어서, 상기 열처리는 급속열산화처리(Rapid Thermal Oxidation Process)인 것을 특징으로 하는 분자질소 주입량을 추정하는 방법.The method of claim 1, wherein the heat treatment is a rapid thermal oxidation process. 제 1항에 있어서, 상기 열처리는 노내에서 상기 웨이퍼들을 처리하는 것을구비하는 것을 특징으로 하는 분자질소 주입량을 추정하는 방법.The method of claim 1, wherein said heat treatment comprises processing said wafers in a furnace. 제 1항에 있어서, 상기 억제비는 상기 주입된 반도체웨이퍼들 및 상기 비주입된 웨이퍼 사이의 산화물 두께차의 상기 비주입된 웨이퍼상의 산화물층의 두께에 대한 비인 것을 특징으로 하는 분자질소 주입량을 추정하는 방법.2. The molecular nitrogen injection amount of claim 1, wherein the inhibition ratio is a ratio of an oxide thickness difference between the implanted semiconductor wafers and the non-implanted wafer to a thickness of an oxide layer on the non-implanted wafer. How to. 일련의 투입량을 갖는 분자질소를 기설정된 주입전압으로 다수의 반도체웨이퍼들 내부로 주입하는 단계;Injecting molecular nitrogen having a series of input amounts into the plurality of semiconductor wafers at a predetermined injection voltage; 상기 반도체웨이퍼들 및 비주입된 반도체웨이퍼를 열처리하여 상기 반도체웨이퍼들의 각 표면상에 산화물층을 형성하는 단계;Heat treating the semiconductor wafers and the non-implanted semiconductor wafers to form an oxide layer on each surface of the semiconductor wafers; 상기 반도체웨이퍼들 표면상의 상기 산화물층의 두께를 측정하는 단계;Measuring a thickness of the oxide layer on a surface of the semiconductor wafers; 상기 주입 및 비주입된 반도체웨이퍼들 사이의 산화물 두께차이로부터 억제비를 계산하는 단계;Calculating a suppression ratio from an oxide thickness difference between the implanted and non-implanted semiconductor wafers; 상기 억제비와 상기 분자질소 투입량 사이의 관계식을 세우는 단계;Establishing a relationship between the inhibition ratio and the molecular nitrogen input amount; 검사웨이퍼에 기설정된 투입량의 분자질소를 주입하는 단계;Injecting a predetermined amount of molecular nitrogen into the test wafer; 상기 검사웨이퍼를 열처리하여 상기 검사웨이퍼의 표면상에 산화물층을 성장시키는 단계;Heat treating the test wafer to grow an oxide layer on the surface of the test wafer; 상기 산화물층의 두께를 측정하고 상기 비주입된 웨이퍼에 대한 상기 산화물두께차로부터 검사된 억제비를 계산하는 단계;Measuring a thickness of the oxide layer and calculating an inspected inhibition ratio from the oxide thickness difference for the non-implanted wafer; 상기 검사 억제비를 입력하여 분자질소 추정투입량을 산출하는 단계; 및Calculating an estimated input amount of molecular nitrogen by inputting the test inhibition ratio; And 상기 분자질소 추정투입량과 상기 검사웨이퍼의 기설정된 분자질소 투입량 사이의 편차를 구하는 단계를 포함하고,Calculating a deviation between the estimated molecular nitrogen input amount and a predetermined molecular nitrogen input amount of the test wafer; 만약 상기 편차가 특정범위보다 더 크면 이온주입기가 비안정적인 것으로 평가하는 것을 특징으로 하는 이온주입기의 안정도평가방법.If the deviation is greater than the specified range stability evaluation method of the ion implanter, characterized in that the ion implanter is evaluated as unstable. 제 5항에 있어서, 상기 열처리는 급속열산화처리를 구비하는 것을 특징으로 하는 이온주입기의 안정도평가방법.6. The method of evaluating stability of an ion implanter according to claim 5, wherein said heat treatment comprises a rapid thermal oxidation treatment. 제 5항에 있어서, 상기 열처리는 노에서 상기 웨이퍼들을 처리하는 것을 구비하는 것을 특징으로 하는 이온주입기의 안정도평가방법.6. The method of claim 5, wherein said heat treatment comprises processing said wafers in a furnace. 제 5항에 있어서, 상기 억제비는 상기 주입 및 비주입된 반도체웨이퍼들 사이의 산화물 두께차의 상기 비주입된 웨이퍼의 산화물 두께에 대한 비인 것을 특징으로 하는 이온주입기의 안정도평가방법.6. The method of claim 5, wherein the inhibition ratio is a ratio of an oxide thickness difference between the implanted and non-implanted semiconductor wafers to an oxide thickness of the non-implanted wafer.
KR10-2002-0007858A 2001-08-28 2002-02-14 Method for molecular nitrogen implantation dosage monitoring KR100415629B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW90121169 2001-08-28
TW90121169 2001-08-28

Publications (2)

Publication Number Publication Date
KR20030019054A KR20030019054A (en) 2003-03-06
KR100415629B1 true KR100415629B1 (en) 2004-01-24

Family

ID=37416881

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0007858A KR100415629B1 (en) 2001-08-28 2002-02-14 Method for molecular nitrogen implantation dosage monitoring

Country Status (1)

Country Link
KR (1) KR100415629B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201636A (en) * 1984-03-27 1985-10-12 Fujitsu Ltd Manufacture of semiconductor device
KR970003671A (en) * 1995-06-24 1997-01-28 김주용 Silicon Wafer Processing Method
KR100238203B1 (en) * 1996-09-18 2000-01-15 윤종용 Nitrogen concentration measuring method thru thermal oxidation
KR20000019440A (en) * 1998-09-11 2000-04-15 김규현 Method for preparing gate oxide film of semiconductor device
US6060374A (en) * 1998-06-04 2000-05-09 Taiwan Semiconductor Manufacturing Company Monitor for molecular nitrogen during silicon implant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201636A (en) * 1984-03-27 1985-10-12 Fujitsu Ltd Manufacture of semiconductor device
KR970003671A (en) * 1995-06-24 1997-01-28 김주용 Silicon Wafer Processing Method
KR100238203B1 (en) * 1996-09-18 2000-01-15 윤종용 Nitrogen concentration measuring method thru thermal oxidation
US6060374A (en) * 1998-06-04 2000-05-09 Taiwan Semiconductor Manufacturing Company Monitor for molecular nitrogen during silicon implant
KR20000019440A (en) * 1998-09-11 2000-04-15 김규현 Method for preparing gate oxide film of semiconductor device

Also Published As

Publication number Publication date
KR20030019054A (en) 2003-03-06

Similar Documents

Publication Publication Date Title
US7504838B1 (en) Methods of determining characteristics of doped regions on device wafers, and system for accomplishing same
US7397046B2 (en) Method for implanter angle verification and calibration
US7033846B2 (en) Method for manufacturing semiconductor devices by monitoring nitrogen bearing species in gate oxide layer
KR100415629B1 (en) Method for molecular nitrogen implantation dosage monitoring
US6249117B1 (en) Device for monitoring and calibrating oxide charge measurement equipment and method therefor
US6639228B2 (en) Method for molecular nitrogen implantation dosage monitoring
US20020059011A1 (en) Implant monitoring using multiple implanting and annealing steps
US20100050939A1 (en) Method for determining the performance of implanting apparatus
CN100389489C (en) Low energy dosage monitoring using wafer impregnating machine
US7622312B2 (en) Method for evaluating dopant contamination of semiconductor wafer
US6313480B1 (en) Structure and method for evaluating an integrated electronic device
Yamaguchi et al. Impact of long-period line-edge roughness (LER) on accuracy in CD measurement
KR100203779B1 (en) A method for checking photoresist thick of semiconductor ion injection process
CN109473369A (en) A kind of method of doping concentration in monitoring high temperature furnace pipe
Steeples Sheet resistivity of silicon wafers implanted with a high current machine
JP2004507878A (en) Device and method for monitoring and calibrating an oxide charge measurement device
Yarling et al. The history of uniformity mapping in ion implantation
KR920010752B1 (en) Etch monitoring pattern testing method
Kohno et al. High accuracy analysis of BPSG thin films on silicon wafers by X-ray wafer analyzer
Tallian et al. Monitoring Ion Implantation Energy Using Non‐contact Characterization Methods
TW406309B (en) Method for manufacturing semiconductor wafer with several ion implantation conditions
Lee et al. Successful ultra-thin oxide measurement quality control and quantification of measurement error on ellipsometry
KR19980015246A (en) Method of manufacturing semiconductor standard sample
JP2007073727A (en) Quantitation method of nitrogen and manufacturing method of semiconductor device
Yarling et al. Statistical process analysis of ion implantation

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee