JP2000214105A - Method for measuring impurity in quartz - Google Patents

Method for measuring impurity in quartz

Info

Publication number
JP2000214105A
JP2000214105A JP1672699A JP1672699A JP2000214105A JP 2000214105 A JP2000214105 A JP 2000214105A JP 1672699 A JP1672699 A JP 1672699A JP 1672699 A JP1672699 A JP 1672699A JP 2000214105 A JP2000214105 A JP 2000214105A
Authority
JP
Japan
Prior art keywords
quartz
container
analysis
irradiation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1672699A
Other languages
Japanese (ja)
Inventor
Masaya Fujisue
昌也 藤末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP1672699A priority Critical patent/JP2000214105A/en
Publication of JP2000214105A publication Critical patent/JP2000214105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an equipment neutron activation analysis method for accurately obtaining measurement result even at a micro region while excluding contamination factors originating, especially from, environment and an analysis instrument. SOLUTION: When an impurity in a quartz is to be measured by an equipment neutron activation analysis for enclosing a sample into a neutron irradiation container, by irradiating it with neutrons, performing cooling, and then measuring γ rays, a container made of quartz that is etched by a fluoric acid is used as a neutron irradiation container, the sample is transferred from the neutron irradiation container to another container, and then γ rays are measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機器中性子放射化
分析(INAA)による微量不純物の測定方法に関す
る。より詳しくは、中性子照射前後に一連の操作を行う
ことにより、高純度の石英中の不純物の測定において微
量域の不純物濃度を難分解物まで含めて正確に分析する
ことが可能な分析方法に関するものである。
The present invention relates to a method for measuring trace impurities by instrumental neutron activation analysis (INAA). More specifically, the present invention relates to an analytical method capable of accurately analyzing the impurity concentration in a trace region including impurities that are hardly decomposed in the measurement of impurities in high-purity quartz by performing a series of operations before and after neutron irradiation. It is.

【0002】[0002]

【従来技術】石英材料は現在、光学分野をはじめ様々な
分野で使用されているが、特に半導体関連ではSiウェ
ハーやLSI製造用のCVD反応器や洗浄槽として、ま
たSi単結晶作成用ルツボとして使用されている。これ
ら石英製品に不純物が多く存在すると、Siウェハーや
LSIの製造時に、石英製品中の不純物が溶出、飛散す
ることがあり、その結果、LSIや半導体表面の荒れ、
電気的特性の劣化等により製造歩留まりが低下すること
が知られている。これら石英製品の製造時には、加工に
使用するバーナーや成型の際に使用する器具等から不純
物が混入する可能性がある他、原料の石英粉の段階で含
まれる不純物も無視することはできない。
2. Description of the Related Art Quartz materials are currently used in various fields such as the optical field. In particular, semiconductor materials are used as CVD reactors and cleaning tanks for producing Si wafers and LSIs, and as crucibles for producing Si single crystals. It is used. If there are many impurities in these quartz products, the impurities in the quartz products may be eluted and scattered during the production of Si wafers and LSIs.
It is known that the manufacturing yield decreases due to deterioration of electrical characteristics and the like. At the time of manufacturing these quartz products, impurities may be mixed in from a burner used for processing, a tool used for molding, or the like, and impurities contained in the raw material quartz powder cannot be ignored.

【0003】近年のLSI等の集積度の向上に伴い歩留
まり向上が望まれ、石英製品の原料として用いられる石
英粉の不純物濃度についてもできる限り低くすることが
要求されており、石英粉の製造においては工程ごとの不
純物濃度の把握によるプロセス設計・改良、品質の管理
・保証のための高感度且つ正確な不純物分析方法が必要
となる。
With the recent increase in the degree of integration of LSIs and the like, it has been desired to improve the yield, and it has been required that the impurity concentration of quartz powder used as a raw material for quartz products be as low as possible. Therefore, a highly sensitive and accurate impurity analysis method is required for process design / improvement and quality control / guarantee by grasping the impurity concentration for each process.

【0004】従来、石英粉中の微量不純物の分析には、
前処理として湿式分解法が使用されてきた。湿式分解法
では、石英をフッ素樹脂容器中でフッ酸(フッ化水素
酸)もしくはこれを含む混酸により加熱分解してヘキサ
フルオロケイ酸とし、その後乾固もしくは濃縮し、加温
しながら残沙もしくは濃縮液に回収用酸を添加し更に純
水でメスアップする。そのメスアップされた希酸性溶液
を誘導結合プラズマ発光分析計(ICP−AES)、有
度結合プラズマ質量分析計(ICP−MS)やグラファ
イトファーネス原子吸光計(GFAAS)に導入してそ
の元素濃度を算出し、その濃度から石英粉中の不純物濃
度を算出している。このような湿式分解法においては、
加水分解から機器分析に至る工程はいずれも不純物混入
防止の観点からクリーンルームもしくはクリーンブース
内に設置されたクリーンベンチ内で行うことが好ましい
とされている。また加水分解や希釈に用いられる酸類や
純水としても不純物が極めて少ない半導体用や特殊グレ
ードのものが使用される。
Conventionally, trace impurities in quartz powder have been analyzed by:
A wet decomposition method has been used as a pretreatment. In the wet decomposition method, quartz is thermally decomposed in a fluorocarbon resin container with hydrofluoric acid (hydrofluoric acid) or a mixed acid containing the same to form hexafluorosilicic acid, which is then dried or concentrated, and then heated or heated. An acid for recovery is added to the concentrated solution, and the volume is further increased with pure water. The diluted acidic solution thus obtained is introduced into an inductively coupled plasma emission spectrometer (ICP-AES), a coupled plasma mass spectrometer (ICP-MS) or a graphite furnace atomic absorption spectrometer (GFAAS) to determine the element concentration. The impurity concentration in the quartz powder is calculated from the calculated concentration. In such a wet decomposition method,
It is said that all steps from hydrolysis to instrumental analysis are preferably performed in a clean room or a clean bench installed in a clean booth from the viewpoint of preventing contamination of impurities. In addition, even for acids and pure water used for hydrolysis and dilution, those for semiconductors or special grades containing very few impurities are used.

【0005】湿式分解法では、以上のように不純物を排
除するための厳しい条件が要求されるが、この条件を満
たして分析を行っても、例えば試料石英粉の製造工程等
でSiC、WC等に代表される難溶性のセラミックスが
混入した場合、これらのセラミックスは溶解が困難であ
り正確な分析に支障を来すことが判明した。そこで、こ
のような湿式分解法の欠点を補うには、石英粉中の不純
物を溶解することなく(非破壊)、かつ高感度に分析す
ることが必要となる。このような分析手法の代表として
機器中性子放射化分析(INAA)がある。この手法は
試料をポリエチレン、ポリイミドや石英等の中性子照射
容器に封入し更に搬送容器へ挿入し、原子炉内部に搬送
する。原子炉内部で発生した中性子を試料に照射し冷却
した後、(n,γ)反応により生成する放射性元素や励
起核が壊変もしくは基底状態に戻る際に発生するγ線を
半導体検出器により測定し分析する手法である。この手
法は前記の湿式分解法に比し、クリーンルーム等特殊な
環境や高純度な酸類を使用することなく分析が可能と言
われている。
[0005] In the wet decomposition method, as described above, strict conditions for eliminating impurities are required. However, even if the analysis is performed while satisfying these conditions, for example, SiC, WC, etc. are required in the production process of the sample quartz powder. It has been found that when hardly soluble ceramics, such as those described above, are mixed, these ceramics are difficult to dissolve and hinder accurate analysis. Therefore, in order to compensate for such a disadvantage of the wet decomposition method, it is necessary to analyze the quartz powder without dissolving impurities (non-destructive) and with high sensitivity. Instrumental neutron activation analysis (INAA) is a representative example of such an analysis technique. In this method, a sample is sealed in a neutron irradiation container such as polyethylene, polyimide or quartz, inserted into a transfer container, and transferred into the reactor. After irradiating the sample with neutrons generated inside the reactor and cooling it, the semiconductor detector measures the γ-rays generated when the radioactive elements generated by the (n, γ) reaction and the excited nuclei decay or return to the ground state. It is a technique to analyze. This method is said to be capable of performing analysis without using a special environment such as a clean room or using high-purity acids as compared with the above-mentioned wet decomposition method.

【0006】実際の測定では中性子照射直後(放射化直
後)の元素の定量は一定の冷却時間を置いて測定される
ことが多いため、定量の際は分析試料と共に既知量のW
st(g)のターゲット元素を含む標準試料を、同時、同
条件で照射し両試料の放射能(A,Ast)を測定して、
(1)式によりターゲット元素の量W(g)を求めるこ
とが行われる(参考文献:橋本芳一,大歳恒彦,放射化
分析・PIXE分析法,第1版,共立出版,東京,19
86)。
In the actual measurement, the quantification of elements immediately after neutron irradiation (immediately after activation) is often performed after a certain cooling time, so that when quantifying, a known amount of W together with the analysis sample is used.
A standard sample containing a target element of st (g) is irradiated simultaneously and under the same conditions, and the radioactivity (A, Ast ) of both samples is measured.
The amount W (g) of the target element is determined by equation (1) (references: Yoshikazu Hashimoto, Tsunehiko Ohtoshi, activation analysis / PIXE analysis, 1st edition, Kyoritsu Shuppan, Tokyo, 19)
86).

【0007】[0007]

【数1】 W=Wst×A/Ast (1)W = W st × A / A st (1)

【0008】このINAAを代表とする非破壊微量分析
では結果を得るまでに時間を要したり分析費用が高価に
なる等の短所があるため通常の製品管理・品質保証の目
的の石英粉中微量不純物分析には湿式分解法が適用され
るのが一般的である。しかし、非破壊微量分析には上記
したような湿式分解法での難溶解性不純物の問題に対処
しうるという利点を有することの他、ルーチンで使用す
る湿式分解法のクロスチェック手段としてもその技術の
確立は意義深い。
[0008] The nondestructive trace analysis represented by INAA has disadvantages such as a long time to obtain a result and an increase in analysis cost. In general, a wet decomposition method is applied to impurity analysis. However, nondestructive microanalysis has the advantage of being able to deal with the problem of hardly soluble impurities in the wet digestion method as described above, and has also been used as a cross-check means for wet digestion methods used routinely. Establishment is significant.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
INAAで実際の石英粉中の微量不純物分析を行ったと
ころ、湿式分解後の機器分析に比較し、特にFeやNa
等の元素で数倍〜数10倍大きな値が分析されることが
わかった。具体的には、湿式分解法では石英粉中の不純
物濃度として10〜100ppbレベルが測定される試
料石英粉は、INAAではppmレベルの不純物濃度が
測定されることがあった。このような大きな差異の発生
する理由としては難溶解性物が不純物として混入してい
ることによる可能性も皆無ではないが、これらFe、N
aといった元素は湿式分解においては特に難溶性の不純
物とはなりにくいものと言われていること、一方これら
の元素は周囲の環境や照射容器等の材料に多く含まれる
ものであるため混入して分析誤差を引き起こしたものと
思われた。このように、従来特に前処理に気を使う必要
もなく微量域まで分析可能と言われていたINAAにお
いても、100ppbレベル以下の微量域の分析におい
ては分析前後での分析誤差となりうる要因が発生し得る
ことがわかった。しかしながら、周囲の環境、照射容器
等からこれらFe、Na等の元素の混入を完全に防ぎ信
頼性のある測定方法を確立するのは容易なことではなか
った。
However, when the trace impurities in quartz powder were actually analyzed by the above-mentioned INAA, compared with the instrumental analysis after the wet decomposition, especially the Fe and Na were analyzed.
It has been found that a value several times to several tens times larger is analyzed for such elements. Specifically, in the sample quartz powder in which the impurity concentration in the quartz powder is measured at a level of 10 to 100 ppb in the wet decomposition method, the impurity concentration of ppm level may be measured in INAA. The reason why such a large difference occurs is that there is no possibility that hardly soluble substances are mixed as impurities.
It is said that elements such as a are unlikely to become particularly hardly soluble impurities in wet decomposition, while these elements are contained in a large amount in the surrounding environment and materials of the irradiation container and the like, so that they are mixed. It seems to have caused an analysis error. As described above, even in the case of INAA, which was conventionally said to be able to analyze even a trace area without paying attention to the pretreatment, in the analysis of a trace area of 100 ppb level or less, a factor that may be an analysis error before and after the analysis occurs. I knew I could do it. However, it is not easy to completely prevent the elements such as Fe and Na from being mixed from the surrounding environment, the irradiation container and the like, and to establish a reliable measuring method.

【0010】これらINAA分析での微量分析における
誤差を除くためには、サンプリング時の環境からの不
純物の混入防止、照射容器自身の不純物濃度を引き下
げる、照射容器封入時の不純物混入防止(完全に溶封
する場合)、反跳汚染等による照射容器への搬送容器
からの汚染等を防止することが有用であると考えられ
る。
In order to eliminate the errors in the trace analysis in the INAA analysis, it is necessary to prevent the contamination of impurities from the environment at the time of sampling, to reduce the impurity concentration of the irradiation container itself, and to prevent the contamination of impurities during the sealing of the irradiation container (complete dissolution). In the case of sealing), it is considered useful to prevent contamination from the transport container to the irradiation container due to recoil contamination or the like.

【0011】特にこれら前記〜の観点からは既に米
沢、星(C.Yonezawa and M.Hoshi,Bunseki Kagaku,3
9,1990,25)はその文献の中で中性子照射容器として
表面をフッ酸により溶解洗浄を施した高純度な四塩化ケ
イ素由来の高純度石英容器を使用し、かつサンプリング
後照射容器を石英バーナーで溶封し、ポリアミドフィル
ムで覆うことを行っている。このポリアミドフィルムは
中性子照射時に搬送容器から照射容器に金属が付着する
のを防止するためである。その後中性子照射し冷却後、
そのままγ線測定を行うことで汚染等に伴う分析誤差の
ない分析が可能になることを述べている。しかしながら
本発明者らの検討によれば、このような手法は特に上記
については極めて有効であるが、の石英容器自身
のブランクを引き下げる点については、たとえ四塩化ケ
イ素由来の高純度な合成石英容器を使用しても容器を作
成する環境や治具によって大きく変動する可能性があ
り、NaやFeに関しては数10ppb以上の混入が生
じる場合があることが判明した。また石英容器の表面を
フッ酸により溶解洗浄したとしても、洗浄が完全にでき
ず結果として大きく分析値に影響を与える可能性が大き
いことがわかった。石英容器ごとの不純物濃度の変動も
大きく微量濃度領域での分析の信頼性に乏しかった。
In particular, from the viewpoints of the above, C. Yonezawa and M. Hoshi, Bunseki Kagaku, 3
9, 1990, 25) uses a high-purity quartz container derived from high-purity silicon tetrachloride whose surface has been dissolved and washed with hydrofluoric acid as a neutron irradiation container in the literature. And sealing with a polyamide film. This polyamide film is for preventing metal from adhering from the transport container to the irradiation container during neutron irradiation. After neutron irradiation and cooling,
It states that by performing γ-ray measurement as it is, it is possible to perform analysis without analysis errors due to contamination and the like. However, according to the study of the present inventors, such a method is extremely effective especially in the above, but in terms of lowering the blank of the quartz container itself, even a high-purity synthetic quartz container derived from silicon tetrachloride is used. It has been found that even if is used, there is a possibility that it greatly varies depending on the environment in which the container is made or the jig, and that Na and Fe may be mixed in several tens of ppb or more. Further, it was found that even if the surface of the quartz container was dissolved and washed with hydrofluoric acid, the washing could not be completely performed, and as a result, there was a great possibility that the analytical value would be greatly affected. The fluctuation of the impurity concentration for each quartz container was large, and the reliability of analysis in a trace concentration region was poor.

【0012】さらに付言すれば、上記文献は照射容器に
対するフッ酸洗浄の影響を考察しているにとどまり石英
試料中の不純物測定への適用については何ら示唆してい
ない。実際、石英製試料容器中に封入して分析されてい
るのは Bovine Liver 及び Orchard Leaves であり、石
英試料とは何ら関係がない。
In addition, the above document only considers the effect of hydrofluoric acid cleaning on the irradiation container and does not suggest any application to the measurement of impurities in quartz samples. In fact, Bovine Liver and Orchard Leaves are contained in the quartz sample container and analyzed, and have nothing to do with the quartz sample.

【0013】[0013]

【課題を解決するための手段】そこで本発明者らは更に
鋭意検討を重ねた。その結果、INAAによる石英粉中
の微量不純物の分析に関して、高度にクリーン化された
環境中で特定の方法で洗浄された高純度中性子照射容器
に試料石英を封入後、中性子照射冷却し別容器に取り出
しγ線測定するという一連の操作を行なえば、きわめて
分析誤差の少ない分析となりうることが明らかとなり、
本発明に到達した。
Therefore, the present inventors have further studied diligently. As a result, regarding the analysis of trace impurities in quartz powder by INAA, the sample quartz was sealed in a high-purity neutron irradiation container washed by a specific method in a highly-clean environment, and then cooled by neutron irradiation and transferred to another container. If a series of operations of taking out and measuring γ-rays is performed, it becomes clear that analysis with extremely small analysis errors can be achieved.
The present invention has been reached.

【0014】すなわち本発明は、試料を中性子照射容器
へ封入し中性子を照射し冷却した後γ線測定を行う機器
中性子放射化分析により石英粉の不純物を測定するに際
し、中性子照射容器としてフッ酸によりエッチングした
石英製の容器を用い、且つ試料を中性子照射容器から別
容器に移し替えた後にγ線測定を行うことを特徴とする
石英粉中の不純物の測定方法、に存する。本発明では、
特に中性子照射後に照射容器から別容器に取り出し測定
することで石英照射容器の不純物濃度やその変動の影響
を受けずに石英粉中の微量不純物濃度の信頼性のある分
析が可能になった。
That is, according to the present invention, when a sample is sealed in a neutron irradiation container, irradiated with neutrons, cooled, and then subjected to gamma-ray measurement, the neutron activation analysis is used to measure impurities in quartz powder. A method for measuring impurities in quartz powder, wherein a gamma ray measurement is performed after using an etched quartz container and transferring a sample from a neutron irradiation container to another container. In the present invention,
In particular, by taking out and measuring from the irradiation container to another container after neutron irradiation, reliable analysis of the trace impurity concentration in quartz powder became possible without being affected by the impurity concentration of the quartz irradiation container or its fluctuation.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。 (対象試料)本発明で測定の対象である試料となる石英
は特に限定されない。試料の形状も限定されないが、大
きさとしては通常、1cm立方以内、好ましくは0.5
cm立方以内とする。この範囲であれば測定誤差は実質
的に無視することができる。試料は、粉末、顆粒状でも
良い。合成石英粉、特に高純度な用途に用いられる合成
石英粉の不純物測定に好適に使用され、気相法、ゾルゲ
ル法で得られたものが挙げられる。ゾルゲル法で得られ
た石英粉は原料の精製により相当高レベルの純度を達成
することができるものの反応時に容器と接触することか
ら装置からの不純物混入の有無、程度を把握することが
要求される。この点でもゾルゲル法で得られた石英粉に
適用することは有用である。このような高純度の石英粉
は半導体、光ファイバー等の用途に使用される高純度石
英製品の材料として好適に使用されるものである。なお
測定に際しては粉状態とするがインゴット等の状態とな
っているものを粉化して採取して本発明の測定方法を適
用しても良い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. (Target Sample) The quartz that is a sample to be measured in the present invention is not particularly limited. The shape of the sample is not limited, but the size is usually within 1 cm 3, preferably 0.5 cm 3.
cm cubic. In this range, the measurement error can be substantially ignored. The sample may be in the form of powder or granules. It is suitably used for measuring impurities in synthetic quartz powder, particularly synthetic quartz powder used for high-purity applications, and examples thereof include those obtained by a gas phase method and a sol-gel method. Quartz powder obtained by the sol-gel method can achieve a fairly high level of purity by refining the raw materials, but it is necessary to know the presence and degree of impurities from the equipment because it comes into contact with the vessel during the reaction. . In this respect, it is useful to apply the present invention to quartz powder obtained by the sol-gel method. Such a high-purity quartz powder is suitably used as a material of a high-purity quartz product used for applications such as semiconductors and optical fibers. When the measurement is performed, the measurement method of the present invention may be applied by pulverizing and collecting an ingot or the like in a powder state.

【0016】なお、石英粉以外、最近LSI作成用治具
に使用されてきているSiC等の高純度セラミックスに
も本発明の測定方法は使用可能である。特にICP−M
Sを適用しにくくなる材料(湿式分解しにくいもの)で
ある難分解性高純度セラミックスの微量不純物分析(p
pbレベル)にも本発明の測定方法は好適である。
In addition to the quartz powder, the measuring method of the present invention can be used for high-purity ceramics such as SiC which has recently been used for jigs for making LSIs. Especially ICP-M
Analysis of trace impurities in high-purity hard-to-decompose ceramics, which is a material (hard to be wet-decomposed) that is difficult to apply S (p
(pb level) is also suitable for the measurement method of the present invention.

【0017】(中性子照射容器)本発明の測定方法にお
いてはまず、中性子照射容器の洗浄を行う。洗浄を含
め、これ以降の操作は雰囲気はクリーンルーム内もしく
はクリーンルーム内に設置されたクリーンベンチ内で操
作を行うのが望ましい。この様にクリーンな環境で行う
ことはサンプリング時の環境からのコンタミネーション
を防ぐ意味でも重要である。本発明者の経験上、ppb
レベルの分析では極まれにサンプリング時に環境由来と
思われる原因で分析値が大きく変動する可能性があっ
た。しかしせめてクラス10000程度のクリーンブー
ス、できればクラス1000以内のクリーンルーム内で
操作を行った方がより好ましい。
(Neutron Irradiation Vessel) In the measuring method of the present invention, first, the neutron irradiation vessel is washed. It is desirable that the subsequent operations including the washing be performed in a clean room or a clean bench installed in the clean room. Performing in such a clean environment is also important in preventing contamination from the environment during sampling. According to the inventor's experience, ppb
In the case of level analysis, the analysis values could fluctuate significantly at the time of sampling, possibly due to environmental causes. However, it is more preferable to perform the operation in a clean booth of at least class 10000, preferably in a clean room of class 1000 or less.

【0018】中性子照射容器は高純度の材質とするが、
石英製のものが望ましい。大きさは使用する原子炉への
照射孔の大きさに依存するが、後述する実施例では口径
1cm×長さ2cm×肉厚1mmのものを使用し、同じ
径に合うようにフタも作成した。その材質としては高純
度天然石英を使用した。その他、SiCその他の高純度
セラミックスも使用可能であるが表面洗浄の容易さや加
工製等を考慮すると石英製のものがもっとも好ましい。
The neutron irradiation container is made of high-purity material.
Quartz is desirable. The size depends on the size of the irradiation hole to the reactor to be used, but in the examples described later, one having a diameter of 1 cm × length 2 cm × thickness of 1 mm was used, and a lid was also made to fit the same diameter. . High-purity natural quartz was used as the material. In addition, SiC and other high-purity ceramics can be used, but those made of quartz are most preferable in consideration of ease of surface cleaning and fabrication.

【0019】上記の米沢、星(C.Yonezawa and M.Hosh
i,Bunseki Kagaku,39,1990,25)の文献にも記載さ
れているように、容器は材料的には石英の中でも四塩化
ケイ素由来の合成品を使用した方が好ましいが、さきに
記載したようにたとえ材料として合成石英を使用しても
板や管の加工工程や照射容器への成形過程を不純物の混
入しやすい環境で行ったり汚染を生じやすい工具を使用
すれば不純物が照射容器の中に混入してしまうことにな
る。また合成石英製容器は一般に高価であり、中性子照
射後は照射容器を廃棄することになるINAAでは使用
しにくい。やはり費用が許す限りは合成石英粉由来のも
のを使用したほうが良いが、分析目的の濃度に応じて天
然品と合成品を使い分ければ良い。なおこの際不純物と
して考慮すべきものは金属元素、ホウ素、リンである。
The above-mentioned C. Yonezawa and M. Hosh
As described in the literature of i, Bunseki Kagaku, 39, 1990, 25), it is preferable to use a synthetic material derived from silicon tetrachloride among quartz as the material for the material, but it is described earlier. Even if synthetic quartz is used as the material, the processing of the plate or tube or the molding process into the irradiation container should be performed in an environment where impurities are easily mixed, or if a tool that is prone to contamination is used, the impurities will remain in the irradiation container. Will be mixed in. In addition, synthetic quartz containers are generally expensive, and are difficult to use in INAA, in which the irradiation container is discarded after neutron irradiation. Again, as far as the cost permits, it is better to use one derived from synthetic quartz powder, but it is only necessary to use natural products and synthetic products depending on the concentration to be analyzed. In this case, what should be considered as impurities are a metal element, boron and phosphorus.

【0020】容器としてはこれらの他、放射線耐性のあ
るポリイミドがあるが、分析試料の石英粉に対する削れ
による分析誤差、酸洗等で表面に付着した金属が低減で
きる程度等の点から、中性子照射容器には堅くかつ高純
度なものが入手できるセラミックス系の石英が良い。容
器に用いる石英の天然品と合成品との選択基準は分析目
的濃度により適宜選択すれば良いが、大まかには分析目
的濃度が(1)数10ppb以上の場合は天然石英品、
(2)数10ppb以下の場合は合成石英品もしくは天
然石英品で高純度なもの、(3)サブppb以下の場合
は合成石英品、を使用するのが望ましい。しかし、天然
石英粉に多く(ppm以上)存在する元素(Al,T
i,Fe,Ca等)以外を分析したい場合には使用する
石英容器表面をフッ酸によるエッチング洗浄を行えば大
体の天然石英製の容器でも数10ppb以下の高感度分
析への適用が可能であると考えられる。
In addition to these, radiation-resistant polyimide is used as a container. However, neutron irradiation is performed in consideration of an analysis error due to shaving of an analysis sample against quartz powder, and a degree that metal adhered to the surface by pickling or the like can be reduced. For the container, ceramic-based quartz from which hard and high-purity materials can be obtained is preferred. The selection criterion for the natural product and the synthetic product of the quartz used for the container may be appropriately selected according to the analysis target concentration, but generally, when the analysis target concentration is (1) several tens ppb or more, natural quartz product,
(2) It is desirable to use a synthetic quartz product or a natural quartz product of high purity in the case of a few ppb or less, and (3) a synthetic quartz product in the case of a sub-ppb or less. However, elements (Al, T
If it is desired to analyze other than i, Fe, Ca, etc.), the surface of the quartz container to be used can be applied to high sensitivity analysis of several tens ppb or less even if the surface of the quartz container used is etched and cleaned with hydrofluoric acid. it is conceivable that.

【0021】(中性子照射容器の洗浄)以上説明した石
英製中性子照射容器をフッ酸で洗浄する。洗浄は、クリ
ーンルームに設置されたクリーンベンチ内で50%フッ
酸に30分程浸漬し表面をエッチング洗浄するのが良
い。フッ酸濃度は1重量%以上の濃度が使用される。洗
浄に用いるのはフッ酸硝酸の混酸などのフッ酸を含む混
酸でも良い。浸漬に用いる容器はテフロン(商標)樹脂
(フッ素樹脂)、特にPFA(ポリフロラルアルキル樹
脂)のものを使用するのが良いがこれに限定されない。
この容器をあらかじめ硝酸に浸せき洗浄しておいたもの
を、直前に取り出し純水で洗浄後使用すれば良い。また
浸漬後はフッ酸をデカンテーション分離後純水で洗浄
し、先程のテフロン容器と同様の洗浄を施したPFA容
器内に入れホットプレート上で乾燥すれば良い。ハンド
リングは洗浄したテフロンピンセットのみを使用するの
が良い。この時使用するフッ酸は半導体産業等で通常使
用される不純物濃度が1ppb以下の半導体グレードの
ものを使用するのが好適である。
(Cleaning of Neutron Irradiation Vessel) The neutron irradiation vessel made of quartz described above is washed with hydrofluoric acid. The cleaning is preferably performed by immersing the substrate in a 50% hydrofluoric acid for about 30 minutes in a clean bench installed in a clean room to clean the surface by etching. The concentration of hydrofluoric acid is 1% by weight or more. A mixed acid containing hydrofluoric acid such as a mixed acid of hydrofluoric acid and nitric acid may be used for cleaning. The container used for immersion is preferably Teflon (trademark) resin (fluororesin), particularly PFA (polyfloral alkyl resin), but is not limited thereto.
What has been washed by immersing this container in nitric acid in advance, may be taken out immediately before washing with pure water and then used. After the immersion, the hydrofluoric acid may be separated by decantation, washed with pure water, placed in a PFA container that has been washed in the same manner as the Teflon container, and dried on a hot plate. It is better to use only cleaned Teflon tweezers for handling. As the hydrofluoric acid used at this time, it is preferable to use a semiconductor grade having an impurity concentration of 1 ppb or less, which is generally used in the semiconductor industry and the like.

【0022】エッチング時間はあらかじめ実測にて算出
した値等から決めれば良い。本発明者の検討により、1
0μm以上エッチングすれば加工時に汚染したと思われ
る石英表面に偏在する傾向にある不純物の濃度を下げら
れることを、エッチング時間とエッチング液濃度、エッ
チング残の石英粉重量およびその不純物濃度から明らか
にしたのでこのエッチング条件を使用すれば良い。フッ
酸中の金属元素およびホウ素、リン等の不純物の濃度は
100ppb以下のものであれば良いが、その場合純水
での後洗浄を入念に行うのが望ましい。フッ酸での洗浄
は、以上説明した方法によるエッチング洗浄の他、超音
波を使用したり、スプレー洗浄する他、フッ酸やその混
酸の蒸気雰囲気に置いても構わない。
The etching time may be determined from a value calculated in advance by actual measurement or the like. According to the study of the present inventors, 1
It has been clarified from the etching time, the concentration of the etching solution, the weight of the quartz powder remaining after etching, and the concentration of the impurities that the concentration of impurities that tend to be unevenly distributed on the quartz surface, which seems to have been contaminated during processing, can be reduced by etching at 0 μm or more. Therefore, these etching conditions may be used. The concentration of the metal element and impurities such as boron and phosphorus in the hydrofluoric acid may be 100 ppb or less. In this case, it is desirable to carefully perform post-washing with pure water. The cleaning with hydrofluoric acid may be performed by etching using the above-described method, by using an ultrasonic wave, by spray cleaning, or in a vapor atmosphere of hydrofluoric acid or a mixed acid thereof.

【0023】(中性子照射)その後中性子照射容器に試
料を秤量しフタをかぶせ、石英バーナーで溶封し試料と
しても良いし、高純度かつ中性子による劣化もしないよ
うな例えば高純度アルミ箔等で包んでも良い。その後搬
送容器にいれ原子炉内部に送り込み中性子照射する。中
性子照射は公知の方法により行えば良く、中性子照射時
間や強度は使用する原子炉や目的の分析濃度・元素に依
存し状況に応じて決めれば良い。
(Neutron Irradiation) Thereafter, the sample is weighed and covered with a neutron irradiation container, covered with a lid, and sealed with a quartz burner to obtain a sample. But it is good. After that, it is put into a transport container, sent into the reactor, and irradiated with neutrons. The neutron irradiation may be performed by a known method, and the neutron irradiation time and intensity may be determined depending on the reactor to be used, the target analysis concentration / element, and the situation.

【0024】(別容器への移し替え)上述したように石
英照射容器はそれ自身の汚染の問題から微量濃度領域に
おいては石英照射容器内部に含まれる微量不純物が分析
値に影響を与えるため、中性子照射・冷却後別容器に移
しγ線測定することが重要である。この操作を行えば、
INAA自体において中性子照射後のコンタミネーショ
ンは考慮しなくて良く、測定捜査上のメリットが大き
く、照射容器の純度や洗浄具合に影響されず微量域での
正確な測定が可能になる。ただしもし石英照射容器の内
部の器壁や表層に不純物が多ければ、たとえ上記操作を
行ったとしても反跳等で試料が汚染され微量分析域での
分析の信頼性に乏しくなる。そこで最低限の清浄さが必
要になる。そこで石英粉は天然品のなかでも高純度なも
のを使用するのが良いことは上述のとおりである。
(Transfer to another container) As described above, in the case of the quartz irradiation container, trace impurities contained in the quartz irradiation container affect the analysis value in a trace concentration region due to the problem of contamination of the quartz irradiation container itself. After irradiation and cooling, it is important to transfer to another container and measure γ-rays. If you do this,
Contamination after neutron irradiation does not need to be considered in INAA itself, which has a great merit in measurement and investigation, and enables accurate measurement in a trace amount region without being affected by the purity or cleaning condition of the irradiation container. However, if there is a large amount of impurities in the inner wall or surface layer of the quartz irradiation container, even if the above operation is performed, the sample will be contaminated by recoil and the like, and the reliability of analysis in a trace analysis area will be poor. Therefore, minimal cleanliness is required. Therefore, as described above, it is preferable to use a high purity quartz powder among natural products.

【0025】(γ線照射)ガンマ線照射は、中性子を照
射した試料を、鉛や鋼鉄で遮蔽した測定室の中に置いて
行う。この時は、中性子を照射した後なので金属の中に
置いてもコンタミは問題とはならない。外部のバックグ
ラウンドとなりうるγ線はほとんど遮蔽される。測定に
は半導体検出器(Ge単結晶)が用いられる。実際の分
析は、以下の機構により行われる。すなわち、中性子照
射により生成した放射性励起核が壊変して元の元素に戻
るときに特有の波長(エネルギー)を持つγ線を発生す
ることになる。このγ線は元素ごとに大きく異なり,半
導体検出器が各エネルギーごとに電気信号に変換し強度
を測定する。そこで通常結果の出力は横軸にエネルギ
ー、縦軸に強度を示すことになる。また実際にはγ線の
エネルギーが似通っている元素もあるので、放射性励起
核の半減期の違いを利用する等で高感度かつ正確な分析
が可能となる。
(Γ-ray irradiation) Gamma-ray irradiation is performed by placing a sample irradiated with neutrons in a measurement room shielded by lead or steel. At this time, contamination is not a problem even if it is placed in a metal because it has been irradiated with neutrons. Γ-rays that can be an external background are almost blocked. A semiconductor detector (Ge single crystal) is used for the measurement. The actual analysis is performed by the following mechanism. That is, when the radioactive excited nuclei generated by neutron irradiation decay and return to the original element, γ rays having a specific wavelength (energy) are generated. The γ-rays vary greatly from element to element, and the semiconductor detector converts the energy into an electric signal for each energy and measures the intensity. Therefore, the output of the normal result usually shows energy on the horizontal axis and intensity on the vertical axis. In addition, since some elements have similar γ-ray energies, highly sensitive and accurate analysis can be performed by utilizing the difference in half-life of radioactive excited nuclei.

【0026】以上説明した本発明により、中性子照射お
よびγ線測定に使用場合の容器由来の分析誤差要因を排
除でき、かつクリーンな環境でサンプリングを行うこと
で環境由来のコンタミネーションをも排除できる分析法
の確立ができた。
According to the present invention described above, an analysis error factor which can be eliminated from a container when used for neutron irradiation and γ-ray measurement, and which can eliminate environmental contamination by sampling in a clean environment. The law was established.

【0027】[0027]

【実施例】次に実施例を用いて、本発明をさらに具体的
に説明する。 (比較例1)クラス1000のクリーンルームに置かれ
たクリーンブース内で石英粉試料5gを洗浄されたテフ
ロン容器に秤量し、フッ酸、硝酸および微量硫酸を添加
しながらホットプレート上で加温分解後濃縮した。使用
する酸類や純水についてもきわめて不純物の少ない半導
体用や特殊グレードのものを使用した。その後希硝酸を
添加溶解し、別容器に純水でメスアップした。その後に
メスアップされた希硝酸溶液を誘導結合プラズマ質量分
析計(ICP−MS)もしくはグラファイトファーネス
原子吸光計(GFAAS)に導入し分析した。分析結果
を表1に示した。
Next, the present invention will be described more specifically with reference to examples. (Comparative Example 1) In a clean booth placed in a class 1000 clean room, 5 g of a quartz powder sample was weighed into a washed Teflon container, and after being heated and decomposed on a hot plate while adding hydrofluoric acid, nitric acid and a trace amount of sulfuric acid, Concentrated. Acids and pure water to be used were those for semiconductors with very few impurities and those of special grade. Thereafter, diluted nitric acid was added and dissolved, and the volume was increased in a separate container with pure water. After that, the diluted nitric acid solution was introduced into an inductively coupled plasma mass spectrometer (ICP-MS) or a graphite furnace atomic absorption spectrometer (GFAAS) and analyzed. The analysis results are shown in Table 1.

【0028】(比較例2)石英粉試料を3g程を秤量し
硝酸洗浄後乾燥したポリエチレン袋に入れ封をし、更に
外部をポリ袋で包み中性子を照射した。照射条件は原子
炉:立教大炉、照射孔:中央試験管、中性子束密度:
3.7×1012(n・cm-2-1)、照射時間:6時間
であり、冷却後外部のポリ袋を交換し新たにポリ袋をか
ぶせγ線を測定した。結果を表1に示した。
(Comparative Example 2) About 3 g of a quartz powder sample was weighed, washed with nitric acid, placed in a dry polyethylene bag, sealed, further wrapped in a plastic bag, and irradiated with neutrons. Irradiation conditions were as follows: reactor: Rikkyo reactor, irradiation hole: central test tube, neutron flux density:
3.7 × 10 12 (n · cm −2 s −1 ), irradiation time: 6 hours. After cooling, the external plastic bag was replaced, a new plastic bag was placed, and γ-rays were measured. The results are shown in Table 1.

【0029】(比較例3)石英粉試料を30g程を秤量
し高純度石英容器に入れ中性子を照射した。照射条件は
原子炉:ミズーリ大炉、中性子束密度:1.94×10
13(n・cm-2 -1)、照射時間:45hrであり、冷
却後そのままγ線を測定した。結果を表1に示した。
(Comparative Example 3) About 30 g of a quartz powder sample was weighed.
Then, it was placed in a high-purity quartz container and irradiated with neutrons. Irradiation conditions are
Reactor: Missouri large reactor, neutron flux density: 1.94 × 10
13(N · cm-2s -1), Irradiation time: 45 hr, cold
After rejection, the γ-ray was measured as it was. The results are shown in Table 1.

【0030】(実施例1)以下の操作は雰囲気はクラス
1000のクリーンルーム内もしくはクリーンルーム内
に設置されたクラス10のクリーンベンチ内で操作を行
った。中性子照射用の容器は口径1cm×長さ2cm×
肉厚1mmの高純度天然石英製のものを使用し、この径
に合うようなフタを用意した。これら石英製の容器及び
フタは、純水で洗浄してから硝酸に浸せき洗浄しておい
たPFA製ボトルを直前に硝酸槽より取り出し、このボ
トルに入れておいた純水で洗浄してから以下の操作に使
用した。
Example 1 The following operation was performed in a class 1000 clean room or a class 10 clean bench installed in a clean room. The container for neutron irradiation is 1cm in diameter x 2cm in length.
A lid made of high-purity natural quartz having a wall thickness of 1 mm was prepared to fit this diameter. These quartz containers and lids are washed with pure water, then immersed in nitric acid, and taken out of the PFA bottle that has been washed immediately before. Used for the operation.

【0031】この石英製の中性子照射容器及びフタをク
リーンルームに設置されたクリーンベンチ内で50%フ
ッ酸(森田化学製半導体用)に30分程浸漬し表面をエ
ッチング洗浄した。ハンドリングは洗浄したテフロンピ
ンセットを使用した。また浸漬後の中性子照射容器はフ
ッ酸をデカンテーション分離後純水で洗浄し、さきほど
のテフロン容器と同様の洗浄を施したPFA容器内に入
れホットプレート上で乾燥させた。その後、中性子照射
容器に3gを秤量した石英粉試料を入れてフタをかぶ
せ、半導体用高純度エタノールで表面のゴミを洗浄乾燥
しておいた高純度アルミ箔でフタを抑えながら包み込ん
だ。
The neutron irradiation container and the lid made of quartz were immersed in 50% hydrofluoric acid (for a semiconductor manufactured by Morita Chemical) for about 30 minutes in a clean bench installed in a clean room, and the surfaces were etched and cleaned. Handling was performed using washed Teflon tweezers. After the immersion, the neutron irradiation container was washed with pure water after decantation of hydrofluoric acid, placed in a PFA container that had been cleaned in the same manner as the Teflon container, and dried on a hot plate. Then, 3 g of the weighed quartz powder sample was put into a neutron irradiation container, covered with a lid, and wrapped while suppressing the lid with high-purity aluminum foil that had been washed and dried with high-purity ethanol for semiconductors.

【0032】その後これを搬送容器にいれ原子炉内部に
送り込み中性子照射した。照射条件は原子炉:原研炉J
RR−3M、中性子束密度:1×1014(n・cm-2
-1)、照射時間:6時間であった。その後冷却し、照射
容器から測定容器に照射した石英粉試料を取り出しγ線
を測定した。結果を表1に示した。
After that, this was put into a transport container, sent into the reactor, and irradiated with neutrons. Irradiation conditions are reactor: JAERI J
RR-3M, neutron flux density: 1 × 10 14 (n · cm −2 s
-1 ), irradiation time: 6 hours. Thereafter, the sample was cooled, the quartz powder sample irradiated to the measurement container was taken out of the irradiation container, and γ rays were measured. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】このように比較例1の値と比較して、比較
例2のように中性子照射容器として不純物濃度の高いポ
リエチレン袋を使用したり、比較例3のたとえ洗浄した
石英容器を使用しても照射後そのままγ線測定した場
合、数倍から数10倍の濃度が観測された。しかし実施
例1のようにクリーンルーム内で照射前の処理を行い、
かつフッ酸洗浄した石英容器内で中性子照射し冷却後別
容器に移しγ線測定することでほぼ比較例1と同じ値を
与えた。このように、本発明により中性子照射およびγ
線測定に使用した容器由来の分析誤差要因を排除でき、
クリーンな環境でサンプリングを行うことで環境由来の
コンタミネーションをも排除できる分析法の確立ができ
た。
As described above, in comparison with the value of Comparative Example 1, a polyethylene bag having a high impurity concentration is used as the neutron irradiation container as in Comparative Example 2, or the washed quartz container of Comparative Example 3 is used. Also, when the γ-ray was measured as it was after the irradiation, a concentration several to several tens of times was observed. However, the treatment before irradiation is performed in the clean room as in the first embodiment,
Neutron irradiation was performed in a quartz container washed with hydrofluoric acid, cooled, transferred to another container, and subjected to γ-ray measurement, thereby giving almost the same value as in Comparative Example 1. Thus, according to the present invention, neutron irradiation and γ
The analysis error factor derived from the container used for X-ray measurement can be eliminated,
By performing sampling in a clean environment, we have established an analytical method that can eliminate environmental contamination.

【0035】[0035]

【発明の効果】本発明により、高純度の石英中の不純物
の測定において微量域の不純物濃度を難分解物まで含め
て正確に分析することが可能な分析方法を確立できた。
According to the present invention, an analytical method capable of accurately analyzing the impurity concentration in a trace amount range, even for hardly decomposable substances, in the measurement of impurities in high-purity quartz has been established.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料を中性子照射容器へ封入し中性子を
照射し冷却した後γ線測定を行う機器中性子放射化分析
により石英中の不純物を測定するに際し、中性子照射容
器としてフッ酸によりエッチングした石英製の容器を用
い、且つ試料を中性子照射容器から別容器に移し替えた
後にγ線測定を行うことを特徴とする石英中の不純物の
測定方法。
1. A sample which is sealed in a neutron irradiation container, irradiated with neutrons, cooled and then subjected to gamma ray measurement. When measuring impurities in quartz by neutron activation analysis, quartz which is etched with hydrofluoric acid as a neutron irradiation container A method for measuring impurities in quartz, wherein a gamma ray measurement is performed after a sample is transferred from a neutron irradiation container to another container using a container made of neutrons.
【請求項2】 石英がゾルゲル法により得られた合成石
英粉である請求項1記載の石英中の不純物の測定方法。
2. The method for measuring impurities in quartz according to claim 1, wherein the quartz is a synthetic quartz powder obtained by a sol-gel method.
JP1672699A 1999-01-26 1999-01-26 Method for measuring impurity in quartz Pending JP2000214105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1672699A JP2000214105A (en) 1999-01-26 1999-01-26 Method for measuring impurity in quartz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1672699A JP2000214105A (en) 1999-01-26 1999-01-26 Method for measuring impurity in quartz

Publications (1)

Publication Number Publication Date
JP2000214105A true JP2000214105A (en) 2000-08-04

Family

ID=11924278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1672699A Pending JP2000214105A (en) 1999-01-26 1999-01-26 Method for measuring impurity in quartz

Country Status (1)

Country Link
JP (1) JP2000214105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415148B1 (en) * 2001-02-22 2004-01-13 한현화 Plastic cutting tool for preventing metal contamination and selecting method of material for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415148B1 (en) * 2001-02-22 2004-01-13 한현화 Plastic cutting tool for preventing metal contamination and selecting method of material for making the same

Similar Documents

Publication Publication Date Title
Schmidt et al. A neutron activation analysis study of the sources of transition group metal contamination in the silicon device manufacturing process
Neumann et al. Ultra-trace analysis of metallic contaminations on silicon wafer surfaces by vapour phase decomposition/total reflection X-ray fluorescence (VPD/TXRF)
JP2013543588A (en) Detection method using an electrochemically assisted alpha detector for nuclear measurements in liquid media
JP3249557B2 (en) Granular silicon impurity concentration measurement method and single crystal silicon production method
EP0137409A2 (en) Resolution device for semiconductor thin films
JP2978192B2 (en) Semiconductor wafer sample preparation method
Tran et al. Optimization of actinides trace precipitation on diamond/Si PIN sensor for alpha-spectrometry in aqueous solution
Jantzen et al. Nuclear waste glass product consistency test (PCT), Version 5. 0
JP2018021852A (en) Method for measuring concentration of metal impurity in polycrystalline silicon
JP2000214105A (en) Method for measuring impurity in quartz
Eichinger et al. Application of total reflection X-ray fluorescence analysis for metallic trace impurities on silicon wafer surfaces
Fabry et al. Novel methods of TXRF analysis for silicon wafer surface inspection
Streckfuß et al. Analysis of trace metals on silicon surfaces
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
Verheijke et al. Neutron activation analysis of very pure silicon wafers
US6995091B2 (en) Process for chemically mechanically polishing wafers
JP3804864B2 (en) Impurity analysis method
Wronkiewicz et al. Effects of alpha and gamma radiation on glass reaction in an unsaturated environment
JP2006003120A (en) Total reflection fluorescent x-ray analyzing method
Phelan et al. Combined reagent purification and sample dissolution (CORPAD) applied to the trace analysis of silicon, silica and quartz
JPH07288272A (en) Method for analyzing semiconductor wafer surface
Swanson et al. Measurement of ultra-trace level metallic impurities in silicon wafers utilizing neutron activation analysis
Mer et al. Diamond detectors for alpha monitoring in corrosive media for nuclear waste activity monitoring
Talbert Jr et al. Thermal-neutron fission cross section of 26.1-min 235 U m
Van Dalsem Wafer and bulk high-purity silicon trace element analysis at the Texas A&M University Nuclear Science Center