KR100412018B1 - Intake line structure of internal combustion engine equipped with egr apparatus - Google Patents

Intake line structure of internal combustion engine equipped with egr apparatus Download PDF

Info

Publication number
KR100412018B1
KR100412018B1 KR10-2001-0020154A KR20010020154A KR100412018B1 KR 100412018 B1 KR100412018 B1 KR 100412018B1 KR 20010020154 A KR20010020154 A KR 20010020154A KR 100412018 B1 KR100412018 B1 KR 100412018B1
Authority
KR
South Korea
Prior art keywords
intake
egr
cylinder
cylinders
internal combustion
Prior art date
Application number
KR10-2001-0020154A
Other languages
Korean (ko)
Other versions
KR20010098630A (en
Inventor
타나카타몬
니시하라세쯔오
무시가미히로시
Original Assignee
미쯔비시 지도샤 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쯔비시 지도샤 고교 가부시끼가이샤 filed Critical 미쯔비시 지도샤 고교 가부시끼가이샤
Publication of KR20010098630A publication Critical patent/KR20010098630A/en
Application granted granted Critical
Publication of KR100412018B1 publication Critical patent/KR100412018B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10118Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements with variable cross-sections of intake ducts along their length; Venturis; Diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line

Abstract

EGR장치 부착 내연기관의 흡기계구조에 관한것으로서, 행정마다의 기통내의 EGR률을 원활하게 변화시키는 것을 가능하게 하기위해, 배기로로부터의 배기의 도입구멍(23)을 흡기로(9)가 각 기통(3A∼3D)마다에 분기하는 분기부(13)의 상류쪽에 형성하는 동시에, 도입구멍(23)으로부터 각 기통(3A∼3D)의 흡기구멍(4A∼4D)에 이르는 유로를 각 기통마다에 독립해서 형성하고, 그 유로의 유로길이를 적어도 2개의 기통에 있어서 부등길이로 하고, 또한 유로용적을 모든 기통(3A∼3D)간에서 등용적 또는 대략 등용적이 되도록 흡기로(9)를 형성한다.The intake system of an internal combustion engine with an EGR device is provided. In order to enable the smooth change of the EGR rate in the cylinder for each stroke, the intake openings 23 of the exhaust from the exhaust passages are formed in each of the intake paths. A flow path is formed at an upstream side of the branch portion 13 branching to each of the cylinders 3A to 3D, and flows from the introduction hole 23 to the intake holes 4A to 4D of the respective cylinders 3A to 3D for each cylinder. The inlet path 9 is formed so that the flow path length of the flow path is inequality in at least two cylinders, and the flow volume is equal or approximately equal between all the cylinders 3A to 3D. do.

Description

이지알장치부착 내연기관의 흡기계구조{INTAKE LINE STRUCTURE OF INTERNAL COMBUSTION ENGINE EQUIPPED WITH EGR APPARATUS}Intake system structure of internal combustion engine with EG device {INTAKE LINE STRUCTURE OF INTERNAL COMBUSTION ENGINE EQUIPPED WITH EGR APPARATUS}

본 발명은, EGR장치부착 내연기관의 흡기계 구조에 관한 것이다.The present invention relates to an intake structure of an internal combustion engine with an EGR device.

배기의 일부를 배기로부터 흡기로에 재순환시키는 배기재순환장치(EGR장치)가 알려지고 있다. EGR장치를 내연기관(엔진"engine")에 구비함으로써, 연소실내의 연소온도를 저하시켜, 질소산화물(NOX)의 생성을 저감시키는 것이 가능하게 된다. 그러나, 배기가스의 재순환량이 너무 많으면 연소를 위한 공기량이 불충분하게 되어, 디젤엔진 "diesel engine"에서는 흑연이 발생하고, 가솔린엔진 "gasoline engine"에서는 미연소가스가 발생하여 버린다.BACKGROUND ART An exhaust recirculation device (EGR device) for recirculating a part of the exhaust gas from the exhaust to the intake air is known. By providing the EGR apparatus in the internal combustion engine (engine "engine"), it is possible to lower the combustion temperature in the combustion chamber and reduce the production of nitrogen oxides (NOX). However, if the amount of recycled exhaust gas is too large, the amount of air for combustion is insufficient, and graphite is generated in a diesel engine "diesel", and unburned gas is generated in a gasoline engine "gasoline engine".

이 때문에, 예를들면 디젤엔진"diesel engine"의 경우, 가속시에는, 가속을 위한 연료량에 따라서 EGR밸브를 폐쇄조작하여, 혼합기에 있어서의 배기의 비율(EGR률)을 감소시키고, 반대로 흡기의 비율을 증대시켜서 흑연의 방지를 도모하도록 하고 있다.For this reason, for example, in the case of a diesel engine "diesel engine", during the acceleration, the EGR valve is closed in accordance with the amount of fuel for acceleration, thereby reducing the exhaust rate (EGR rate) in the mixer, and conversely, The ratio is increased to prevent graphite.

그러나, EGR밸브를 조작하고 나서부터 실제로 각 기통내의 EGR률이 저하할 때까지에는 적지않은 시간지연이 존재한다. 이 시간지연은, EGR밸브에 제어신호를 출력하고나서부터 EGR밸브가 작동할때까지의 응답지연이나, 공기(흡기와 배기와의 혼합기)가 EGR밸브의 설치위치로부터 각 기통내에 도달할 때까지의 시간지연에 의한 것이지만, 이와같이 EGR률의 저하가 지연되면, 분사한 연료량에 대해서 연소를 위한 공기량이 불충분하게 되어서 흑연이 발생하여 버린다.However, there is a considerable time delay from the operation of the EGR valve until the EGR rate in each cylinder actually decreases. This time delay is until the response delay from the output of the control signal to the EGR valve until the EGR valve is operated, or until the air (mixer of intake and exhaust) reaches the respective cylinders from the installation position of the EGR valve. Although the delay of the EGR rate is delayed in this manner, the amount of air for combustion is insufficient with respect to the injected fuel amount, and graphite is generated.

그래서, 기통내에 흡입된 혼합기의 EGR률을 산출하고, 산출한 EGR률에 따라서 분사하는 연료량을 제한하는 기술이 제안되고 있다.Therefore, a technique for calculating the EGR rate of the mixer sucked into the cylinder and limiting the amount of fuel to be injected in accordance with the calculated EGR rate has been proposed.

그런데, 도 5에 표시한 바와같이, 일반적인 디젤엔진"diesel engine"(여기서는, 직렬4기통엔진"engine")의 흡기로(30)는, 도시생략한 에어클리너"air cleaner"에 연통하여 스로틀"throttle"밸브(40)가 배설된 흡기관(32)과,실린더헤드However, as shown in FIG. 5, the intake air 30 of the general diesel engine "diesel engine" (here, the in-line four-cylinder engine "engine") communicates with the air cleaner "air cleaner" not shown in the drawing and throttles ". throttle " intake pipe 32 "

"cylender head"(34)에 형성되어 기통(39A∼39D)의 흡기구멍(38A∼38D)에 연통하는 흡기포트 "port"(37A∼37D)와, 흡기관(32)과 흡기포트"port"(37A∼37D)를 연결하는 흡기매니폴드"manifold"(33)에 의해 형성되어 있다. 흡기매니폴드"manifold"(33)는 통형상의 서지탱크"surge tank"(35)와, 서지탱크"surge tank"(35)로부터 분기해서 각 흡기포트"port"(37A∼37D)에 접속되는 분기관(36A∼36D)으로 형성되어 있다.an intake port "port" (37A to 37D) formed in the "cylender head" 34 and communicating with the intake holes 38A to 38D of the cylinders 39A to 39D, the intake pipe 32 and the intake port "port" It is formed by the intake manifold "manifold" 33 which connects 37A-37D. The intake manifold " manifold " 33 is branched from the cylindrical surge tank " surge tank " 35 and connected to the respective intake ports " ports " 37A-37D. It is formed of branch pipes 36A-36D.

그리고, 도시생략한 배기로로부터 상기의 흡기로(30)에 배기를 재순환시키기위해 EGR장치(42)가 구비되어 있다. EGR장치(42)는 도시생략한 배기로와 흡기로 (30)를 연통시키는 EGR관(44)과, EGR관(44)내에 배설되어 배기의 재순환량을 제어하는 EGR밸브(41)로 구성되고, EGR관(42)은, 흡기관(32)의 스로틀"throttle"밸브(40)의 배설부분의 하류쪽에 형성된 EGR도입구멍(43)에 접속되어 있다.In addition, an EGR device 42 is provided to recycle the exhaust gas from the exhaust passage not shown in the drawing to the intake passage 30. The EGR device 42 is composed of an EGR pipe 44 for communicating the exhaust path and intake air 30, not shown, and an EGR valve 41 disposed in the EGR pipe 44 to control the amount of recirculation of the exhaust gas. The EGR pipe 42 is connected to an EGR guide hole 43 formed downstream of the excretion portion of the throttle "throttle" valve 40 of the intake pipe 32.

상기의 구성에 의해, 도시 생략한 에어클리너"air cleaner"를 경유해서 흡기관(32)내에 흡입된 공기(흡기)는, EGR도입구멍(43)의 배설부에서 배기와 혼합되어서 혼합기로 된 후, 흡기관(32)으로부터 서지탱크"surge tank"(35)에 유입하고, 분기관(36A∼36D)으로부터 흡기포트"PORT"(37A∼37D)를 경유해서 각기통(39A∼39D)내에 흡입하게 된다. 따라서, EGR률을 변화시키기위해 EGR밸브 (41)를 조작한 경우, EGR도입구멍(43)으로 부터 흡기구멍(38A∼38D)에 이르는 유로용적분 만큼, 각 기통(39A∼39D)내의 EGR률의 변화는 지연되게 된다.According to the above configuration, the air (intake) sucked into the intake pipe 32 via the air cleaner "air cleaner" (not shown) is mixed with the exhaust in the excretion portion of the EGR introducing hole 43 to become a mixer. Flows into the surge tank " surge tank " 35 from the intake pipe 32, and is sucked into each of the cylinders 39A to 39D via the intake ports " PORT " 37A to 37D from the branch pipes 36A to 36D. Done. Therefore, when the EGR valve 41 is operated to change the EGR rate, the EGR rate in each of the cylinders 39A to 39D is equal to the flow volume of the passage from the EGR introducing hole 43 to the intake holes 38A to 38D. Change will be delayed.

이때, 혼합기는 제 1기통(39A)에는 유로(45A)를 경유하고, 제 2기통(39B)에는 유로(45B)를 경유하고, 제 3기통(39C)에는 유로(45C)를 경유하고, 그리고 제 4기통(39D)에는 유로(45D)를 경유해서 유입하나, 이들의 유로(45A∼45D)의 길이는 동일하지 않고, 또 유로용적도 동일하지 않다. 도 5에 표시한 경우에는, 유로(45A),(45D)에 비교해서 유로(45B),(45C)의 유로용적은 작다.At this time, the mixer passes through the passage 45A to the first cylinder 39A, passes through the passage 45B to the second cylinder 39B, passes through the passage 45C to the third cylinder 39C, and The fourth cylinder 39D flows in through the flow passage 45D, but the lengths of the flow passages 45A to 45D are not the same, and the flow volume is not the same. 5, the flow volume of the flow paths 45B and 45C is smaller than the flow paths 45A and 45D.

여기서, 도 6(a)∼도 6(h)는, 도 5에 있어서의 흡기관(32)으로부터 각 기통 (39A∼39D)에 이르기까지의 흡기로(30)내의 EGR률의 변화를 모식적으로 표시한 것이다. 도 6(a)∼도 6(h)는, 차례로 제 1∼제 8 행정을 표시하고 있으며, 우선 제 1행정에서 제 1기통(39A)에 흡기되고, 이어서 제 3기통(39C), 제 4기통(39D), 제 2기통(39B)의 차례로 흡기되는 것으로 하고 있다. 여기서는, 제 1행정에서 전체의 유량에 대한 배기의 유량비가 50%로 되도록 EGR밸브(41)를 조작하고, 제 2행정에서 또 배기의 유량비가 25%로 되도록 EGR밸브(41)를 조작하여, 제 3행정 이후에는 완전히 EGR밸브(41)를 폐쇄한 경우를 표시하고 있다. 또한, 도 6(a)∼도 6(h)의 흡기로(30)중에 있어서 흑색부분은 배기, 즉 EGR률 100%를 표시하고 있으며, 반대로 백색부분은 흡기, 즉 EGR률 0%를 표시하고 있다. 또, 진한 회색부분은 EGR률 50%의 혼합기를 표시하고 있으며, 연한 회색부분은 EGR률 25%의 혼합기를 표시하고 있다.6 (a) to 6 (h) schematically show changes in the EGR rate in the intake passage 30 from the intake pipe 32 to each of the cylinders 39A to 39D in FIG. It is indicated by. 6 (a) to 6 (h) sequentially show the first to eighth strokes, firstly intake into the first cylinder 39A in the first stroke, and then the third cylinder 39C and the fourth stroke. It is assumed that the cylinder 39D and the second cylinder 39B are sequentially inhaled. Here, the EGR valve 41 is operated so that the flow rate ratio of the exhaust to the total flow rate is 50% in the first stroke, and the EGR valve 41 is operated so that the flow rate ratio of the exhaust is 25% in the second stroke, After the third stroke, the case where the EGR valve 41 is completely closed is indicated. In addition, in the intake air 30 of FIGS. 6 (a) to 6 (h), the black portion represents the exhaust, that is, the EGR rate is 100%, whereas the white portion represents the intake, that is, the EGR rate is 0%. have. In addition, the dark gray portion represents a mixer having an EGR rate of 50%, and the light gray portion represents a mixer having an EGR rate of 25%.

도 6(a)∼도 6(n)에 표시한 바와같이, 유로용적이 작은 제 2기통(39B), 제 3기통(39C)에서는, EGR밸브(41)의 폐쇄조작에 따라서 기통내의 EGR률은 빨리 저하한다. 그러나, 유로용적이 큰 제 1기통(39A), 제 4기통(39D)에서는, 유로내에 괴어있는 분량만큼 시간지연이 발생하여, 기통내의 EGR률의 저하는 느리게 된다. 이 때문에, 엔진"engine" 전체에서 본 경우의 EGR률의 변화는 원활한 변화로는 되지않고, 도 7에 표시한 바와같이 제 4행정에서 일단 저하한 후에 제 5행정에서 재차 상승하고, 또, 제 6행정에서 저하한 후에 제 7행정에서 재차 상승하는 어색한 변화로 되어버린다.As shown in Figs. 6 (a) to 6 (n), in the second cylinder 39B and the third cylinder 39C having a small flow volume, the EGR rate in the cylinder is controlled by the closing operation of the EGR valve 41. Falls quickly. However, in the first cylinder 39A and the fourth cylinder 39D having a large flow volume, time delay occurs as much as the amount coagulated in the flow path, and the decrease in the EGR rate in the cylinder is slowed down. For this reason, the change of the EGR rate in the case of the whole engine "engine" does not become a smooth change, As shown in FIG. 7, after falling once in the 4th stroke, it rises again in the 5th stroke, After falling from the 6th stroke, it becomes an awkward change rising again from the 7th stroke.

그리고, EGR률이 행정마다 변동한 경우에, 상기와 같이 기통내의 EGR률에 따라서 분사하는 연료량을 제한하면, 흑연의 배출은 억제할 수 있으나 연료분사량도 변동하여 버려 원활한 가속을 얻을 수 없게 되어버린다. 한편, 원활한 가속을 얻을 수 있도록 연료분사량을 제어하는 경우에는, EGR률이 상승하는 제 5, 제 7행정에서는 공기부족이 되어서 흑연이 발생하여 버린다.In the case where the EGR rate varies from stroke to stroke, if the amount of fuel to be injected is limited in accordance with the EGR rate in the cylinder as described above, the emission of graphite can be suppressed, but the fuel injection amount also changes, and smooth acceleration cannot be obtained. . On the other hand, in the case of controlling the fuel injection amount so that smooth acceleration can be obtained, graphite is generated in the fifth and seventh strokes in which the EGR ratio rises due to lack of air.

이와같이, 종래의 엔진"engine"의 흡기계구조에서는, 기통내에 흡입된 혼합기의 EGR률을 산출하여 EGR률에 따라서 분사하는 연료량을 제한할려고 해도, EGR률이 원활하게 변화하지 않기 때문에 원활한 가속을 얻을 수 없다고 하는 과제가 있었다. 또, 흑연을 발생시키는 일 없이 원활한 가속을 얻을려고 하면, EGR률이 상승하는 행정(도 7에 표시한 경우에는 제 5, 제 7행정)의 EGR률에 맞추어서 연료분사량을 증가시켜가지 않으면 안되고, 연료의 증량이 지연되어서 신속한 가속을 얻을 수 없다고 하는 과제가 있었다. 그리고, 이 과제는 도 5에 예시한 바와같은 구성의 흡기계구조 뿐만아니라, 서지탱크"surge tank"내에 직접 배기를 도입하는 형식의 것도 포함해서 각 기통에 이르는 유로용적이 각 기통간에서 상이 되는 구조일반적으로 공통되는 과제이다.As described above, in the intake system of the conventional engine "engine", even if the EGR rate of the mixer sucked in the cylinder is calculated and the amount of fuel injected is limited according to the EGR rate, the EGR rate does not change smoothly, so smooth acceleration is obtained. There was problem that we could not. In addition, if smooth acceleration is to be obtained without generating graphite, the fuel injection amount must be increased in accordance with the EGR rate of the stroke (the fifth and seventh strokes in the case shown in Fig. 7) where the EGR rate rises. There has been a problem that the acceleration of the fuel is delayed and rapid acceleration cannot be obtained. This problem includes not only the intake system structure of the configuration as illustrated in FIG. 5, but also the type of introducing the exhaust directly into the surge tank "surge tank" so that the flow volume of each cylinder differs between the cylinders. Structure It is a common problem in general.

또한, 상기 과제의 해결수단의 일예로서 일본국 실공평 3-29572호 공보에는, EGR관을 각 포트"port"에 접속한 기술이 개시되어 있다. 그러나, 이 기술에서는 EGR밸브로부터 EGR도입구멍까지의 거리가 길게 되어, 그 분량 만큼 EGR률의 변화에 시간지연이 발생하거나 EGR손실이 크게 되어버리는 새로운 과제가 있다. 또, 구조가 복잡하기 때문에 생산코스트가 상승하여 버린다고 하는 과제도 있다. 따라서, 상기와 같은 새로운 과제가 발생하는 일 없이, 행정마다의 기통내의 EGR률을 원활하게 변화시키는 것을 가능하게 하고자 한다.In addition, Japanese Unexamined Patent Application Publication No. 3-29572 discloses a technique of connecting an EGR pipe to each port " port " However, this technique has a new problem in that the distance from the EGR valve to the EGR introduction hole becomes long, and a time delay occurs in the change of the EGR rate by that amount, or the EGR loss becomes large. In addition, there is a problem that the production cost rises because of a complicated structure. Therefore, it is aimed at making it possible to smoothly change the EGR rate in the cylinder for every stroke, without generating the above-mentioned new subject.

본 발명은, 상기의 과제에 비추어 창안된 것으로서, 행정마다의 기통내의 EGR률을 원활하게 변화시키는 것을 가능하게한, EGR장치부착 내연기관의 흡기계구조를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an intake system structure of an internal combustion engine with an EGR device, which makes it possible to smoothly change the EGR rate in a cylinder for each stroke.

도 1은, 본 발명의 일실시예로서의 EGR장치부착 내연기관의 흡기계구조를 표시한 모식도.1 is a schematic diagram showing an intake system structure of an internal combustion engine with an EGR device according to an embodiment of the present invention.

도 2는, 본 발명의 일실시예에 관한 EGR관과 흡기관과의 접합부의 구성을 표시한 단면도.2 is a cross-sectional view showing the configuration of a junction portion between an EGR pipe and an intake pipe according to an embodiment of the present invention.

도 3은, 가속시에 있어서의 행정마다의 흡기로내의 EGR률 분포의 변화를 표시한 도면이고, (a)∼(h)의 차례로 행정마다의 변화를 표시한 도면.Fig. 3 is a diagram showing a change in the EGR rate distribution in the intake air for each stroke at the time of acceleration, and shows a change for each stroke in the order of (a) to (h).

도 4는, 기통내의 EGR률의 행정마다의 변화와 대응하는 연료분사량의 행정마다의 변화를 표시한 도면.Fig. 4 is a diagram showing a change in each stroke of the fuel injection amount corresponding to a change in each stroke of the EGR rate in the cylinder.

도 5는, 종래의 EGR장치부착 내연기관의 흡기계 구조를 표시한 모식도.5 is a schematic diagram showing an intake system structure of a conventional internal combustion engine with an EGR device.

도 6은, 종래의 가속시에 있어서의 행정마다의 흡기로내의 EGR률 분포의 변화를 표시한 도면이고, (a)∼(h)의 차례로 행정마다의 변화를 표시한 도면.FIG. 6 is a diagram showing a change in the EGR rate distribution in the intake air for each stroke at the time of the conventional acceleration, and a diagram showing the change for each stroke in the order of (a) to (h). FIG.

도 7은, 종래의 기통내의 EGR률의 행정마다의 변화와 대응하는 연료분사량의 행정마다의 변화를 표시한 도면.Fig. 7 is a diagram showing a change in each stroke of a fuel injection amount corresponding to a change in each stroke of an EGR rate in a conventional cylinder.

이 때문에, 본 발명의 EGR장치부착 내연기관의 흡기계 구조에서는, 배기로로부터의 배기가스의 도입구멍을 흡기로가 각 기통마다 분기하는 분기부의 상류쪽에 형성하는 동시에, 상기 도입구멍으로부터 각 기통의 흡기구멍에 이르는 유로를 각 기통마다에 독립해서 형성하고, 그 유로의 유로길이를 적어도 2개의 기통에 있어서 부등길이로하고, 또한 그 유로용적을 각 기통간에서 등용적 또는 대략 등용적이 되도록 흡기로를 형성하고 있다.For this reason, in the intake system structure of the internal combustion engine with EGR apparatus of this invention, the introduction hole of the exhaust gas from an exhaust path is formed in the upstream of the branch part which the intake path branches for every cylinder, A flow path leading to the intake hole is formed independently for each cylinder, the flow path length of the flow path is made into an unequal length in at least two cylinders, and the flow path volume is made equal or approximately equal in volume between the cylinders. To form.

이에의해 도입구멍 근처의 공기(흡기배기와의 혼합기)가 각 기통내에 흡입될 때까지의 시간은 각 기통간에서 대략 동일하게 되고, EGR장치의 밸브가 폐쇄조작된경우의 각 기통내의 혼합기중의 배기의 비율(EGR률)은, 행정마다에 원활하게 변화하게 된다.As a result, the time until the air (mixer with the intake exhaust) near the inlet hole is sucked into each cylinder is approximately the same between the cylinders, and in the mixer in each cylinder when the valve of the EGR device is closed. The rate of exhaust (EGR rate) changes smoothly every stroke.

또한 바람직하기는, 상기 도입구멍을 흡기로의 주위에 복수형성 하도록 한다. 이에의해, 배기와 흡기와는 불균일 없이 확실히 혼합되게 된다.Also preferably, a plurality of the introduction holes are formed around the intake passage. As a result, the exhaust gas and the intake air are surely mixed without any non-uniformity.

또, 도입구멍으로부터 각 기통의 흡기구멍에 이르는 유로용적은 작을수록 바람직하다. 이에의해, 도입구멍 근처의 공기가 각 기통내에 흡입될 때까지의 시간지연은 저감되고, EGR장치의 밸브의 폐쇄조작에 대해서 각 기통내의 EGR률도 신속히 변화하게 된다.Further, the smaller the flow volume of the passage from the introduction hole to the intake hole of each cylinder, the more preferable. As a result, the time delay until the air near the inlet hole is sucked into each cylinder is reduced, and the EGR rate in each cylinder also changes rapidly with respect to the closing operation of the valve of the EGR device.

(발명의 실시형태)Embodiment of the Invention

이하, 도면에 의해, 본 발명의 실시예에 대해서 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described with reference to drawings.

실시예Example

도 1∼도 4는 본 발명의 일실시예로서의 EGR장치부착 내연기관의 흡기계구조를 표시한 것이다. 우선, 도 1, 도 2에 의거해서 본 실시예에 관한 내연기관의 흡기계구조의 구성에 대해서 설명한다. 또한, 본 실시예에 관한 내연기관은, 직렬4기통의 직분식의 디젤엔진"diesel engine"으로서 구성되어 있는 것으로 한다.1 to 4 show the intake system structure of an internal combustion engine with an EGR device according to one embodiment of the present invention. First, the structure of the intake system structure of the internal combustion engine which concerns on a present Example based on FIG. 1, FIG. 2 is demonstrated. In addition, the internal combustion engine which concerns on a present Example shall be comprised as a diesel engine "diesel engine" of a four-cylinder series diesel engine.

도 1에 표시한 바와같이, 엔진"engine"(내연기관)(1)에는, 4개의 기통(3A∼3D)이 직렬로 배설되어 있다. 본 실시예에 관한 엔진"engine"(1)은, 직렬4기통의 직분식의 디젤엔진"diesel engine"으로서 구성되어 있으며, 각 기통(3A∼3D)의 정상부에는 기통(3A∼3D)내에 연료를 직접 분사하기 위한 도시 생략한 인젝터"injector"가 배설되어 있다.As shown in FIG. 1, four cylinders 3A-3D are arranged in series in the engine "engine" (internal combustion engine) 1. The engine "engine" 1 according to the present embodiment is configured as a diesel engine "diesel engine" of a four-cylinder series engine, and the fuel in the cylinders 3A to 3D is provided at the top of each cylinder 3A to 3D. An injector " injector " not shown for directly injecting is provided.

그리고, 각 기통 3A∼3D의 정상부 근처에는 흡기구멍(4A∼4D)이 형성되어있고, 엔진"engine"(1)의 실린더헤드"cylinder head"(2)에는 흡기구멍(4A∼4D)에 연통하는 흡기포트 "port"(5A∼5D)가 뚫어설치되어 있다. 또한, 각 기통(3A∼3D)의 정상부근처에는 흡기구멍(4A∼4D)과 함께 배기구멍도 형성되고, 실린더헤드"cylinder head"(2)에는 배기구멍에 연통하는 배기포트"port"도 뚫어설치되어 있으나, 이들에 대해서는 도시를 생략하고 있다.Intake holes 4A to 4D are formed near the tops of the cylinders 3A to 3D, and cylinder cylinders "cylinder head" 2 of the engine "engine" 1 communicate with the intake holes 4A to 4D. Intake ports " ports " (5A to 5D) are provided. In addition, near the top of each of the cylinders 3A to 3D, exhaust holes are formed along with the intake holes 4A to 4D, and the cylinder head " cylinder head " 2 also drills an exhaust port " port " Although installed, the illustration is omitted.

흡기포트"port"(5A∼5D)에는, 흡기 매니폴드"manifold"(10)가 접속되어 있다. 흡기배기폴드"manifold" (10)는, 일단부를 상류쪽의 흡기관(6)에 접속되는 집합관(11)과, 집합관(11)의 타단부(분기부)(13)에서 분기해서 각 흡기포트"port" (5A∼5D)에 접속되는 분기관(12A∼12D)으로 구성되어 있다. 각 분기관(12A∼12D)은 길이는 동일하지 않으나 내부용적은 동일하게 되도록 형성되어 있다. 또한, 흡기관(6)은 상류쪽에 설치되어 있는 도시생략한 에어클리너"air cleaner"에 연통하고 있으며, 내부에는 공기유량을 조정하기 위한 스로틀"throttle"밸브(7)가 배설되어 있다. 그리고, 상기의 흡기관(6), 흡기매니폴드"manifold"(10), 흡기포트"port"(5A∼5D)에 의해 각 기통(3A∼3D)내에 공기를 도입하기 위한 흡기로 (9)가 형성되어 있다.An intake manifold "manifold" 10 is connected to the intake port "port" (5A to 5D). The intake exhaust fold " manifold " 10 is branched from the collecting pipe 11 to which one end is connected to the intake pipe 6 on the upstream side and from the other end (branch) 13 of the collecting pipe 11 to each intake port. It consists of the branch pipes 12A-12D connected to "port" (5A-5D). Each branch pipe 12A-12D is formed so that the length may not be the same but internal volume may be the same. In addition, the intake pipe 6 communicates with an air cleaner " air cleaner " shown in the upstream side, and a throttle " throttle " valve 7 for adjusting the air flow rate is disposed therein. Then, the intake pipe 6, the intake manifold " manifold " 10, and the intake ports " port " 5A to 5D allow air to be introduced into the respective cylinders 3A to 3D. Is formed.

또, 본 엔진"engine"(1)에는, 도시생략한 배기로로부터 상기의 흡기로 (9)에 배기를 재순환시키는 EGR장치(20)가 구비되어 있다. EGR장치(20)는, 배기로와 흡기로(30)를 연통시키는 EGR관(24)과, EGR관(24)내에 배설되어 배기의 재순환량을 제어하는 EGR밸브(21)로 구성되어 있고, EGR관(24)은 흡기관(6)의스로틀"throttle"밸브(7)의 배설부분의 하류쪽에 접합되어 있다. 도 2에 표시한 바와같이, EGR관(24)은 그 단부가 흡기관(6)을 에워싸도록 원환형상으로 형성되어 있다. 그리고 흡기관(6)과 EGR관(24)과의 접합부에는, 흡기관(6)내와 EGR관 (24)내를 연통하는 EGR도입구멍(23)이 복수형성되어 있다.The engine " engine " 1 is provided with an EGR device 20 for recycling the exhaust gas from the exhaust passage not shown in the drawing to the intake passage 9 above. The EGR device 20 is composed of an EGR pipe 24 for communicating the exhaust passage and the intake passage 30, and an EGR valve 21 disposed in the EGR tube 24 to control the amount of recycle of the exhaust gas. The EGR pipe 24 is joined to the downstream side of the excretion portion of the throttle "throttle" valve 7 of the intake pipe 6. As shown in FIG. 2, the EGR tube 24 is formed in the annular shape so that the edge part may enclose the intake pipe 6. As shown in FIG. At the junction between the intake pipe 6 and the EGR pipe 24, a plurality of EGR introduction holes 23 communicating with the inside of the intake pipe 6 and the inside of the EGR pipe 24 are formed.

상기의 구성에 의해, 도시 생략한 에어클리너"air cleaner"를 경유해서 흡기관(6)내에 흡입된 공기(흡기)는, EGR관(24)과의 접합부에 있어서 EGR도입구멍(23)으로부터 도입되는 배기와 혼합되어서 혼합기로 된다. 이 때, EGR도입구멍(23)은 흡기관(6)의 주위에 복수 형성되어 있으므로, 배기와 흡기와는 불균일없이 확실하게 혼합되게 된다. 그리고, 흡기관(6)으로부터 흡기매니폴드'manifold"의 집합관 (11)에 유입한 혼합기는 분기부(13)에서 각 분기관(12A∼12D)으로 분기하고, 흡기포트"port"(5A∼5D)를 경유해서 각 기통(3A~3D)내의 흡입되게 된다. 이때, 혼합기는 제 1기통(3A)으로는 유로(8A)를 경유하고, 제 2기통(3A)으로는 유로(8B)를 경유하고, 제 3기통(3C)으로는 유로(8C)를 경유하고, 그리고 제 4기통(3D)으로는 유로(8D)를 경유해서 유입하나, 이들의 유로(8A∼8D)는 각 분기관(12A∼12D)의 내부용적이 동일하기 때문에 등용적으로 되어있다.By the above configuration, air (intake) sucked into the intake pipe 6 via the air cleaner "air cleaner" (not shown) is introduced from the EGR introduction hole 23 at the junction with the EGR pipe 24. It is mixed with the exhaust to become a mixer. At this time, since a plurality of EGR introducing holes 23 are formed around the intake pipe 6, the exhaust gas and the intake air are reliably mixed without being uneven. And the mixer which flowed into the collection pipe 11 of the intake manifold "manifold" from the intake pipe 6 branches from the branch part 13 to each branch pipe 12A-12D, and intake port "port" (5A- Inhalation in each of the cylinders 3A to 3D is carried out via 5D, at which time the mixer passes through the flow passage 8A to the first cylinder 3A and the flow passage 8B to the second cylinder 3A. Via the flow path 8C to the third cylinder 3C and through the flow path 8D to the fourth cylinder 3D, but these flow paths 8A to 8D are each branch pipe. Since the internal volumes of 12A-12D are the same, they are equal.

다음에, 상기와 같이 구성된 본 발명의 일실시예로서의 EGR장치부착 내연기관의 흡기계구조의 작용에 대해서, 도 3, 도 4를 사용해서 설명한다.Next, the operation of the intake system structure of the internal combustion engine with the EGR device as one embodiment of the present invention configured as described above will be described with reference to FIGS. 3 and 4.

도 3(a)∼도 3(h)는, EGR밸브(21)를 조작했을 때의 흡기로(9)내 및 각 기통 (3A∼3D)내의 EGR률의 변화의 일예를 행정순서(제 1행정∼제 8행정)대로 모식적으로 표시한 것이다. 각 기통(3A∼3D)의 흡기의 순번은 1-3-4-2 기통의 차례로 설정되어 있고, 도 3(a)에 표시한 바와같이 우선 제 1행정에서 제 1기통(3A)에 흡기되는 것으로 하고 있다.3 (a) to 3 (h) show an example of the change in the EGR rate in the intake passage 9 and the respective cylinders 3A to 3D when the EGR valve 21 is operated. This is typical of the administration to the eighth administration. The order of intake of each of the cylinders 3A to 3D is set in the order of 1-3-4-2 cylinders, and as shown in Fig. 3A, first, the air intakes to the first cylinder 3A in the first stroke. I do it.

도 3(a)∼도 3(h) 중, 흑색부분은 배기, 즉 EGR률 100%를 표시하고 있으며, 반대로 백색부분은 흡기, 즉 EGR률%를 표시하고 있다. 또, 진한 회색부분은 EGR률 50%의 혼합기를 표시하고 있으며, 연한 회색부분은 EGR률 25%의 혼합기를 표시하고 있다. 여기서는, 도 3(a)에 표시한 바와같이 제 1행정에서 전체의 유량에 대한 배기의 유량비가 50%가 되도록 EGR밸브(21)를 조작하고[도 3(a)], 제 2행정에서 또 배기의 유량비가 25%로 되도록 EGR밸브(21)를 조작하고 [도 3(b)], 제 3행정 이후에는 완전히 EGR밸브(21)를 폐쇄하고 있다[도 3(c)∼도3(h)].3 (a) to 3 (h), the black portion represents the exhaust, that is, the EGR rate 100%, while the white portion, on the contrary, represents the intake air, that is, the EGR rate%. In addition, the dark gray portion represents a mixer having an EGR rate of 50%, and the light gray portion represents a mixer having an EGR rate of 25%. Here, as shown in Fig. 3 (a), the EGR valve 21 is operated so that the flow rate ratio of the exhaust gas to the total flow rate in the first stroke is 50% (Fig. 3 (a)). The EGR valve 21 is operated so that the flow rate ratio of the exhaust is 25% [Fig. 3 (b)], and the EGR valve 21 is completely closed after the third stroke (Figs. 3 (c) to 3 (h). )].

상기와 같은 EGR밸브(21)의 폐쇄조작에 의해, 흡기로(9)내의 혼합기의 EGR률은, 도 3(a)∼도 3(h)에 표시한 바와같이 행정마다 차츰 저하하여가나, EGR도입구멍 (21)으로부터 각 기통(3A∼3D)에 이르는 유로용적이 대략 동일하기 때문에, 각 기통 (3A∼3D)내에 흡입되는 혼합기의 EGR률은, 종래와 같이 행정마다 변동하는 일없이, 도 4에 표시한 바와같이 행정마다 차츰 원활하게 저하하여 간다.By the closing operation of the EGR valve 21 as described above, the EGR rate of the mixer in the intake passage 9 gradually decreases for each stroke as shown in Figs. 3A to 3H. Since the flow path volumes from the inlet hole 21 to the respective cylinders 3A to 3D are substantially the same, the EGR rate of the mixer sucked into each of the cylinders 3A to 3D does not vary from stroke to stroke as in the prior art. As shown in Fig. 4, the temperature gradually decreases with each stroke.

이 때문에, 흑연의 발생을 방지하기 위해, 기통내의 EGR률과 엔진"engine" 회전속도에 의해 결정되는 최적한 연료량을 분사하는 경우에는, 연료분사량은 도 4에 표시한 바와같이 행정마다 차츰 증가해가게 된다. 따라서, 필터"filter"처리 등의 소둔제어를 실시함으로써 원활한 연료변화량을 얻을 수 있고, 이에의해 원활한 가속을 얻는것이 가능하게 된다.For this reason, in order to prevent the generation of graphite, when the optimum amount of fuel determined by the EGR rate in the cylinder and the engine "engine" rotational speed is injected, the fuel injection amount gradually increases from stroke to stroke as shown in FIG. I will go. Therefore, by performing annealing control such as a filter " filter " process, a smooth fuel change amount can be obtained, whereby smooth acceleration can be obtained.

또, 도 4중의 절선은, 종래의 흡기계구조에 관한 EGR률 변화와, 이 종래의EGR률 변화에 따라서 흑연을 발생시키는 일 없이 원활하게 연료를 증량시킨 경우의 행정마다의 연료분사량 변화를 표시한 것이지만, 이 종래의 연료분사량 변화와 대비해서 알 수 있는 바와같이, 연료분사량을 보다 신속히 증가시키는 것이 가능하게 되고, 드라이버"driver"의 가속요구에 대한 레스폰스"response"를 향상시키는 것도 가능하게 된다.In addition, the broken line in FIG. 4 shows the EGR rate change regarding the conventional intake system structure, and the fuel injection amount change for every stroke when fuel is increased smoothly without generating graphite according to this conventional EGR rate change. However, as can be seen in contrast to the conventional fuel injection amount change, it is possible to increase the fuel injection amount more quickly, and to improve the response "response" to the acceleration demand of the driver "driver". do.

또한, 도 3, 도 4에 표시한 흡기로(9) 및 각 기통(3A∼3D)내의 EGR률 변화는 어디까지나 일예이고, 흡기로(9) 내용적과 각 기통(3A∼3D) 내용적과의 관계를 변경한 경우나 EGR밸브(21)의 개방도변화를 변경한 경우에는, EGR률의 행정마다의 변화상태도 도 4에 표시한 변화상태와는 다르게 되어간다. 단, EGR도입구멍(23)으로부터 각 기통(3A∼3D)에 이르는 유로용적이 동일하거나 대략 동일한 한은, 변동이 없는 원활한 EGR률의 변화는 확보할 수 있다.In addition, the change of the EGR rate in the intake path 9 and each cylinder 3A-3D shown to FIG. 3, FIG. 4 is an example to the last, and the intake path 9 content and the content of each cylinder 3A-3D are the same. When the relationship is changed or when the change in the opening degree of the EGR valve 21 is changed, the change state for each stroke of the EGR rate also differs from the change state shown in FIG. However, as long as the flow volume from the EGR introducing hole 23 to each of the cylinders 3A to 3D is the same or substantially the same, a smooth change in the EGR rate without variation can be ensured.

이와같이, 본 흡기계 구조에 의하면, EGR도입구멍(23)으로부터 각 기통 (3A∼3D)의 흡기구멍(4A∼4D)에 이르는 유로용적을 각 기통(3A∼3D)간에서 대략 등용적이 되도록 흡기로(9)를 형성하고 있으므로, 가속시나 감속시에 EGR밸브(21)의 조작에 따라서 각 기통(3A∼3D)내에 흡입되는 혼합기의 EGR률을 행정마다 원활하게 변화시킬 수 있다고 하는 이점이 있다. 그리고, 이에의해, 흑연의 발생을 제어하기 위해 기통내의 EGR률과 엔진"engine" 회전속도에 의해 결정되는 최적한 연료량을 분사한 경우에도, 원활한 가속을 얻을 수 있다고 하는 이점도 있다.As described above, according to the structure of the intake air, the intake air flows from the EGR introducing hole 23 to the intake holes 4A to 4D of the respective cylinders 3A to 3D so that the intake volume is approximately equal between the cylinders 3A to 3D. Since the furnace 9 is formed, there is an advantage that the EGR rate of the mixer sucked into each of the cylinders 3A to 3D can be smoothly changed for each stroke in accordance with the operation of the EGR valve 21 during acceleration or deceleration. . Thereby, there is also an advantage that smooth acceleration can be obtained even when the optimum fuel amount determined by the EGR rate in the cylinder and the engine " engine " rotational speed is injected to control the generation of graphite.

또, EGR도입구멍(23)을 흡기관(6)의 주위에 복수형성함으로써, 배기와 흡기를 불균일 없이 확실하게 혼합할 수 있으므로, EGR 도입구멍(23)으로부터 각 기통(3A∼3D)의 흡기구멍(4A∼4D)에 이르는 유로용적을 작게할 수 있고, EGR밸브(21)의 조작에 대한 EGR률의 변화의 응답지연을 축소할 수 있다고 하는 이점도 있다.In addition, since a plurality of EGR introducing holes 23 are formed around the intake pipe 6, it is possible to reliably mix exhaust and intake air without unevenness. Therefore, the intake air of each cylinder 3A to 3D is discharged from the EGR inlet hole 23. There is also an advantage that the volume of the flow path leading to the holes 4A to 4D can be reduced, and the response delay of the change in the EGR rate with respect to the operation of the EGR valve 21 can be reduced.

또, 본 흡기계 구조에 의하면, 각 흡기포트 "port"(5A∼5D)에 EGR관(22)을 접속할 필요가 없으므로 장치구조를 간단하게 할 수 있고, 또, EGR밸브(21)로부터 EGR도입구멍(23)까지의 거리가 길어진다고 하는 일도 없다고 하는 이점도 있다.Moreover, according to this intake system structure, since the EGR pipe 22 does not need to be connected to each intake port "port" (5A to 5D), the device structure can be simplified, and EGR is introduced from the EGR valve 21. There is also an advantage that the distance to the hole 23 is not long.

이상, 본 발명의 EGR장치부착 내연기관의 흡기계구조의 일실시예에 대해서 설명했으나, 본 발명은 상기의 실시예에 한정되는 것은 아니고, 본 발명의 취지를 일탈하지 않는 범위에서 여러가지 변형해서 실시할 수 있다. 예를들면, 본 실시예에 관한 흡기매니폴드"manifold"(10)의 각 분기관(12A∼12D)은 부등길이 등용적이지만, 등길이 등용적으로 형성해도 된다. 이 경우에는 각 분기관(12A∼12D)의 단면적을 동일하게 할 수 있다.As mentioned above, although one Embodiment of the intake system structure of the internal combustion engine with EGR apparatus of this invention was described, this invention is not limited to the said Example, It variously deforms and implements in the range which does not deviate from the meaning of this invention. can do. For example, although each branch pipe 12A-12D of the intake manifold "manifold" 10 which concerns on a present Example is equal in length, it may be formed in equal length. In this case, the cross-sectional area of each branch pipe 12A-12D can be made the same.

또, 본 실시예에서는, 각 흡기포트"port"(5A∼5D)의 내부용적이 동일한 것을 전제로, 흡기매니폴드"manifold"(10)의 분기관(12A∼12D)의 내부용적을 동일하게함으로써, 각 기통(3A∼3D)의 흡기구멍(4A∼4D)에 이르는 유로용적을 동일하게 하고 있으나, 각 흡기포트"port"(5A∼5D)의 내부용적에 불균일이 있는 경우에는, 이 불균일을 해소하도록 분기관(12A∼12D)의 내부용적을 설정하면 된다.In this embodiment, the internal volume of the branch pipes 12A to 12D of the intake manifold " manifold " 10 is equally assuming that the internal volumes of the intake ports " ports " 5A to 5D are the same. As a result, the flow volume of the intake holes 4A to 4D of the cylinders 3A to 3D is made the same. However, when there is a nonuniformity in the internal volume of each intake port "port" (5A to 5D), this nonuniformity The internal volume of the branch pipes 12A to 12D may be set so as to eliminate the problem.

또, 흡기매니폴드"manifold"(10)는 집합관(11)으로부터 분기관(12A∼12D)으로 직접 분기하는 구조로 되어 있으나, 집합관(11)과 분기관(12A∼12D)과의 사이에 서지탱크"surge tank"를 설치해도 된다. 단 이 경우에는, 서지탱크"surge tank"내의 유로용적을 고려해서, EGR도입구멍(23)으로부터 각 기통 (3A∼3D)의흡기구멍(4A∼4D)에 이르는 유로용적이 동일하게 되도록 각 분기관 (12A∼12D)의 내부용적을 설정한다.The intake manifold "manifold" 10 has a structure which branches directly from the collecting pipe 11 to the branch pipes 12A to 12D, but surges between the collecting pipe 11 and the branch pipes 12A to 12D. You can also install a "surge tank". In this case, however, in consideration of the flow volume in the surge tank " surge tank ", the respective flow paths from the EGR introduction hole 23 to the intake holes 4A to 4D of the respective cylinders 3A to 3D are the same. The internal volume of the engine 12A-12D is set.

또, 흡기매니폴드"manifold"(10)를 흡기포트"port"(5A∼5D)에 일체화시킨 구조이어도 된다.Moreover, the structure which integrated the intake manifold "manifold" 10 into the intake port "port" (5A-5D) may be sufficient.

또, 본 실시예에서는, EGR관(24)을 흡기관(6)에 접합하고 있으나, 흡기매니폴드"manifold"(10)의 집합관(11)에 접합해서 집합관(11)내와 EGR관(24)내를 연통하도록 EGR도입구멍(23)을 복수형성해도 된다. 이에의해, EGR도입구멍(23)으로부터 각 기통(3A∼3D)의 흡기구멍(4A∼4D)에 이르는 유로용적을 보다 작게해서, EGR도입구멍(23)근처의 공기가 각 기통(3A~3D)내에 흡입될때 까지의 시간지연을 저감할 수 있다.In this embodiment, the EGR pipe 24 is joined to the intake pipe 6, but the inside of the collection pipe 11 and the EGR pipe 24 are joined to the collection pipe 11 of the intake manifold “manifold” 10. The plurality of EGR introduction holes 23 may be formed so as to communicate with each other. Thereby, the flow volume of the flow path from the EGR introduction hole 23 to the intake holes 4A to 4D of each of the cylinders 3A to 3D is made smaller, so that the air near the EGR introducing hole 23 is reduced to each cylinder (3A to 3D). The time delay before inhalation can be reduced.

또, 본 발명은, 디젤엔진"diesel engine" 뿐만아니라, 가솔린엔진"gasoline engine"에도 적용가능한 것은 물론이다.Moreover, of course, this invention is applicable not only to a diesel engine "diesel engine" but also to a gasoline engine "gasoline engine".

이상 상세히 설명한 바와같이, 본 발명의 EGR장치부착 내연기관의 흡기계구조에 의하면, 도입구멍으로부터 각 기통의 흡기구멍에 이르는 유로용적을 각 기통간에 등용적 또는 대략 등용적이 되도록 흡기로를 형성하고 있으므로, 가속시나 감속시에 EGR장치의 밸브의 조작에 따라서 각 기통내의 흡입되는 혼합기의 EGR률을 행정마다 원활하게 변화시킬 수 있다고 하는 이점이 있다(청구항 1).As described in detail above, according to the intake system structure of the internal combustion engine with the EGR apparatus of the present invention, the intake path is formed so that the flow volume of the flow path from the introduction hole to the intake hole of each cylinder is equal or approximately equal between the cylinders. Therefore, there is an advantage that the EGR rate of the mixers sucked in each cylinder can be smoothly changed for each stroke in accordance with the operation of the valve of the EGR device during acceleration or deceleration (claim 1).

또, 도입구멍을 흡기관의 주위에 복수설치한 경우에는, 배기와 흡기를 불균일없이 확실하게 혼합하는 것이 가능하게 된다고하는 이점이 있다(청구항 2).In addition, when a plurality of inlet holes are provided around the intake pipe, there is an advantage that it is possible to reliably mix the exhaust and the intake air unevenly (claim 2).

Claims (2)

배기로로부터 흡기로에 배기의 일부를 재순환시키는 EGR장치(20)부착 내연기관의 흡기계구조에 있어서,In the intake system structure of an internal combustion engine with an EGR device 20 for recycling a part of the exhaust gas from the exhaust passage to the intake passage, 상기 배기로로부터의 배기의 도입구멍(23)을 상기 흡기로(9)가 각 기통마다에 분기하는 분기부(13)의 상류(6)에 형성하고,The introduction hole 23 of the exhaust gas from the exhaust passage is formed upstream 6 of the branch portion 13 where the intake passage 9 branches into each cylinder, 상기 도입구멍(23)으로부터 상기 각 기통(3A∼3D)의 흡기구멍(4A∼4D)에 이르는 유로(12A∼12D)가 각 기통마다 독립해서 형성되고, 그 분기부로부터의 유로길이가 적어도 2개의 기통간에 있어서 부등길이로서, 또한 유로용적이 상기 모든 기통간(3A∼3D)에서 동등한 용적 또는 대략 동등한 용적으로 되도록 상기 흡기로(9)를 형성한 것을 특징으로 하는, EGR장치부착내연기관의 흡기계구조.Flow paths 12A to 12D extending from the introduction hole 23 to the intake holes 4A to 4D of the respective cylinders 3A to 3D are formed independently for each cylinder, and the flow path length from the branch portion is at least two. Of the internal combustion engine with an EGR apparatus, characterized in that the intake passage 9 is formed so as to have an uneven length in the two cylinders, and that the flow path volume becomes the same volume or approximately the same volume in all the cylinders 3A to 3D. Intake machine structure. 제 1항에 있어서,The method of claim 1, 상기 도입구멍(23)을 상기흡기로(6,9)의 주위에 복수 형성한 것을 특징으로하는, EGR장치부착내연기관의 흡기계구조.The intake system structure of an internal combustion engine with an EGR device, characterized in that a plurality of the introduction holes (23) are formed around the intake passages (6, 9).
KR10-2001-0020154A 2000-04-17 2001-04-16 Intake line structure of internal combustion engine equipped with egr apparatus KR100412018B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000115340A JP2001295712A (en) 2000-04-17 2000-04-17 Intake system structure of internal combustion engine with egr device
JP2000-115340 2000-04-17

Publications (2)

Publication Number Publication Date
KR20010098630A KR20010098630A (en) 2001-11-08
KR100412018B1 true KR100412018B1 (en) 2003-12-24

Family

ID=18627004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0020154A KR100412018B1 (en) 2000-04-17 2001-04-16 Intake line structure of internal combustion engine equipped with egr apparatus

Country Status (3)

Country Link
JP (1) JP2001295712A (en)
KR (1) KR100412018B1 (en)
DE (1) DE10118490C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871530B1 (en) * 2004-06-11 2009-01-16 Renault Sas IMPROVED DEVICE AND METHOD FOR RECYCLING BURNED GASES
JP6310377B2 (en) 2014-09-30 2018-04-11 株式会社クボタ Intake manifold for multi-cylinder engines
EP3943742B1 (en) * 2019-04-24 2023-12-27 Yamaha Hatsudoki Kabushiki Kaisha Straddled vehicle
US11225936B1 (en) * 2021-02-24 2022-01-18 Ford Global Technologies, Llc Exhaust gas recirculation system for a vehicle engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4445490A1 (en) * 1994-12-20 1996-06-27 Audi Ag Device for exhaust gas detoxification on an internal combustion engine
IT1291509B1 (en) * 1997-02-11 1999-01-11 Fiat Ricerche DIESEL CYCLE COMBUSTION ENGINE, WITH EXHAUST GAS RECIRCULATION, EQUIPPED WITH A RECIRCULATING GAS MIXER.
US6237547B1 (en) * 1998-09-10 2001-05-29 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling arrangement

Also Published As

Publication number Publication date
KR20010098630A (en) 2001-11-08
JP2001295712A (en) 2001-10-26
DE10118490C2 (en) 2003-03-27
DE10118490A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
US4196701A (en) Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port
US4246874A (en) Internal combustion engine with dual induction system and with fuel injection system to discharge fuel into primary induction system
US6918372B2 (en) Intake system of internal combustion engine
US9169818B2 (en) Internal combustion engine
US20040231638A1 (en) Intake system of internal combustion engine
US6868823B2 (en) Intake apparatus for internal combustion engine
US20010035154A1 (en) Control device and device for generating swirls in internal combustion engine
US4484549A (en) 4-Cycle internal combustion engine
US20100037853A1 (en) Intake system for an internal combustion engine
EP0477046B1 (en) Direct injection diesel engine
WO2007069410A1 (en) Control device for diesel engine
KR100412018B1 (en) Intake line structure of internal combustion engine equipped with egr apparatus
US6543410B2 (en) Direct injection engine
JP3893750B2 (en) Direct cylinder injection spark ignition engine
JP5811356B2 (en) Exhaust gas recirculation device
JPS61201826A (en) Intake device of internal-combustion engine
JPH10231729A (en) Intake device for internal combustion engine
JPH05223040A (en) Intake device for engine
DE4222797A1 (en) Multicylinder combustion engine with exhaust gas recycling - has dual-inlet cylinders arranged in two gps. with one or more injectors downstream from flaps
CA1208088A (en) Internal combustion engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2000008970A (en) Internal combustion engine exhaust gas recirculation system
US11519365B2 (en) Intake system for natural gas engine
JPH0972263A (en) Fuel supplying device and method for internal combustion engine
JPS61226563A (en) Fuel injection device for engine

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081201

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee