KR100385132B1 - METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY - Google Patents

METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY Download PDF

Info

Publication number
KR100385132B1
KR100385132B1 KR1019980006291A KR19980006291A KR100385132B1 KR 100385132 B1 KR100385132 B1 KR 100385132B1 KR 1019980006291 A KR1019980006291 A KR 1019980006291A KR 19980006291 A KR19980006291 A KR 19980006291A KR 100385132 B1 KR100385132 B1 KR 100385132B1
Authority
KR
South Korea
Prior art keywords
alloy
strength
hours
aging
hardness
Prior art date
Application number
KR1019980006291A
Other languages
Korean (ko)
Other versions
KR19990071070A (en
Inventor
신광선
박순찬
Original Assignee
신광선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신광선 filed Critical 신광선
Priority to KR1019980006291A priority Critical patent/KR100385132B1/en
Publication of KR19990071070A publication Critical patent/KR19990071070A/en
Application granted granted Critical
Publication of KR100385132B1 publication Critical patent/KR100385132B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Abstract

PURPOSE: A method for improving strength of Mg-Zn alloy is provided to improve hardness and strength of Mg-Zn alloy by adding Ag to the Mg-Zn alloy and heat treating the Mg-Zn alloy. CONSTITUTION: The method comprises first step of adding 1 to 3 wt.% of Ag to the Mg-Zn alloy in the molten alloy temperature range of 690 to 710 deg.C so that Ag is melted into the molten Mg-Zn alloy; second step of homogenizing the Mg-Zn alloy passing through the first step at a temperature of 350 to 400 deg.C for 12 hours; and third step of extruding the Mg-Zn alloy passing through the second step, wherein grain size of the Mg-Zn alloy is micronized to 1/3 of the grain size compared with the Mg-Zn alloy before passing through the first step as passing through the first to third steps so that hardness and strength of the Mg-Zn alloy are improved, wherein the method further comprises fourth step of primarily performing aging on the homogenized Mg-Zn alloy at 90 deg.C for 48 hours after the third step; and fifth step of secondly performing aging on the primarily aged Mg-Zn alloy at 180 deg.C for 12 hours right after the fourth step.

Description

마그네슘-아연 합금의 강도향상 방법Strength Improvement Method of Magnesium-Zinc Alloy

본 발명은 Mg-Zn 합금에 Ag 첨가 및 열처리를 통하여 가공용 Mg-Zn 합금의 상온 경도 및 강도를 향상시키는 방법에 관한 것이다.The present invention relates to a method for improving the room temperature hardness and strength of the Mg-Zn alloy for processing by adding Ag and heat treatment to the Mg-Zn alloy.

일반적으로 Mg-Zn 합금은 마그네슘합금 중에서 가장 우수한 시효경화 거동을 보이는 합금계로 시효 후 비교적 우수한 강도와 연성을보이며 가공과 용접이 용이하다는 장점을 가지고 있다. 반면, Zn 첨가에 따른 주조시 미소기공(microporosoity) 생성으로인하여 다이캐스팅등의 주조공정에 적용하기가부적합하다는 단점을 가지고 있어 주로 압출, 압연, 및 단조 등 가공용 합금으로 사용되도록 개발되어 왔다. 또한 Mg-Zn 합금은 다른 마그네슘 합금계와는 달리 합금원소 첨가 및 과열처리 등을 통한 조직 미세화가 용이하지 않기 때문에 가공재의 강도개선 측면에서 한계를 가지고 있으며, 이는 본 합금계의 상용 측면에서 제한요소로 작용하고 있다.In general, Mg-Zn alloy is an alloy system exhibiting the best age hardening behavior among magnesium alloys, and has the advantages of relatively excellent strength and ductility after aging and easy processing and welding. On the other hand, due to the creation of microporosoity during casting due to the addition of Zn has the disadvantage that it is not suitable to apply to the casting process, such as die casting has been developed to be mainly used for processing alloys such as extrusion, rolling, and forging. In addition, unlike other magnesium alloys, Mg-Zn alloys are not easy to refine the structure through the addition of alloying elements and overheating, and thus have limitations in terms of improving the strength of the processed materials. It is working.

따라서 본 발명의 목적은 이러한 Mg-Zn 합금의 단점을 개선하기 위하여, 합금원소 첨가에 따른 가공재 조직의 미세화 및 석출거동 개선을 통하여 Mg-Zn 합금의 강도 및 경도를 향상시키는 방법을 제공하는데 있다.Therefore, an object of the present invention is to provide a method of improving the strength and hardness of the Mg-Zn alloy through the refinement of the texture of the workpiece and the improvement of precipitation behavior in order to improve the disadvantage of the Mg-Zn alloy.

도 1은 개발 합금의 명칭 및 공칭 조성,1 is the name and nominal composition of the development alloy,

도 2는 Ag 첨가에 따른 Mg-Zn 합금 압출재의 미세조직 변화를 나타낸 사진,Figure 2 is a photograph showing the microstructure change of the Mg-Zn alloy extrusion material according to the addition of Ag,

도 3a, b는 Ag 함량 및 열처리 조건에 따른 시효경화 거동을 나타낸 도면,Figure 3a, b is a view showing the age hardening behavior according to Ag content and heat treatment conditions,

도 4a, b는 Ag 첨가 및 열처리에 따른 Mg-Zn 합금의 상온 인장곡선을 나타낸 도면,Figure 4a, b is a diagram showing the room temperature tensile curve of Mg-Zn alloy with Ag addition and heat treatment,

도 5a, b 및 도 5c는 Ag 함량 및 열처리에 따른 Mg-Zn 합금의 상온 인장특성을 나타낸 도면이다.Figures 5a, b and 5c is a view showing the room temperature tensile properties of Mg-Zn alloy according to Ag content and heat treatment.

이하, 첨부된 도면을 참조하여 본 발명에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention.

도 1은 본 발명을 통해서 개발된 합금계의 명칭 및 공칭 조성을 나타낸 것이며, 본 발명에 의한 마그네슘-아연 합금의 강도향상 방법을 설명하면 다음과 같다.Figure 1 shows the name and nominal composition of the alloy system developed through the present invention, when explaining the strength improvement method of magnesium-zinc alloy according to the present invention.

본 발명은 Mg-Zn 합금의 주 재료인 마그네슘 용해시 용탕표면을 보호하기 위하여 CO2+0.5% SF6 혼합가스를 2ℓ/min의 유량으로 용탕표면에 도포 시키는 무용제 용해법을 적용하였으며, 스틸(steel) 도가니를 이용하였다. Ag는 690℃∼710℃, 바람직하게는 700℃에서 첨가한 후 교반자를 이용하여 5분간 용탕을 교반 하였으며, 670℃까지노냉한 후 Zn를 670℃∼680℃ 바람직하게는 670℃에서 첨가하고 2분간 교반 하였다. 합금의 주조는 660℃까지 노냉한 후도가니 전체를 상온의 물 속에 직접담그는 방식을 채택하였다.In order to protect the molten metal surface during the melting of magnesium, which is the main material of the Mg-Zn alloy, the present invention applies a solvent-free dissolving method in which a CO 2 + 0.5% SF6 mixed gas is applied to the molten surface at a flow rate of 2 L / min. A crucible was used. Ag was added at 690 ° C. to 710 ° C., preferably 700 ° C., followed by stirring the molten metal for 5 minutes using a stirrer. After cooling to 670 ° C., Zn was added at 670 ° C. to 680 ° C., preferably 670 ° C. Stir for minutes. The casting of the alloy adopts the method of directly immersing the whole of the furnace crucible, cooled to 660 ° C, in water at room temperature.

본 발명에서는 개발된 합금의 가공 방법으로서 압출방식을 채택하였다. 제조된 주조재는 먼저 350℃∼400℃, 바람직하게는 400℃에서 12시간동안 균질화처리를 거친 후 압출을 위한 빌렛(billet)으로 가공하였으며, 압출은 200톤 용량의 수평식 직접 압출기를 이용하여 수행하였다. 적용된 압출비는 25 : 1이며, 압출다이각(die angle, 2θ)은 180°, 램속도(ramspeed)는 2.4cm/min을 적용하였다. 압출전 빌렛은 350℃에서 1시간동안 예열 하였으며, 압출 컨테이너 및 다이은 빌렛의예열온도와 같은 350℃로 설정하였다.In the present invention, an extrusion method is adopted as a processing method of the developed alloy. The cast material was first homogenized at 350 ° C. to 400 ° C., preferably 400 ° C. for 12 hours, and then processed into a billet for extrusion. Extrusion was carried out using a 200 ton horizontal direct extruder. It was. The extrusion ratio applied was 25: 1, the die angle (theta 2) was 180 °, the ram speed (ramspeed) was applied to 2.4cm / min. The billet before extrusion was preheated at 350 ° C. for 1 hour, and the extrusion container and die were set at 350 ° C., which was the same as the billet preheating temperature.

도 2는 Ag 첨가에 따른 Mg-Zn 합금 압출재의 미세조직 변화를 나타낸 사진으로서, 전술된 바와 같은 본 발명에 의하여 제조된 압출재의 압출 후의 미세조직을 보여주고 있다. 그림에서 알 수 있는 바와 같이 Mg-6wt.%Zn으로 이루어진 Mg-Zn 합금에 1∼3wt.%, 바람직하게는 3wt.%의 Ag를 첨가하여 압출한 압출재의 미세조직상 결정립도(grain size)는 Ag를 첨가하지 않고 균질화 처리 및 압출가공되지 않은 Mg-Zn 합금에 비하여 대략 ⅓ 정도 감소하였다.Figure 2 is a photograph showing the microstructure change of the Mg-Zn alloy extrusion material according to the Ag addition, showing the microstructure after extrusion of the extruded material prepared by the present invention as described above. As can be seen in the figure, the grain size of the microstructure of the extruded material extruded by adding 1-3 wt.% Ag, preferably 3 wt.% Ag to the Mg-Zn alloy composed of Mg-6wt.% Zn is It was reduced by approximately several orders of magnitude compared to Mg-Zn alloy without homogenization and extrusion without adding Ag.

좀더 자세히 설명하면, 도 2에 도시된 바와 같이 Mg-6wt.%Zn으로 이루어진 Mg-Zn 합금(합금명칭 ZQ60)의 결정립도는 28㎛인 반면, 본 발명에 의한 압출재(합금명칭 ZQ63)의 결정립도는 10㎛이므로, 본 발명에 의한 압출재는 합금명칭<ZQ60> Mg-Zn 합금에 비하여 결정립도가 약 ⅓이 감소하여 미세화 되었다.More specifically, as shown in FIG. 2, the grain size of the Mg-Zn alloy (alloy name ZQ60) made of Mg-6wt.% Zn is 28 μm, whereas the grain size of the extruded material (alloy name ZQ63) according to the present invention is Since it is 10 micrometers, the extruded material by this invention was refine | miniaturized by the crystal grain size decreasing about Q compared with alloy name <ZQ60> Mg-Zn alloy.

본 발명에서는 시효경화에 의한 경도 및 강도 향상을 목적으로, 제조된 압출재를 대상으로 시효처리 및 이중시효처리를행하였다. 시효처리는 175℃∼185℃, 바람직하게는 180℃에서 384시간까지 시간을 달리하면서 행하였다. 한편, 이중시효처리는 1차 시효로서 85℃∼95℃, 바람직하게는 90℃에서 48 시간 동안 시효를 행한후 이를 다시 2차 시효로서 위에서 언급한 시효처리 조건을 적용하였다. 본 발명에서 적용한 열처리 방식을 기호화하여 정리하면 다음과 같다.In the present invention, for the purpose of improving the hardness and strength by aging hardening, aging treatment and double aging treatment was performed on the manufactured extruded material. The aging treatment was performed at 175 ° C. to 185 ° C., preferably at 180 ° C. for 384 hours. On the other hand, in the double aging treatment, the aging treatment was performed for 48 hours at 85 ° C. to 95 ° C., preferably 90 ° C. as the primary aging treatment, and then the above aging treatment conditions were applied as secondary aging. The heat treatment method applied in the present invention is summarized as follows.

◆ F : 압출 상태◆ F: Extrusion State

◆ T5 : 최대 시효처리◆ T5: Maximum aging treatment

◆ T5D : 최대 시효조건 까지의 이중시효처리◆ T5D: Dual aging treatment up to the maximum aging condition

이러한 열처리 방식을 적용하여 행한 압출재의 시효경화 거동은 도 3에 나타내었다. 도 3a는 Ag 첨가에 따른 180℃에서의시효경화 거동을 나타내는 것으로, Mg-6wt.% Zn 합금에 3wt.% 까지의 Ag를 첨가함에 따라 압출상태에서는 대략 40%, 24시간동안 행한 최대 시효상태에서는 대략 10%의 경도 향상을 얻을 수 있었다. 도 3b는 시효경화 거동에 미치는 이중시효처리의 효과를 나타내는 것으로, 이중시효처리를 통하여 최대 시효조건에서의 경도를 대략 8% 정도 더욱 향상시킬 수 있으며, 2차 시효시 최대 경도 도달 시간은 12시간으로 단축되었음을 알 수 있다.The age hardening behavior of the extruded material by applying such a heat treatment method is shown in FIG. 3. FIG. 3a shows the age hardening behavior at 180 ° C. with Ag addition, with the addition of up to 3 wt.% Ag in the Mg-6 wt. Approximately 10% hardness improvement could be obtained. Figure 3b shows the effect of the double aging treatment on the aging hardening behavior, it is possible to further improve the hardness at the maximum aging conditions by about 8% through the double aging treatment, the maximum hardness reached time in the second aging is 12 hours It can be seen that shortened to.

이와 같은 시효경화 거동의 분석을 통하여 얻어진 최대 시효처리 조건은 90℃에서 48시간 동안 1차 시효를 행한 후 180℃에서 12시간 동안 2차 시효를 행하는 이중시효처리 조건으로서, 제조된 압출재를 대상으로 행한 압출 상태와 최대 이중시효처리 조건에서의 Ag 함량에 따른 상온 인장시험 결과를 도 4에 나타내었으며, 도 4a, b는 각각 Mg-6wt.% Zn 합금과 Mg-6wt.% Zn-3wt.% Ag 합금의 열처리 조건에 따른 상온 인장곡선을 나타내고 있다.The maximum aging treatment conditions obtained through the analysis of aging hardening behavior are dual aging treatment conditions for performing primary aging at 90 ° C. for 48 hours and then performing secondary aging at 180 ° C. for 12 hours. The results of room temperature tensile test according to the Ag content at the extruded state and the maximum double aging treatment conditions are shown in FIG. 4, and FIGS. 4A and 4B show Mg-6wt.% Zn alloy and Mg-6wt.% Zn-3wt.%, Respectively. The room temperature tensile curve according to the heat treatment conditions of the Ag alloy is shown.

이들 인장시험의 결과 나타나는 Ag 함량 및 열처리 조건에 따른 상온 인장특성은 도 5에 나타난 바와 같다. 도 5a는 항복강도로서, 압출상태에는 Ag 첨가에 따라 144MPa에서 211MPa까지 항복강도가 증가하였으며, 최대 이중시효처리 조건에서는 265MPa에서 297MPa까지 증가하였다. 도 5b는 최대 인장강도를 나타내는 것으로, 두 열처리조건 모두에서 Ag 첨가에 따라 최대 인장강도가 다소 증가하고 있음을 알 수 있다. 한편, 도 5c는 연신율에 해당하는 것으로, 압출상태에서 Ag의 첨가에 따라 연신율이 29%에서 22%가지 다소 감소하고 있지만 강도 증가분을 고려할 때, 연신율의 희생은 그다지 크지 않음을 알 수 있다. 한편 최대 이중시효처리에 의해서도 연신율은 20% 이상을 유지하고 있음을 알 수 있다.The tensile temperature at room temperature according to Ag content and heat treatment conditions resulting from these tensile tests is as shown in FIG. 5. FIG. 5A shows the yield strength. The yield strength increased from 144 MPa to 211 MPa according to the addition of Ag in the extruded state, and increased from 265 MPa to 297 MPa under the maximum double aging treatment. Figure 5b shows the maximum tensile strength, it can be seen that the maximum tensile strength slightly increases with the addition of Ag in both heat treatment conditions. On the other hand, Figure 5c corresponds to the elongation, the elongation is slightly reduced 29% to 22% by the addition of Ag in the extrusion state, it can be seen that the sacrifice of the elongation is not very large considering the increase in strength. On the other hand, it can be seen that the elongation is maintained above 20% even by the maximum double aging treatment.

상기와 같이 이루어지는 본 발명의 결과, 이원계 Mg-Zn 합금에 Ag를 첨가하고 압출가공하여, Ag의 첨가하지 않고 균질화 처리 및 압출가공하지 않은 Mg-Zn 합금에 비하여 결정립도를 ⅓ 정도 감소시키는 결과를 얻을 수 있으며, 이와 함께, 개발된 이중시효열처리의 적용에 의하여 상온 경도 및 강도가 현저히 개선되고 높은 연신율을 가지는 새로운 마그네슘합금을 얻을 수 있다.As a result of the present invention as described above, Ag is added to the binary Mg-Zn alloy and extruded to obtain a result of significantly reducing the grain size compared to the Mg-Zn alloy not homogenized and extruded without adding Ag. In addition, the new magnesium alloy having a high elongation and a significant improvement in room temperature hardness and strength can be obtained by applying the developed dual aging heat treatment.

Claims (2)

순수 마그네슘(Mg) 및 이에 첨가된 아연(Zn)으로 구성된 Ms-Zn 합금에 있어서,In the Ms-Zn alloy composed of pure magnesium (Mg) and zinc (Zn) added thereto, 상기 Mg-Zn 합금에 Ag 1∼3wt.%를 용탕온도 690℃∼710℃인 상태에서 첨가하여 용해하는 제 1 단계;A first step of dissolving Ag in an amount of 1 to 3 wt.% In the Mg-Zn alloy at a melt temperature of 690 ° C. to 710 ° C .; 제 1 단계를 거친 Mg-Zn 합금을 350℃∼400℃에서 12시간 동안 균질화 처리하는 제 2 단계;A second step of homogenizing the Mg-Zn alloy passed through the first step at 350 ° C to 400 ° C for 12 hours; 제 2 단계를 거친 Mg-Zn 합금을 압출가공하는 제 3 단계를 포함하며, Mg-Zn 합금의 결정립도는 제 1 단계 내지 제 3단계의 과정을 거치면서, 제 1 단계 과정을 거치기 전의 Mg-Zn 합금에 비하여 1/3 크기로 미세화되어 경도 및 강도가 향상되는 Mg-Zn 합금의 강도 향상 방법.And a third step of extruding the Mg-Zn alloy passed through the second step, wherein the grain size of the Mg-Zn alloy is subjected to the first to third steps, and then to the Mg-Zn before the first step. A method for improving the strength of Mg-Zn alloys, which is finer in size compared to the alloy and is improved in hardness and strength. 제 1 항에 있어서,The method of claim 1, 상기 제 3 단계 이후에는 90℃에서 48시간 동안 1차 시효를 행하는 제 4 단계;A fourth step of performing the first aging at 90 ° C. for 48 hours after the third step; 제 4 단계 이후 곧바로 180℃에서 12시간 동안 2차 시효처리를 행하는 제 5 단계를 더 포함하여 경도 및 강도를 향상시키는 Mg-Zn 합금의 강도 향상 방법.And a fifth step of performing a second aging treatment at 180 ° C. for 12 hours immediately after the fourth step, thereby improving hardness and strength.
KR1019980006291A 1998-02-27 1998-02-27 METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY KR100385132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980006291A KR100385132B1 (en) 1998-02-27 1998-02-27 METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980006291A KR100385132B1 (en) 1998-02-27 1998-02-27 METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY

Publications (2)

Publication Number Publication Date
KR19990071070A KR19990071070A (en) 1999-09-15
KR100385132B1 true KR100385132B1 (en) 2003-08-14

Family

ID=37417493

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980006291A KR100385132B1 (en) 1998-02-27 1998-02-27 METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY

Country Status (1)

Country Link
KR (1) KR100385132B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190036725A (en) 2017-09-28 2019-04-05 한국기계연구원 Method of manufacturing for magnesium alloy sheet with improved total elongation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067028A (en) * 1960-04-27 1962-12-04 Dow Chemical Co Mg-si-zn extrusion alloy
JPS52101615A (en) * 1975-12-17 1977-08-25 Magnesium Elektron Ltd Magnesium alloy
JPS59118865A (en) * 1982-12-25 1984-07-09 Kobe Steel Ltd Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking
JPH0347941A (en) * 1989-07-13 1991-02-28 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067028A (en) * 1960-04-27 1962-12-04 Dow Chemical Co Mg-si-zn extrusion alloy
JPS52101615A (en) * 1975-12-17 1977-08-25 Magnesium Elektron Ltd Magnesium alloy
JPS59118865A (en) * 1982-12-25 1984-07-09 Kobe Steel Ltd Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking
JPH0347941A (en) * 1989-07-13 1991-02-28 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190036725A (en) 2017-09-28 2019-04-05 한국기계연구원 Method of manufacturing for magnesium alloy sheet with improved total elongation

Also Published As

Publication number Publication date
KR19990071070A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
JP7345868B2 (en) Highly efficient manufacturing method for high-strength, high-conductivity copper alloy
KR100192936B1 (en) Ultra high strength aluminum-base alloys
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
CN109628860B (en) High-strength Al-Mg-Si aluminum alloy and preparation method thereof
CN108456812B (en) Low-Sc high-strength high-toughness high-hardenability aluminum-zinc-magnesium alloy and preparation method thereof
EP1882753A1 (en) Aluminium alloy
JPH07145441A (en) Superplastic aluminum alloy and its production
KR100434808B1 (en) Method for making thin, high-strength, highly formable aluminium alloy strips
JP3891933B2 (en) High strength magnesium alloy and method for producing the same
CN105950931B (en) The high-strength high hard magnesium alloy of controllable reaction and its manufacturing method of component occurs with water
EP1882754B1 (en) Aluminium alloy
JP2006283142A (en) High-strength copper alloy superior in bending workability
EP2767608A1 (en) METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED
JP7262129B2 (en) HORIZONTAL CONTINUOUS CASTING METHOD FOR HIGH STRENGTH AND HIGH CONDUCTIVITY COPPER ALLOYS AND THEIR APPLICATIONS
JP7252655B2 (en) Continuous Extrusion Method for High-Strength, High-Conductivity Copper Alloy, Its Application, and Mold Material
CN109385559B (en) Al-Mn-Mg alloy with high Mn content and preparation method thereof
US20190345594A1 (en) Aluminum alloy wire rod and producing method thereof
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
CN114231802A (en) Rare earth aluminum alloy bar for forging aluminum alloy hub and preparation method thereof
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
CN106119648A (en) Magnesium alloy with high strength and ductility and the manufacture method of component thereof with water generation controllable reaction
KR101700419B1 (en) Method for preparing high-strength magnesium alloy extruded material using low temperature and slow speed extrusion process and magnesium alloy extruded material manufactured thereby
KR100385132B1 (en) METHOD FOR IMPROVING STRENGTH OF Mg-Zn ALLOY
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
KR100519721B1 (en) High strength magnesium alloy and its preparation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130508

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee