KR100400864B1 - Automotive cold rolled sheet with excellent impact resistance and manufacturing method - Google Patents

Automotive cold rolled sheet with excellent impact resistance and manufacturing method Download PDF

Info

Publication number
KR100400864B1
KR100400864B1 KR10-1998-0060212A KR19980060212A KR100400864B1 KR 100400864 B1 KR100400864 B1 KR 100400864B1 KR 19980060212 A KR19980060212 A KR 19980060212A KR 100400864 B1 KR100400864 B1 KR 100400864B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
aluminum
steel
cold rolled
Prior art date
Application number
KR10-1998-0060212A
Other languages
Korean (ko)
Other versions
KR20000043791A (en
Inventor
김성주
전재춘
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0060212A priority Critical patent/KR100400864B1/en
Publication of KR20000043791A publication Critical patent/KR20000043791A/en
Application granted granted Critical
Publication of KR100400864B1 publication Critical patent/KR100400864B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 롤가공성이 우수하고, 가공후 충격에너지 흡수성이 우수한 자동차용 고강도 냉연강판과 그 제조방법에 관한 것으로, 중량%로 탄소 : 0.10~0.20%, 질소 : 0.01% 이하, 황 : 0.025% 이하, 망간 : 1.5~3.0%, 실리콘 : 0.2~0.8%, 알루미늄 : 0.02~0.06%, 인 : 0.03% 이하, 니오븀 : 0.005~0.03%를 첨가하되, (10 ×C + 2 ×Si + Mn + 100 ×Nb + 10 ×Mo)을 6 이상이 되도록 하고, Mn/Si비를 4이상으로 하고, 기타 강의 제조시 불가피하게 함유되는 원소를 포함한 강과, 상기의 조성으로 이루어진 알루미늄 킬드강의 강편을 1050~1300℃정도에서 균질화 처리하는 단계와; Ar3 변태점 직상인 850~950℃에서 마무리 열간압연하는 단계와; 450~700℃의 온도 범위에서 열연권취하는 단계와; 40~80%의 냉간압하율로 냉간압연하는 단계와; 750~900℃ 온도 범위에서 연속소둔을 실시하는 단계와; 로 이루어진 내충격성이 우수한 자동차용 냉연강판의 제조방법을 요지로 한다.The present invention relates to a high-strength cold rolled steel sheet for automobiles having excellent roll processability and excellent impact energy absorption after processing, and a method for manufacturing the same, in terms of weight% of carbon: 0.10 to 0.20%, nitrogen: 0.01% or less, sulfur: 0.025% or less , Manganese: 1.5 ~ 3.0%, Silicon: 0.2 ~ 0.8%, Aluminum: 0.02 ~ 0.06%, Phosphorus: 0.03% or less, Niobium: 0.005 ~ 0.03%, but (10 × C + 2 × Si + Mn + 100 XNb + 10xMo) to 6 or more, Mn / Si ratio to 4 or more, and 1050-1300 steel slabs of steel containing elements inevitably contained in the production of other steels and aluminum-kilted steels having the above composition. Homogenizing treatment at about ℃; Finishing hot rolling at 850 ° C. to 950 ° C. directly above the Ar3 transformation point; Hot rolling in a temperature range of 450 ~ 700 ℃; Cold rolling at a cold reduction rate of 40 to 80%; Performing continuous annealing at a temperature range of 750 to 900 ° C; The present invention provides a method of manufacturing a cold rolled steel sheet having excellent impact resistance.

본 발명에 의하면, 저탄소 알루미늄 킬드강에 망간(Mn), 실리콘(Si), 니오븀(Nb)등의 첨가량 및 첨가비를 적절하게 조정함으로써 높은 인장강도에도 불구하고 연신율이 높고 항복비가 높아 항복강도가 높기 때문에 롤 가공으로 제조되는 범퍼 보강재의 소지강판으로 사용할 수 있는 효과를 가진다.According to the present invention, the yield strength is high and the yield ratio is high, despite the high tensile strength, by appropriately adjusting the addition amount and the addition ratio of manganese (Mn), silicon (Si), niobium (Nb), etc. to the low carbon aluminum kicked steel. Since it is high, it has an effect that can be used as a steel sheet of the bumper reinforcement manufactured by roll processing.

Description

내충격성이 우수한 자동차용 냉연강판 및 그 제조방법Automotive cold rolled steel sheet with excellent impact resistance and manufacturing method

본 발명은 롤가공성이 우수하고, 가공후 충격에너지 흡수성이 우수한 자동차용 고강도 냉연강판과 그 제조방법에 관한 것으로, 보다 상세하게는 저탄소 알루미늄 킬드강에 망간, 실리콘, 니오븀 등의 첨가량과 첨가비를 적절하게 조절하여 페라이트상 내부에 베이나이트상과 미세한 탄화물을 석출시킴으로써 연신율이 높아 가공성이 우수할 뿐만 아니라, 인장강도와 항복강도가 높기 때문에 범퍼보강재와 같이 내 충격성이 높은 재료를 필요로 하는 자동차용 부품으로 사용할 수 있고 플래시 버트 용접성이 양호한 내충격성이 우수한 자동차용 고강도 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength cold-rolled steel sheet for automobiles having excellent roll workability and excellent impact energy absorption after processing and a method of manufacturing the same. More specifically, the addition amount and addition ratio of manganese, silicon, niobium, etc. Properly adjusted to precipitate bainite phase and fine carbide inside ferrite phase, it has high elongation and excellent workability. Also, it has high tensile strength and yield strength. The present invention relates to a high strength cold rolled steel sheet for automobiles which can be used as a component and has excellent impact resistance of flash butt weldability, and a method of manufacturing the same.

종래의 고강도 냉연강판은 저탄소 알루미늄 킬드강에 고용강화원소인 망간(Mn), 인(P) 등을 첨가하여 이들 치환형원소의 단순한 고용강화 효과를 이용하여 강도를 향상시켜 왔다. 그러나, 이와 같은 강판의 인장강도는 60Kg/mm2정도이었다.Conventional high strength cold rolled steel sheet has been improved in strength by utilizing the simple solid solution effect of these substituted elements by adding manganese (Mn), phosphorus (P), etc., which are solid solution strengthening elements, to low carbon aluminum-kilted steel. However, the tensile strength of such a steel sheet was about 60 Kg / mm 2 .

한편, 저탄소 알루미늄 킬드강에 강화능이 큰 원소인 망간, 크롬, 몰리브덴등을 첨가하고 연속소둔공정의 급냉영역에서 냉각속도를 빠르게 하여 마르텐사이트와 페라이트가 동시에 존재하는 복합조직강을 제조하고 있다.On the other hand, low-carbon aluminum-kilted steel is added with manganese, chromium, molybdenum, etc., which have high reinforcing ability, and a composite steel structure in which martensite and ferrite are present at the same time by increasing the cooling rate in the quenching zone of the continuous annealing process.

그러나, 이와 같이 제조된 강의 항복비가 낮으며, 특히 높은 인장강도에 비해 항복강도가 낮은 단점이 있기 때문에 롤가공으로 가공되는 범퍼 보강재용으로 적용되기 어려웠다.However, the yield ratio of the steel thus produced is low, and in particular, the yield strength is low compared to the high tensile strength, it was difficult to apply for the bumper reinforcement processed by roll processing.

그리고, 연속소둔공정의 급냉영역에서 냉각속도를 매우 높게 유지해야 만이 마르텐사이트가 생성되기 때문에, 연속소둔설비에 부가적인 냉각설비가 필요하게 되어 제조원가를 상승시키는 단점이 있었다. 또한, 연속소둔공정의 과시효 공정에서 과시효 처리를 실시하는 동안 급냉에 따라 형성된 마르텐사이트가 분해되므로 통상적인 연속소둔공정에서는 복합 조직강을 제조하기가 어렵다.In addition, since martensite is generated only when the cooling rate is kept very high in the quenching zone of the continuous annealing process, an additional cooling facility is required for the continuous annealing facility, thereby increasing the manufacturing cost. In addition, since the martensite formed by quenching is decomposed during the overaging treatment in the continuous aging process of the continuous annealing process, it is difficult to manufacture the composite tissue steel in the conventional continuous annealing process.

즉, 통상 450~400℃에서 실시하는 과시효 처리에서는 대부분의 마르텐사이트가 분해되기 때문에 기존의 성분계로는 높은 인장강도를 확보하기가 어려운 단점이 있다.In other words, since most martensite is decomposed in the overaging treatment usually performed at 450 to 400 ° C., it is difficult to secure high tensile strength in the existing component system.

그리고, 저탄소 알루미늄 킬드강에 Ti를 다량 첨가한 석출경화형 고장력강은 연신율이 낮기 때문에 가공용으로 사용하기 어려운 단점이 있다.In addition, the precipitation hardening type high tensile strength steel in which Ti is added to the low-carbon aluminum-kilted steel has a disadvantage of being difficult to use for processing because of its low elongation.

본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 연신율이 높고, 항복강도가 높아 가공성이 우수하고 플래시 버트 용접성이 양호한 고항복비형 고강도 냉연강판과 그 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, an object of the present invention is to provide a high yield ratio high strength cold rolled steel sheet having a high elongation, high yield strength, excellent workability and good flash butt weldability and a method of manufacturing the same.

본 발명은, 상기 목적을 달성하기 위하여, 중량%로 탄소 : 0.10~0.20%, 질소 : 0.01% 이하, 황 : 0.025% 이하, 망간 : 1.5~3.0%, 실리콘 : 0.2~0.8%, 알루미늄 : 0.02~0.06%, 인 : 0.03% 이하, 니오븀 : 0.005~0.03%를 첨가하되, (10 ×C + 2 ×Si + Mn + 100 ×Nb)을 6 이상이 되도록 하고, Mn/Si비를 4 이상으로 하고, 기타 강의 제조시 불가피하게 함유되는 원소를 포함한 내충격성이 우수한 자동차용 냉연강판을 제공하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides carbon: 0.10 to 0.20%, nitrogen: 0.01% or less, sulfur: 0.025% or less, manganese: 1.5 to 3.0%, silicon: 0.2 to 0.8%, aluminum: 0.02 by weight. ~ 0.06%, phosphorus: 0.03% or less, niobium: 0.005 ~ 0.03%, add (10 × C + 2 × Si + Mn + 100 × Nb) to 6 or more, Mn / Si ratio to 4 or more In addition, it is characterized by providing a cold rolled steel sheet for automobiles having excellent impact resistance including elements that are inevitably contained in the production of other steels.

또한, 본 발명은 상기의 조성으로 이루어진 알루미늄 킬드강을 1050~1300℃ 정도에서 균질화 처리하는 단계와, Ar3변태점 직상인 850~950℃에서 마무리 열간압연하는 단계와, 450~700℃의 온도 범위에서 열연권취하는 단계와, 40~80%의 냉간압하율로 냉간압연하는 단계와, 750~900℃ 온도 범위에서 연속소둔의 냉각을 실시하는 단계로 이루어진 내충격성이 우수한 자동차용 냉연강판의 제조방법을 제공한다.In addition, the present invention comprises the steps of homogenizing the aluminum-kilted steel with the above composition at about 1050 ~ 1300 ℃ step, hot rolling finish at 850 ~ 950 ℃ directly above the Ar 3 transformation point, and the temperature range of 450 ~ 700 ℃ The method of manufacturing cold rolled steel sheet having excellent impact resistance comprising the steps of hot rolling at cold rolling, cold rolling at a cold reduction rate of 40 to 80%, and cooling of continuous annealing at a temperature range of 750 to 900 ° C. To provide.

이하, 본발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 망간 및 실리콘, 니오븀의 첨가량 및 첨가비를 적절하게 조절함으로써 기존의 연속소둔설비의 소둔사이클을 이용하여 연신율이 높고, 항복강도가 높은 내충격성이 우수한 냉연강판을 제조할 수 있는 특징이 있다.The present invention is characterized by the ability to manufacture a cold rolled steel sheet having high impact resistance and high yield strength by using the annealing cycle of the existing continuous annealing equipment by appropriately adjusting the addition amount and addition ratio of manganese, silicon, niobium have.

즉, 본 발명에 따르면, 저탄소 알루미늄 킬드강을 이용하여 연신율이 높고, 항복강도가 높기 때문에 범퍼보강재와 같이 내충격흡수성을 필요로 하는 자동차 부품용 고강도 냉연강판은, 화학성분에 있어서 중량비로 탄소 : 0.10~0.20%, 질소 : 0.01% 이하, 황 : 0.025% 이하, 망간 : 1.5~3.0%, 실리콘 : 0.2~0.8%, 알루미늄 :0.02~0.06%, 인 : 0.03% 이하, 니오븀 : 0.005~0.03%를 첨가하되, (10 ×C + 2 ×Si + Mn + 100 ×Nb)을 6 이상이 되도록 하고, Mn/Si비를 4 이상으로 하고, 강의 제조시 불가피하게 함유되는 원소를 포함한 알루미늄 킬드강의 강편을 1050~1300℃ 정도의 온도에서 균질화 처리한 후 통상의 열간압연온도로 압연을 하되, 마무리 열간압연온도를 Ar3 변태점 직상인 850~950℃로 하고, 열연 권취는 450~700℃의 온도 범위에서 실시하며, 냉간압연공정에서 40~80%의 냉간압하율로 압연을 실시하고, 750~900℃의 온도 범위에서 연속소둔의 냉각을 실시하여 제조된다.That is, according to the present invention, high-strength cold-rolled steel sheet for automotive parts requiring impact absorption, such as bumper stiffeners because of the high elongation and high yield strength using low carbon aluminum-kilted steel, carbon: 0.10 by weight ratio in the chemical composition 0.20%, nitrogen: 0.01% or less, sulfur: 0.025% or less, manganese: 1.5-3.0%, silicon: 0.2-0.8%, aluminum: 0.02-0.06%, phosphorus: 0.03% or less, niobium: 0.005-0.03% (10 × C + 2 × Si + Mn + 100 × Nb) to 6 or more, Mn / Si ratio of 4 or more, and the steel piece of aluminum-kilted steel containing the element inevitably contained in the steel production After homogenizing at the temperature of 1050 ~ 1300 ℃, roll it to the normal hot rolling temperature, but finish hot rolling temperature is 850 ~ 950 ℃, which is directly above Ar3 transformation point, and hot rolling is carried out in the temperature range of 450 ~ 700 ℃. In the cold rolling process, rolling is carried out at a cold rolling rate of 40 to 80%. Ignoring, it is prepared by carrying out the cooling of a continuous annealing at a temperature range of 750 ~ 900 ℃.

이때, 연속소둔의 서냉영역에서의 냉각속도는 -10℃/sec 미만을 유지하여야 하며, 급냉시작온도는 600℃ 이상에서 실시하여야 한다. 급냉영역의 냉각속도는 통상의 급냉속도로 실시하되 -10℃/sec 이상은 유지하여야 한다. 또, 연속소둔의 과시효 처리는 500~350℃에서 실시되어야 한다.At this time, the cooling rate in the slow cooling zone of continuous annealing should be kept below -10 ℃ / sec, and the quenching start temperature should be performed at 600 ℃ or higher. The cooling rate in the quench zone should be maintained at the normal quench rate but maintained above -10 ℃ / sec. In addition, over-aging treatment of continuous annealing should be carried out at 500 ~ 350 ℃.

이하에서는 본 발명에 따른 냉연강판의 성분조성범위와 제조조건에 대한 한정이유를 설명한다.Hereinafter, the reason for limitation on the composition range and manufacturing conditions of the cold rolled steel sheet according to the present invention.

탄소(C)는 고용강화 효과가 크기 때문에 탄소의 양이 0.10 중량%(이하, "%"라고 함) 미만이면 고용강화 효과가 적고, 소둔공정에서 오스테나이트상에 탄소의 양이 충분히 농화되지 않아 페라이트상 내에 존재하는 제2상의 강도가 낮기 때문에 인장강도 80kgf/㎟ 이상 확보가 어렵다. 따라서 충분한 인장강도를 확보하기 위해서 탄소의 첨가량은 0,10% 이상으로 제한하였다. 탄소의 양이 0.20%를 초과하면 인장강도는 증가하지만 연신율이 크게 감소한다. 그리고, 탄소함량이 증가함에 따라 탄소당량이 증가하기 때문에 용접성이 악화된다. 따라서, 탄소의 상한 첨가량을0.20%로 제한하였다.Since carbon (C) has a high solid solution strengthening effect, if the amount of carbon is less than 0.10% by weight (hereinafter referred to as "%"), the solid solution strengthening effect is small, and the amount of carbon is not sufficiently concentrated on the austenite in the annealing process. Since the strength of the second phase present in the ferrite phase is low, it is difficult to secure a tensile strength of 80 kgf / mm 2 or more. Therefore, in order to secure sufficient tensile strength, the amount of carbon added was limited to 0,10% or more. If the amount of carbon exceeds 0.20%, the tensile strength increases but the elongation decreases significantly. As the carbon content increases, the weldability deteriorates because the carbon equivalent increases. Therefore, the upper limit of carbon addition was limited to 0.20%.

질소(N)는 탄소와 마찬가지로 고용강화 효과가 큰 원소이기 때문에 그 양이 증가될수록 강도는 증가하지만, 그에 따른 연신율의 감소효과가 매우 크기 때문에 질소의 상한 첨가량을 0.010%로 제한하였다.Nitrogen (N), like carbon, is an element having a high solid solution strengthening effect, so the strength increases as the amount is increased, but since the effect of reducing the elongation is very large, the upper limit of nitrogen addition is limited to 0.010%.

망간(Mn)은 1.5% 미만으로 첨가시에는 인장강도의 확보가 어렵다. 망간은 고용강화 효과가 비교적 큰 원소로 알려져 있기 때문에 인강강도를 확보하기 위해서도 망간의 첨가량은 1.5% 이상이 필요하다. 그러나, 망간의 첨가량이 3.0%를 초과하면 망간의 고용강화 효과에 의해서 강도는 증가하지만 연신율이 감소하여 가공성이 열화되는 단점이 있고, 다량의 망간 첨가는 제조원가의 큰 상승을 의미하므로 고망간 고강도강은 상업적으로 사용되기 어렵다. 그리고, 망간의 증가는 탄소당량을 증가시키므로 용접성을 약화시키는 작용도 한다. 따라서 망간의 첨가범위를 1.5~3.0%로 제한하였다.Manganese (Mn) is less than 1.5% is difficult to secure tensile strength when added. Since manganese is known to have a relatively high solid solution effect, the amount of manganese added is required more than 1.5% to secure the strength of phosphorus. However, if the amount of manganese exceeds 3.0%, the strength increases due to the effect of solid solution of manganese, but the elongation decreases, resulting in the deterioration of workability, and the addition of a large amount of manganese implies a large increase in manufacturing cost. Is difficult to use commercially. In addition, the increase in manganese increases the carbon equivalent, thereby also weakening the weldability. Therefore, the range of addition of manganese was limited to 1.5 ~ 3.0%.

황(S)은 일반적으로 강의 제조시 불가피하게 함유되는 원소이므로, 그 첨가 범위를 0.025% 이하로 제한하였다.Sulfur (S) is generally an element that is inevitably contained in the production of steel, so the addition range was limited to 0.025% or less.

실리콘(Si)은 고용강화 효과가 큰 원소이기 때문에 충분한 인장강도 확보를 위해서는 0.2% 이상 첨가하여야 한다. 그러나, 다량 첨가된 경우 연신율이 감소하여 가공성을 악화시키는 단점이 있고, 또한 0.8%를 초과하여 첨가되면 마르텐사이트가 형성되기 때문에 항복강도가 낮아지는 복합조직강의 특성을 보여준다. 그리고, 0.8%를 초과하여 첨가되면, 플래시 버트 용접성(flash butt weldability)을 크게 악화시키기 때문에 그 상한 첨가량을 0.8%로 제한하였다.Since silicon (Si) is an element having a high solid solution strengthening effect, it should be added at least 0.2% to secure sufficient tensile strength. However, when a large amount is added, there is a drawback in that the elongation is decreased and the workability is worsened. In addition, when it is added in excess of 0.8%, martensite is formed, so the yield strength is lowered. In addition, when the content exceeds 0.8%, the flash butt weldability is greatly deteriorated, so the upper limit amount is limited to 0.8%.

플래시 버트 용접성은 Mn/Si의 비에 따라 영향을 크게 받는데, Mn/Si 비가 4 이하가 되면 플래시 버트 용접성이 크게 악화되기 때문에 Mn/Si 비를 4 이상으로 로 하였다.The flash butt weldability is greatly affected by the ratio of Mn / Si. When the Mn / Si ratio is 4 or less, the flash butt weldability is greatly deteriorated, so the Mn / Si ratio is set to 4 or more.

인(P)은 고강도강에서 고용강화원소로 종종 첨가되지만, 인이 다량 첨가될 경우 굽힘가공성이 열화되기 때문에 인의 상한 첨가량은 0.03%로 제한하였다.Phosphorus (P) is often added as a solid solution element in high strength steels, but the upper limit of phosphorus (P) is limited to 0.03% because the bending workability is degraded when a large amount of phosphorus is added.

알루미늄(Al)은 강중에 탈산을 위하여 첨가되는데, 알루미늄의 첨가량이 0.02% 미만이면, 강중에 산소가 존재하여 제강조업시 망간, 실리콘 등 산화성 원소가 첨가될 경우 망간산화물, 실리콘산화물 등을 형성하기 때문에 망간, 실리콘 등의 성분 제어가 힘들게 된다. 그리고, 알루미늄의 양이 0.06%를 초과하면, 알루미늄의 양이 필요이상으로 첨가되어 제조원가가 상승하고 강판의 표면결함을 다량 발생시키므로 알루미늄의 상한 첨가량을 0.06%로 제한하였다.Aluminum (Al) is added to the steel for deoxidation. If the amount of aluminum is less than 0.02%, oxygen is present in the steel to form manganese oxide and silicon oxide when oxidizing elements such as manganese and silicon are added during steelmaking. This makes it difficult to control the components of manganese and silicon. And, if the amount of aluminum exceeds 0.06%, the amount of aluminum is added more than necessary to increase the manufacturing cost and generate a large amount of surface defects of the steel sheet, so the upper limit of the aluminum addition is limited to 0.06%.

니오븀(Nb)은 강중에 미량 첨가됨으로써 미세한 석출물을 형성하여 인장강도를 상승시키는 효과가 있다. 니오븀은 강중의 일부 탄소를 고착하여 페라이트 내의 탄소농도를 감소시킴으로써 연성을 향상시키는 효과가 있다. 따라서, 니오븀의 하한 첨가량은 0.005%로 제한하였다. 그러나, 니오븀을 다량 첨가할 경우, 니오븀 카바이드(NbC)와 같은 탄화물이 다량 석출되어 재결정온도를 상승시키기 때문에, 소둔시 불완전 소둔이 될 가능성이 높아 강의 연성을 저하시킨다. 따라서, 니오븀의 상한 첨가량을 0.03%로 제한하였다.Niobium (Nb) has an effect of increasing the tensile strength by forming a fine precipitate by adding a small amount in the steel. Niobium has the effect of improving ductility by fixing some carbon in the steel and reducing the carbon concentration in the ferrite. Therefore, the minimum addition amount of niobium was limited to 0.005%. However, when a large amount of niobium is added, a large amount of carbides, such as niobium carbide (NbC), is precipitated and the recrystallization temperature is increased, which leads to incomplete annealing during annealing, thereby deteriorating the ductility of the steel. Therefore, the upper limit of niobium addition amount was limited to 0.03%.

(10 ×C + 2 ×Si + Mn + 100 ×Nb)를 6 이상이 되도록 하는 것은 통상적인 소둔조건하에서 충분한 인장강도 및 항복강도를 확보하기 위해서는 충분한 양의 합금원소가 첨가되어야 하기 때문이다. 즉, 통상적인 소둔조건 하에서 과시효 온도가 350℃ 이상 유지되어야 하는데, 이러한 온도에서는 급냉과정에서 형성된 마르텐사이트가 분해되기 때문에 이를 방지하기 위하여 충분한 양의 합금원소를 함유하고 있어야 항복강도 및 인장강도의 확보가 가능하게 된다.The reason why (10 x C + 2 x Si + Mn + 100 x Nb) is 6 or more is that a sufficient amount of alloying elements must be added to secure sufficient tensile strength and yield strength under ordinary annealing conditions. That is, under normal annealing conditions, the overaging temperature should be maintained at 350 ℃ or higher. At this temperature, since martensite formed during the quenching process is decomposed, a sufficient amount of alloying elements should be included to prevent the yield strength and tensile strength. It can be secured.

본 발명에 따르면, 상기 조성으로 용해된 강의 슬라브를 1050~1300℃ 정도에서 균질화 처리를 실시한다. 균질화 온도가 1050℃ 미만이면 슬라브 온도가 낮아 열간압연이 어렵고 균질화 온도가 1300℃를 초과하면 미세한 석출물이 석출되어 가공성이 나빠진다. 따라서, 균질화 온도는 1050~1300℃로 유지한다.According to the present invention, the slab of the steel dissolved in the composition is homogenized at about 1050 to 1300 ° C. If the homogenization temperature is less than 1050 ℃, slab temperature is low, hot rolling is difficult, and if the homogenization temperature exceeds 1300 ℃ fine precipitates are precipitated and workability worsens. Therefore, homogenization temperature is maintained at 1050-1300 degreeC.

균질화 처리가 끝난 시편은 Ar3온도 직상인 850~950℃에서 마무리 열간압연을 실시하고, 450~700℃에서 권취하므로써 미세한 석출물이 분포된 열연판 조직을 얻을 수 있도록 한다.Homogenized specimens are subjected to hot-rolling at 850-950 ° C., directly above Ar 3 temperature, and wound at 450-700 ° C. to obtain hot-rolled sheet structure in which fine precipitates are distributed.

마무리 온도가 850℃ 미만이면 혼립이 생겨 가공성이 크게 감소하고 950℃를 초과하면 열간압연직후 결정립 성장속도가 증가하여 조대한 결정립이 얻어져 가공성이 열화된다. 그리고, 열연권취온도를 700℃ 이하로 하여 열연판에 석출되는 탄화물의 크기를 미세화하여 소둔공정에서 쉽게 분해될 수 있도록 한다. 즉, 미세한 탄화물은 소둔 공정에서 쉽게 용해되어 탄소가 오스테나이트로 농화되므로, 상온에서의 제2상의 강도를 높여 인장강도를 증가시키고 페라이트상의 청정화가 일어나므로 연신율이 증가하는 효과가 있다.If the finishing temperature is less than 850 ° C., the grains are formed and workability is greatly reduced. If the finish temperature is more than 950 ° C., the grain growth rate is increased immediately after hot rolling to obtain coarse grains, thereby degrading workability. In addition, the hot rolled coiling temperature is 700 ° C. or less so that the size of the carbide precipitated on the hot rolled sheet can be reduced to facilitate decomposition in the annealing process. That is, since the fine carbide is easily dissolved in the annealing process and the carbon is concentrated into austenite, the second phase at room temperature is increased to increase the tensile strength and clean the ferrite phase, thereby increasing the elongation.

한편, 열연권취온도가 700℃를 초과하면, 강중에 조대한 퍼얼라이트가 형성되어 소둔시에 분해되기 어렵기 때문에 오스테나이트로의 탄소농화가 어려워진다. 그리고, 페라이트의 청정화가 이루어지지 않아 연신율이 낮아지기 때문에 냉연강판에서의 가공성이 크게 열화된다. 따라서, 열연권취온도의 상한값은 700℃로 제한하였다. 그리고, 권취온도가 450℃ 미만이면, 마무리 압연후 급냉을 실시하여야 하기 때문에 열연판의 형상이 불량하여 열간 압연후 권취를 어렵게 하기 때문에 그 하한 온도를 450℃로 제한하였다.On the other hand, if the hot rolled coil temperature exceeds 700 ° C, coarse pearlite is formed in the steel and it is difficult to decompose during annealing, making carbon concentration to austenite difficult. Further, since the ferrite is not cleaned and the elongation is lowered, workability in the cold rolled steel sheet is greatly deteriorated. Therefore, the upper limit of the hot rolled winding temperature was limited to 700 ° C. When the coiling temperature is less than 450 ° C, the quenching should be performed after the finish rolling, so that the shape of the hot rolled sheet is poor and the winding after the hot rolling makes it difficult to limit the lower limit temperature to 450 ° C.

냉간압하율이 재질에 미치는 영향은 크기 않지만 압하율이 충분하지 않으면 충분한 강도 확보가 어렵기 때문에 압하율의 하한을 40%로 하였고, 압하율이 증가하면 결정립이 미세해지고 강도는 증가하지만 고강도강의 경우 압하율이 80%를 초과하면 냉간압연시 압연기의 부하가 크게 걸리기 때문에 압하율 상한을 80%로 설정하였다.The cold rolling reduction effect on the material is large, but if the rolling reduction is not sufficient, it is difficult to secure sufficient strength, so the lower limit of the rolling reduction is 40% .As the rolling reduction increases, the grain size becomes fine and the strength increases, but in the case of high strength steel When the reduction ratio exceeded 80%, the load of the rolling mill was greatly increased during cold rolling, so the upper limit of the reduction ratio was set to 80%.

냉간압연이 끝나면 소둔을 실시한다. 이때, 소둔온도 750~900℃ 범위에서 연속소둔의 냉각을 실시한다. 연속소둔의 냉각을 2상영역에서 실시하게 되면 페라이트 내의 고용탄소를 오스테나이트로 방출하게 된다. 따라서, 오스테나이트의 탄소 및 망간의 양을 증가시켜 급냉후 존재하는 제2상의 양을 증가시키기 위하여, 연속소둔 냉각의 하한온도와 상한온도를 각각 750℃와 900℃로 제한하였다.After cold rolling, annealing is performed. At this time, cooling of the continuous annealing is performed in the annealing temperature range of 750 to 900 ° C. When the continuous annealing is cooled in the two-phase region, the solid solution carbon in the ferrite is released to austenite. Therefore, in order to increase the amount of carbon and manganese of austenite to increase the amount of the second phase present after quenching, the lower and upper temperatures of the continuous annealing cooling were limited to 750 ° C and 900 ° C, respectively.

냉각을 개시하기 전에 상기 온도에서 균열처리를 실시함으로써, 페라이트를 청정화하고 오스테나이트의 탄소와 망간을 농화시킨다. 그리고, 오스테나이트의 탄소 양을 더욱 농화시키기 위해서는 2상영역에서 균열가공후 서냉공정이 필요하다. 이는 균열시 형성된 일부 오스테나이트가 초석페라이트로 변태하면서 오스테나이트의 탄소 양을 더욱 증가시키기 때문이다.By performing the cracking treatment at this temperature before starting cooling, the ferrite is cleaned and the carbon and manganese of austenite are concentrated. In order to further increase the carbon content of austenite, a slow cooling process is required after the cracking process in the two-phase region. This is because some of the austenite formed during cracking transforms into saltpeter ferrite, which further increases the amount of austenite carbon.

이때, 연속소둔의 급냉은 600℃ 이상의 온도에서 실시하여야 하는데, 이는 서냉종점온도가 600℃ 미만이면 다량의 오스테나이트가 페라이트로 변태하고 일부 오스테나이트가 퍼얼라이트로 변태하기 때문이다. 즉, 급냉후 잔류되는 오스테나이트의 양이 감소되어 강도가 감소하고 연신율이 감소하기 때문에 서냉종점온도의 하한을 600℃ 미만으로 설정하였다.At this time, the rapid quenching of the continuous annealing should be performed at a temperature of 600 ° C. or higher, because when the end cooling temperature is less than 600 ° C., a large amount of austenite is transformed into ferrite and some austenite is transformed into pearlite. That is, since the amount of austenite remaining after quenching decreases, the strength decreases and the elongation decreases, the lower limit of the slow cooling end point temperature is set below 600 ° C.

그리고, 서냉영역에서 냉각속도는 오스테나이트가 퍼얼라이트로 변태하지 않을 정도로 가능한 낮게 하여 페라이트 내의 탄소를 오스테나이트로 방출시켜야 한다. 따라서, 냉각속도가 너무 빠르면 오스테나이트가 페라이트로 충분히 변태되지 않기 때문에 페라이트의 청정화가 어렵고, 오스테나이트의 탄소농화가 충분히 이루어지지 않기 때문에 서냉상한속도를 -10℃/sec로 제한하였다.In the slow cooling zone, the cooling rate should be as low as possible so that austenite does not transform into pearlite to release carbon in the ferrite into austenite. Therefore, if the cooling rate is too fast, the austenite is not sufficiently transformed into ferrite, so it is difficult to clean the ferrite, and because the carbon concentration of the austenite is not sufficiently achieved, the slow cooling upper limit rate is limited to -10 ° C / sec.

급냉영역의 냉각속도는 통상의 급냉속도로 실시하되, -10℃/sec 이상은 유지하여야 한다. 이것은 서냉후 잔류한 오스테나이트를 과시효공정까지 그대로 잔류시키기 위해서이다.The cooling rate in the quench zone should be at the normal quench rate, but should be maintained above -10 ℃ / sec. This is for retaining the austenite remaining after slow cooling until the overaging step.

급냉종점온도는 강의 마르텐사이트 변태시작온도(Ms)이상에서 반드시 유지하여야 한다. 급냉종점온도가 마르텐사이트 변태온도 이하가 되면 대부분의 오스테나이트가 마르텐사이트로 변태하기 때문에 연신율이 크게 감소하는 단점이 있고, 마르텐사이트 형성에 따른 가동전위의 발생으로 냉연강판의 항복강도를 급격히 감소시키기 때문에 급냉종점온도는 마르텐사이트변태 시작 온도인 Ms 이상 또는 400℃ 이상으로 유지하여야 한다.The quench end temperature must be maintained above the martensitic transformation temperature (Ms) of the steel. When the quench end temperature is below the martensite transformation temperature, most of the austenite is transformed to martensite, so the elongation is greatly reduced, and the yield strength of the cold rolled steel sheet is drastically reduced due to the operation potential caused by martensite formation. For this reason, the quench end point temperature should be maintained above Ms or above 400 ℃.

본 발명에 따르면, 과시효는 연신율을 향상시키는데 중요한 역할을 한다. 과시효 공정에서는 급냉후 잔류된 오스테나이트의 일부가 베이나이트로 변태하면서 오스테나이트에 더욱 탄소를 농화시키는 역할을 하기 때문이다. 따라서, 강의 통상 베이나이트 변태온도 구간인 500~350℃사이에서 과시효가 실시되어져야 한다.According to the present invention, overaging plays an important role in improving the elongation. This is because, in the overageing process, a part of the austenite remaining after quenching converts to bainite, thereby further concentrating carbon in the austenite. Therefore, overaging must be performed between 500 and 350 ° C, which is the normal bainite transformation temperature range of steel.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

표 1은 본 발명강과 비교강의 화학조성을 나타낸 것으로, 용해된 강의 강편를 1250℃ 가열로에서 1시간 동안 균질화 처리후 열간압연을 실시하였다. 이때, 열간압연 마무리온도는 900℃, 권취온도는 620℃로 하였으며, 냉간압하율을 48%로 하여 냉간압연한 후 소둔공정의 냉각개시온도를 각각 800, 830, 860℃로 하여 60초간 연속소둔을 실시하였다. 연속소둔시 서냉대의 냉각속도는 -6℃/sec로 하고, 급냉대의 냉각속도는 -30℃/sec로 하였다. 계속해서 과시효처리는 420℃로 하였다. 소둔시간은 60초로 하였다. 연속소둔이 끝난 시편은 만능인장시험기를 이용하여 인장시험을 실시하였다.Table 1 shows the chemical composition of the present invention steel and comparative steel, the steel strip of the molten steel was subjected to hot rolling after homogenization treatment for 1 hour in a 1250 ℃ heating furnace. At this time, the hot rolling finish temperature was 900 ℃, the coiling temperature was 620 ℃, and the cold rolling was performed at 48% cold rolling rate, and then the cold start temperature of the annealing process was 800, 830, 860 ℃ for 60 seconds. Was carried out. During continuous annealing, the cooling rate of the slow cooling zone was -6 ° C / sec, and the cooling rate of the quenching zone was -30 ° C / sec. Subsequently, overaging treatment was 420 degreeC. Annealing time was 60 second. The specimens after continuous annealing were subjected to a tensile test using a universal tensile tester.

표 2는 본 발명강과 비교강의 소둔온도에 따른 기계적 성질의 변화를 나타낸 것이다. 본 발명강인 강번 1~3은 항복강도 50kgf/㎟ 이상, 인장강도 80kgf/㎟ 이상, 항복비(항복강도/인장강도) 0.67이상, 연신율 20%이상으로 고항복비형 고강도를 나타내면서 가공성이 우수한 특성을 보여주고 있다.Table 2 shows the change in mechanical properties according to the annealing temperature of the inventive steel and the comparative steel. Steel Nos. 1 to 3 of the present invention exhibit a high yield ratio type high strength with a yield strength of 50kgf / mm2 or more, a tensile strength of 80kgf / mm2 or more, a yield ratio (yield strength / tensile strength) of 0.67 or more and an elongation of 20% or more. Is showing.

그러나, 비교강인 강번 4의 경우 니오븀이 첨가되지 않아 소둔공정에서 탄화물이 석출되지 않았기 때문에 충분한 인장강도의 확보가 어렵다.However, in the case of steel No. 4, which is a comparative steel, niobium was not added, and thus carbides were not precipitated in the annealing process, thereby ensuring sufficient tensile strength.

비교강의 강번 5, 6의 경우, 실리콘과 몰리브덴이 첨가되어 복합조직강의 특성이 나타나 항복강도가 감소하여 범퍼보강재용 소재로는 적합하지 않다. 그리고, 실리콘의 첨가량이 높고, Mn/Si가 높기 때문에 플래시 버트 용접성이 불량하여 현장생산시 압연라인에서 판파단의 가능성이 매우 높은 단점이 있다.For steel Nos. 5 and 6 of the comparative steels, silicon and molybdenum were added to show the properties of the composite steel, resulting in reduced yield strength, which is not suitable for bumper reinforcement materials. In addition, since the addition amount of silicon is high and Mn / Si is high, the flash butt weldability is poor, and thus there is a high possibility of plate breaking in the rolling line during field production.

또, 비교강의 강번 7은 티타늄의 석출물에 의한 강화가 일어나는 석출경화형 고장력강이다. 망간의 첨가량이 충분하지 않아 인장강도가 높지 않고, 연신율이 낮기 때문에 가공용으로 적용하기 어려운 단점이 있다.In addition, steel No. 7 of the comparative steel is a precipitation hardening type high tensile strength steel in which strengthening by titanium precipitates occurs. Since the amount of manganese is not sufficient, the tensile strength is not high, and the elongation is low, so that it is difficult to apply for processing.

상술한 바와 같이, 본 발명에 의하면, 저탄소 알루미늄 킬드강에 망간(Mn), 실리콘(Si), 니오븀(Nb) 등의 첨가량 및 첨가비를 적절하게 조정함으로써 높은 인장강도에도 불구하고 연신율이 높고 항복비가 높아 항복강도가 높기 때문에 롤가공으로 제조되는 범퍼보강재의 소지강판으로 사용할 수 있는 효과를 가진다.As described above, according to the present invention, the elongation is high and yields in spite of the high tensile strength by appropriately adjusting the addition amount and the addition ratio of manganese (Mn), silicon (Si), niobium (Nb) and the like to the low carbon aluminum killed steel. Because of high rain yield and high yield strength, it has an effect that can be used as a steel sheet of bumper reinforcement manufactured by roll processing.

Claims (4)

중량%로, 탄소 : 0.10~0.20%, 질소 : 0.01% 이하, 황 : 0.025% 이하, 망간 : 1.5~3.0%, 실리콘 : 0.2~0.8%, 알루미늄 : 0.02~0.06%, 인 : 0.03% 이하, 니오븀 0.005~0.03%를 첨가하되,In weight%, carbon: 0.10 to 0.20%, nitrogen: 0.01% or less, sulfur: 0.025% or less, manganese: 1.5 to 3.0%, silicon: 0.2 to 0.8%, aluminum: 0.02 to 0.06%, phosphorus: 0.03% or less, Add 0.005% to 0.03% niobium, (10 ×C + 2 ×Si + Mn + 100 ×Nb)을 6 이상이 되도록 하고,(10 × C + 2 × Si + Mn + 100 × Nb) to be 6 or more, Mn/Si비를 4 이상으로 하고,Make Mn / Si ratio 4 or more, 기타 강의 제조시 불가피하게 함유되는 원소를 포함한 것을 특징으로 하는 내충격성이 우수한 자동차용 냉연강판.Cold rolled steel sheet for automobiles having excellent impact resistance, comprising an element inevitably contained in the production of other steels. 중량%로, 탄소 : 0.10~0.20%, 질소 : 0.01% 이하, 황 : 0.025% 이하, 망간 : 1.5~3.0%, 실리콘 : 0.2~0.8%, 알루미늄 : 0.02~0.06%, 인 : 0.03% 이하, 니오븀 : 0.005~0.03%를 첨가하되, (10 ×C + 2 ×Si + Mn + 100 ×Nb)을 6이상이 되도록 하고, Mn/Si 비를 4 이상으로 하고, 기타 강의 제조시 불가피하게 함유되는 원소를 포함한 알루미늄 킬드강의 강편을 1050~1300℃에서 균질화 처리하는 단계와;In weight%, carbon: 0.10 to 0.20%, nitrogen: 0.01% or less, sulfur: 0.025% or less, manganese: 1.5 to 3.0%, silicon: 0.2 to 0.8%, aluminum: 0.02 to 0.06%, phosphorus: 0.03% or less, Niobium: 0.005 ~ 0.03% is added, but (10 × C + 2 × Si + Mn + 100 × Nb) is 6 or more, Mn / Si ratio is 4 or more, and is inevitably contained in the production of other steels Homogenizing the steel slabs of aluminum-kilted steel containing elements at 1050 to 1300 ° C; Ar3변태점 직상인 850~950℃에서 마무리 열간압연하는 단계와;Finishing hot rolling at 850 ° C. to 950 ° C. directly above the Ar 3 transformation point; 450~700℃의 온도 범위에서 열연권취하는 단계와;Hot rolling in a temperature range of 450 ~ 700 ℃; 40~80%의 냉간압하율로 냉간압연하는 단계와;Cold rolling at a cold reduction rate of 40 to 80%; 750~900℃ 온도 범위에서 연속소둔의 냉각을 실시하는 단계로 이루어진 것을특징으로 하는 내충격성이 우수한 자동차용 냉연강판의 제조방법.A method for producing a cold rolled steel sheet for automobiles having excellent impact resistance, comprising the step of performing continuous annealing at a temperature range of 750 to 900 ° C. 제2항에 있어서,The method of claim 2, 상기 연속소둔의 서냉영역에서의 냉각속도는 -10℃/sec 이하를 유지하고, 서냉시작온도는 600℃ 이상에서 실시하며, 급냉영역의 냉각속도는 -10℃/sec 이상을 유지하는 것을 특징으로 하는 내충격성이 우수한 자동차용 냉연강판의 제조방법.The cooling rate in the slow cooling zone of the continuous annealing is maintained at -10 ° C / sec or less, the slow cooling start temperature is performed at 600 ° C or higher, and the cooling rate in the quenching zone is maintained at -10 ° C / sec or more. Method for producing cold rolled steel sheet for automobiles having excellent impact resistance. 제2항에 있어서,The method of claim 2, 상기 연속소둔의 과시효 처리는 500~350℃의 온도 범위에서 실시되는 것을 특징으로 하는 내충격성이 우수한 자동차용 냉연강판의 제조방법.The over-aging treatment of the continuous annealing is a method of manufacturing a cold rolled steel sheet for automobiles, characterized in that the impact resistance is carried out in a temperature range of 500 ~ 350 ℃.
KR10-1998-0060212A 1998-12-29 1998-12-29 Automotive cold rolled sheet with excellent impact resistance and manufacturing method KR100400864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060212A KR100400864B1 (en) 1998-12-29 1998-12-29 Automotive cold rolled sheet with excellent impact resistance and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060212A KR100400864B1 (en) 1998-12-29 1998-12-29 Automotive cold rolled sheet with excellent impact resistance and manufacturing method

Publications (2)

Publication Number Publication Date
KR20000043791A KR20000043791A (en) 2000-07-15
KR100400864B1 true KR100400864B1 (en) 2003-12-24

Family

ID=19567047

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0060212A KR100400864B1 (en) 1998-12-29 1998-12-29 Automotive cold rolled sheet with excellent impact resistance and manufacturing method

Country Status (1)

Country Link
KR (1) KR100400864B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530068B1 (en) * 2001-12-17 2005-11-22 주식회사 포스코 Steel strip for the automotive reinforcement parts and method of manufacturing thereof
KR100554754B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 Method for Manufacturing Cold-rolled Steel Sheets with Ultra High Strength
KR100946066B1 (en) * 2002-12-26 2010-03-10 주식회사 포스코 Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements
KR100573587B1 (en) * 2003-12-23 2006-04-24 주식회사 포스코 Method for manufacturing Ultra High Strength Steel Sheet Having Excellent Bending Formability
KR101657820B1 (en) 2014-12-23 2016-09-20 주식회사 포스코 Cold rolled steel sheet having excellent resistance delamination and crash worthiness and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276923A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having bh characteristic uniform in transverse direction
JPH03170618A (en) * 1989-11-29 1991-07-24 Nippon Steel Corp Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPH03202421A (en) * 1989-12-29 1991-09-04 Kobe Steel Ltd Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy
JPH04141524A (en) * 1990-10-01 1992-05-15 Sumitomo Metal Ind Ltd Production of heat treatment hardened type high tensile strength steel sheet excellent in workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276923A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having bh characteristic uniform in transverse direction
JPH03170618A (en) * 1989-11-29 1991-07-24 Nippon Steel Corp Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPH03202421A (en) * 1989-12-29 1991-09-04 Kobe Steel Ltd Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy
JPH04141524A (en) * 1990-10-01 1992-05-15 Sumitomo Metal Ind Ltd Production of heat treatment hardened type high tensile strength steel sheet excellent in workability

Also Published As

Publication number Publication date
KR20000043791A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
KR101222724B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR100947203B1 (en) Cold rolled steel sheet having ultrafine grain structure and method for producing the same
EP1391526A2 (en) Dual phase steel sheet with good bake-hardening properties
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
KR100400864B1 (en) Automotive cold rolled sheet with excellent impact resistance and manufacturing method
KR100946066B1 (en) Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JP2002226941A (en) Cold rolled steel sheet with composite structure having high-tensile strength and excellent deep drawability, and production method therefor
KR960005237B1 (en) Making method of super high strength cold rolling steel sheet
KR970009089B1 (en) Method for manufacturing a hot rolled steel sheet
KR100573587B1 (en) Method for manufacturing Ultra High Strength Steel Sheet Having Excellent Bending Formability
KR100530068B1 (en) Steel strip for the automotive reinforcement parts and method of manufacturing thereof
KR100400866B1 (en) High strength cold rolled steel sheet with excellent pickling resistance and corrosion resistance to holes and manufacturing method
JP2690791B2 (en) High-strength hot-rolled steel sheet with excellent workability and method for producing the same
KR100368731B1 (en) Manufacturing method of high strength cold rolled steel sheet with excellent stretchability
JP2562964B2 (en) Manufacturing method of hot rolled high strength steel sheet for heavy working
KR19980044921A (en) Manufacturing method of low alloy composite structure high strength cold rolled steel sheet with excellent press formability
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JPH03223420A (en) Production of high strength steel
KR100256345B1 (en) The manufacturing method for high strength cold rolling steel sheet
KR960005235B1 (en) Making method of high strength hot rolling steel sheet
KR20010062901A (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130917

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140918

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150916

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160908

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee