KR100384654B1 - Apparatus and method of tantalum production by continuous process - Google Patents

Apparatus and method of tantalum production by continuous process Download PDF

Info

Publication number
KR100384654B1
KR100384654B1 KR10-2000-0044786A KR20000044786A KR100384654B1 KR 100384654 B1 KR100384654 B1 KR 100384654B1 KR 20000044786 A KR20000044786 A KR 20000044786A KR 100384654 B1 KR100384654 B1 KR 100384654B1
Authority
KR
South Korea
Prior art keywords
tantalum
reaction
vacuum
raw material
reducing agent
Prior art date
Application number
KR10-2000-0044786A
Other languages
Korean (ko)
Other versions
KR20010049968A (en
Inventor
정성만
박형호
Original Assignee
박형호
정성만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박형호, 정성만 filed Critical 박형호
Priority to CNB008017034A priority Critical patent/CN1149295C/en
Priority to PCT/KR2000/000912 priority patent/WO2001012867A1/en
Publication of KR20010049968A publication Critical patent/KR20010049968A/en
Application granted granted Critical
Publication of KR100384654B1 publication Critical patent/KR100384654B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

개시된 내용은 일련의 공정을 연속적으로 반복하며 탄탈륨을 제조하는 탄탈륨 제조장치 및 방법에 관한 것이다.Disclosed is a tantalum production apparatus and method for producing tantalum by continuously repeating a series of processes.

본 발명의 연속공정에 의한 탄탈륨 제조장치는 탄탈륨이 산소와 결합하여 산화되는 것을 방지하기 위한 진공수단; 환원제와 반응염이 환원반응에 의해 전자를 발생하도록 환원제와 반응염이 담긴 반응용기를 적정온도로 가열하기 위한 발열수단; 및 상기 환원반응에 의해 발생된 전자를 상기 진공용기 내부에 장입된 상기 원료장입용기로 연속 이동시키기 위한 전자이동수단을 포함하는 연속공정에 의한 탄탈륨 제조장치로서 달성된다.Tantalum production apparatus according to the continuous process of the present invention comprises a vacuum means for preventing tantalum is combined with oxygen and oxidized; Heating means for heating a reaction vessel containing a reducing agent and a reaction salt to an appropriate temperature such that the reducing agent and the reaction salt generate electrons by a reduction reaction; And an electron transfer means for continuously moving the electrons generated by the reduction reaction into the raw material loading container charged in the vacuum container.

본 발명의 연속공정에 의한 탄탈륨 제조방법은 반응용기내의 산소를 배출하고, 환원제 및 반응염을 적정 진공압과 적정온도로 일정시간 열처리하는 하소단계; 상기 하소단계에 의해 열처리된 상기 환원제 및 반응염이 용해되어 전자를 발생하는 전자발생단계; 및 상기 전자발생단계에서 발생된 전자와 원료물질이 반응하여 탄탈륨을 생성하는 탄탈륨생성단계를 포함하는 연속공정에 의한 탄탈륨 제조방법으로 달성된다.Tantalum production method according to the continuous process of the present invention is to discharge the oxygen in the reaction vessel, the calcination step of heat treatment the reducing agent and the reaction salt at a suitable vacuum pressure and a suitable temperature for a predetermined time; An electron generating step of generating electrons by dissolving the reducing agent and the reaction salt heat-treated by the calcination step; And it is achieved by a tantalum production method by a continuous process comprising a tantalum generation step of generating a tantalum by reacting the electrons and the raw material generated in the electron generation step.

Description

연속적인 공정에 의한 탄탈륨 제조장치 및 방법{Apparatus and method of tantalum production by continuous process}Apparatus and method of tantalum production by continuous process

본 발명은 연속공정에 의한 탄탈륨 제조장치 및 방법에 관한 것으로, 특히 진공용기 내부에 환원제와 반응염 및 원료물질을 연속적으로 공급, 회수할 수 있게 하고, 환원제와 반응염의 반응에 의해 생성된 전자들을 도체부재를 통하여 진공용기내의 원료장입용기로 이동시킨 후 원료물질과 반응하게 하여 탄탈륨을 제조하는 일련의 공정을 연속적으로 반복하는 탄탈륨 제조장치 및 방법에 관한 것이다.The present invention relates to a tantalum production apparatus and method by a continuous process, and in particular to enable the continuous supply and recovery of the reducing agent, the reaction salt and the raw material in the vacuum vessel, and the electrons generated by the reaction of the reducing agent and the reaction salt The present invention relates to a tantalum production apparatus and method for continuously transferring a series of processes for producing tantalum by moving a raw material loading container in a vacuum vessel through a conductor member and reacting with the raw material.

일반적으로, 탄탈륨의 이용분야는 분말을 소결체로하여 유전율 및 표면적을 극대화시켜 콘덴서에 사용하고, 탄화탄탈륨을 이용하여 초경절삭공구 등에 사용하며, 산소나 질소 등의 친화력을 이용하여 진공관 등의 양극재료로 사용하고, 내식성 및 인체에 무해함을 이용하여 봉합용 바늘 등의 의료기기에 사용하며, 화학공업용, 광학용 등에 널리 사용되는 금속재료이다. 그러나 이와 같이 널리 사용되고 있는 탄탈륨은 그 제조공정에 있어서 제조시간이 많이 걸리고, 1회의 공정에 대해서한 번밖에 제조할 수 없기 때문에 작업효율이 떨어지고, 생산성이 저하되는 문제점이 있었다. 이에 대한 종래의 실시예를 도 1에서 도시하고 있다.In general, tantalum is used as a sintered body to maximize dielectric constant and surface area for condensers, carbide cutting tools for tantalum carbides, and anode materials such as vacuum tubes using affinity such as oxygen or nitrogen. It is used in medical equipment such as needle for sewing by using it as corrosion resistance and harmless to human body, and it is a metal material widely used in chemical industry, optical use, etc. However, such a widely used tantalum has a problem in that it takes a lot of manufacturing time in the manufacturing process, and because it can be manufactured only once per process, work efficiency is lowered and productivity is lowered. A conventional embodiment thereof is shown in FIG. 1.

도 1은 종래의 탄탈륨 제조장치 및 방법을 설명하기 위한 구성도이다.1 is a configuration diagram illustrating a conventional tantalum production apparatus and method.

종래의 탄탈륨 제조는 원료물질과 환원제의 물리적 접촉에 의한 1회 단속적(batch) 금속열환원법의 일종인 훈터(Hunter)법을 이용하여 제조하였다.Conventional tantalum is manufactured using the Hunter method, which is a kind of one-time batch metal thermal reduction by physical contact between a raw material and a reducing agent.

이에 대한 대략적인 제조공정은 진공용기(7)내부에 구비된 반응용기(6)내에 원료물질로서 포텐슘탄탈플로라이드(K2TaF7)와, 환원제로서 나트륨(Na)과, 반응염으로서 염화나트륨(Nacl), 염화칼륨(KCl), 염화리튬(LiCl) 등을 장입하여 교반기(3)로 혼합한다. 그리고, 진공펌프(4)로 진공을 유지하면서 가스취입구(2)를 통해 가스를 유입시켜 진공용기(7)내부의 산소를 가스배출구(5)로 배출시키고, 발열체(1)로 700 ~ 1000℃로 가열하여 수시간 동안 환원 공정을 실시한 후, 온도를 상온으로 냉각하여 반응용기(7) 속에 굳게 들러붙어 있는 탄탈륨을 반응염이나 환원제로부터 용해 분리하여 회수하는 방법으로 제조하였다.An approximate manufacturing process for this is potentium tantalum fluoride (K 2 TaF 7 ) as a raw material, sodium (Na) as a reducing agent and sodium chloride as a reaction salt in the reaction vessel 6 provided in the vacuum vessel 7. (Nacl), potassium chloride (KCl), lithium chloride (LiCl) and the like are charged and mixed with the stirrer (3). Then, the gas is introduced through the gas inlet 2 while maintaining the vacuum in the vacuum pump 4 to discharge oxygen inside the vacuum vessel 7 to the gas outlet 5, and 700 to 1000 to the heating element 1. After the reduction process for several hours by heating to ℃, the temperature was cooled to room temperature to prepare a tantalum that is firmly stuck in the reaction vessel (7) by dissolving and recovering from the reaction salt or reducing agent.

그러나, 이와 같은 탈탄륨 제조공정은 반응용기 내에 원료물질과 환원제 및 반응염 등을 동시에 혼합 장입해야하고, 장입물들의 물리적인 접촉에 의한 환원반응에 의해 탄탈륨이 석출되는 1회식의 공정인 관계로 매회 장입시마다 반응용기와 반응물들을 교환하여야만 하며, 반응에 필요한 온도 상승 및 냉각시 장시간이 소요되고, 석출 탄탈륨의 분리 회수시 미 반응염이나 환원제의 손실이 많으며, 특히 석출 탄탈륨이 반응용기 내에 굳게 들러붙으므로 석출물의 회수가 용이하지 않는 등 생산성 및 작업효율이 낮고 생산 단가가 높게 되는 문제점이 있었다.However, such a detanium manufacturing process is a one-time process in which raw materials, reducing agents, and reaction salts must be charged and mixed in the reaction vessel at the same time, and tantalum is precipitated by the reduction reaction by physical contact of the charges. The reaction vessel and reactants must be exchanged each time it is charged, it takes a long time to increase the temperature and cool down the reaction, and there is a large loss of unreacted salt or reducing agent when separating and recovering the precipitated tantalum, and in particular, the precipitated tantalum is firmly in the reaction vessel. Since the sticking is difficult to recover the precipitate, there is a problem that the productivity and work efficiency is low and the production cost is high.

따라서, 본 발명의 목적은 상기에서와 같은 종래의 결점들을 해소하기 위해서 안출한 것으로서, 진공용기 내부의 반응용기에 환원제와 반응염 및 원료물질을 연속적으로 공급, 회수할 수 있게 하고, 환원제와 반응염의 반응에 의해 생성된 전자들이 도체부재를 통하여 진공용기내의 원료장입용기로 이동되어 원료물질과 반응함으로써 탄탈륨이 생성되는 일련의 공정을 연속적으로 반복하며 탄탈륨을 제조하고자 하는데 그 목적이 있다.Accordingly, an object of the present invention is to devise to solve the above-mentioned drawbacks, and to continuously supply and recover the reducing agent, the reaction salt and the raw materials to the reaction vessel inside the vacuum vessel, and react with the reducing agent. The purpose of the present invention is to produce tantalum by continuously repeating a series of processes in which the electrons generated by the reaction of salts are transferred to the raw material loading container in the vacuum vessel through the conductor member and react with the raw material to produce tantalum.

도 1은 종래에 탄탈륨이 제조되는 장치 및 방법을 설명하기 위한 구성도1 is a block diagram illustrating a device and method for manufacturing tantalum in the related art.

도 2는 본 발명에 따른 탄탈륨 제조장치 및 방법을 설명하기 위한 구성도Figure 2 is a block diagram for explaining the tantalum production apparatus and method according to the present invention

도 3은 본 발명에 따른 탄탈륨 제조방법을 설명하기 위한 블럭도.Figure 3 is a block diagram for explaining a tantalum production method according to the present invention.

※ 도면의 주요 부분에 대한 설명※ Description of the main parts of the drawings

100:진공용기 102:덮개100: vacuum container 102: cover

103:원료물질장입구 104:잠금수단103: loading material material 104: locking means

106:가스취입구 108:가스배출구106: gas inlet 108: gas outlet

110:진공펌프 112:전원스위치110: vacuum pump 112: power switch

114:진공밸브 120:반응용기114: vacuum valve 120: reaction vessel

130:원료물질장입용기 140:절연체130: raw material charging container 140: insulator

150:1차냉각장치 160:2차냉각장치150: 1st cooling unit 160: 2nd cooling unit

170:교반기 200:챔버하우징170: stirrer 200: chamber housing

202:오목홈220:발열체 230:온도조절장치202: recess groove 220: heating element 230: temperature control device

300:도체부재 400:하소단계300: conductor member 400: calcination step

410:환원제 및 반응염투입단계 420:1차진공열처리단계410: reducing agent and reaction salt input step 420: 1st vacuum heat treatment step

430:산소배출단계 500:전자발생단계430: oxygen emission step 500: electron generation step

510:2차진공열처리단계 600:탄탈륨생성단계510: secondary vacuum heat treatment step 600: tantalum production step

610:원료물질투입단계 620:전자이동단계610: raw material input step 620: electron transfer step

630:탄탈륨생성단계 640:1차냉각단계630: Tantalum production step 640: 1st cooling step

650:2차냉각단계650: 2nd cooling stage

이와 같은 목적을 달성하기 위한 본 발명에 따른 연속공정에 의한 탄탈륨제조장치는 탄탈륨이 산소와 결합하여 산화되는 것을 방지하기 위한 진공용기; 환원제와 반응염이 환원반응에 의해 전자를 발생하도록 환원제와 반응염이 담긴 반응용기를 적정온도로 가열하기 위한 발열수단; 및 상기 환원반응에 의해 발생된 전자를 상기 진공용기 내부에 장입된 상기 원료장입용기로 연속이동시키기 위한 전자이동수단을 포함하는 연속공정에 의한 탄탈륨 제조장치로서 달성된다.Tantalum production apparatus by a continuous process according to the present invention for achieving the above object comprises a vacuum vessel for preventing the tantalum is combined with oxygen and oxidized; Heating means for heating a reaction vessel containing a reducing agent and a reaction salt to an appropriate temperature such that the reducing agent and the reaction salt generate electrons by a reduction reaction; And an electron transfer means for continuously moving the electrons generated by the reduction reaction into the raw material loading container charged in the vacuum container.

이와 같은 목적을 달성하기 위한 본 발명에 따른 연속공정에 의한 탄탈륨 제조방법은 반응용기내의 산소를 배출하고, 환원제 및 반응염을 적정 진공압과 적정온도로 일정시간 열처리하는 하소단계; 상기 하소단계에 의해 열처리된 상기 환원제 및 반응염이 용해되어 전자를 발생하는 전자발생단계; 및 상기 전자발생단계에서 발생된 전자와 원료물질이 반응하여 탄탈륨이 생성되는 탄탈륨생성단계를 포함하는 연속공정에 의한 탄탈륨 제조방법으로 이루어진다.Tantalum production method by a continuous process according to the present invention for achieving the above object is a calcination step of exhausting oxygen in the reaction vessel, heat treatment the reducing agent and the reaction salt to a suitable vacuum pressure and a predetermined temperature for a predetermined time; An electron generating step of generating electrons by dissolving the reducing agent and the reaction salt heat-treated by the calcination step; And a tantalum production method by a continuous process including a tantalum generation step of generating tantalum by reacting electrons generated in the electron generation step with a raw material.

이하, 본 발명의 바람직한 실시예를 첨부된 도면들에 의거하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부도면 도 2는 본 발명에 따른 연속공정에 의한 탄탈륨 제조장치를 설명하기 위한 구성도이다.Accompanying drawings Figure 2 is a block diagram for explaining a tantalum production apparatus by a continuous process according to the present invention.

상기 도면에 따른 본 발명의 연속공정에 의한 탄탈륨 제조장치는 탄탈륨이 산소와 결합하여 산화되는 것을 방지하기 위한 진공수단과, 환원제와 반응염이 환원반응에 의해 전자를 발생하도록 환원제와 반응염이 담긴 반응용기(120)를 적정온도로 가열하기 위한 발열수단과, 환원반응에 의해 발생된 전자를 진공용기(100) 내부에 장입된 원료장입용기(130)로 연속이동시키기 위한 전자이동수단으로 이루어진다.Tantalum production apparatus according to the continuous process of the present invention according to the drawings is a vacuum means for preventing tantalum is combined with oxygen and oxidized, and a reducing agent and a reaction salt is contained so that the reducing agent and the reaction salt to generate electrons by the reduction reaction Heating means for heating the reaction vessel 120 to an appropriate temperature, and the electron transfer means for continuously moving the electrons generated by the reduction reaction to the raw material loading container 130 charged in the vacuum vessel 100.

진공수단은 진공용기(100)와, 진공용기(100) 내부에 진공압을 발생시키는 진공펌프(110)로 이루어진다. 이 진공용기(100)는 내부에 환원제와 반응제가 담긴 반응용기(120)를 구비하고, 아르곤가스 등의 불활성가스를 취입하여 산소를 배출하기 위한 불활성가스취입구(106)와 배출구(108)를 구비하며, 상부에 덮개(102)를 구비하고 있다. 이 덮개(102)는 진공압력에 의해 개폐되는 것을 방지하기 위해 클램프형식의 잠금수단(104)을 구비하고, 평면상에 원료물질장입용기(130)를 장입하기 위한 원료물질장입구(103)를 구비하고 있다. 또한, 원료물질장입구(103)에는 진공용기(100) 내부의 진공압을 유지하기 위한 진공밸브(114)를 구비하고 있고, 반응용기(120)의 환원제와 반응염의 반응에 의한 전자가 외부로 빠져나가는 것을방지하기 위해 반응용기(120)와 진공용기(100)사이에 절연체(140)를 구비하고 있다.The vacuum means comprises a vacuum container 100 and a vacuum pump 110 for generating a vacuum pressure inside the vacuum container 100. The vacuum container 100 includes a reaction vessel 120 containing a reducing agent and a reactant therein, and includes an inert gas inlet 106 and an outlet 108 for blowing inert gas such as argon gas to discharge oxygen. It is provided, and the cover 102 is provided in the upper part. The cover 102 has a clamp-type locking means 104 to prevent opening and closing by vacuum pressure, and has a raw material charging hole 103 for charging the raw material charging container 130 on a plane. Equipped. In addition, the raw material insert 103 is provided with a vacuum valve 114 for maintaining the vacuum pressure inside the vacuum vessel 100, the electrons by the reaction of the reducing agent and the reaction salt in the reaction vessel 120 to the outside Insulator 140 is provided between the reaction vessel 120 and the vacuum vessel 100 to prevent the escape.

한편, 발열수단은 챔버(chamber)하우징(200)과, 열선의 저항을 이용하여 열을 발생하는 발열체(220)와, 발열체(220)에 의해 발생되는 온도를 조절하는 온도조절장치(230)로 이루어져 있다. 챔버(chamber)하우징(200)의 상부에는 진공용기(100)가 삽입되는 오목홈(202)을 구비하고, 이 오목홈(202)의 벽부에는 열선의 저항을 이용하여 열을 발생하는 발열체(220)를 구비하며, 이 발열체(220)에 의해 발생된 온도를 조절하기 위해 챔버(chamber)하우징(200)의 측벽면에 온도조절장치(230)를 구비하고 있다. 이 온도조절장치의 하부에는 전원스위치(112)가 구비되어 있다.On the other hand, the heating means is a chamber (200), the heating element 220 for generating heat using the resistance of the heating wire, and the temperature control device 230 for adjusting the temperature generated by the heating element 220 consist of. An upper portion of the chamber housing 200 includes a concave groove 202 into which the vacuum container 100 is inserted, and a heating element 220 generating heat by using a resistance of a heating wire in the wall of the concave groove 202. And a temperature control device 230 on the side wall surface of the chamber housing 200 to adjust the temperature generated by the heating element 220. The power switch 112 is provided in the lower part of this thermostat.

또한, 전자이동수단은 환원반응에 의해 발생된 전자를 연속이동시키기 위해 원료장입용기(130)와 반응용기(120)가 연결된 도체부재(300)로 달성된다.In addition, the electron transfer means is achieved by the conductor member 300 is connected to the raw material loading container 130 and the reaction vessel 120 to continuously move the electrons generated by the reduction reaction.

또한, 제조된 탄탈륨의 냉각을 위해 진공용기(100)의 외주면에 1차냉각장치(150)를 구비하고, 진공용기(100)에서 꺼낸 탄탈륨을 냉각하기 위해 덮개(102) 상부에 2차냉각장치(160)를 구비하고 있다.In addition, a primary cooling device 150 is provided on the outer circumferential surface of the vacuum container 100 for cooling the manufactured tantalum, and a secondary cooling device on the cover 102 to cool the tantalum taken out of the vacuum container 100. 160 is provided.

첨부도면 도 3은 본 발명에 따른 연속공정에 의한 탄탈륨 제조방법을 설명하기 위한 블럭도이다.3 is a block diagram illustrating a method of manufacturing tantalum by a continuous process according to the present invention.

상기 도면에 따른 본 발명의 연속공정에 의한 탄탈륨 제조방법은 반응용기내의 산소를 배출하고, 환원제 및 반응염을 적정 진공압과 적정온도로 일정시간 열처리하는 하소단계(400)와, 이 하소단계(400)에 의해 열처리된 상기 환원제 및 반응염이 용해되어 전자를 발생하는 전자발생단계(500)와, 전자발생단계에서 발생된 전자와 원료물질이 반응하여 탄탈륨이 생성되는 탄탈륨생성단계(600)로 이루어진다.Tantalum production method according to the continuous process of the present invention according to the drawings is to discharge oxygen in the reaction vessel, the calcination step 400 of heat treatment for a predetermined time the reducing agent and the reaction salt to the appropriate vacuum pressure and the appropriate temperature, and the calcination step ( The electron-generating step 500 for dissolving the reducing agent and the reaction salt heat-treated by 400) to generate electrons, and the tantalum producing step 600 for generating tantalum by reacting electrons and raw materials generated in the electron generating step Is done.

하소단계(400)는 환원제 및 반응염이 반응용기(120) 내부로 투입되는 환원제 및 반응염투입단계(410)와, 환원제 및 반응염을 진공과 동시에 가열하는 1차진공열처리단계(420)와, 투입된 환원제 및 반응염이 산화되지 않도록 진공용기(100) 내부에 공기보다 무거운 불활성가스를 연속적으로 투입하여 산소를 배출시키는 산소배출단계(430)로 이루어진다.The calcination step 400 is a reducing agent and reaction salt input step 410, the reducing agent and the reaction salt is introduced into the reaction vessel 120, and the first vacuum heat treatment step 420 for heating the reducing agent and the reaction salt simultaneously with a vacuum; In order to prevent the introduced reducing agent and the reaction salt from being oxidized, an oxygen discharge step 430 is performed to continuously discharge an inert gas that is heavier than air into the vacuum vessel 100 to discharge oxygen.

전자발생단계(500)는 환원제 및 반응염을 가열시켜 환원반응에 의해 전자가 발생되도록 하는 2차진공열처리단계(510)로 달성된다.The electron generation step 500 is achieved by a secondary vacuum heat treatment step 510 in which electrons are generated by a reduction reaction by heating a reducing agent and a reaction salt.

탄탈륨생성단계(600)는 원료물질투입단계(610)와, 2차진공열처리단계(510)에서 발생된 전자가 도체부재(300)를 통해 원료물질장입용기(130)로 이동하는 전자이동단계(620)와, 이동된 전자와 원료물질이 반응하여 탄탈륨이 생성되는 탄탈륨생성단계(630)로 이루어진다. 또한 생성된 탄탈륨의 냉각을 위해 1차 냉각단계(640)와, 2차 냉각단계(650)를 더 구비하고 있다.Tantalum production step 600 is an electron transfer step in which the electrons generated in the raw material input step 610 and the secondary vacuum heat treatment step 510 moves to the raw material loading container 130 through the conductor member 300 ( 620 and a tantalum generation step 630 in which tantalum is generated by reacting the moved electrons and the raw material. In addition, a primary cooling step 640 and a secondary cooling step 650 are further provided for cooling the generated tantalum.

도 2와 도 3을 참조하여 본 발명의 실시예에 대하여 상세히 설명한다.An embodiment of the present invention will be described in detail with reference to FIGS. 2 and 3.

상온에서 반응용기(120)내에 환원제로서 나트륨과 반응염들로서 염화나트륨, 염화칼륨, 염화리튬 등을 교반기(170)로 혼합하여 장입한 후 진공펌프(110)를 이용하여 10-3토르(torr)정도의 진공을 형성한 후 온도를 200~300℃로 상승시키고, 아르곤 가스를 760토르까지 취입하여 반응용기(120)내의 산소를 배출하는 과정을 반복하면서, 아르곤가스를 계속하여 흘려보내고, 반응온도를 700~1000℃로 상승시켜 반응용기(120) 내에 있는 환원제와 반응염들을 완전히 용해시키면 반응용기내에서는 다음과 같은 반응식이 일어난다.At room temperature, sodium chloride, potassium chloride, lithium chloride, and the like as a reducing agent in the reaction vessel 120 were mixed and charged with the stirrer 170, and then about 10 -3 torr were used by using the vacuum pump 110. After the vacuum was formed, the temperature was raised to 200-300 ° C., argon gas was blown to 760 torr, and the argon gas was continuously discharged while repeating the process of discharging oxygen in the reaction vessel 120, and the reaction temperature was 700. When the reaction agent 120 is completely dissolved by increasing the reaction agent 120 to ˜1000 ° C., the following reaction occurs in the reaction vessel.

R → R++ e- R → R + + e -

여기에서, R은 환원제를 나타낸다. 따라서, 나트륨 환원제는 식 ①에서와 같이 이온화되면서 전자를 발생한다.Here, R represents a reducing agent. Thus, the sodium reducing agent generates electrons while being ionized as in Equation (1).

Na → Na++ e-Na → Na + + e -

칼륨의 경우는 식 ②에서와 같이 이온화되면서 전자를 발생한다.In the case of potassium, electrons are generated while being ionized as in Equation (2).

K → K++ e-K → K + + e -

칼슘의 경우는 식 ③에서와 같이 이온화되면서 전자를 발생한다.In the case of calcium, electrons are generated while being ionized as in Equation (3).

Ca → Ca2++ 2e-Ca → Ca 2+ + 2e -

마그네슘의 경우는 식 ④에서와 같이 이온화되면서 전자를 발생한다.In the case of magnesium, electrons are generated while being ionized as in Equation (4).

Mg → Mg2++ 2e-Mg → Mg 2+ + 2e -

이때 원료물질장입구(103)를 통해 원료물질인 포테슘탄탈플로라이드를 장입한 원료장입용기(130)를 양호한 도체부재(300)에 메달아 용융 반응용기(120) 내로 침적시키면 식 ①, ②, ③, ④에 의해 생성된 전자들이 반응용기(120)로부터 반응용기(120)와 원료물질장입용기(130)사이에 연결된 외부회로인 도체부재(300)를 경유하여 원료물질장입용기(130)에 이르게 되며 원료물질장입용기(130)내에 식 ⑤에의해 생성된 탄탈륨 이온들과 반응하여 식 ⑥에서 보여주듯이 탄탈륨으로 환원하게 된다.At this time, when the raw material loading container 130, which is loaded with potassium tantalum fluoride as the raw material through the raw material charging hole 103, is deposited into the medallion melting reaction container 120 in the good conductor member 300, the equations ①, ② Electron generated by the material, ③, ④ through the conductor member 300 which is an external circuit connected between the reaction vessel 120 and the raw material loading container 130 from the reaction container 120, the raw material loading container 130 And reacts with the tantalum ions generated by equation ⑤ in the raw material charging container 130 to reduce to tantalum as shown in equation ⑥.

K2TaF7→ 2K++ Ta5++ 7F- K 2 TaF 7 → 2K + + Ta 5+ + 7F -

Ta5++ 5e-→ Ta ⑥ Ta 5+ + 5e - → Ta ⑥

따라서, 원료물질장입용기(130)내에 전체 반응식은 식 ⑦로 표현된다. Therefore, the entire reaction formula in the raw material charging container 130 is represented by the formula ⑦.

K2TaF7+ 5Na → Ta + 2KF + 5NaF K2TaF7+ 5Na → Ta + 2KF + 5NaF

한편, 소정의 공정이 종료된 후 원료장입용기(130)내에 석출된 탄탈륨의 회수는 원료장입용기(130)를 1차냉각장치(150)로 200~300℃까지 냉각시킨 후 원료장입구(103)를 통해 끄집어내어 2차냉각장치(160)로 상온상태까지 충분히 냉각시켜 탄탈륨을 회수한다.On the other hand, the recovery of tantalum precipitated in the raw material loading container 130 after the predetermined process is completed, after cooling the raw material loading container 130 to 200 ~ 300 ℃ by the primary cooling device 150, the raw material loading inlet 103 Take out through) to recover the tantalum by sufficiently cooling the secondary cooling device 160 to room temperature.

따라서, 본 발명은 전자를 이동시켜 탄탈륨을 생성함으로써 연속공정이 가능하고, 원료물질과 순도 및 종류의 선택의 폭이 넓어지고, 환원제의 선택의 폭이 확대되며, 반응염등을 계속 사용할 수 있다. 또한, 생산공정을 단축함으로써 작업효율을 높여 생산성을 증대할 수 있다.Therefore, the present invention enables the continuous process by moving the electrons to produce tantalum, wider selection of raw materials and purity and type, wider selection of reducing agent, and continued use of reaction salts. . In addition, it is possible to increase productivity by shortening the production process to increase productivity.

이상 서술한 바와 같이, 본 발명의 연속공정에 의한 탄탈륨제조장치 및 방법은 종래 반응물질들의 직접적인 물리적 접촉에 의한 탄탈륨 제조방법을 연속적으로 전자를 이동하게 함으로써 연속적인 탄탈륨의 제조가 가능하고, 원료물질과 환원제의 선택의 폭을 확대할 뿐만 아니라, 작업효율을 높여, 생산성이 향상되는 장점이 있다.As described above, the tantalum production apparatus and method according to the continuous process of the present invention enables the continuous production of tantalum by continuously moving electrons in the tantalum production method by direct physical contact of the conventional reactants, and the raw material As well as expanding the range of the selection of the reducing agent and the work efficiency, there is an advantage that the productivity is improved.

Claims (14)

환원제와 반응염이 담긴 반응용기를 구비하고, 원료물질이 담긴 원료물질장입용기를 구비하며, 상기 반응용기에 상기 원료물질장입용기를 투입하여 탄탈륨을 제조하는 장치에 있어서,In the device for preparing a tantalum by including a reaction vessel containing a reducing agent and a reaction salt, and a raw material loading container containing the raw material, the raw material loading container into the reaction vessel, 상기 탄탈륨이 산소와 결합하여 산화되는 것을 방지하기 위한 진공수단;Vacuum means for preventing the tantalum from being combined with oxygen and oxidized; 상기 환원제와 반응염이 환원반응에 의해 전자를 발생하도록 적정온도로 가열시키기 위한 발열수단; 및Heating means for heating the reducing agent and the reaction salt to an appropriate temperature to generate electrons by a reduction reaction; And 상기 환원반응에 의해 발생된 전자를 상기 진공용기 내부에 장입된 상기 원료장입용기로 연속이동시키기 위한 전자이동수단을 포함하는 연속공정에 의한 탄탈륨 제조장치.An apparatus for producing tantalum by a continuous process comprising electron transfer means for continuously moving the electrons generated by the reduction reaction into the raw material loading container charged into the vacuum container. 제1항에 있어서, 상기 진공수단은 상기 환원제와 반응염이 담긴 상기 반응용기를 구비하고, 진공압 조절이 되는 진공펌프를 구비한 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조장치.The tantalum production apparatus according to claim 1, wherein the vacuum means comprises the reaction vessel containing the reducing agent and the reaction salt, and a vacuum pump for controlling the vacuum pressure. 제1항에 있어서, 상기 전자이동수단은 전자의 이동을 방해하지 않는 도체부재인 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조장치.The tantalum production apparatus according to claim 1, wherein the electron transfer means is a conductor member that does not interfere with the movement of electrons. 제3항에 있어서, 상기 도체부재는 상기 반응용기와 원료장입용기가 연결된것을 특징으로 하는 연속공정에 의한 탄탈륨 제조장치.4. The tantalum production apparatus of claim 3, wherein the conductor member is connected to the reaction vessel and the raw material loading vessel. 제1항 또는 제4항에 있어서, 반응이 완료된 탄탈륨을 냉각하기 위해 냉각장치를 더 구비한 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조장치.The tantalum production apparatus according to claim 1 or 4, further comprising a cooling device for cooling the tantalum in which the reaction is completed. 제5항에 있어서, 상기 진공용기는 상기 환원제와 반응염 및 원료물질을 장입 및 회수하기 위해 원료물질장입구를 구비하고, 상기 원료물질장입구에 진공을 유지하기 위한 진공밸브가 구비된 것을 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조장치.The method of claim 5, wherein the vacuum vessel is provided with a raw material charging inlet for charging and recovering the reducing agent, the reaction salt and the raw material, and a vacuum valve for maintaining a vacuum at the raw material charging Tantalum production apparatus by a continuous process characterized in that. 제6항에 있어서, 상기 진공용기 내부에 유입된 산소를 외부로 배출시키기 위해 상기 진공용기에 불활성 가스취입구와, 불활성가스배출구가 구비된 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조장치.The tantalum production apparatus of claim 6, wherein an inert gas inlet and an inert gas outlet are provided in the vacuum vessel to discharge oxygen introduced into the vacuum vessel to the outside. 탄탈륨 제조방법에 있어서,In the tantalum production method, 환원제 및 반응염을 투입하여 열처리한 후 반응용기내의 산소를 배출하는 하소단계;Calcination step of discharging oxygen in the reaction vessel after heat treatment by adding a reducing agent and a reaction salt; 상기 하소단계에 의해 열처리된 상기 환원제 및 반응염이 용해되어 전자를 발생하는 전자발생단계; 및An electron generating step of generating electrons by dissolving the reducing agent and the reaction salt heat-treated by the calcination step; And 상기 전자발생단계에서 발생된 전자와 원료물질이 반응하여 탄탈륨이 생성되는 탄탈륨생성단계를 포함하는 연속공정에 의한 탄탈륨 제조방법.Tantalum manufacturing method by a continuous process comprising a tantalum generation step of generating tantalum by reacting the electrons generated in the electron generation step and the raw material. 제8항에 있어서, 상기 하소단계는 상기 환원제 및 반응염을 상기 반응용기 내부로 투입시키는 환원제 및 반응염투입단계와, 투입된 상기 환원제 및 반응염을 가열하는 1차진공열처리단계와, 상기 환원제 및 반응염이 산화되지 않도록 상기 진공용기 내부의 산소를 배출시키는 산소배출단계로 이루어진 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조방법.The method of claim 8, wherein the calcining step comprises a reducing agent and a reaction salt input step of introducing the reducing agent and the reaction salt into the reaction vessel, a primary vacuum heat treatment step of heating the introduced reducing agent and the reaction salt, and the reducing agent and Method for producing tantalum by a continuous process characterized in that the oxygen discharge step of discharging the oxygen in the vacuum vessel so that the reaction salt is not oxidized. 제9항에 있어서, 상기 산소배출단계는 공기보다 무거운 불활성가스를 상기 진공용기 내부로 연속적으로 유입시켜 산소를 배출하는 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조방법.10. The tantalum production method of claim 9, wherein the oxygen discharge step comprises continuously introducing an inert gas that is heavier than air into the vacuum vessel to discharge oxygen. 제8항에 있어서, 상기 전자발생단계는 상기 산소배출단계 이후에 상기 환원제 및 반응염을 진공과 동시에 가열하여 전자를 발생시키는 2차진공열처리단계인 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조방법.9. The method of claim 8, wherein the electron generating step is a secondary vacuum heat treatment step of generating electrons by simultaneously heating the reducing agent and the reaction salt with a vacuum after the oxygen discharge step. 제8항에 있어서, 상기 탄탈륨생성단계는 원료물질투입단계와, 상기 2차진공열처리단계에서 발생된 전자가 이동하는 전자이동단계와, 이동된 전자와 원료물질의 반응에 의해 탄탈륨이 생성되는 탄탈륨생성단계로 이루어지는 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조방법.The tantalum production method of claim 8, wherein the tantalum generating step includes a raw material input step, an electron transfer step in which electrons generated in the secondary vacuum heat treatment step move, and tantalum is generated by reaction of the moved electrons and the raw material. Tantalum production method by a continuous process characterized in that the production step. 제12항에 있어서, 상기 탄탈륨생성단계에서 생성된 탄탈륨의 냉각을 위해 냉각단계를 더 구비하는 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조방법.13. The method of claim 12, further comprising a cooling step for cooling the tantalum generated in the tantalum producing step. 제8항 내지 제13항중 어느 한 항에 있어서, 상기 전자발생단계에서 생성된 전자는 도체부재를 거쳐 원료물질장입용기로 이동되어 원료물질과 반응함으로써 탄탈륨이 생성되는 것을 특징으로 하는 연속공정에 의한 탄탈륨 제조방법.The method according to any one of claims 8 to 13, wherein the electrons generated in the electron generating step are transferred to the raw material loading container through the conductor member to react with the raw material to produce tantalum. Tantalum production method.
KR10-2000-0044786A 1999-08-18 2000-08-02 Apparatus and method of tantalum production by continuous process KR100384654B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB008017034A CN1149295C (en) 1999-08-18 2000-08-16 Apparatus and method of producing tantalum by continuous process
PCT/KR2000/000912 WO2001012867A1 (en) 1999-08-18 2000-08-16 Apparatus and method of producing tantalum by continuous process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR19990034236 1999-08-18
KR1019990034236 1999-08-18

Publications (2)

Publication Number Publication Date
KR20010049968A KR20010049968A (en) 2001-06-15
KR100384654B1 true KR100384654B1 (en) 2003-05-22

Family

ID=19607757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0044786A KR100384654B1 (en) 1999-08-18 2000-08-02 Apparatus and method of tantalum production by continuous process

Country Status (1)

Country Link
KR (1) KR100384654B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099259A (en) * 2001-09-17 2001-11-09 박형호 Manufacturing Apparatus and method of tantalum by continuous exchange type
KR20010099260A (en) * 2001-09-17 2001-11-09 박형호 Cooling apparatus and method on tantalum manufacture
KR100449820B1 (en) * 2002-07-02 2004-09-22 오재완 The continuous metal powder fabric apparatus with a screw
KR102376746B1 (en) * 2019-11-05 2022-03-21 한국생산기술연구원 A method for manufacuring tantalum powder using metallothermic reduction
KR102376778B1 (en) 2019-11-19 2022-03-21 한국생산기술연구원 Smelting equipment for the production of tantalum powder

Also Published As

Publication number Publication date
KR20010049968A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
EP1236682B1 (en) Silicon oxide powder and its manufacture
CN103459624B (en) Method for recovering valuable metals
Lancry et al. Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases
KR100384654B1 (en) Apparatus and method of tantalum production by continuous process
US20070077191A1 (en) Method and apparatus for refining silicon using an electron beam
US20200263274A1 (en) Producing method for producing magnesium hydride, power generation system using magnesium hydride, and producing apparatus for producing magnesium hydride
JP2000211907A (en) Production of lithium hexafluorophosphate
JPH04175216A (en) Production of high-purity hexafluorophosphoric acid compound
GB2303124A (en) Method for producing metal oxide powders
US20070295609A1 (en) Method for preparing tantalum or niobium powders used for manufacturing capacitors
CN1069564C (en) Technology for making tantalum powder
US20060096418A1 (en) Process for the production of niobium and/or tantalum powder with large surface area
JP4763169B2 (en) Method for producing metallic lithium
US3775096A (en) Production of niobium and tantalum
WO2001012867A1 (en) Apparatus and method of producing tantalum by continuous process
KR20050096098A (en) Fluorine production method
EP1111093A2 (en) Electrode and method and means for preparation of nitrogen trifluoride
JP2019091558A (en) Manufacturing method of positive electrode active material
US20230271155A1 (en) Plasma system for producing solid-state electrolyte material
KR20010018327A (en) Appratus and method of titanium production by contineous process
KR100684416B1 (en) A method of producing tantalum or Niobium powder for capacitor
CN114195103B (en) Preparation method of alkali metal and alkaline earth metal sulfide
JPS62146291A (en) Method for refining rare earth metal
KR20010099259A (en) Manufacturing Apparatus and method of tantalum by continuous exchange type
JPH01212725A (en) Manufacture of titanium and titanium alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060509

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee