KR100402838B1 - Polyester multifilament yarns - Google Patents

Polyester multifilament yarns Download PDF

Info

Publication number
KR100402838B1
KR100402838B1 KR10-2001-0025458A KR20010025458A KR100402838B1 KR 100402838 B1 KR100402838 B1 KR 100402838B1 KR 20010025458 A KR20010025458 A KR 20010025458A KR 100402838 B1 KR100402838 B1 KR 100402838B1
Authority
KR
South Korea
Prior art keywords
yarn
strength
polyester multifilament
polyester
intrinsic viscosity
Prior art date
Application number
KR10-2001-0025458A
Other languages
Korean (ko)
Other versions
KR20020085934A (en
Inventor
조은래
오덕호
최송주
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR10-2001-0025458A priority Critical patent/KR100402838B1/en
Priority to US09/972,001 priority patent/US6641765B2/en
Priority to JP2001343265A priority patent/JP3886360B2/en
Priority to CNB021015708A priority patent/CN1255584C/en
Publication of KR20020085934A publication Critical patent/KR20020085934A/en
Application granted granted Critical
Publication of KR100402838B1 publication Critical patent/KR100402838B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Abstract

본 발명은 폴리에스테르 멀티필라멘트사에 관한 것으로, (A) 고유점도가 1.05 내지 1.13 범위인 고상중합 폴리에스테르 칩을 2790 내지 298℃의 온도로 용융방사함으로써 방출사를 얻는 단계, (B) 이 용융방출사를 냉각구역을 통과시켜 급냉고화시키는 단계, (C) 미연신사의 복굴절율이 0.06 내지 0.09가 되고 밀도가 1.360 내지 1.375가 되도록 하는 방사속도로 사를 권취하는 단계, 및 (D) 권취된 사를 1.5 내지 2.5의 총연신비로 고온연신시키는 단계를 포함하는 방법에 따라 제조된, 최종 단사섬도가 2.5 내지 3.5 데니어인 연신 폴리에스테르 멀티필라멘트사는 높은 모듈러스 및 낮은 수축율을 가지며, 이로부터 형성된 처리 코드는 우수한 치수안정성 및 강도를 가져 고무제품의 보강재로서 유용하게 사용된다.The present invention relates to a polyester multifilament yarn, comprising the steps of (A) melt spinning a solid-state polymerized polyester chip having an intrinsic viscosity in the range of 1.05 to 1.13 at a temperature of 2790 to 298 ° C., (B) melting Quenching the discharged yarn through a cooling zone, (C) winding the yarn at a spinning speed such that the birefringence of the undrawn yarn is 0.06 to 0.09 and the density is 1.360 to 1.375, and (D) wound Stretched polyester multifilament yarns having a final single yarn fineness of 2.5 to 3.5 denier having a high modulus and a low shrinkage, prepared according to a method comprising hot drawing the yarn to a total draw ratio of 1.5 to 2.5, wherein the treated cord formed therefrom It has excellent dimensional stability and strength and is usefully used as a reinforcement material for rubber products.

Description

폴리에스테르 멀티필라멘트사{POLYESTER MULTIFILAMENT YARNS}Polyester multifilament yarn {POLYESTER MULTIFILAMENT YARNS}

본 발명은 타이어의 섬유 보강재로서 특히 유용한, 높은 모듈러스(modulus) 및 낮은 수축율(shrinkage)을 갖는 개선된 폴리에스테르 멀티필라멘트사에 관한 것으로, 본 발명의 사는 우수한 치수안정성(dimensional stability) 및 강도(tenacity)를 갖는 처리 코드(treated cord)를 제공한다.The present invention relates to an improved polyester multifilament yarn having high modulus and low shrinkage, which is particularly useful as a fiber reinforcement of a tire, wherein the yarn of the present invention has excellent dimensional stability and tenacity. Provides a treated cord with

폴리에스테르 섬유는 광범위하게 사용되고 있는 섬유 중의 하나로서, 고강력 폴리에스테르 섬유는 고무 보강용 타이어 코드, 좌석 벨트, 콘베이어 벨트, V-벨트 및 호우스(hose) 등을 포함하는 다양한 산업적인 용도에 많이 사용되고 있으며, 특히 고무 타이어의 섬유 보강재로 적용하기 위해 라텍스 처리 및 열 처리를 통해 처리 코드로 전환되는 경우 우수한 치수안정성 및 강도가 요구되고 있다.Polyester fiber is one of the widely used fibers, and high strength polyester fiber is widely used in a variety of industrial applications including rubber cord reinforcement tire cords, seat belts, conveyor belts, V-belts and hoses. It is being used, especially when converted to a treatment cord through latex treatment and heat treatment to apply as a fiber reinforcement of rubber tires, excellent dimensional stability and strength is required.

미국 특허 제 4,101,525 호(데이비스 등) 및 미국 특허 제 4,491,657 호(사이또 등)는 높은 초기 모듈러스 및 낮은 수축율을 갖는 산업용 폴리에스테르 멀티필라멘트사를 개시한다. 그러나, 이들 특허에 개시된 원사(原絲)는 처리 코드로 전환되는 경우 강도가 감소하여 타이어 코드로서 요구되는 특성을 만족하지 못하는 것으로 알려져 있다.US Pat. No. 4,101,525 (Davis et al.) And US Pat. No. 4,491,657 (Cyto et al.) Disclose industrial polyester multifilament yarns having high initial modulus and low shrinkage. However, it is known that the yarns disclosed in these patents do not satisfy the characteristics required as tire cords due to a decrease in strength when converted into treatment cords.

따라서, 멀티필라멘트 폴리에스테르 섬유의 강도를 높이는 방법으로, 미국 특허 제 4,690,866 호에서는 1.2 이상의 높은 고유점도(I.V.)를 갖는 폴리에스테르 칩을 사용하여 방사하는 방법을 제안하였다. 이와 같이 칩의 점도를 높이면 방사장력을 증가시켜 미연신사의 배향 및 결정과 결정을 연결해 주는 타이 체인(tie chain)의 형성을 증가시킴으로써 처리 코드로 전환시 우수한 강도를 나타낼 수 있다. 그러나, 이 방법에서 사용한 높은 고유점도의 폴리에스테르는 고상중합시 표면과 중심 부분의 고유점도 차이가 심해 용융방사하는 경우 점도 불균일에 의해 방사성이 저하되고 필라멘트 컷(cut)이 발생하여 공정성 및 외관이 불량해질 뿐만 아니라, 높은 온도로 용융방사시켜야 하기 때문에 열분해 및 가수분해 등이 발생하여 실제로 방사된 섬유는 칩이 갖는 만큼 높은 점도를 갖지 않는다는 문제점이 있다.Therefore, as a method of increasing the strength of multifilament polyester fibers, US Patent No. 4,690,866 proposes a method of spinning using polyester chips having a high intrinsic viscosity (I.V.) of 1.2 or more. Increasing the viscosity of the chip increases the orientation of the unstretched yarn and increases the formation of a tie chain that connects the crystal to the crystal, thereby exhibiting excellent strength when converted to the treatment cord. However, the high intrinsic viscosity used in this method is very different from the intrinsic viscosity of the surface and the central part during solid state polymerization, so when melt spinning, the radioactivity is lowered due to the viscosity unevenness and filament cut is generated, resulting in fairness and appearance. In addition to being poor, since the thermal radiation and hydrolysis occurs due to the melt spinning at a high temperature, the fibers that are actually spun have a problem that does not have a high viscosity as the chip has.

따라서, 본 발명의 목적은 우수한 치수안정성 및 강도를 가진 타이어 코드의 제조가 가능한 개선된 물성을 갖는 폴리에스테르 멀티필라멘트사를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a polyester multifilament yarn having improved physical properties capable of producing tire cords with excellent dimensional stability and strength.

도 1은 본 발명의 하나의 실시양태에 따른 폴리에스테르 멀티필라멘트사 제조공정의 개략도이다.1 is a schematic diagram of a polyester multifilament yarn manufacturing process according to one embodiment of the present invention.

<도면 부호에 대한 간단한 설명><Short description of drawing symbols>

1 : 팩 2 : 노즐1: pack 2: nozzle

3 : 냉각구역 4 : 방출사3: cooling zone 4: emitting yarn

L : 후드 길이 5 : 유제 부여장치L: Hood Length 5: Emulsion Device

6, 7, 8, 9 및 10 : 연신 롤러 11 : 최종 연신사(원사)6, 7, 8, 9, and 10: stretching roller 11: final stretched yarn (yarn)

상기 목적을 달성하기 위하여 본 발명에서는,In the present invention to achieve the above object,

(A) 에틸렌 테레프탈레이트 단위를 90 몰% 이상 함유하며 고유점도가 1.05 내지 1.13 범위인 고상중합 폴리에스테르 칩을 290 내지 298℃의 온도로 용융방사함으로써 방출사를 얻는 단계,(A) obtaining a discharge yarn by melt spinning a solid-phase polymerized polyester chip containing at least 90 mol% of ethylene terephthalate units and having an intrinsic viscosity in the range of 1.05 to 1.13 at a temperature of 290 to 298 ° C.,

(B) 이 용융방출사를 냉각구역을 통과시켜 급냉고화시키는 단계,(B) quenching the molten yarn through a cooling zone;

(C) 미연신사의 복굴절율이 0.06 내지 0.09가 되고 밀도가 1.360 내지 1.375가 되도록 하는 방사속도로 사를 권취하는 단계, 및(C) winding the yarn at a spinning speed such that the birefringence of the undrawn yarn is 0.06 to 0.09 and the density is 1.360 to 1.375, and

(D) 권취된 사를 1.5 내지 2.5의 총연신비로 고온연신시키는 단계를 포함하는 방법에 의해 제조되는, 하기의 물성을 갖는 폴리에스테르 멀티필라멘트사를 제공한다;(D) provides a polyester multifilament yarn having the following physical properties, prepared by a method comprising the step of hot stretching a wound yarn at a total draw ratio of 1.5 to 2.5;

(1) 2.5 내지 3.5 데니어의 단사섬도, (2) 0.94 내지 1.00의 고유점도, (3) 0.65 내지 0.9 중량%의 DEG(디에틸렌글리콜) 함량, (4) 23 중량% 이하의 CEG(카르복실 엔드그룹) 함량, (5) 7.5 내지 8.5g/d의 강도, (6) 13.0 내지 16.0%의 신도, (7) 4.0 내지 7.0%의 수축율, 및 (8) 27 이상의 실크팩터(강도(g/d)×√절단신도(%)).(1) single thread fineness of 2.5 to 3.5 denier, (2) intrinsic viscosity of 0.94 to 1.00, (3) DEG (diethylene glycol) content of 0.65 to 0.9 wt%, (4) 23 wt% or less of CEG (carboxyl) Endgroup) content, (5) strength of 7.5 to 8.5 g / d, (6) elongation of 13.0 to 16.0%, (7) shrinkage of 4.0 to 7.0%, and (8) silk factor of 27 or more (strength (g / d) x √ Elongation at break (%)).

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 사용되는 폴리에스테르 칩은 최소한 90 몰%의 에틸렌 테레프탈레이트 단위를 함유하며, 바람직하게는 에틸렌 테레프탈레이트 단위만으로 구성된다. 또한, 이 폴리에스테르 칩은 공중합체 단위로서 에틸렌 글리콜 및 테레프탈산 또는 그의 유도체가 아닌, 하나 이상의 디올 또는 디카복실산으로부터 유도된 단위체를 소량 포함할 수 있다.The polyester chip used in the present invention contains at least 90 mol% of ethylene terephthalate units and preferably consists only of ethylene terephthalate units. The polyester chip may also comprise small amounts of units derived from one or more diols or dicarboxylic acids, rather than ethylene glycol and terephthalic acid or derivatives thereof as copolymer units.

본 발명에 따른 폴리에스테르 칩은, 안티몬 화합물을 주된 중합촉매로서 첨가하고 원료들을 용융중합하여 저점도의 로우 칩(raw chip)을 만든 후 진공하에서 1.05 내지 1.13의 고유점도 및 30ppm 이하의 수분율을 갖도록 고상중합된다. 칩의 고유점도가 1.05보다 낮으면 최종 연신사의 고유점도가 낮아져 열처리 후 처리 코드로서 고강도를 발휘할 수 없게 되고, 칩의 고유점도가 1.13보다 높으면 방사장력이 지나치게 증가하고 방출사의 단면이 불균일해져 연신 중 필라멘트 컷이 많이 발생하여 연신작업성이 불량해진다. 칩의 수분율이 30ppm을 초과하면 용융방사 중 가수분해가 유발된다. 또한, 폴리에스테르 중합체의 제조에 중합촉매로서 사용되는 안티몬 화합물은 폴리에스테르 중합체 중의 안티몬 금속으로서의 잔존량이 200 내지 300ppm이 되도록 하는 양으로 첨가할 수 있는데(첨가방법은 특별히 제한되지 않는다), 이 양이 200ppm보다 적으면 중합반응속도가 느려져 중합효율이 저하되고, 300ppm보다 많으면 중합 후 촉매 석출에 의해 팩압이 상승되고 노즐 오염속도가 증가하는 등 작업성이 불량해진다.The polyester chip according to the present invention, by adding an antimony compound as a main polymerization catalyst and melt polymerizing the raw materials to make a low viscosity raw chip (low chip) to have an intrinsic viscosity of 1.05 to 1.13 and a moisture content of 30 ppm or less under vacuum Solid phase polymerization If the intrinsic viscosity of the chip is lower than 1.05, the intrinsic viscosity of the final drawn yarn is lowered, so that it is impossible to exhibit high strength as a treatment cord after heat treatment. If the intrinsic viscosity of the chip is higher than 1.13, the radial tension is excessively increased and the cross section of the emitter is uneven, thus stretching Many filament cuts generate | occur | produce and drawability worsens. If the moisture content of the chip exceeds 30ppm, hydrolysis occurs during melt spinning. In addition, the antimony compound used as a polymerization catalyst in the production of the polyester polymer may be added in an amount such that the amount remaining as the antimony metal in the polyester polymer is 200 to 300 ppm (the addition method is not particularly limited). If less than 200ppm, the polymerization reaction rate is slowed to decrease the polymerization efficiency. If it is more than 300ppm, the workability is poor, such as the pack pressure is increased by the precipitation of the catalyst after polymerization and the nozzle contamination rate is increased.

본 발명에 따른 폴리에스테르 멀티필라멘트사의 제조방법은, 전형적인 타이어 코드용 폴리에스테르 중합물의 특성을 갖도록 하는 원료를 사용하여, 폴리에스테르 중합체의 고유점도를 과도하게 높이지 않고 보다 저온에서 용융압출하여 용융방사 공정 중의 중합체의 고유점도의 감소를 극소화함과 동시에 최종 연신사의 단사 섬도를 낮추어 방출사의 냉각효과를 높이고, 방사속도를 적정화하여 적절한 수준의 복굴절율을 갖는 미연신사를 만든 후 연신하는 것을 기술상 특징으로 한다.The production method of the polyester multifilament yarn according to the present invention is melt-extruded by melt extrusion at a lower temperature without excessively increasing the intrinsic viscosity of the polyester polymer by using a raw material which has characteristics of a typical polyester polymer for tire cords. The technical characteristics include minimizing the decrease in intrinsic viscosity of the polymer during the process and lowering the single yarn fineness of the final stretched yarn to increase the cooling effect of the emitter, and optimizing the spinning speed to make and stretch the undrawn yarn with an appropriate level of birefringence. do.

도 1은 이러한 본 발명의 하나의 실시양태에 따른 제조공정을 개략적으로 도시한다.1 schematically shows a manufacturing process according to one embodiment of this invention.

단계 (A)에서, 폴리에스테르 칩을 팩(1) 및 노즐(2)을 통해 290 내지 298℃의 온도로 저온 용융방사함으로써 열분해 및 가수분해에 의한 중합체의 점도의 저하를 방지할 수 있다. 이때, 최종 연신사의 단사섬도가 2.5 내지 3.5 데니어가 되도록(기존에는 통상 4 내지 6 데니어 수준) 방출사의 섬도를 조절한다.In step (A), the polyester chip is melt-melted at a temperature of 290 to 298 ° C. through the pack 1 and the nozzle 2 to prevent the lowering of the viscosity of the polymer by pyrolysis and hydrolysis. At this time, the fineness of the emitting yarn is adjusted so that the single yarn fineness of the final stretched yarn is 2.5 to 3.5 denier (formerly 4 to 6 denier levels).

단계 (B)에서, 상기 단계 (A)의 용융방출사(4)를 냉각구역(3)을 통과시켜 급냉고화시키는데, 필요에 따라, 노즐(2) 직하에서 냉각구역(3) 시작점까지의 거리, 즉 후드 길이(L)에 짧은 가열장치를 설치할 수 있다. 이 구역을 지연 냉각구역 또는 가열구역이라 칭하는데, 140 내지 220mm의 길이 및 250 내지 380℃의 온도를 가질 수 있다. 냉각구역(3)에서는 냉각공기를 불어주는 방법에 따라 오픈 냉각(open quenching)법, 원형 밀폐 냉각(circular closed quenching)법 및 방사형 아웃플로우 냉각(radial outflow quenching)법 등을 적용할 수 있다. 이와 같이, 노즐(2) 직하 분위기 온도를 낮추어 방출사(4)의 온도를 가능한 빨리 냉각시켜 줌으로써 방사된 중합체의 고화점을 높이고 방사장력을 높여 미연신사의 배향 및 타이 체인의 형성을 증가시킨다. 이어, 냉각구역(3)을 통과하면서 급냉고화된 방출사(4)를 유제 부여장치(5)에 의해 0.5 내지 1.0%로 오일링할 수 있다.In step (B), the melt discharged yarn (4) of step (A) is quenched by passing through the cooling zone (3), if necessary, the distance from the nozzle 2 directly below the starting point of the cooling zone (3). That is, a short heating device can be installed in the hood length (L). This zone is called a delayed cooling zone or heating zone and may have a length of 140-220 mm and a temperature of 250-380 ° C. In the cooling zone 3, an open quenching method, a circular closed quenching method, a radial outflow quenching method, or the like may be applied according to a method of blowing cooling air. As such, by lowering the ambient temperature directly below the nozzle 2 to cool the temperature of the emitting yarn 4 as soon as possible, the solidification point of the spun polymer is increased and the radial tension is increased to increase the orientation of the undrawn yarn and the formation of tie chains. Subsequently, the quenched discharged yarn 4 may be oiled by the emulsion applying device 5 to 0.5 to 1.0% while passing through the cooling zone 3.

단계 (C)에서, 첫 번째 연신 롤러(6)에서 미연신사의 복굴절율이 0.06 내지 0.09가 되고 밀도가 1.360 내지 1.375가 되도록 하는 방사속도로 사를 권취하며, 바람직한 방사속도는 2500 내지 2800m/분이다. 복굴절율이 0.06보다 낮으면 방사시 타이 체인이 충분히 발현되지 않아 처리 코드로 전환시 강도 및 치수안정성이 떨어지고, 0.09보다 높으면 방사시 결정이 현저하게 생성되어 후연신성을 저해함으로써 원사 강도가 낮아진다. 또한, 분자의 배향과 결정화의 종합적인 평가치인 밀도에 있어서는, 복굴절율과 유사하게, 밀도가 1.360보다 낮으면 처리 코드로 전환시 강도 및 치수안정성이 떨어지고, 1.375보다 높으면 후연신성이 떨어져 원사 강도가 낮아진다.In step (C), the yarn is wound up at a spinning speed such that the birefringence of the undrawn yarn is 0.06 to 0.09 and the density is 1.360 to 1.375 in the first stretching roller 6, and the preferred spinning speed is 2500 to 2800 m / min. to be. If the birefringence is lower than 0.06, the tie chains are not sufficiently expressed during spinning, resulting in poor strength and dimensional stability during conversion to the treatment cord. If the birefringence is higher than 0.09, crystals are significantly produced during spinning, which lowers the post-stretchability, thereby lowering the yarn strength. Also, in terms of density, which is a comprehensive evaluation of molecular orientation and crystallization, similarly to birefringence, when the density is lower than 1.360, the strength and dimensional stability is lowered when switching to the treatment cord, and when the density is higher than 1.375, the yarn strength is lowered. Lowers.

단계 (D)에서, 첫 번째 연신 롤러(6)를 통과한 사를 스핀드로우(spin draw) 공법으로 일련의 연신 롤러(7, 8, 9 및 10)를 통과시키면서 1.5 내지 2.5, 바람직하게는 1.8 내지 2.3의 총연신비로 연신시킴으로써 최종 연신사(11)를 수득한다. 상술한 바와 같이, 본 발명에 따른 최종 연신사의 단사섬도는 2.5 내지 3.5 데니어로서, 단사섬도가 2.5 데니어 미만이 되면 방사시 미연신사의 불균일이 심해 필라멘트 컷이 많이 발생하여 연신작업성 및 원사 외관이 불량해지고, 3.5 데니어를 초과하게 되면 냉각속도가 늦어져 고화점이 내려가 타이 체인의 발현이 부족하게 되어 처리 코드로 전환시 강도 및 치수안정성이 낮아진다. 이때, 통상적인 방법에따라, 연신이 완료된 사를 190 내지 240℃의 온도로 열고정(heat setting)한 다음 2 내지 5%로 이완(relax)시킬 수 있다.In step (D), the yarn passing through the first stretching roller 6 is passed through a series of stretching rollers 7, 7, 8, 9 and 10 by spin draw, while 1.5 to 2.5, preferably 1.8. The final stretched yarn 11 is obtained by stretching at a total draw ratio of 2.3 to 2.3. As described above, the single yarn fineness of the final stretched yarn according to the present invention is 2.5 to 3.5 denier, when the single yarn fineness is less than 2.5 denier, the unevenness of the undrawn yarn is severe during spinning, resulting in a large number of filament cuts, resulting in stretching workability and yarn appearance. If it becomes poor, and exceeds 3.5 denier, the cooling rate will be slowed down and the freezing point will fall and the expression of a tie chain will become inadequate and the intensity | strength and dimensional stability at the time of switching to a processing cord will become low. At this time, according to a conventional method, the finished yarn can be heat set to a temperature of 190 to 240 ℃ (relaxing) to 2 to 5%.

본 발명의 방법에 따라 제조된 연신 폴리에스테르 멀티필라멘트사는 2.5 내지 3.5데니어의 단사섬도, 0.94 내지 1.00의 고유점도, 0.65 내지 0.9 중량%의 DEG 함량, 23 중량% 이하의 CEG 함량, 7.5 내지 8.5g/d의 강도, 13.0 내지 16.0%의 신도, 4.0 내지 7.0%의 수축율 및 27 이상의 실크 팩터(강도(g/d)×√절단신도(%))를 갖는다.Stretched polyester multifilament yarn prepared according to the method of the present invention, single yarn fineness of 2.5 to 3.5 denier, intrinsic viscosity of 0.94 to 1.00, DEG content of 0.65 to 0.9 wt%, CEG content of 23 wt% or less, 7.5 to 8.5 g strength of / d, elongation of 13.0 to 16.0%, shrinkage of 4.0 to 7.0%, and a silk factor of 27 or more (strength (g / d) x elongation at break (%)).

또한, 본 발명에 따르면, 제조된 연신사는 통상적인 처리방법에 의해 처리 코드로 전환될 수 있다. 예를 들면, 1500데니어의 연신사 2가닥을 390turns/m(일반적인 폴리에스테르 처리 코드 기준 꼬임 수)로 상하연(plying and cabling)하여 코드 사를 제조하고, 이 코드 사를 1차로 딥핑 탱크(dipping tank)에서 접착액(예: 이소시아네이트+에폭시 수지, 또는 PCP(파라클로로페놀) 수지+RFL(레소르시놀-포르말린-라텍스))에 침적한 다음 건조 지역(drying zone)에서 130∼160℃로 1.0∼4.0% 연신하에 150∼200초간 건조하고 고온 연신 지역(hot stretching zone)에서 235∼245℃로 2.0∼6.0% 연신하에 45∼80초간 열고정한 후, 2차로 다시 접착액(예: RFL)에 침적한 다음 140∼160℃로 90∼120초간 건조하고 235∼245℃로 -4.0∼2.0% 연신하에 45∼80초간 열고정함으로써, 6.0 내지 6.7%의 E2.25(2.25g/d에서의 신장율)+FS(자유수축율) 및 6.7 내지 7.2g/d의 강도를 갖는 처리 코드를 제조할 수 있다.Further, according to the present invention, the drawn yarn can be converted into a treatment code by a conventional treatment method. For example, two cords of 1,500 denier yarns are plying and cabling at 390 turns / m (the number of twists based on typical polyester treated cords) to make cord yarns, which are then first dipping into a tank. in a tank) and then immersed in an adhesive solution (e.g. isocyanate + epoxy resin, or PCP (parachlorophenol) resin + RFL (resorcinol-formalin-latex)) and then at 130-160 ° C. in a drying zone. Dry for 150 to 200 seconds under 1.0 to 4.0% stretching, heat-set at 235 to 245 ° C. for 45 to 80 seconds under 2.0 to 6.0% stretching in a hot stretching zone, and then re-attach the adhesive liquid (eg RFL) Evaporation rate at 6.0-6.7% of E 2.25 (2.25 g / d) by immersion in water, followed by drying at 140-160 ° C. for 90-120 seconds and heat setting at 235-245 ° C. under -4.0-2.0% stretching for 45-80 seconds. ) And FS (free shrinkage) and treatment cords having strengths of 6.7 to 7.2 g / d can be prepared.

이와 같이, 본 발명의 고모듈러스 및 저수축율의 폴리에스테르 멀티필라멘트사로부터 형성된 처리 코드는 치수안정성 및 강도가 우수하여 타이어 및 벨트 등의 고무제품의 보강재로서 또는 기타 산업적 용도로서 유용하게 사용될 수 있다.As such, the treatment cord formed from the high modulus and low shrinkage polyester multifilament yarn of the present invention is excellent in dimensional stability and strength and can be usefully used as a reinforcement material for rubber products such as tires and belts or for other industrial uses.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 사 및 처리 코드의 각종 물성 평가는 다음과 같은 방법으로 실시하였다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the present invention, but are not limited thereto. Various physical property evaluations of the yarns and treatment cords prepared in Examples and Comparative Examples of the present invention were performed by the following methods.

(1) 고유점도(I.V.)(1) Intrinsic viscosity (I.V.)

페놀과 1,1,2,3-테트라클로로에탄올을 6:4의 무게비로 혼합한 시약(90℃)에 시료 0.1g을 농도가 0.4g/100ml 되도록 90분간 용해시킨 후 우베로데(Ubbelohde) 점도계에 옮겨담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 하기 수학식 1 및 2에 의해 R.V.값 및 I.V.값을 계산하였다.After dissolving 0.1 g of the sample in a reagent (90 ° C.) mixed with phenol and 1,1,2,3-tetrachloroethanol at a weight ratio of 6: 4 for 90 minutes to give a concentration of 0.4g / 100ml, Ubbelohde Transfer to a viscometer was carried out for 30 minutes in a 30 degreeC thermostat, and the drop number of seconds of the solution was calculated | required using a viscometer and an aspirator. The falling seconds of the solvent was also determined in the same manner, and then the R.V.value and the I.V.value were calculated by the following equations (1) and (2).

상기 식에서, C는 용액 중의 시료의 농도(g/100ml)를 나타낸다.Where C represents the concentration of the sample in solution (g / 100ml).

(2) CEG 함량(2) CEG content

ASTM D 664 및 D 4094의 규정에 따라, 시료 0.2g을 칭량하여 50ml의 삼각 플라스크에 넣은 후, 벤질알콜 20ml를 가하고 핫 플레이트(hot plate)를 이용하여 180℃까지 올려 5분간 유지시켜 시료를 완전히 용해시킨 다음, 160℃로 강제냉각시켜 135℃일 때 페놀프탈렌 5∼6방울을 가하고, 0.02N KOH로 적정하여 무색에서 분홍색으로 변하는 적정점에서 하기 수학식 3에 의해 CEG 함량(COOH million equiv./시료 kg)을 계산하였다.In accordance with ASTM D 664 and D 4094, 0.2 g of the sample was weighed and placed in a 50 ml Erlenmeyer flask, 20 ml of benzyl alcohol was added and heated to 180 ° C. using a hot plate for 5 minutes. After dissolving, forced cooling to 160 ° C., 5-6 drops of phenolphthalene at 135 ° C., titrated with 0.02N KOH, and the CEG content (COOH million equiv) according to the following equation 3 at a point where colorless to pink was changed. / Kg of sample) was calculated.

상기 식에서, A는 시료의 적정에 소비된 KOH의 양(ml)이고, B는 공시료의 적정에 소비된 KOH의 양(ml)이며, W는 시료의 무게(g)이다.Where A is the amount of KOH consumed in the titration of the sample (ml), B is the amount of KOH consumed in the titration of the blank sample (ml), and W is the weight of the sample (g).

(3) DEG 함량(3) DEG content

시료 1g을 칭량하여 50ml 용기에 넣은 후, 모노에탄올아민 3ml를 가하고 핫 플레이트를 이용하여 가열하여 시료를 완전히 용해시킨 다음, 100℃로 냉각시켜 1,6-헥산디올 0.005g이 메탄올 20ml에 용해된 용액을 가하고, 테레프탈산 10g을 가하여 중화시켰다. 얻어진 중화액을 깔대기 및 여과지를 사용하여 여과한 후 여액을 기체 크로마토그래피(Gas Chromatography)하여 DEG 함량(중량%)을 측정하였다.GC 분석은 시마주(Shimadzu) GC 분석기를 사용하고 시마주 GC 매뉴얼에 따랐다.1 g of the sample was weighed and placed in a 50 ml container. Then, 3 ml of monoethanolamine was added and heated using a hot plate to completely dissolve the sample. Then, the sample was cooled to 100 ° C. and 0.005 g of 1,6-hexanediol was dissolved in 20 ml of methanol. The solution was added and neutralized by adding 10 g of terephthalic acid. The obtained neutralized solution was filtered using a funnel and filter paper, and then the filtrate was subjected to gas chromatography (Gas Chromatography) to determine the DEG content (wt%). GC analysis was performed using a Shimadzu GC analyzer using a Shimazu GC manual. Followed.

(4) 강신도(4) strength

인스트론(Instron) 5565(인스트론사제, 미국)를 이용하여, ASTM D 885의 규정에 따라 표준 상태(20℃, 65% 상대습도)하에서 250mm의 시료 길이, 300mm/분의 인장속도 및 80turns/m의 조건으로 강신도를 측정하였다.Using Instron 5565 (Instron, USA), 250 mm sample length, 300 mm / min tensile speed and 80 turns / s under standard conditions (20 ° C., 65% relative humidity) according to ASTM D 885. Elongation was measured under conditions of m.

(5) 밀도 및 결정화도(5) density and crystallinity

23℃의 온도에서 크실렌/사염화탄소 밀도구배관을 이용하여 시료의 밀도(ρ)를 구하고, 하기 수학식 4와 같이 결정화도(%)를 산출하였다. 이때, 밀도구배관은 1.34∼1.41 g/cm2범위의 밀도를 가지며 ASTM D 1505의 규정에 따라 제조된 것을 사용하였다.The density (ρ) of the sample was obtained using a xylene / carbon tetrachloride density gradient tube at a temperature of 23 ° C., and the crystallinity (%) was calculated as in Equation 4 below. At this time, the density gradient pipe has a density in the range of 1.34 ~ 1.41 g / cm 2 and was prepared according to the provisions of ASTM D 1505.

상기 식에서, ρ는 시료의 밀도(g/㎤)를 나타내고, ρc 및 ρa는 각각 결정 및 비결정의 밀도로서 1.455 및 1.335g/㎤를 나타낸다.Where p represents the density (g / cm 3) of the sample and p and c represent 1.455 and 1.335 g / cm 3 as the density of the crystal and amorphous, respectively.

(6) 복굴절율(6) birefringence

베레크 보상기(Berek compensator)가 구비된 편광현미경을 사용하여 복굴절율을 측정하였다.The birefringence was measured using a polarizing microscope equipped with a Berek compensator.

(7) 결정 배향 함수(fc)(7) crystal orientation function (fc)

섬유 표본이 부착되는 호울더(holder)에 시료를 최대한 평행하도록 일정한 두께(0.5mm 정도)로 고정시킨 다음, 시료의 섬유축을 지면과 수직이 되도록 고정하였다. 이어, X-선 회절법(전압: 35KV, 전류: 20mA)에 따른 2θ-스캔(scan)으로 측정된 (010)면의 피크 위치에 카운터(counter)를 고정시키고 360°방위각 스캔(azimuthal scan)을 하여 최대값/2에서의 총너비(FWHM: full width at half maximum)를 측정하고, 하기 수학식 5와 같이 결정 배향 함수(fc)를 구하였다.After fixing the sample to a holder (fiber) attached to the fiber specimen to a certain thickness (about 0.5mm), and then fixed the fiber axis of the sample to be perpendicular to the ground. Next, the counter is fixed at the peak position of the (010) plane measured by 2θ-scan according to the X-ray diffraction method (voltage: 35KV, current: 20mA), and a 360 ° azimuthal scan The total width at half maximum (FWHM) was measured at the maximum value / 2, and the crystal orientation function (fc) was obtained as shown in Equation 5 below.

(8) 비정 배향 함수(fa)(8) amorphous orientation function (fa)

하기 수학식 6에 따라 비정 배향 함수(fa)를 구하였다.According to Equation 6 below, a non-orientation orientation function fa was obtained.

상기 식에서, Δn는 복굴절율을 나타내고, fc는 결정 배향 함수를 나타내며, Xc는 결정화도를 나타내고, Δnc 및 Δna는 각각 결정 및 비결정의 고유 복굴절율로서 0.220 및 0.275를 나타낸다.Wherein Δn represents birefringence, fc represents a crystal orientation function, Xc represents crystallinity, and Δnc and Δna represent 0.220 and 0.275 as intrinsic birefringences of the crystal and amorphous, respectively.

(9) 수축율(9) shrinkage

시료를 20℃, 65% 상대습도의 표준 상태하에서 24시간 이상 방치한 후 0.1g/d에 상당하는 중량을 달아 길이(L0)를 측정하고, 무장력 상태하에서 드라이 오븐을 이용하여 150℃하에서 30분간 처리한 다음 꺼내어 4시간 이상 방치한 후 하중을 달아 길이(L)를 측정하여 하기 수학식 7에 의해 수축율을 계산하였다.The sample was left at 20 ° C. and 65% relative humidity for at least 24 hours, and then weighed at a weight equivalent to 0.1 g / d to measure the length (L 0 ). After the treatment for a minute and left out for 4 hours or more, the load (L) was measured and the shrinkage was calculated by the following equation (7).

(10) 중간신도(10) Intermediate Shinto

강신도 S-S 커브 상에서 원사는 하중 4.5g/d에서의 신도를, 처리 코드는 하중 2.25g/d에서의 신도를 측정하여 중간신도로 하였다.On the S-S curve, the yarn was elongated at 4.5 g / d and the treated cord was elongated at 2.25 g / d.

(11) 치수안정성(11) Dimensional stability

처리 코드의 치수안정성(%)은 타이어 측벽 결각화(Side Wall Indentation, SWI) 및 핸들링에 관계되는 물성으로서 주어진 수축율에서의 높은 모듈러스로 정의되고, E2.25(2.25g/d에서의 신장율)+FS(자유수축율)는 서로 다른 열처리과정을 거친 처리 코드에 대한 치수안정성의 척도로서 유용하며 낮을수록 더 우수한 치수안정성을 나타낸다.The dimensional stability (%) of the treatment cord is defined as the high modulus at a given shrinkage as properties related to tire sidewall indentation (SWI) and handling, E 2.25 (elongation at 2.25 g / d) + FS Free Shrinkage is useful as a measure of dimensional stability for treatment codes that have undergone different heat treatments, and the lower the better the dimensional stability.

실시예 1Example 1

중합체 중의 안티몬 금속으로서의 잔존량이 220ppm이 되도록 안티몬 화합물을 중합 촉매로서 첨가하여 고유점도(I.V.) 1.1 및 수분율 20ppm의 고상중합 폴리에틸렌 테레프탈레이트 칩을 제조하였다. 제조된 칩을 압출기를 사용하여 최종 연신사의 단사섬도가 3.0 데니어가 되도록 900g/분의 토출량 및 288℃의 온도로 용융방사하였다. 이어, 방출사를 노즐 직하 길이 130mm의 비가열 후드(지연 냉각구역) 및 길이 530mm의 냉각구역(20℃, 0.5m/초의 풍속을 갖는 냉각공기 취입)을 통과시켜 고화시킨 다음 방사 유제로 오일링하고, 2600m/분의 방사속도로 권취하여 미연신사를 만들었다. 이어, 미연신사를 총연신비 2.15의 3단 연신을 행하고, 230℃의 온도에서 열고정하고 2% 이완시킨 다음 권취하여 1500데니어의 최종 연신사(원사)를 제조하였다.An antimony compound was added as a polymerization catalyst so that the residual amount of antimony metal in the polymer was 220 ppm, thereby preparing a solid-state polymerized polyethylene terephthalate chip having an intrinsic viscosity (I.V.) of 1.1 and a water content of 20 ppm. The produced chip was melt spun using an extruder at a discharge amount of 900 g / min and a temperature of 288 ° C. such that the single yarn fineness of the final stretched yarn was 3.0 denier. The discharge yarn is then solidified by passing a 130 mm non-heating hood (delay cooling zone) directly below the nozzle and a 530 mm length cooling zone (20 ° C., cooling air blowing with a wind speed of 0.5 m / sec), followed by oiling with spinning oil. It was then wound up at a spinning speed of 2600 m / min to make an undrawn yarn. Subsequently, the undrawn yarn was subjected to three-stage drawing with a total drawing ratio of 2.15, heat-set at a temperature of 230 ° C., relaxed by 2%, and wound to prepare a final drawn yarn (yarn) of 1500 denier.

제조된 원사 2가닥을 390turns/m로 상하연하여 코드 사를 제조한 후, 이 코드 사를 딥핑 탱크에서 (PCP 수지+RFL)의 접착액에 침적한 다음 건조 지역에서 150℃로 2% 연신하에 150초간 건조하고 고온 연신 지역에서 240℃로 8% 연신하에 60초간 열고정한 후, 다시 RFL에 침적한 다음 240℃로 100초간 건조하고 240℃로 -4% 연신하에 60초간 열고정시켜 처리 코드를 제조하였다.After two strands of yarn were rolled up and down at 390 turns / m to prepare cord yarns, the cord yarns were immersed in the adhesive solution of (PCP resin + RFL) in a dipping tank and then stretched at 150 ° C. under 2% stretching in a dry area. Dry for 150 seconds, heat set at 60 ° C. under 8% elongation at 240 ° C. for 60 seconds, then again immerse in RFL, dry 100 seconds at 240 ° C. and heat set at 240 ° C. for 60 seconds under -4% elongation, Prepared.

이와 같이 제조된 연신사 및 처리 코드의 물성을 평가하여 하기 표 1에 나타내었다.The physical properties of the drawn yarn and the treatment cord thus prepared are shown in Table 1 below.

실시예 2 내지 7 및 비교예 1 내지 7Examples 2-7 and Comparative Examples 1-7

칩의 고유점도, 방사온도, 방사속도, 단사섬도, 미연신사의 배향(복굴절율 또는 밀도) 또는 총연신비를 하기 표 1에 나타낸 바와 같이 변화시키면서 상기 실시예 1과 동일한 방법으로 실험을 수행하여 연신사 및 처리 코드를 제조하였다.The experiment was carried out in the same manner as in Example 1 while varying the intrinsic viscosity, spinning temperature, spinning speed, single yarn fineness, non-drawn yarn orientation (birefringence or density) or total draw ratio as shown in Table 1 below. Gentleman and treatment cords were prepared.

이와 같이 제조된 연신사 및 처리 코드의 물성을 평가하여 하기 표 1에 나타내었다.The physical properties of the drawn yarn and the treatment cord thus prepared are shown in Table 1 below.

본 발명에 따른 폴리에스테르 멀티필라멘트사는 높은 모듈러스 및 낮은 수축율을 비롯한 개선된 물성을 가지며, 이 사로부터 형성된 처리 코드는 치수안정성 및 강도가 우수하여 타이어 및 벨트 등의 고무제품의 보강재로서 또는 기타 산업적 용도로서 유용하게 사용될 수 있다.Polyester multifilament yarns according to the present invention have improved properties including high modulus and low shrinkage, and the treatment cords formed from these yarns have excellent dimensional stability and strength and are used as reinforcements for rubber products such as tires and belts or for other industrial uses. It can be usefully used as.

Claims (4)

(A) 에틸렌 테레프탈레이트 단위를 90 몰% 이상 함유하며 고유점도가 1.05 내지 1.13 범위인 고상중합 폴리에스테르 칩을 290 내지 298℃의 온도로 용융방사함으로써 방출사를 얻는 단계,(A) obtaining a discharge yarn by melt spinning a solid-phase polymerized polyester chip containing at least 90 mol% of ethylene terephthalate units and having an intrinsic viscosity in the range of 1.05 to 1.13 at a temperature of 290 to 298 ° C., (B) 이 용융방출사를 냉각구역을 통과시켜 급냉고화시키는 단계,(B) quenching the molten yarn through a cooling zone; (C) 미연신사의 복굴절율이 0.06 내지 0.09가 되고 밀도가 1.360 내지 1.375가 되도록 하는 방사속도로 사를 권취하는 단계, 및(C) winding the yarn at a spinning speed such that the birefringence of the undrawn yarn is 0.06 to 0.09 and the density is 1.360 to 1.375, and (D) 권취된 사를 1.5 내지 2.5의 총연신비로 고온연신시키는 단계를 포함하는 방법에 의해 제조되는, 하기의 물성을 갖는 폴리에스테르 멀티필라멘트사:(D) a polyester multifilament yarn having the following physical properties, prepared by a method comprising hot stretching a wound yarn at a total draw ratio of 1.5 to 2.5: (1) 2.5 내지 3.5데니어의 단사섬도, (2) 0.94 내지 1.00의 고유점도, (3) 0.65 내지 0.9 중량%의 DEG(디에틸렌글리콜) 함량, (4) 23 중량% 이하의 CEG(카르복실 엔드그룹) 함량, (5) 7.5 내지 8.5g/d의 강도, (6) 13.0 내지 16.0%의 신도, (7) 4.0 내지 7.0%의 수축율, 및 (8) 27 이상의 실크 팩터(강도(g/d)×√절단신도(%)).(1) single thread fineness of 2.5 to 3.5 denier, (2) intrinsic viscosity of 0.94 to 1.00, (3) DEG (diethylene glycol) content of 0.65 to 0.9 wt%, (4) 23 wt% or less of CEG (carboxyl) Endgroup) content, (5) strength of 7.5 to 8.5 g / d, (6) elongation of 13.0 to 16.0%, (7) shrinkage of 4.0 to 7.0%, and (8) silk factor of at least 27 (strength (g / d) x √ Elongation at break (%)). 제 1 항에 있어서,The method of claim 1, 단계 (C)에서 2500 내지 2800m/분의 속도로 권취하는 것을 특징으로 하는 방법에 의해 제조되는 폴리에스테르 멀티필라멘트사.Polyester multifilament yarn produced by the process, characterized in that the winding up at a speed of 2500 to 2800 m / min in step (C). 제 1 항의 폴리에스테르 멀티필라멘트사 2가닥을 상하연하고 레소르시놀-포르말린-라텍스(RFL) 처리하여 얻어지는, 하기의 물성을 갖는 처리 코드:A treatment code having the following physical properties obtained by vertically stretching two strands of the polyester multifilament yarn of claim 1 and treating resorcinol-formalin-latex (RFL): (a) 6.0 내지 6.7%의 E2.25(2.25g/d에서의 신장율)+FS(자유수축율), 및 (b) 6.7 내지 7.2g/d의 강도.(a) E 2.25 (extension at 2.25 g / d) + FS (free shrinkage) of 6.0 to 6.7%, and (b) strength of 6.7 to 7.2 g / d. 제 3 항의 처리 코드가 보강재로서 혼입된 고무제품.A rubber product in which the treatment cord of claim 3 is incorporated as a reinforcing material.
KR10-2001-0025458A 2001-05-10 2001-05-10 Polyester multifilament yarns KR100402838B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2001-0025458A KR100402838B1 (en) 2001-05-10 2001-05-10 Polyester multifilament yarns
US09/972,001 US6641765B2 (en) 2001-05-10 2001-10-04 Polyester multifilament yarn
JP2001343265A JP3886360B2 (en) 2001-05-10 2001-11-08 Method for producing polyester multifilament yarn
CNB021015708A CN1255584C (en) 2001-05-10 2002-01-08 Polyester compound filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0025458A KR100402838B1 (en) 2001-05-10 2001-05-10 Polyester multifilament yarns

Publications (2)

Publication Number Publication Date
KR20020085934A KR20020085934A (en) 2002-11-18
KR100402838B1 true KR100402838B1 (en) 2003-10-22

Family

ID=36754262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0025458A KR100402838B1 (en) 2001-05-10 2001-05-10 Polyester multifilament yarns

Country Status (4)

Country Link
US (1) US6641765B2 (en)
JP (1) JP3886360B2 (en)
KR (1) KR100402838B1 (en)
CN (1) CN1255584C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007331B1 (en) 2007-12-21 2011-01-13 코오롱인더스트리 주식회사 Method for preparing polyether filament yarn, and polyester filament yarn prepared therefrom, and polyester tire cord the comprising the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412178B1 (en) * 2001-10-31 2003-12-24 주식회사 효성 A process for preparing a polyester multifilament yarn for the industrial use
KR100456340B1 (en) * 2001-10-31 2004-11-09 주식회사 효성 Process for production of a polyester multifilament yarn for the industrial use
AU2003281697A1 (en) * 2002-07-26 2004-02-16 Kolon Industries, Inc. A high strength low shrinkage polyester drawn yarn, and a process of preparing for the same
WO2004061180A1 (en) * 2003-01-07 2004-07-22 Teijin Fibers Limited Polyester fiber structures
ES2345770T3 (en) * 2003-01-16 2010-10-01 Teijin Fibers Limited THREAD COMPOSED BY COMBINED POLYESTER FILAMENTS THAT HAVE DIFFERENT CONTRACTING COEFFICIENTS.
JP4064273B2 (en) * 2003-03-20 2008-03-19 帝人ファイバー株式会社 Method for producing polyester fiber
CN100404734C (en) * 2003-07-25 2008-07-23 东洋纺织株式会社 Method for producing high-strong and stable size polyester fibre
US7014914B2 (en) * 2004-01-09 2006-03-21 Milliken & Company Polyester yarn and airbags employing certain polyester yarn
US7056461B2 (en) * 2004-03-06 2006-06-06 Hyosung Corporation Process of making polyester multifilament yarn
KR101143721B1 (en) * 2005-12-30 2012-05-09 주식회사 효성 High Gravity Polyester Multi-filament and Its manufacturing Method
WO2007118675A1 (en) * 2006-04-12 2007-10-25 Itg Automotive Safety Textiles Gmbh Airbag fabric
CN101688586A (en) * 2007-07-03 2010-03-31 盖茨公司 Power transmission belt
WO2010147373A2 (en) * 2009-06-15 2010-12-23 주식회사 코오롱 Polyester thread for an air bag and preparation method thereof
KR101575837B1 (en) 2009-12-18 2015-12-22 코오롱인더스트리 주식회사 Polyester fiber for airbag and preparation method thereof
EP2692912A4 (en) * 2011-03-31 2014-10-15 Kolon Inc Method for manufacturing polyethylene terephthalate drawn fiber, polyethylene terephthalate drawn fiber, and tire cord
WO2013048203A2 (en) * 2011-09-30 2013-04-04 Kolon Industries, Inc. Polyester fiber and rope including the same
CN103668679B (en) * 2013-12-18 2014-12-10 浙江铭龙基布有限公司 Method for manufacturing base cloth in pool cloth
CN108130609B (en) * 2017-12-14 2020-02-21 江苏恒力化纤股份有限公司 Low-shrinkage polyester industrial yarn and preparation method thereof
CN108914391A (en) * 2018-07-26 2018-11-30 湖北省宇涛特种纤维股份有限公司 Non-woven heat bonding grid cloth and its preparation method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915513A (en) * 1982-07-13 1984-01-26 Toray Ind Inc Production of polyester fiber
US4491657A (en) * 1981-03-13 1985-01-01 Toray Industries, Inc. Polyester multifilament yarn and process for producing thereof
KR870001130A (en) * 1985-07-23 1987-03-11 이철제 Manufacturing method of filler in foam concrete
KR920001930A (en) * 1990-06-05 1992-01-30 다니이 아끼오 Gradation Correction Device and Television Receiver
JPH10204723A (en) * 1996-11-25 1998-08-04 Mitsubishi Rayon Co Ltd Modified polyester fiber and its production
KR100235758B1 (en) * 1991-01-21 2000-01-15 크리스 로저 에이치 High modulous polyester yarn for tire cord and composites and the manufacture method
KR100346059B1 (en) * 1999-12-30 2002-07-24 주식회사 효성 Process for preparing a polyester fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101525A (en) * 1976-10-26 1978-07-18 Celanese Corporation Polyester yarn of high strength possessing an unusually stable internal structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491657A (en) * 1981-03-13 1985-01-01 Toray Industries, Inc. Polyester multifilament yarn and process for producing thereof
JPS5915513A (en) * 1982-07-13 1984-01-26 Toray Ind Inc Production of polyester fiber
KR870001130A (en) * 1985-07-23 1987-03-11 이철제 Manufacturing method of filler in foam concrete
KR920001930A (en) * 1990-06-05 1992-01-30 다니이 아끼오 Gradation Correction Device and Television Receiver
KR100235758B1 (en) * 1991-01-21 2000-01-15 크리스 로저 에이치 High modulous polyester yarn for tire cord and composites and the manufacture method
JPH10204723A (en) * 1996-11-25 1998-08-04 Mitsubishi Rayon Co Ltd Modified polyester fiber and its production
KR100346059B1 (en) * 1999-12-30 2002-07-24 주식회사 효성 Process for preparing a polyester fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007331B1 (en) 2007-12-21 2011-01-13 코오롱인더스트리 주식회사 Method for preparing polyether filament yarn, and polyester filament yarn prepared therefrom, and polyester tire cord the comprising the same

Also Published As

Publication number Publication date
JP3886360B2 (en) 2007-02-28
KR20020085934A (en) 2002-11-18
JP2002339159A (en) 2002-11-27
CN1385562A (en) 2002-12-18
US6641765B2 (en) 2003-11-04
CN1255584C (en) 2006-05-10
US20030059612A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
KR100402838B1 (en) Polyester multifilament yarns
KR100402839B1 (en) Polyethylene naphtalate fiber of high strength
KR100499220B1 (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100412178B1 (en) A process for preparing a polyester multifilament yarn for the industrial use
KR101602385B1 (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
KR20150097126A (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
KR100492337B1 (en) Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same
KR101551425B1 (en) High tenacity polyester filament and process for preparing polyester tire cord
KR100456340B1 (en) Process for production of a polyester multifilament yarn for the industrial use
KR100505018B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100595607B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and radial in to out quenching method, and process for preparing the same
KR101551421B1 (en) Process for preparing polyester multifilament for tire cord
JPH0323644B2 (en)
KR100488606B1 (en) Polyethylene-2,6-naphthalate fibers using stress-strain curve and process for preparing the same
KR100627960B1 (en) Polyester Multifilament Yarn for Rubber Reinforcement and Process for Producing the Same
KR100595608B1 (en) Polyethylene-2,6-naphthalate fibers by using low speed spinning and radial in to out quenching method, and process for preparing the same
KR100505016B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and process for preparing the same
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
KR100488605B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR20170085880A (en) Manufacturing method of polyethylene terephthalate having high strength and low shrinkage
KR100618397B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR20160071714A (en) Process for preparing polyester multifilament having excellent dimensional stability and heat-resistance for tire cord
KR100595991B1 (en) Polyethylene-2,6-naphthalate fibers
KR100595842B1 (en) Polyethylene-2,6-naphthalate fibers using stress-strain curve, and process for preparing the same
KR100595992B1 (en) Polyethylene-2,6- naphthalate fibers by high speed spinning

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130905

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150914

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180912

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 17