KR100403843B1 - Ionizer emitter pin made of ceramic materials - Google Patents

Ionizer emitter pin made of ceramic materials Download PDF

Info

Publication number
KR100403843B1
KR100403843B1 KR10-2001-0001697A KR20010001697A KR100403843B1 KR 100403843 B1 KR100403843 B1 KR 100403843B1 KR 20010001697 A KR20010001697 A KR 20010001697A KR 100403843 B1 KR100403843 B1 KR 100403843B1
Authority
KR
South Korea
Prior art keywords
pin
electrode pins
ceramic
ion
ionized
Prior art date
Application number
KR10-2001-0001697A
Other languages
Korean (ko)
Other versions
KR20020061023A (en
Inventor
정우현
Original Assignee
(주)세라코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세라코 filed Critical (주)세라코
Priority to KR10-2001-0001697A priority Critical patent/KR100403843B1/en
Publication of KR20020061023A publication Critical patent/KR20020061023A/en
Application granted granted Critical
Publication of KR100403843B1 publication Critical patent/KR100403843B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

이온화 전극핀(Ionizer emitter pin)이란 공기중의 정전기 입자와 결합하여 이를 중성화시키는 양이온과 음이온을 방출하는 핀이다. 본 발명에서는 알루미나 (Al2O3)와 탄화티타늄(TiC)를 적당한 비율로 혼합한 후 이를 성형, 탈지, 소결함으로써 세라믹의 장점인 우수한 내마모성과 내식성을 가지면서 금속의 특성인 전도성을 동시에 갖는 전도성 세라믹 물질을 얻었다. 또한 전도성을 가지지만 난소결체로 알려진 보론티타늄(TiB2)에 철, 니켈 등의 금속을 소량 소결조제로 첨가함으로써 높은 소결밀도와 우수한 내마모성을 갖는 전도성 세라믹 조성물을 얻었다. 이 두 종류의 물질을 직경 2 mm, 길이 19 mm인 이온화 전극핀으로 가공하여 정전기 제거용 이온발생기에 적용하면 기존의 텅스텐이나 실리콘으로 만들어진 이온화 전극핀에 비해 마모에 의한 입자방출이나 부식성은 현저히 개선되면서 이온방출 능력과 수명은 월등히 우수한 특성을 얻을 수 있다.An ionizer emitter pin is a pin that emits positive and negative ions that bind to and neutralize electrostatic particles in the air. In the present invention, alumina (Al 2 O 3) and titanium carbide (TiC) and then mixed in a suitable ratio by sintering this, molding, degreasing, while having excellent wear resistance and corrosion resistance, the advantage of the ceramic conductivity with the conductive properties of the metal at the same time A ceramic material was obtained. In addition, a conductive ceramic composition having high sintered density and excellent wear resistance was obtained by adding a small amount of metal such as iron and nickel to boron titanium (TiB 2 ), which has conductivity but is known as an ovate aggregate. When these two materials are processed into ionized electrode pins with a diameter of 2 mm and a length of 19 mm and applied to the ion generator for static electricity removal, particle release and corrosion due to abrasion are significantly improved compared to the ionized electrode pins made of tungsten or silicon. As a result, the ion-releasing ability and lifespan are excellent.

Description

세라믹 재질의 이온화 전극핀{IONIZER EMITTER PIN MADE OF CERAMIC MATERIALS}IONIZER EMITTER PIN MADE OF CERAMIC MATERIALS}

본 발명은 반도체나 LCD 제조공정에서 정전기에 의한 부품이나 회로의 손상을 막기 위해 설치하는 이온제전기의 주요부품으로서, 마모성과 부식성이 약한 기존의 텅스텐, 실리콘계 조성물에 비해 내마모성과 내부식성이 우수한 전도성 세라믹스 조성물로 제조된 이온화 전극핀에 관한 것이다.The present invention is a main component of the ion electrostatic agent which is installed to prevent damage to the components or circuits due to static electricity in the semiconductor or LCD manufacturing process, and has excellent wear resistance and corrosion resistance compared to conventional tungsten and silicon-based composition, which is weak in wear and corrosion The present invention relates to an ionized electrode pin made of a ceramic composition.

정전기란 임의의 물체가 서로 상대적인 운동을 할 때 발생되는 것으로 접촉이나 분리 등의 과정에서 한쪽 물체는 전자를 잃고 다른 쪽은 전자를 얻음으로써 각각 +와 -로 대전되어 갖게 되는 현상이다. 이렇게 대전된 물체는 또 다른 물체와의 접촉뿐만 아니라 비접촉 상태에서도 상대방을 유도대전시켜서 강한 분극전류를 발생시킨다. 정전기는 우리의 생활 주위에 항상 존재하며 물체에 축적된 상태에서는 위험성이 없으나 대전체가 방전할 경우에 인체에 충격을 주거나 전자회로에 문제가 발생하게 된다.Static electricity is generated when certain objects move relative to each other. In the process of contact or separation, one object loses electrons and the other gets electrons, so that they are charged with + and-, respectively. The charged object generates strong polarized current by inductively charging the counterpart not only in contact with another object but also in a non-contact state. Static electricity is always present around our lives and there is no danger in the state of accumulation in the object, but when the battery is discharged, it will shock the human body or cause problems in the electronic circuit.

정전기에 의한 피해는 실생활 뿐만 아니라 산업전반에 걸쳐 속출되고 있다. 특히 전자소자의 소형화, 집적화 추세로 인하여 외부충격에 민감해지면서 전자산업에서의 정전기에 의한 피해가 심각한 상황이다. 기본적으로 정전기에 의해 발생되는 문제는 먼지오염과 방전에 의한 전자부품의 파열과 열화이다. 먼지오염이란 공기중에 떠다니는 대전된 먼지가 정전유도에 의해 발생되는 쿨롱의 힘에 의해 제품의 표면에 부착되어 오염을 일으키는 것을 말한다. 방전에 의한 피해에는 정전기를 지닌 대전물이 전자부품이나 피도물에 방전하게 되면 방전전류가 전자부품의 저항이 낮은 부위를 통과하면서 전기적 충격을 주거나, 방전전류의 크기에 비례하여 증가하는 열에너지에 의한 열파손 문제 등이 있다. 전자부품의 파손은 완전파괴와 잠재파괴가 있는데 완전파괴의 경우에는 제품출하전 검수에 의해 발견이 가능하나 정전기에 의해 주로 발생하는 잠재파괴의 경우 검수에 의해서도 발견이 어렵기 때문에 성능이 떨어진 제품이 출하된다는 문제가 있다.The damage caused by static electricity has been spread throughout not only real life but also industry. In particular, due to the trend toward miniaturization and integration of electronic devices, they are sensitive to external shocks and are seriously affected by static electricity in the electronics industry. Basically, the problems caused by static electricity are the rupture and deterioration of electronic parts by dust pollution and discharge. Dust pollution means that charged dust floating in the air is attached to the surface of the product by coulomb force generated by electrostatic induction and causes pollution. The damage caused by the discharge is that when the charged object with static electricity is discharged to the electronic part or the workpiece, the electric current is passed through the low resistance part of the electronic part and electric shock is applied, or the heat is increased by the heat energy which increases in proportion to the magnitude of the discharge current. Breakage problems. The breakage of electronic parts is either complete or latent. In the case of complete destruction, it can be detected by inspection before shipment of the product. However, in case of latent destruction that is mainly caused by static electricity, it is difficult to detect by inspection. There is a problem of shipping.

따라서, 전자산업에서는 제조공정 중 정전기에 의한 피해를 줄이고자 많은 노력들을 기울이고 있는데, 그중 하나가 이온발생기(Ionizer)를 이용하는 것이다. 이 장치는 고전압을 방전시켜 얻어지는 양이온과 음이온을 대전체에 보내 대전체가 가지고 있는 전기극성과 반대극성으로 중화, 소멸시키는 장치이며 소재에 직접적인 접촉이 없이 정전기를 제거하므로 소재를 상하지 않게 하면서 여러 공정에서 제한없이 사용할 수 있다는 장점이 있기 때문에 현대 전자산업에서는 이온발생기를 널리 사용하고 있다.Therefore, the electronic industry is making a lot of efforts to reduce the damage caused by static electricity during the manufacturing process, one of which is using the ionizer (Ionizer). This device is a device that neutralizes and dissipates the positive and negative ions obtained by discharging high voltage to the electric pole and has the opposite polarity of the electric pole. The static electricity is removed without direct contact with the material. In the present electronic industry, ion generators are widely used because they can be used without limitation.

이온발생기는 양이온과 음이온을 발생시키는 이온발생부와 이를 공기중으로 날려보내는 송풍부로 이루어져 있으며 이중 이온화전극핀은 고전압에 의해 양이온과 음이온을 방출하는 핀으로서 이온발생기의 핵심부품이다. 이온화 전극핀에 사용되는 소재는 전기전도성이 있어야 하는데, 초기에는 스테인레스(Stainless steel)를 사용했지만 핀의 마모에 의한 수명저하와 부식에 의한 오염문제가 발생하였으며 이를 해결하기 위해 마모성이 강한 텅스텐이 전극핀의 소재로 각광을 받았으며 최근에는 텅스텐보다도 마모에 의한 입자방출과 부식이 적은 반도체 재료인 실리콘과 게르마늄이 전극핀의 소재로 이용되고 있다. 그렇지만 이러한 반도체 소재도 사용환경이 가혹한 반도체 공정에서는 마모와 부식에 의한 오염문제가 제기되고 있다. 이러한 마모와 부식에 의한 문제점을 해결하기 위해서는 내마모성과 내식성, 내화학성이 우수한 세라믹스를 이온화 전극핀에 적용하는 것이 가장 좋은 방법이지만, 현재 세라믹스를 재질로 상용화된 이온화 전극핀은 존재하지 않으며, 세라믹 이온화 전극핀을 제조하려는 시도조차도 없는 실정이다. 이것은 대부분의 세라믹스는 절연체이기 때문에 전기전도성이 요구되는 이온화전극핀으로는 적용이 불가능했었기 때문으로 보인다.Ion generator consists of ion generator which generates cation and anion and blower that blows it into the air. Double ionizing pin is a core part of ion generator as pin that emits cation and anion by high voltage. The material used for the ionizing electrode pin should be electrically conductive. Initially, stainless steel was used, but there was a problem of deterioration of life due to abrasion of the pin and contamination due to corrosion. It has been spotlighted as a material for fins, and recently, silicon and germanium, semiconductor materials having less particle release and corrosion due to abrasion than tungsten, are used for electrode pins. However, such semiconductor materials also pose a problem of contamination due to wear and corrosion in a semiconductor process with a harsh environment. In order to solve the problems caused by wear and corrosion, it is best to apply ceramics having excellent wear resistance, corrosion resistance, and chemical resistance to ionized electrode pins. However, there are no ionized electrode pins commercialized using ceramics. There is no attempt to manufacture electrode pins. This seems to be because most ceramics are insulators and could not be applied to ionized electrode pins that require electrical conductivity.

본 발명은 우수한 내마모성, 내식성 및 전기전도성을 갖는 세라믹 조성물로 제조된 이온화 전극핀을 제공하는 것을 목적으로 한다. 또한, 본 발명의 기존의 전극핀들이 가지고 있던 마모 및 부식에 의한 오염문제를 해결하고 긴 수명을 가지면서 안정한 제전 동작을 수행할 수 있는 이온화 전극핀을 제공하는 목적으로 한다.An object of the present invention is to provide an ionized electrode pin made of a ceramic composition having excellent wear resistance, corrosion resistance and electrical conductivity. In addition, an object of the present invention is to provide an ionizing electrode pin that can solve the contamination problem caused by wear and corrosion of the existing electrode pins of the present invention and have a stable antistatic operation with a long life.

도 1은 본 발명의 실시예에 따른 세라믹 조성물에 의해 제조된 이온화 전극핀을 도시한 사진이다.1 is a photograph showing an ionizing electrode pin manufactured by the ceramic composition according to an embodiment of the present invention.

전기전도성이 우수한 전도성 세라믹스로는 탄화티타늄(TiC)와 보론티타늄 (TiB2)가 알려져 있는데 두 물질 모두 난소결성이기 때문에 기존의 방법으로는 기계적 가공이 가능한 강도를 갖는 소결체 및 핀형상의 제품을 얻기 어려웠다. 본 발명에서는 탄화티타늄과 보론티타늄을 주조성으로 하고 여기에 적절한 소결조제와 제조방법을 사용하여 우수한 전기전도성과 강도를 지닌 이온화전극핀용 세라믹 조성물과 핀 형상의 제조방법을 개발하였다.Titanium carbide (TiC) and boron titanium (TiB 2 ) are known as conductive ceramics with excellent electrical conductivity. Both materials are sinterable and thus, sintered and fin-shaped products having strengths that can be mechanically processed by conventional methods are obtained. It was difficult. In the present invention, using titanium carbide and boron titanium as castability, using a suitable sintering aid and manufacturing method, a ceramic composition for an ionizing electrode pin and a pin shape manufacturing method having excellent electrical conductivity and strength were developed.

이하 실시예에서 본 발명에서 제시한 세라믹 조성물과 핀 형상의 제조방법에 대해 상세히 설명하였다.In the following examples, the ceramic composition and the pin-shaped manufacturing method of the present invention were described in detail.

(실시예1)Example 1

탄화티타늄(TiC)에 알루미나(Al2O3)를 20∼80 중량%, 이트리아(Y2O3)를 0.5∼5 중량% 혼합하였고, 상기 혼합물에 코발트(Co) 1~4 중량% 또는 니켈(Ni) 1~4중량%를 첨가하였다. 상기 첨가제인 코발트 또는 니켈은 4중량% 범위내에서 1중량% 단위로 증가시켜 첨가하였다. 이렇게 준비된 각각의 분말 10 kg에 대해 에탄올 8 liter와 분산제를 첨가하고 20시간 동안 볼밀(Ball-mill)을 이용하여 혼합, 분쇄하였고 다시 여기에 결합재를 첨가하여 4시간 동안 볼밀하였다. 일반적으로 볼밀시 물을 이용하지만 탄화티타늄과 코발트, 니켈이 물과 만나면 산화되기 때문에 에탄올을 사용하였다. 이렇게 혼합된 슬러리를 분말원심열풍건조기(Spray dryer)를 사용하여 조립(granulation)하고 건조하여 직경이 60∼100 ㎛인 이차입자(granule)을 얻었다. 이 이차입자를 이온화 전극핀 모양으로 성형한 후 진공로(Vacuum furnace)에서 0.5 ℃/min의 승온속도로 500∼800℃까지 승온한 후 3시간 유지하여 탈지(Binder burn-out)하였다. 이 과정을 통해 얻어진 탈지체를 진공소결로에서 1650 ∼ 1850℃, 2 ∼ 3시간 소결하였다. 이와 같이 얻어진 시편들은 상대밀도 98% 이상의 높은 소결밀도를 나타내었으며, 이를 정밀 가공하여 도1과 같은 이온화 전극핀을 제조하였다.20 to 80% by weight of alumina (Al 2 O 3 ) and 0.5 to 5% by weight of yttria (Y 2 O 3 ) were mixed with titanium carbide (TiC), 1 to 4% by weight of cobalt (Co) or 1-4 weight% of nickel (Ni) was added. The additive cobalt or nickel was added in increments of 1% by weight within 4% by weight. For each 10 kg of the powder thus prepared, 8 liters of ethanol and a dispersant were added, mixed and ground using a ball mill for 20 hours, and again, a binder was added thereto and ball milled for 4 hours. In general, ball mill water is used, but ethanol is used because titanium carbide, cobalt, and nickel are oxidized when they meet water. The mixed slurry was granulated using a powder centrifugal hot air dryer (Spray dryer) and dried to obtain secondary particles having a diameter of 60 to 100 μm. After forming the secondary particles in the form of ionized electrode pins, the temperature was raised to 500 to 800 ° C. at a temperature rising rate of 0.5 ° C./min in a vacuum furnace, and then maintained for 3 hours to be degreased (Binder burn-out). The degreasing body obtained through this process was sintered in a vacuum sintering furnace at 1650 to 1850 ° C. for 2 to 3 hours. The specimens thus obtained showed a high sintered density of 98% or higher relative density, and precisely processed to prepare ionized electrode pins as shown in FIG. 1.

(실시예 2)(Example 2)

보론티타늄(TiB2)에 철(Fe), 니켈(Ni), 크롬(Cr) 및 코발트(Co) 중에서 선택된 하나의 물질을 1 ∼ 5 중량% 범위내에서 1중량%씩 증가시켜 첨가하였고 실시예 1과 동일한 방법으로 볼밀, 조립화, 성형, 탈지, 소결하였다. 이와 같이 얻어진 시편들은 상대밀도 98% 이상의 높은 소결밀도를 나타내었으며 전기전도도도 금속과 유사한 정도의 값을 나타내었다.To borontitanium (TiB 2 ), one material selected from iron (Fe), nickel (Ni), chromium (Cr), and cobalt (Co) was added in 1 wt% increments in the range of 1 to 5 wt%. Ball milling, granulation, molding, degreasing and sintering were carried out in the same manner as in Example 1. The specimens thus obtained showed a high sintered density of more than 98% relative density and electrical conductivity similar to that of metal.

(비교실시예 1)Comparative Example 1

일반적으로 구조재료 및 기계부품에 사용되는 알루미나(Al2O3), 지르코니아 (ZrO2), 질화규소(Si3N4) 등을 사용하여 이온화전극핀을 제작한 경우 기계적 가공이 가능한 강도를 갖지며 내식성과 내마모성이 우수한 소결체는 얻을 수 있지만 전기전도도가 낮아서 고전압을 걸어도 이온이 방출되지 못했다.In general, when ionized electrode pins are manufactured using alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), etc., which are used for structural materials and mechanical parts, mechanical processing is possible. Although a sintered body having excellent corrosion resistance and abrasion resistance can be obtained, ions are not released even at high voltage due to low electrical conductivity.

(비교실시예2)Comparative Example 2

본 발명에서 제시한 세라믹 조성물 및 제조방법과는 달리 일반적인 세라믹 제조방법으로 TiC-Al2O3복합재료와 TiB2를 준비하여 소결할 경우 전기전도도값은 유사하였지만 소결밀도가 상대밀도 90 - 95% 수준에 불과했으며, 이 경우 내마모도와 기계적 인성이 낮기 때문에 앞이 뾰족한 핀 모양의 이온화 전극핀으로 가공할 경우 가공과정중 파손되는 현상이 많이 발생하여 완제품을 얻기가 거의 불가능하였다. 또한, 형상이 바르게 가공된 제품도 비교실험 결과 수명과 마모에 의한 오염면에서 기존의 반도체로 만든 제품의 특성값의 80% 정도의 값밖에 얻지 못했다.Unlike the ceramic composition and manufacturing method presented in the present invention, when the TiC-Al 2 O 3 composite material and TiB 2 were prepared and sintered by a general ceramic manufacturing method, the electrical conductivity values were similar, but the sintered density was 90-95%. In this case, because of low wear resistance and low mechanical toughness, when processed with a sharp pin-shaped ionized electrode pin, many breakages occurred during processing, making it almost impossible to obtain a finished product. In addition, in the case of products processed correctly in shape, as a result of comparison experiments, only 80% of the characteristic values of the products made of semiconductors were obtained in terms of life and contamination by wear.

(비교실시예3)Comparative Example 3

본 발명에서 제시한 세라믹 조성물 및 제조방법으로 만들어진 이온화 전극핀의 성능을 알아보기 위해 실시예 2에서 제조된 이온화 전극핀들과 기존의 텅스텐, 실리콘으로 만들어진 이온화전극핀을 이온화 제전기에 장착하여 같은 조건으로 여러 물성들을 비교실험하였으며 그 측정결과는 표 1과 같다. 표 1에서 본 발명의 이온화 전극핀들의 각 물성값은 평균값이다.In order to examine the performance of the ionized electrode pins made by the ceramic composition and the manufacturing method presented in the present invention, the ionized electrode pins prepared in Example 2 and conventional ionized electrode pins made of tungsten and silicon were mounted on the ionizer. Various properties were compared and the measurement results are shown in Table 1. In Table 1, each property value of the ionizing electrode pins of the present invention is an average value.

표1. 여러 재료로 만들어진 이온화 전극핀의 이온방전 특성Table 1. Ion Discharge Characteristics of Ionized Electrode Pins Made of Various Materials

감쇄시간(sec.)Decay time (sec.) 이온전류(nA)Ion Current (nA) 입자방출량(/cm3)Particle emission amount (/ cm3) 적층층 두께(㎛)Laminated Layer Thickness (㎛) 텅스텐 핀Tungsten pins 0.90.9 150-250150-250 5252 40-5040-50 실리콘 핀Silicone pin 0.90.9 150-250150-250 4848 10-2010-20 세라믹 핀Ceramic pin 0.70.7 150-250150-250 77 1-21-2

감쇄시간(Decay time)은 이온화 전극핀에서 30 cm 떨어진 곳에 위치한 대전판의 전압이 2000 V에서 그의 10%에 해당하는 200 V로 떨어지는데 걸리는 시간으로 이온화 전극핀의 이온발생 능력을 표시하는 수치이며, 이 값이 작을수록 이온발생 능력이 우수한 것이다. 표1에서 본 발명의 전도성 세라믹으로 만들어진 핀이 반도체계 핀보다 우수한 특성을 가짐을 볼 수 있다.Decay time is the time it takes for the voltage of the charging plate located 30 cm away from the ionizing electrode pin to drop to 200 V, which is 10% of the voltage from 2000 V. It indicates the ion generating ability of the ionizing electrode pin. The smaller this value, the better the ion generating ability. In Table 1, it can be seen that the fin made of the conductive ceramic of the present invention has superior characteristics than the semiconductor fin.

이온전류 또는 이온방사율은 전극핀에서 30 cm 떨어진 지점에서 측정된 전하량의 값으로 세가지 핀 모두 동일한 값을 나타내었다. 입자방출량은 단위시간당 마모에 의해 생성되어 방출되는 입자를 나타내며 이 수치가 높으면 마모에 의해 오염이 발생할 확률이 높음을 의미하며, 세라믹 핀의 경우 반도체계 핀보다 5배 이상 낮은 값을 나타내었다.The ion current or ion emissivity is the value of the charge measured at 30 cm away from the electrode pin, and all three pins showed the same value. Particle emissions indicate particles that are produced and released by abrasion per unit time. Higher values indicate that contamination is more likely to occur due to abrasion, and ceramic fins are more than five times lower than semiconductor fins.

적층층의 두께는 부식 등에 의해 전극핀 선단부에 형성되는 피막층으로 전극핀의 수명 및 오염과 직접적인 관계가 있다. 표 1에 나타난 값은 20일 동안 사용한 전극핀을 대상으로 측정한 값으로서 세라믹핀이 반도체계 핀에 비해 10배 이상 작은 값을 가짐을 알 수 있다. 결과적으로 본 발명에서 개발된 세라믹 조성물을 사용하여 만든 이온화 전극핀은 기존의 반도체 및 금속재료로 만든 이온화전극핀에 비해 이온발생능력과 수명 측면에서 훨씬 우수한 특성을 가진다.The thickness of the laminated layer is a coating layer formed on the tip of the electrode pin by corrosion or the like and has a direct relationship with the life and contamination of the electrode pin. The values shown in Table 1 are measured for the electrode pins used for 20 days, and it can be seen that the ceramic pins have a value 10 times smaller than the semiconductor pins. As a result, the ionizing electrode pins made using the ceramic composition developed in the present invention have much superior characteristics in terms of ion generation ability and lifespan than the ionizing electrode pins made of conventional semiconductor and metal materials.

본 발명에서 제안한 이온화 전극핀용 세라믹 조성물은 난소결성 물질로 알려진 탄화티타늄과 보론티타늄에 적절한 소결조제를 사용함으로써 전기전도도를 유지하면서 상대밀도 98% 이상의 우수한 소결특성을 갖는다. 이 조성물은 기존의 반도체 재료에 비해 이온발생능력과 내마모성이 우수하기 때문에 정전기 방지용 장비에 적용할 경우 수명증가와 정전기 제거효율의 증대를 이룰 수 있다. 또한, 이온화전극핀 외에도 부식성이 강한 분위기에서 사용되는 전도성 부품에 적용시 수명증가와 부품에서 발생하는 오염을 크게 줄일 수 있다.The ceramic composition for ionizing electrode pins proposed in the present invention has excellent sintering properties of 98% or more relative density while maintaining electrical conductivity by using a sintering aid suitable for titanium carbide and boron titanium, which are known as non-sinterable materials. Since the composition has excellent ion generating ability and abrasion resistance compared to the conventional semiconductor material, when applied to the antistatic equipment can increase the life and the static elimination efficiency. In addition, when applied to conductive parts used in a highly corrosive atmosphere, in addition to the ionizing electrode pins, the lifespan and contamination generated in the parts can be greatly reduced.

Claims (3)

탄화티타늄(TiC) 15~75 중량%, 알루미나(Al2O3) 20∼80 중량% 및 이트리아 (Y2O3) 0.5∼5 중량%와, 코발트(Co) 및 니켈(Ni)을 포함하는 그룹에서 선택된 하나의 물질을 1∼4 중량% 포함하는 재질로 구성되며, 일단이 뾰족한 핀 모양을 갖는 이온화 전극핀.15 to 75% by weight of titanium carbide (TiC), 20 to 80% by weight of alumina (Al 2 O 3 ) and 0.5 to 5% by weight of yttria (Y 2 O 3 ), including cobalt (Co) and nickel (Ni) An ionized electrode pin composed of a material containing 1 to 4% by weight of a single material selected from the group having a pointed pin shape. 삭제delete 삭제delete
KR10-2001-0001697A 2001-01-12 2001-01-12 Ionizer emitter pin made of ceramic materials KR100403843B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0001697A KR100403843B1 (en) 2001-01-12 2001-01-12 Ionizer emitter pin made of ceramic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0001697A KR100403843B1 (en) 2001-01-12 2001-01-12 Ionizer emitter pin made of ceramic materials

Publications (2)

Publication Number Publication Date
KR20020061023A KR20020061023A (en) 2002-07-22
KR100403843B1 true KR100403843B1 (en) 2003-11-01

Family

ID=27691467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0001697A KR100403843B1 (en) 2001-01-12 2001-01-12 Ionizer emitter pin made of ceramic materials

Country Status (1)

Country Link
KR (1) KR100403843B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326800C (en) * 2005-07-08 2007-07-18 清华大学 Nano Co-Ni-Al2O3 composite ceramic material and its preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840006543A (en) * 1982-10-27 1984-11-30 미타 가쓰시게 Conductive ceramics
KR950031986A (en) * 1994-04-20 1995-12-20 이토 겐스케 Alumina Sintered Body
KR970015534A (en) * 1995-09-21 1997-04-28 서상기 Electrically conductive magnesia partially stabilized zirconia-titanium diboride composite material and manufacturing method
JP2000103667A (en) * 1998-09-30 2000-04-11 Kyocera Corp Al2O3-TiC-BASED SINTERED PRODUCT AND SUBSTRATE FOR THIN FILM MAGNETIC HEAD USING THE SAME ii

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840006543A (en) * 1982-10-27 1984-11-30 미타 가쓰시게 Conductive ceramics
KR950031986A (en) * 1994-04-20 1995-12-20 이토 겐스케 Alumina Sintered Body
KR970015534A (en) * 1995-09-21 1997-04-28 서상기 Electrically conductive magnesia partially stabilized zirconia-titanium diboride composite material and manufacturing method
JP2000103667A (en) * 1998-09-30 2000-04-11 Kyocera Corp Al2O3-TiC-BASED SINTERED PRODUCT AND SUBSTRATE FOR THIN FILM MAGNETIC HEAD USING THE SAME ii

Also Published As

Publication number Publication date
KR20020061023A (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JP3541108B2 (en) Ceramic sintered body and ceramic mold
US7473661B2 (en) Method for preparing a sintered body of aluminum nitride
KR101644000B1 (en) Electrostatic chuck
JP6781261B2 (en) Composite sintered body, electrostatic chuck member, and electrostatic chuck device
US20070212567A1 (en) Aluminum Nitride Junction Body And Method Of Producing The Same
US7248457B2 (en) Electrostatic chuck
JP2005041765A (en) Aluminum nitride sintered body, electrostatic chuck, electrically conductive component, component for apparatus for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered body
WO2020235651A1 (en) Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body
CN109149376B (en) Spark plug
KR100403843B1 (en) Ionizer emitter pin made of ceramic materials
JP4939379B2 (en) Aluminum nitride sintered body for electrostatic chuck
US20090284893A1 (en) Electrostatic chuck
KR100917778B1 (en) High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body
JP3313380B2 (en) Ceramics for removing static from electronic components and method for handling electronic components using the same
JP6015012B2 (en) Electrostatic chuck member
JP6156446B2 (en) Corrosion-resistant member, electrostatic chuck member, and method of manufacturing corrosion-resistant member
JP6188004B2 (en) Method for forming ceramic spray coating and functional ceramic spray coating
JP2008288428A (en) Electrostatic chuck
JP2001244246A (en) Focus ring
JP2004292267A (en) Alumina sintered body and its production method
JP6047779B2 (en) Method for producing ceramic sintered body and functional ceramic sintered body
KR100940019B1 (en) High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body
WO2016052010A1 (en) Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
JP2016188160A (en) Corrosion-resistant member and electrostatic chuck member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee