KR100415148B1 - Plastic cutting tool for preventing metal contamination and selecting method of material for making the same - Google Patents
Plastic cutting tool for preventing metal contamination and selecting method of material for making the same Download PDFInfo
- Publication number
- KR100415148B1 KR100415148B1 KR10-2001-0008901A KR20010008901A KR100415148B1 KR 100415148 B1 KR100415148 B1 KR 100415148B1 KR 20010008901 A KR20010008901 A KR 20010008901A KR 100415148 B1 KR100415148 B1 KR 100415148B1
- Authority
- KR
- South Korea
- Prior art keywords
- cutting tool
- sample
- plastic cutting
- plastic
- analysis
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 45
- 238000005520 cutting process Methods 0.000 title claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 37
- 239000002184 metal Substances 0.000 title claims abstract description 37
- 239000004033 plastic Substances 0.000 title claims abstract description 37
- 229920003023 plastic Polymers 0.000 title claims abstract description 37
- 238000011109 contamination Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004458 analytical method Methods 0.000 claims abstract description 49
- 239000002861 polymer material Substances 0.000 claims abstract description 31
- 238000010187 selection method Methods 0.000 claims abstract description 7
- 230000005855 radiation Effects 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 6
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000356 contaminant Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000007710 freezing Methods 0.000 claims description 2
- 230000008014 freezing Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 abstract description 5
- 239000011573 trace mineral Substances 0.000 abstract description 2
- 235000013619 trace mineral Nutrition 0.000 abstract description 2
- 238000003947 neutron activation analysis Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 35
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000000084 gamma-ray spectrum Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010421 standard material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- BLJNPOIVYYWHMA-UHFFFAOYSA-N alumane;cobalt Chemical compound [AlH3].[Co] BLJNPOIVYYWHMA-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26B—HAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
- B26B13/00—Hand shears; Scissors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/025—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material using neutrons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
- G01N33/442—Resins; Plastics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
- G01N2001/2866—Grinding or homogeneising
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Forests & Forestry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
본 발명은 금속오염을 방지할 수 있는 플라스틱 절단기구 및 이를 위한 재료선정방법에 관한 것으로, 더욱 상세하게는 미량의 금속성분 시험을 목적으로 하는 대기환경측정용 여과지 등의 환경분야 시료를 절단할 때 사용되는 금속제 절단기구 대신에 무기성분의 함량이 최소로 포함된 고분자소재를 재료로 하는 플라스틱 절단기구에 관한 것이다. 본 발명에서는 종래 난용성 고분자소재의 극미량 원소분석에 사용되던 중성자방사화분석법(Neutron Activation Analysis)을 개선하여 시료의 전처리 과정 중 외부에서 유입되는 금속성분의 오염 및 중성자 조사시 시료용기의 파손문제를 해결하고 보다 정확하게 고분자소재 내에 극미량 포함된 무기성분을 분석할 수 있게 함으로써 상기한 플라스틱 절단기구의 재료를 선정할 수 있는 방법을 제공한다.The present invention relates to a plastic cutting tool that can prevent metal contamination, and to a material selection method for the same, and more particularly, when cutting a sample of environmental field, such as filter paper for measuring the atmospheric environment for the purpose of testing a trace amount of metal components. It relates to a plastic cutting tool made of a polymer material containing a minimum amount of inorganic components in place of the metal cutting tool used. The present invention improves the Neutron Activation Analysis, which has been used for the analysis of trace elements of poorly soluble polymer materials, to solve the problem of damage to the sample container during contamination and neutron irradiation of metal components introduced from the outside during the pretreatment of the sample. The present invention provides a method for selecting the material of the plastic cutting tool by solving the inorganic component contained in the trace amount in the polymer material more accurately.
Description
본 발명은 금속오염을 방지할 수 있는 플라스틱 절단기구 및 이를 위한 재료선정방법에 관한 것으로, 기존에 사용되던 금속제 절단기구를 플라스틱 절단기구로 대체하고, 이를 위한 가장 적합한 고분자소재의 선정을 위해서 개선된 중성자방사화 분석법을 적용하도록 한 것이다.The present invention relates to a plastic cutting tool that can prevent metal contamination and a material selection method therefor, and replaces the metal cutting tool used in the past with a plastic cutting tool, and improved neutron for the selection of the most suitable polymer material for this It is intended to apply the radiation analysis method.
현재, 대기환경측정에 사용되는 여과지(Filter paper) 등 미량의 금속성분을 시험하는 환경분야 시료의 절단 시에 사용하고 있는 펀치나 가위 등의 절단기구는 모두 금속제품이다. 이러한 금속제품을 상기한 용도에 사용하게 되면 금속성분에 의한 오염이 발생하며, 때로는 금속제 절단기구에 녹이 슬기 때문에, 미량의 금속성분을 시험해야 하는 환경분야에서는 커다란 시험오차를 유발하게 된다. 이러한 금속제 절단기구를 플라스틱 소재 절단기구로 대체 사용할 경우 금속성분의 오염에 의한 시험오차를 배제할 수 있다.Currently, all cutting tools such as punches and scissors used for cutting samples of environmental fields, such as filter paper, used for measuring the atmospheric environment, are metal products. When such metal products are used for the above-mentioned applications, contamination by metal components occurs and sometimes rusts on metal cutting tools, which causes a large test error in the environmental field where a small amount of metal components should be tested. When the metal cutting tool is replaced with the plastic cutting tool, the test error due to the contamination of the metal component can be excluded.
플라스틱소재는 가공이 용이하므로 펀처(Puncher), 가위 등 다양한 크기와 형태의 절단기구로 제작할 수 있다. 단,절단기구의 재료로 사용할 플라스틱 소재는 적당한 강도 등의 물리적 성질과 금속성분의 종류 및 함량(촉매성분, 첨가성분, 불순물 성분)과 같은 화학적 성질을 엄격히 측정하여 선정해야 한다. 즉, 플라스틱 절단기구를 만들기 위한 소재는 강도가 높고, 금속성분의 함량이 낮아야 한다. 소재의 강도나 합성에 사용한 촉매의 종류는 생산기업의 소재설명서나 공개된 자료를 조사하여 알 수 있다. 그러나, 같은 종류의 플라스틱이라 하더라도 제조기업 및 제조방법에 따라서 촉매성분의 농도 및 금속성분 등의 불순물의 농도에는 커다란 차이가 있다. 따라서, 플라스틱 재료의 물리적 특성 자료를 이용하여 후보소재를 결정한 다음에 이들 후보소재의 금속성분을 정밀 시험하여 최종 후보소재를 선정해야 한다. 즉, 후보소재 중에서 강도와 금속성분의 종류 및 함량을 고려하여 환경시료 절단기구의 제작을 위한 최종 플라스틱 재료를 결정해야 하는 것이다. 플라스틱 재료에 함유되어 있는 금속성분은 합성에 필수원료인 촉매성분, 소재의 기능강화를 위해 첨가되는 무기첨가성분, 그리고 제조과정 혹은 원료에서부터 유입되는 불순물 성분으로 구별할 수 있다.Plastic material is easy to process, so it can be manufactured with various sizes and shapes of cutting tools such as punchers and scissors. However, the plastic material to be used as the material of the cutting device should be selected by strictly measuring the physical properties such as appropriate strength and the chemical properties such as the type and content of the metal component (catalyst component, additive component, impurity component). That is, the material for making a plastic cutting tool should be high in strength and low in metal content. The strength of the material or the type of catalyst used in the synthesis can be determined by examining the material description or published data of the producing company. However, even in the same type of plastic, there are significant differences in the concentration of the catalyst component and the impurities such as the metal component according to the manufacturing company and the manufacturing method. Therefore, the candidate materials should be determined by using the physical properties of the plastic materials, and then the final candidate materials should be selected by precise testing of the metal components of these candidate materials. That is, the final plastic material for manufacturing the environmental sample cutting tool should be determined in consideration of the strength and the type and content of the metal component among the candidate materials. Metallic components contained in plastic materials can be classified into catalyst components, which are essential ingredients for synthesis, inorganic additives added to enhance the function of materials, and impurity components introduced from manufacturing processes or raw materials.
한편, 고분자소재 중의 무기성분의 분석에는 AAS, ICP-AES와 같은 용액화 분석법과 XRF방법이 주로 이용되어 왔다. 그러나 고분자소재를 용해시키기 위해서는 회화(Ashing) 및 용해의 두 단계를 거쳐야 하며 이 과정은 시간과 노력이 많이 드는 것은 물론이고 미량 분석물의 분석에서 가장 우려되는 오염 및 손실의 위험성이 매우 높으며, 비파괴 분석측면에서 보면 XRF방법이 있겠으나 이 역시 디스크(Disc)나 펠렛(Pellet)형태로 제작해야 되기 때문에 여전히 불순물의 오염 우려가 있고 분석감도가 떨어지지는 단점을 극복해야 한다.그러나, 최근 개발된 중성자방사화분석법(NAA)은, 고분자소재를 회화시키거나 용해시키지 않고서도 비파괴로 그리고 고감도로 용이하게 분석이 가능하며, 디스크나 펠렛으로 제작할 필요가 없고, 시료의 방사화를 위해 사용되는 중성자 및 측정되는 감마선이 시료매질을 거의 완전히 투과하므로 매질에 의한 방해 효과를 거의 무시할 수 있다는 등의 여러 장점이 있다.On the other hand, the analysis of inorganic components in the polymer material has been mainly used a solution analysis method such as AAS, ICP-AES and XRF method. However, in order to dissolve the polymer material, two steps of ashing and dissolution are required. This process is not only time-consuming and labor-intensive, but also has a high risk of contamination and loss, which is most concerned with the analysis of trace analytes. In terms of the XRF method, it must be manufactured in the form of discs or pellets, and thus, it is still necessary to overcome the disadvantages of contamination of impurities and deterioration of analytical sensitivity. Chemical Analysis (NAA) is a non-destructive and highly sensitive method for analysis without polymerizing or dissolving the polymer material, and does not need to be made of discs or pellets, and it is possible to measure the neutrons used for the radiation of a sample Since gamma rays pass through the sample medium almost completely, the disturbing effects of the medium can be almost neglected There are many advantages of such.
그러나 상술한 NAA 방법을 이용하여 고분자소재 중의 미량 무기분석을 분석하는데 있어 중성자 조사 시에 고분자사슬의 절단 및 산화반응 등으로 인하여 생성되는 기체압력에 의하여 시료용기가 파손될 수 있다는 것과, 중성자 조사용기의 크기(12㎜ψ × 120㎜)가 제한되어 있기 때문에 시료의 크기를 알맞게 절단해야 하는데 이 과정은 절단기구에 의한 오염경로가 된다는 문제점이 존재한다.However, in analyzing the trace inorganic analysis in the polymer material using the above-described NAA method, the sample container may be damaged by the gas pressure generated due to the cleavage of the polymer chain and the oxidation reaction during the neutron irradiation. Since the size (12 mm ψ × 120 mm) is limited, the size of the sample must be cut accordingly. This process has a problem of being a contamination path by the cutting tool.
이에, 본 발명자는 생체시료 분쇄에서 빈번히 이용되는 액체질소를 이용한 냉동-파쇄 방법을 적용하여 금속기구를 전혀 사용하지 않고도 시료를 용이하게 파쇄하고 한편 시료용기의 파손 문제를 해결함으로써 개선된 분석방법을 통하여 현재 시중에 나와 있는 플라스틱 고분자소재를 선정하여 금속오염을 방지할 수 있는 플라스틱 절단기구를 제조하고 본 발명을 완성하게 되었다.Therefore, the present inventors apply the freeze-crushing method using liquid nitrogen which is frequently used in biological sample grinding, thereby easily breaking the sample without using any metal tools and solving the problem of damage to the sample container. Through the selection of the plastic polymer materials currently on the market through to manufacture a plastic cutting tool that can prevent metal contamination and completed the present invention.
본 발명의 목적은 상술한 바와 같이 고분자소재에 함유된 극미량의 무기성분분석 시 종래의 중성자방사화분석법이 가지고 있던 문제점을 해결함으로써 분석시료의 준비 시 외부에서 유입되는 금속성분의 오염경로를 차단하고, 이러한 개선된 분석방법을 통하여 보다 정확하게 고분자소재 내에 함유된 극미량의 무기성분을 측정해냄으로써 미량의 금속성분을 시험하는 환경분야 시료의 절단 시에 사용할 수 있는 플라스틱 절단기구를 위한 고분자재료를 선정할 수 있도록 하는데 있다.The object of the present invention is to solve the problems of the conventional neutron radiation analysis method when analyzing the trace amount of inorganic components contained in the polymer material as described above to block the contamination path of metal components introduced from the outside during the preparation of the sample Through this improved analytical method, it is possible to select polymer materials for plastic cutting tools that can be used for cutting of environmental samples that test trace metal components by measuring trace amounts of inorganic components contained in polymer materials more accurately. It is to make it possible.
본 발명의 또 다른 목적은 상기 분석방법을 통하여 밝혀낸 고분자소재 내의 무기성분 함량 결과에 따라 선정된 고분자소재를 사용하여, 금속제 절단기구를 대체할 수 있는 플라스틱 절단기구를 제조하는데 있다.Still another object of the present invention is to prepare a plastic cutting tool that can replace a metal cutting tool, using the polymer material selected according to the inorganic component content result in the polymer material found through the above analysis method.
도 1은 어린이용 완구제품(고분자소재)으로부터 각 조건에서 얻어진 감마선 스펙트럼과 대표적인 핵종을 나타낸 것이고,Figure 1 shows the gamma-ray spectrum and representative nuclides obtained in each condition from children's toy products (polymer materials),
도 2는 본 발명에 의한 시료의 전처리 과정을 나타낸 것이고,2 shows a pretreatment process of a sample according to the present invention,
도 3은 본 발명에 의한 고분자 재료를 선정하기 위한 분석과정을 나타낸 것이다.3 shows an analysis process for selecting a polymer material according to the present invention.
상기한 목적을 달성하기 위하여 본 발명에서는,중성자방사화 분석방법을 이용한 무기성분분석 결과에 따라 플라스틱 절단기구의 소재가 되는 재료를 선정하는 방법으로서,(a) 분석대상 시료인 고분자소재를 액체 질소를 이용하여 동결시킨 후 비닐 주머니(Bag)에 넣고 밀봉한 상태로 파쇄하는 단계;(b) 상기 파쇄된 시료를 세척하여 시료에 남아있는 오염물을 제거한 후 건조시키는 단계;(c) 상기 건조된 시료를 중성자방사화 분석을 위한 시료용기에 넣고, 시료용기 상단에 기체배출을 위한 직경 0.5 ㎜ 이하의 작은 구멍을 만드는 단계;(d) 상기 시료 용기 내의 시료에 중성자를 조사하고 방사성 핵종으로부터 방출되는 감마선을 측정하는 중성자방사화 분석단계;를 포함하는 개선된 중성자방사화 분석방법을 사용하는 것을 특징으로 하는 금속오염을 방지할 수 있는 플라스틱 절단기구를 위한 재료선정방법이 제공된다.In order to achieve the above object, in the present invention, as a method of selecting a material to be the material of the plastic cutting tool according to the results of the inorganic component analysis using the neutron radiation analysis method, (a) a liquid nitrogen material of the sample to be analyzed Freezing by using a plastic bag (bag) and crushed in a sealed state; (b) washing the crushed sample to remove contaminants remaining in the sample and dried; (c) the dried sample Is placed in a sample container for neutron radiation analysis, and making a small hole having a diameter of 0.5 mm or less for gas discharge on the top of the sample container; (d) irradiates neutrons to the sample in the sample container and emits gamma rays from radionuclides Preventing metal contamination, characterized in that using the improved neutron radiation analysis method comprising a; This material can be selected method is provided for plastic cutting mechanism.
또한, 본 발명에서는 상기와 같은 재료선정방법으로 선택한 고분자소재를 사용하여 제조된 금속오염을 방지할 수 있는 플라스틱 절단기구가 제공된다.In addition, the present invention provides a plastic cutting tool that can prevent metal contamination produced using the polymer material selected by the material selection method as described above.
중성자방사화 분석법에서의 필수 장비는 중성자원(Neutron source)과 감마선 검출기이며 PC와 같은 기본장비들이다. 방사화 하는데 필요한 중성자원으로는 원자로를 이용하였고, 방사성 핵종으로부터 방출되는 감마선의 측정에는 HPGe 반도체 검출기(EG G, ORTEC USA)와 MCA(Multi Channel Analyzer)를 이용하였다.Essential equipment for neutron emission analysis is the Neutron source and gamma detectors, and basic equipment such as PCs. Reactors were used as neutral resources for the radiation, and HPGe semiconductor detectors (EG G, ORTEC USA) and MCA (Multi Channel Analyzer) were used to measure gamma rays emitted from radionuclides.
이하, 본 발명의 재료선정을 위한 분석방법을 도 2 및 도 3을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, an analysis method for selecting a material of the present invention will be described in detail with reference to FIGS. 2 and 3.
(1) 시료의 전처리 단계(도 2)(1) pretreatment step of the sample (FIG. 2)
1) 분석대상 시료1) Sample to be analyzed
본 발명의 절단기구의 재료로 사용되기 위해서는 강도, 내충격성 및 내마모성 등의 물리적 성질이 우수한 고분자소재 이어야 한다.In order to be used as the material of the cutting tool of the present invention, the polymer material should be excellent in physical properties such as strength, impact resistance and abrasion resistance.
본 발명의 일 실시예에서는 여러 종류의 고분자소재의 물리적 성질을 조사한 결과, 후보소재로 아세탈(acetal)소재가 가장 적합함을 확인할 수 있어 이들을 시료로 사용하였다.In one embodiment of the present invention, as a result of examining the physical properties of various types of polymer material, it was confirmed that acetal material is most suitable as a candidate material, and these were used as samples.
2) 세척 및 파쇄2) washing and shredding
본 발명의 일실시예에서는 탈이온수를 사용하여 구입한 고분자 시료를 깨끗이 세척하고 액체 질소에 30분간 담구어 둔 후에 꺼내어 동결된 상태로 깨끗한 폴리에틸렌 주머니(Bag)에 넣어 밀봉한 다음, 테프론(Teflon) 소재의 플라스틱 해머를 사용하여 파쇄하였다(냉동-파쇄 방법).In one embodiment of the present invention, the polymer sample purchased using deionized water is thoroughly washed, soaked in liquid nitrogen for 30 minutes, taken out and sealed in a frozen polyethylene bag (Taglon) in a frozen state, and then Teflon. Crushing was carried out using the plastic hammer of the material (freeze-crushing method).
3) 오염물 제거 및 건조보관3) Pollutant removal and dry storage
파쇄된 플라스틱 시료에 남아있는 오염물을 제거하기 위하여 10% 질산용액으로 세척한 다음, 오븐이나 데시케이터(desiccator)내에서 건조시킨다. 건조시킨 후에 깨끗하게 처리된 폴리프로필렌 병(Bottle)에 보관한다.To remove contaminants remaining in the shredded plastic sample, it is washed with 10% nitric acid solution and then dried in an oven or desiccator. After drying, store in a clean polypropylene bottle.
4) 중성자 선속 측정4) neutron flux measurement
중성자 선속 측정용 모니터는 Au(Gold-aluminum alloy wire : 0.1274 % of gold, Degusa, FRG)와 Co(Cobalt-aluminum alloy wire : 0.0925 % cobalt, Degusa, FRG)로서 시료용기의 양옆에 부착하고 중성자조사 용기(HDPE rabbit)에 넣는다.The neutron flux measuring monitor is Au (Gold-aluminum alloy wire: 0.1274% of gold, Degusa, FRG) and Co (Cobalt-aluminum alloy wire: 0.0925% cobalt, Degusa, FRG) attached to both sides of the sample container and irradiated with neutron Place in container (HDPE rabbit).
(2) 중성자방사화 분석법을 사용한 고분자소재의 분석(도 3)(2) Analysis of the polymer material using the neutron radiation analysis (Fig. 3)
1) 시료주입 및 시료용기 상단에 구멍 제작1) Sample injection and hole formation on top of sample container
폴리에틸렌 시료용기 안에 단반감기 핵종의 경우 5g, 중·장반감기 핵종일때는 10g의 시료를 준비하여 넣은 다음, 중성자 조사시에 시료자체에서 발생하는 기체(수소, 메탄가스 등)에 의한 용기파손 문제를 해결하기 위하여 시료용기 상단에 직경 0.5㎜ 이하의 작은 구멍을 만든다.In the polyethylene sample container, 5g of short-lived nuclides and 10g of medium-long-lived nuclides are prepared and placed in the polyethylene sample container.Then, vessel damage caused by the gas (hydrogen, methane, etc.) generated from the sample itself during neutron irradiation is prepared. To solve this, make a small hole with a diameter of 0.5 mm or less on the top of the sample container.
2) 중성자조사 및 감마선 측정2) neutron irradiation and gamma ray measurement
시료들의 중성자조사는 연구용 원자로를 이용하였으며 실험시의 열 및 열외중성자 선속밀도는 각각 1.8 × 1013과 7.5 × 1011n·㎝-2·s-1이었다. 단반감기 핵종의 분석을 위한 시료는 1분간 중성자 조사하였고, 중·장반감기 핵종 분석용 시료는 30분간 중성자 조사하였다. 단반감기 핵종의 분석감도 및 분석성분을 최대화하기 위하여 중성자 조사 후 5분, 120분의 2회를 반복 측정하여 성분별 최적 냉각조건(Cooling condition)을 구하였다. 중반감기 핵종의 경우는 중성자조사 2일 후, 장반감기 핵종의 경우 20일 후에 시료를 측정하여 감마선 스펙트럼을 얻었다. 감마선 스펙트럼은 HPGe 검출기(에너지분해능 ; 1.7 keV, 계측효율 ; 25%)를 이용하였으며, 측정시간은 단반감기 핵종의 경우 500초, 중반감기 핵종은 2,000초, 그리고 장반감기 핵종은 4,000초에서 수행하였다.The neutron irradiation of the samples was carried out using a research reactor, and the thermal and neutron flux densities were 1.8 × 10 13 and 7.5 × 10 11 n · cm -2 · s -1 , respectively. The samples for analysis of short-lived nuclides were neutron irradiated for 1 minute, and the samples for medium and long-lived nuclide analysis were irradiated for 30 minutes. In order to maximize the analytical sensitivity and analytical components of the short-lived nuclide, the optimum cooling condition for each component was obtained by repeating the neutron irradiation twice for 5 minutes and 120 minutes. Gamma-ray spectra were obtained by measuring samples after 2 days of neutron irradiation for mid-life nuclides and 20 days after long-life nuclides. Gamma-ray spectra were measured using an HPGe detector (energy resolution; 1.7 keV, measurement efficiency; 25%), and measurement times were performed at 500 seconds for short-lived nuclides, 2,000 seconds for mid-lived nuclides, and 4,000 seconds for long-lived nuclides. .
3) 함량 결정3) content determination
감마선 스펙트럼의 처리 및 분석은 Gamma Vision(EG G ORTEC Inc., USA)을 사용하였다. 시료에 함유되어 있는 무기 불순물들의 함량은 분석방해 보정이 포함되어 있는 단일비교체법(SCM-IF, 절대분석법)을 이용하였다.Gamma Vision (EG G ORTEC Inc., USA) was used for the processing and analysis of the gamma ray spectrum. Inorganic impurities contained in the sample were analyzed using a single comparison method (SCM-IF, absolute analysis method) that included analytical disturbance correction.
이하 본 발명을 다음 실시예를 통하여 더욱 구체적으로 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
실시예 1Example 1
분석감도를 극대화 시킬 수 있는 계측조건Measurement conditions to maximize analysis sensitivity
최적의 실험조건을 도출하기 위하여 각 성분의 핵자료와 원자로의 중성자 선속 특성을 이용하여 단반감기 핵종들의 중성자조사 시간에 따른 방사능 세기와 냉각 시간에 따른 감쇠하는 양을 구하고, 분석핵종에 대한 간섭핵종의 방사능비가 최소가 되는 조건을 구하는 전산프로그램을 만들었다. 이 프로그램을 이용하여 분석핵종의 양과 간섭핵종의 양에 따라 최적의 중성자 조사시간과 방사능 감쇠시간을 계산하여 분석감도를 극대화시킬 수 있는 계측조건을 구하였다. 표 1은 분석에 적용한 고분자소재에서 빈번히 관찰되는 33종의 무기성분의 분석을 위한 최적 실험조건이다. 도 1은 대상소재 중의 하나인 어린이용 완구제품으로부터 각 조건에서 얻어진 감마선 스펙트럼과 대표적인 핵종을 나타내었다.In order to derive the optimal experimental conditions, the radionuclide intensity of the single half-life nuclides and the amount of attenuation according to the neutron irradiation time of the single-half-life nuclides are calculated by using the nuclear data of each component and the neutron flux characteristics of the reactor. A computer program was developed to determine the conditions under which Using this program, the optimum neutron irradiation time and radioactivity decay time were calculated according to the amount of analyte nuclei and the amount of interfering nuclides. Table 1 shows the optimum experimental conditions for the analysis of 33 inorganic components frequently observed in the polymer materials applied to the analysis. Figure 1 shows the gamma-ray spectrum and representative nuclides obtained under each condition from a toy product for children, one of the subject materials.
실시예 2Example 2
NIST 1632b coal 표준시료의 NAA 분석결과NAA Analysis of NIST 1632b Coal Standard Samples
본 발명의 분석방법을 검증하기 위하여 표준물질을 적용하여 시험하여 보았다. 무기물 함량이 인증된 고분자소재가 없는 관계로 NAA면에서는 고분자소재(주성분이 탄소와 수소인 화합물)와 유사한 Coal 표준물(NIST SRM 1632b)에 본 발명의 분석방법을 적용하였다.In order to verify the analytical method of the present invention, a standard material was applied and tested. In the NAA aspect, the analytical method of the present invention was applied to a Coal standard (NIST SRM 1632b) similar to a polymer material (compounds containing carbon and hydrogen) in terms of NAA.
표 2에 NIST 1632 coal 표준시료의 NAA 분석결과를 나타내었다. 분석된 27개 성분 중 Sr과 V을 제외하고는 공인 값과 10% 미만의 편차 이내에서 일치함을 확인할 수 있었다.Table 2 shows the results of NAA analysis of NIST 1632 coal standard samples. Except for Sr and V among the 27 components analyzed, it was confirmed that the coincidence within the deviation of less than 10%.
실시예 3Example 3
플라스틱 절단기구에 사용할 고분자 재료의 선정Selection of Polymer Materials for Plastic Cutters
상기 실시예 2에서 표준물질의 무기성분의 정밀분석에 본 발명의 개선된 NAA를 적용한 결과 정확하게 분석할 수 있음을 확인하였다. 상기 분석방법을 금속오염을 방지할 수 있는 플라스틱 절단기구의 고분자소재에 사용하기에 적합한 강도, 내충격성 및 내마모성 등의 물리적 성질을 갖춘 아세탈 소재에 적용하여 다음 표 3과 같은 결과를 얻었다.As a result of applying the improved NAA of the present invention to the precise analysis of the inorganic component of the standard material in Example 2 it was confirmed that can be analyzed accurately. The analytical method was applied to an acetal material having physical properties such as strength, impact resistance, and abrasion resistance suitable for use in a polymer material of a plastic cutting tool capable of preventing metal contamination, thereby obtaining the results as shown in Table 3 below.
상기 표 3의 결과를 보면 알 수 있듯이 같은 고분자 물질인 아세탈(acetal) 소재에서도 각 무기성분의 농도에 차이가 큼을 알 수 있다. 금속오염을 최소화하기 위해서는, 가능한 무기성분의 농도가 낮아야 하며, 절단기구의 용도에 따라서는 함유되어 있는 무기성분의 종류 또한 중요하다.As can be seen from the results of Table 3, it can be seen that the difference in concentration of each inorganic component is great even in the same polymer material acetal (acetal). In order to minimize metal contamination, the concentration of inorganic components should be as low as possible, and depending on the purpose of the cutting tool, the type of inorganic components contained is also important.
예를 들면, B와 같은 소재는 Mg, Ca 등이 100 ppm 이상 함유되어 극미량 원소분석을 위한 절단기구로는 7종의 후보소재 중에서 가장 부적합함을 알 수 있다. 반면, D 소재는 대부분의 무기성분의 함량이 다른 6종보다 낮아 종합적인 무기성분을 고려하면 금속의 오염을 방지할 수 있는 가장 좋은 후보소재라 할 수 있다. 그러나 분석대상 시료의 주요성분이 Na와 Cl일 경우에는 A 소재가 적합함을 알 수 있다.For example, a material such as B contains more than 100 ppm of Mg, Ca, etc., and thus, it can be seen that the cutting tool for the analysis of trace elements is the most unsuitable among the seven candidate materials. On the other hand, D material is the most candidate material that can prevent the contamination of metals considering the comprehensive inorganic components because the content of most inorganic components is lower than the other six species. However, it can be seen that A material is suitable when the main components of the sample to be analyzed are Na and Cl.
이와 같이 소재에 함유되어 있는 무기성분의 종류 및 농도를 정확히 측정하여 절단기를 제조하면 금속성분의 오염을 최소화 할 수 있다.As such, when the cutter is manufactured by accurately measuring the type and concentration of the inorganic component contained in the material, contamination of the metal component may be minimized.
실시예 4Example 4
플라스틱 절단기구의 제조Manufacture of plastic cutter tool
상기 실시예 3의 결과에 따라 금속오염을 방지할 수 있는 플라스틱 절단기구의 제조에 사용할 고분자 재료로서 A와 D 소재를 사용하여 통상의 절단기구 제조방법을 사용하여 가위와 펀처를 제작하였다.According to the result of Example 3, the scissors and the puncher were manufactured by using the conventional cutting tool manufacturing method using A and D materials as the polymer material to be used for the production of the plastic cutting tool which can prevent metal contamination.
상술한 바와 같이 본 발명의 중성자방사화 분석법은 냉동-파쇄 방법을 사용하여 시료의 전처리과정에서의 금속오염 방지, 고분자소재 분석 시 시료용기의 파손문제 해결, 고감도분석 특징은 극미량 분석에서 가장 큰 문제인 시료처리 과정의복잡성과 이에 따른 분석의 부정확도 문제를 해결 할 수 있어 고분자소재와 같은 난용성 고체물질 중의 극미량 무기성분의 분석에 매우 적합함은 물론 다른 무기분석법의 정확도를 판단할 수 있는 지표분석으로 사용될 수도 있을 것이다.As described above, the neutron radiation analysis method of the present invention uses the freeze-crushing method to prevent metal contamination during the pretreatment of the sample, solve the breakage problem of the sample container when analyzing the polymer material, and the high sensitivity analysis characteristics are the biggest problems in the trace amount analysis. It can solve the complexity of sample processing and consequent analysis inaccuracy, so it is very suitable for the analysis of trace inorganic substances in poorly soluble solid materials such as polymer materials, and it can be used to determine the accuracy of other inorganic analysis methods. It may also be used.
본 발명에서는 이러한 개선된 분석방법을 금속오염을 방지할 수 있는 플라스틱 절단기구를 위한 재료선정방법으로 이용하여 절단기구를 제조함으로써 대기환경측정 시료의 분석결과의 정확도를 크게 향상시킬 수 있는 효과를 얻는다.In the present invention, by using the improved analysis method as a material selection method for the plastic cutting tool that can prevent metal contamination, the cutting tool is manufactured to obtain an effect of greatly improving the accuracy of the analysis result of the atmospheric environmental measurement sample. .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0008901A KR100415148B1 (en) | 2001-02-22 | 2001-02-22 | Plastic cutting tool for preventing metal contamination and selecting method of material for making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0008901A KR100415148B1 (en) | 2001-02-22 | 2001-02-22 | Plastic cutting tool for preventing metal contamination and selecting method of material for making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010035504A KR20010035504A (en) | 2001-05-07 |
KR100415148B1 true KR100415148B1 (en) | 2004-01-13 |
Family
ID=19706109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0008901A KR100415148B1 (en) | 2001-02-22 | 2001-02-22 | Plastic cutting tool for preventing metal contamination and selecting method of material for making the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100415148B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302285A (en) * | 1978-11-23 | 1981-11-24 | Pronman Izmail M | Neutron activation analysis installation |
US4852442A (en) * | 1988-03-30 | 1989-08-01 | Pottorff Earl T | Self-sharpening perforator for plastic film |
US5241569A (en) * | 1990-10-02 | 1993-08-31 | Charles Evans & Associates | Imaging radionuclide analysis apparatus and method |
KR19980069053U (en) * | 1998-09-29 | 1998-12-05 | 박재득 | Improved lead scrap tube for cutting and bending electronic parts of PCB |
JP2000214105A (en) * | 1999-01-26 | 2000-08-04 | Mitsubishi Chemicals Corp | Method for measuring impurity in quartz |
-
2001
- 2001-02-22 KR KR10-2001-0008901A patent/KR100415148B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302285A (en) * | 1978-11-23 | 1981-11-24 | Pronman Izmail M | Neutron activation analysis installation |
US4852442A (en) * | 1988-03-30 | 1989-08-01 | Pottorff Earl T | Self-sharpening perforator for plastic film |
US5241569A (en) * | 1990-10-02 | 1993-08-31 | Charles Evans & Associates | Imaging radionuclide analysis apparatus and method |
KR19980069053U (en) * | 1998-09-29 | 1998-12-05 | 박재득 | Improved lead scrap tube for cutting and bending electronic parts of PCB |
JP2000214105A (en) * | 1999-01-26 | 2000-08-04 | Mitsubishi Chemicals Corp | Method for measuring impurity in quartz |
Also Published As
Publication number | Publication date |
---|---|
KR20010035504A (en) | 2001-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jenner et al. | Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry | |
Shah et al. | Determination of trace elements in petroleum by neutron activation analysis: II. Determination of Sc, Cr, Fe, Co, Ni, Zn, As, Se, Sb, Eu, Au, Hg and U | |
Rose-Koga et al. | Silicate melt inclusions in the new millennium: A review of recommended practices for preparation, analysis, and data presentation | |
KR100415148B1 (en) | Plastic cutting tool for preventing metal contamination and selecting method of material for making the same | |
AU2017245397B2 (en) | Method and system for X-ray fluorescence (XRF) analysis of exploration samples | |
Smodiš et al. | Determination of trace elements in standard reference materials by the ko-standardization method | |
Clemente et al. | Instrumental method for the determination of trace elements in water samples by neutron activation analysis | |
Kump et al. | Multielement analysis of rubber samples by X-ray fluorescence | |
Cristache et al. | An ENAA and PGAA comparative study of anoxic Black Sea sediments | |
Lee et al. | An accurate and sensitive analysis of trace and ultratrace metallic impurities in plastics by NAA | |
Cristache et al. | Determination of elemental content in geological samples | |
Kasztovszky et al. | Investigation of impurities in thermoluminescent Al 2 O 3 materials by prompt-gamma activation analysis | |
Glasgow | Delayed neutron activation analysis for safeguards | |
Wagner et al. | Analysis of chlorine and other halogens by activation with photons and neutrons | |
Waly et al. | Destructive and nondestructive analysis of some modern coins using ICP-AES and PIXE techniques | |
KR100674471B1 (en) | The standard material for polyethylene resin analysis and the non-destructive quantitative analysis of environmetal hazadous elements in polyethylene resin | |
Mizohata et al. | Multielement trace analysis of high purity aluminium by neutron activation | |
Abugassa et al. | Instrumental neutron activation analysis based on k 0-standardization method as compared with other methods in the analysis of the IAEA inter-comparison test | |
Thompson et al. | Neutron activation analysis for the determination of contaminants in food contact materials | |
Schlesinger et al. | Activation analysis of drugs | |
Amartaivan et al. | Total reflection X-ray fluorescence analysis of Mongolian coals | |
Mingote et al. | Methodology for rapid tritium determination in urine | |
Pierce et al. | The control analysis of boron by measurement of the transmission of radioisotope source neutrons | |
Mitchell | Trace analysis and ultrapurification of materials for optical waveguide technology | |
Johansen et al. | Precision analyses of manganese in rocks by neutron activation analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121226 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20131227 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20141230 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |