JPS62146291A - Method for refining rare earth metal - Google Patents

Method for refining rare earth metal

Info

Publication number
JPS62146291A
JPS62146291A JP28642185A JP28642185A JPS62146291A JP S62146291 A JPS62146291 A JP S62146291A JP 28642185 A JP28642185 A JP 28642185A JP 28642185 A JP28642185 A JP 28642185A JP S62146291 A JPS62146291 A JP S62146291A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
iron
retort
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28642185A
Other languages
Japanese (ja)
Inventor
Mitsunobu Tanaka
光信 田中
Tsuneo Kawachi
河内 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP28642185A priority Critical patent/JPS62146291A/en
Publication of JPS62146291A publication Critical patent/JPS62146291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To refine high purity alloy of rare earth and iron with a low cost, without using vessel made of precious Ta, etc., by using high Cr ferritic stainless steel as reaction vessel, at refining alloy of rare earth metal iron by fused salt electrolysis or metal thermal reduction method. CONSTITUTION:At manufacturing R-Fe alloy composed of 80-99.9% R (rare earth metal such as La, Ce, Pr, Nd, Sm), 0.02-20.0% Fe, raw material is fed into a retort and cathode 2 and fused salt electrolytic refining is carried out at 850-1200 deg.C using a graphite anode 1 while heating and melting by an electric furnace 4. In this case, at adding Nd2O3 into molten salt bath, since melting temp. of Nd is as high as 10204 deg.C, Nd-Fe alloy having low m.p. is prepd. by previously feeding high purity electrolytic iron powder in the retort 2 and high purity rare earth - iron alloy alloy is manufactured. By using high Cr ferritic stainless steel contg. >26% Cr as material of the retort 2, high purity rare earth - iron alloy is manufactured with a low cost without errosion of retort by rare earth - iron alloy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、R−Mで表わされる組成を有する希土類金属
又は合金(以下、希土類金属という)の製錬において、
希土類金属が純度良く、低コストで製造できる方法に関
するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the smelting of rare earth metals or alloys (hereinafter referred to as rare earth metals) having the composition represented by R-M.
The present invention relates to a method for producing rare earth metals with high purity and at low cost.

(従来の技術及び解決しようとする問題点)希土類金属
の製錬方法としては、溶融塩電解法と金属熱還元法とが
採用されている。
(Prior Art and Problems to be Solved) As methods for smelting rare earth metals, a molten salt electrolysis method and a metal thermal reduction method are employed.

そして、前者の溶融塩電解法には、更には、ハロゲン化
物(塩化物)を電解浴として用いる方法と、酸化物を電
解浴として用いる方法、すなわち、フッ化物系電解浴に
酸化物を溶解して電解する方法とがあり、主として低融
点の軽希土類金属の製錬が主たる対象となっている。
The former molten salt electrolysis method further includes a method using a halide (chloride) as an electrolytic bath, and a method using an oxide as an electrolytic bath, that is, a method in which an oxide is dissolved in a fluoride-based electrolytic bath. The main target is the smelting of light rare earth metals with low melting points.

一方、後者の金属熱還元法には、フッ化物又は塩化物を
アルカリ又はアルカリ土類金属で還元するハロゲン化物
法と、蒸気圧の高いSm、 Eu、Yb、Tm等の酸化
物をLa、Ce又はミツシュメタルで還元してコンデン
サーに蒸着させる酸化物法がある。
On the other hand, the latter metal thermal reduction method includes a halide method in which fluoride or chloride is reduced with an alkali or alkaline earth metal, and a method in which oxides with high vapor pressure such as Sm, Eu, Yb, and Tm are reduced with La, Ce, etc. Alternatively, there is an oxide method in which it is reduced with Mitshu metal and deposited on the capacitor.

然るに、上記溶融塩電解法の場合においては、その陰極
及び電解槽材料が析出金属に侵食されることを防止する
ため、Ta、W、Mo等の特殊な高価な材料を使用する
ことを余儀なくされているのが実情であり、また金属熱
還元法においても、反応容器のレトルト及びコンデンサ
ーが還元生成金属に侵食されるため、生成金属が汚染さ
れたり或いはその材料の寿命等が極端に短くなり、コス
トが高くなるなどの欠点があった。
However, in the case of the above-mentioned molten salt electrolysis method, in order to prevent the cathode and electrolytic cell materials from being eroded by the deposited metal, it is necessary to use special and expensive materials such as Ta, W, and Mo. In addition, in the metal thermal reduction method, the retort and condenser of the reaction vessel are attacked by the metal produced by the reduction, resulting in contamination of the produced metal or extremely shortening the life of the material. There were disadvantages such as high cost.

本発明の目的は、上記従来技術の欠点を解消し、希土類
金属に対して耐食性を有するより安価な材料にて反応容
器を構成し、希土類金属の製造を純度良く、低コストで
可能にする方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, construct a reaction vessel with a cheaper material that is corrosion resistant to rare earth metals, and enable the production of rare earth metals with high purity and at low cost. Our goal is to provide the following.

(問題点を解決するための手段) 上記目的を達成するため、本発明者らは、上記反応容器
を構成する材料として種々の材質について検討を加えた
、その際1、在来の材料であるTa、W、Mo等よりも
安価である鉄鋼材料に対象を絞り、更には鉄鋼材料の中
でも、一般的に耐食性が優れているとされるステンレス
鋼についてより詳細に検討したところ、フェライト系ス
テンレス鋼は、一般にオーステナイト系ステンレス鋼に
比べて耐食性が劣るために化学工業用装置材料として余
り適しておらず、せいぜい腐食環境がゆるやかな特殊な
場合、例えば無機酸、有機酸、アルカリ溶液などのイオ
ンを含む溶液状態の腐食環境下で使用する場合に限定さ
れていたが、意外にも、希土類金属の製錬のようにハロ
ゲン化物の溶融塩等の如く高温で厳しい使用条件にあっ
ても、実用上支障なく優れた耐食性を示す事実を発見し
、これに基づいてフェライト系ステンレス鋼が各種組成
の希土類金属の製造用反応容器材料として実験により確
認し、こNに本発明をなしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have investigated various materials for forming the reaction vessel. We focused on steel materials that are cheaper than Ta, W, Mo, etc., and furthermore, we conducted a more detailed study of stainless steel, which is generally considered to have excellent corrosion resistance among steel materials, and found that ferritic stainless steel Generally, stainless steel has inferior corrosion resistance compared to austenitic stainless steel, so it is not very suitable as a material for chemical industrial equipment. However, surprisingly, it can be used in practical applications even under harsh conditions at high temperatures, such as when working with molten salts of halides, such as in the smelting of rare earth metals. We have discovered the fact that it exhibits excellent corrosion resistance without any problems, and based on this fact, we have confirmed through experiments that ferritic stainless steel can be used as a material for reaction vessels for producing rare earth metals of various compositions, and based on this we have developed the present invention.

すなわち、本発明の要旨とするところは、R−Mで表わ
される組成(但し、R:La、Ce、Pr、Nd、Sm
等の希土類金属の1種又は2種以上の組合せ、M:Fe
、重量割合にて80.0%≦R≦99.9%、0.02
%≦M≦20.0%である)を有する希土類金属の製錬
に際し、その反応容器の材料としてフェライト系ステン
レス鋼を用いることを特徴とする希土類金属の製錬方法
、にある。
That is, the gist of the present invention is that the composition represented by RM (where R: La, Ce, Pr, Nd, Sm
One or a combination of two or more rare earth metals such as, M: Fe
, weight percentage 80.0%≦R≦99.9%, 0.02
%≦M≦20.0%), the method is characterized in that ferritic stainless steel is used as a material for a reaction vessel.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

本発明法に使用する反応容器材料は、フェライト系ステ
ンレス鋼であるが、代表的であるいわゆる13cr鋼、
18Crt[,25Crliは勿論のこと、Cr含有量
の多少或いは他の合金元素が添加される各種組成のもの
でよく、特に制限されない。
The reaction vessel material used in the method of the present invention is ferritic stainless steel, but typical so-called 13cr steel,
Not only 18Crt[ and 25Crli but also various compositions with a higher or lower Cr content or other alloying elements may be used, and there are no particular limitations.

しかし、希土類金属の製錬方法として前掲の各種方法の
いずれを採用するか、或いは製錬対象である希土類金属
の化学成分等にもよるが、概ね、Cr含有量の多い高C
r系の組成のものの方が望ましく、特にCr26〜30
%を含む組成のものが好ましい。
However, depending on which of the various methods listed above is adopted as the rare earth metal smelting method and the chemical composition of the rare earth metal to be smelted, in general, high Cr containing high Cr content is used.
It is more desirable to have an r-based composition, especially Cr26-30.
% is preferred.

例えば、Feを含む希土類金属をy1錬する場合には、
フェライト系ステンレス鋼の中でも他のものよりも若干
耐食性に難がある組成のものを反応容器材料として選定
してもよく、溶出するFeを希土類金属(合金)の目標
成分組成に見込んでおくことが可能である。
For example, when y1 refining rare earth metals containing Fe,
Among ferritic stainless steels, one with a composition that is slightly less corrosion resistant than other stainless steels may be selected as the material for the reaction vessel, and the eluted Fe should be taken into account in the target composition of the rare earth metal (alloy). It is possible.

このようなフェライト系ステンレス鋼は反応容器の全体
を構成するために用いても、或いは一部に用いてもよい
Such ferritic stainless steel may be used to constitute the entire reaction vessel, or may be used for a part thereof.

対象とする希土類金属の組成としては、Sm。The target rare earth metal composition is Sm.

Nd、Ce、Pr等の希土類金属の1種又は2種以上を
Rで表わし、Feti−Mで表わすとき、 R”−Mで
、80.0%≦R≦99.9%、0.02%≦M≦20
.0%の組成を有する希土類金属である。
When one or more rare earth metals such as Nd, Ce, Pr, etc. are represented by R and Feti-M, R''-M is 80.0%≦R≦99.9%, 0.02% ≦M≦20
.. It is a rare earth metal with a composition of 0%.

つまり、純希土類金属からMを若干含有するその合金の
製錬を製造対象とするもので、特にM〉20.0%のR
−M組成の希土類金属の製造の場合には、実用的でない
組成となる点は勿論、腐食環境が緩和され、また必ずし
も高純度を維持する必要性が希釈される等々のため、本
発明法の効果が発揮されない。
In other words, the target is the smelting of alloys containing some M from pure rare earth metals, and in particular, R with M>20.0%.
In the case of producing rare earth metals with a -M composition, the present invention method not only results in an impractical composition but also alleviates the corrosive environment and dilutes the need to maintain high purity. It is not effective.

なお、希土類金属の製錬における他の条件については特
に制限されないが、反応温度は製錬法の態様に応じて8
50〜1200℃の範囲内の温度とするのが好ましく、
本発明法の効果が特に期待できる。
Note that other conditions in the smelting of rare earth metals are not particularly limited, but the reaction temperature may vary depending on the mode of the smelting method.
The temperature is preferably within the range of 50 to 1200°C,
The effects of the method of the present invention can be particularly expected.

(実施例) 害羞土り。(Example) Harmful.

第1図に示す外熱式の電気炉4中に、JIS−8US4
47J1のフェライト系ステンレス鋼製ルツボ兼陰極2
を断熱材3を介して入れ、その中にNdF、: LiF
: BaF、=70 : 20 : 10(wt%)の
組成からなる電解浴5を10kg入れて溶解し、それに
4wt%のNd、03を添加及び追装して、浴温を95
0℃に保持し、その中に黒鉛製陽極1を浸漬して、3〜
5vの電圧、陽極電流密度0.5〜1.2A/aJで溶
融塩電解を35時間実施した。
In the external heat type electric furnace 4 shown in Fig. 1, JIS-8US4
47J1 ferritic stainless steel crucible and cathode 2
is inserted through the insulation material 3, and NdF, : LiF
10 kg of electrolytic bath 5 having a composition of: BaF, = 70: 20: 10 (wt%) was added and dissolved, 4 wt% of Nd, 03 was added and added, and the bath temperature was raised to 95%.
The graphite anode 1 was immersed in the temperature of 0°C, and 3~
Molten salt electrolysis was carried out for 35 hours at a voltage of 5 V and an anode current density of 0.5 to 1.2 A/aJ.

なお1、生成Ndは融点が1024℃で電解温度では固
相状態で析出する。そこで、生成Ndをより低融点のN
d−Fe合金として、電解温度下で液相状態として得る
ために、電解鉄粉を電解初期に所定量ルツボ中に入れ置
き、また、電解電流量に応じて経時的に電解鉄粉を追加
装入した。
Note that the produced Nd has a melting point of 1024° C. and is precipitated in a solid state at the electrolysis temperature. Therefore, the produced Nd is replaced by Nd with a lower melting point.
In order to obtain a d-Fe alloy in a liquid phase at the electrolysis temperature, a predetermined amount of electrolytic iron powder is placed in a crucible at the beginning of electrolysis, and additional electrolytic iron powder is added over time according to the amount of electrolytic current. I entered.

その結果、第1表に示す品位のメタル2.8kgを得る
ことができた。なお、ルツボ兼陰極の消耗、損傷は軽微
であり、従来の鉄製ルツボに比し5〜10倍の寿命延長
ができた。
As a result, 2.8 kg of metal having the quality shown in Table 1 could be obtained. Note that wear and tear on the crucible-cum-cathode was slight, and the lifespan of the crucible was extended 5 to 10 times compared to conventional iron crucibles.

第1表 (wt%) 第2図に示すレトルト炉にてビジョン法で金属Smを製
造する際に、レトルト7は耐熱&H9(JIS−G−!
5122−8CHI 8相当)を用いるが、その中にJ
 lS−3US447J 1のフェライト系ステンレス
鋼からなる原料受皿9とレトルト7の内周を保護するた
めに同材料からなる薄板8を同図に示す如くセットする
。勿論、この原料受皿9には酸化サマリウム(純度96
%)とミツシュメタル(市販品)との成型物が収納され
ている。
Table 1 (wt%) When manufacturing metal Sm by the vision method in the retort furnace shown in Figure 2, the retort 7 is heat-resistant &H9 (JIS-G-!
5122-8CHI 8 equivalent), but J
In order to protect the raw material receiving tray 9 made of ferritic stainless steel of IS-3US447J 1 and the inner periphery of the retort 7, a thin plate 8 made of the same material is set as shown in the figure. Of course, samarium oxide (purity 96
%) and Mitsushmetal (commercially available).

更に、サマリウムメタルの析出部に当たるコンデンサー
6は同じフェライト系ステンレス鋼で製作して使用した
Furthermore, the capacitor 6, which corresponds to the samarium metal precipitation part, was made of the same ferritic stainless steel.

次いで、I X 10−’ Torr以下の高真空に減
圧し、1180℃に昇温しで6時間保持した。その結果
、原料22kgから第2表に示す品位のSmメタル8.
1gを得た。
Next, the pressure was reduced to a high vacuum of I x 10-' Torr or less, and the temperature was raised to 1180°C and maintained for 6 hours. As a result, from 22 kg of raw material, Sm metal 8.
1g was obtained.

この操作を繰り返し、50回使用したが、レトルトの損
傷は軽微であった。
This operation was repeated and used 50 times, but the damage to the retort was slight.

なお、第2図中、10は排気口、11は電気炉、12は
析出したSmメタルを示す。
In addition, in FIG. 2, 10 indicates an exhaust port, 11 indicates an electric furnace, and 12 indicates a deposited Sm metal.

第2表 (wt%) (発明の効果) 以上詳述したように1本発明によれば、R−M組成の希
土類金属の製造に反応容器材料としてフェライト系ステ
ンレス鋼を用いるので、純度良く、低コストで任意の製
錬法により希土類金属を得ることができる。なお、フェ
ライト系ステンレス鋼の新たな耐食性の発見により、そ
の適用範囲の拡大も期待できる。
Table 2 (wt%) (Effects of the Invention) As detailed above, according to the present invention, ferritic stainless steel is used as a reaction vessel material in the production of rare earth metals with RM composition, so that the purity is high. Rare earth metals can be obtained by any smelting method at low cost. Furthermore, the discovery of new corrosion resistance properties of ferritic stainless steel is expected to expand its range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例に用いた製錬装置の
一例を示す概略断面図である。 1・・・黒鉛電極、 2・・・容器兼陰極、3・・・断
熱材、  4・・・外熱式電気炉、5・・・電解浴、 
 6・・・コンデンサー、7・・・レトルト、 8・・
・薄板。 9・・・原料受皿、10・・・排気口、11・・・電気
炉  12・・・析出Smメタル。
FIGS. 1 and 2 are schematic sectional views showing an example of a smelting apparatus used in an embodiment of the present invention. 1... Graphite electrode, 2... Container/cathode, 3... Heat insulating material, 4... Externally heated electric furnace, 5... Electrolytic bath,
6... Condenser, 7... Retort, 8...
・Thin plate. 9... Raw material saucer, 10... Exhaust port, 11... Electric furnace 12... Precipitated Sm metal.

Claims (1)

【特許請求の範囲】 1 R−Fe(但し、R:La、Ce、Pr、Nd、S
m等の希土類金属の1種又は2種以上の組合わせで、重
量割合にて、80.0%≦R≦99.9%、0.02%
≦Fe≦20.0%)で表わされる組成を有する希土類
金属の製錬において、その反応容器にフェライト系ステ
ンレス鋼を用いることを特徴とする希土類金属の製錬方
法。 2 精錬反応温度は850〜1200℃の範囲である特
許請求の範囲第1項記載の方法。 3 前記フェライト系ステンレス鋼がCr26%以上の
高クロムフェライトステンレス鋼である特許請求の範囲
第1項記載の方法。
[Claims] 1 R-Fe (R: La, Ce, Pr, Nd, S
One or a combination of two or more rare earth metals such as m, weight percentage: 80.0%≦R≦99.9%, 0.02%
A method for smelting rare earth metals, the method comprising using ferritic stainless steel for a reaction vessel in the smelting of rare earth metals having a composition expressed by ≦Fe≦20.0%). 2. The method according to claim 1, wherein the refining reaction temperature is in the range of 850 to 1200°C. 3. The method according to claim 1, wherein the ferritic stainless steel is a high chromium ferritic stainless steel with a Cr content of 26% or more.
JP28642185A 1985-12-18 1985-12-18 Method for refining rare earth metal Pending JPS62146291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28642185A JPS62146291A (en) 1985-12-18 1985-12-18 Method for refining rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28642185A JPS62146291A (en) 1985-12-18 1985-12-18 Method for refining rare earth metal

Publications (1)

Publication Number Publication Date
JPS62146291A true JPS62146291A (en) 1987-06-30

Family

ID=17704170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28642185A Pending JPS62146291A (en) 1985-12-18 1985-12-18 Method for refining rare earth metal

Country Status (1)

Country Link
JP (1) JPS62146291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301296A1 (en) * 1987-07-20 1989-02-01 INTERATOM Gesellschaft mit beschränkter Haftung Plasma coating vessel with a shortened cycling time and facilitated cleaning
JPS6479391A (en) * 1987-09-19 1989-03-24 Showa Denko Kk Vessel for molten salt electrolytic bath
CN1090247C (en) * 1998-02-20 2002-09-04 包头钢铁公司稀土研究院 Molten salt electrolytic cells for producing rare-earth metals and alloys
CN100443640C (en) * 2005-12-30 2008-12-17 重庆大学 Apparatus and method for adding element during metal smelting process
CN105671591A (en) * 2016-03-28 2016-06-15 北京科技大学 Method for directly preparing Sm2Fe17 alloy by molten salt electrolysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301296A1 (en) * 1987-07-20 1989-02-01 INTERATOM Gesellschaft mit beschränkter Haftung Plasma coating vessel with a shortened cycling time and facilitated cleaning
JPS6479391A (en) * 1987-09-19 1989-03-24 Showa Denko Kk Vessel for molten salt electrolytic bath
CN1090247C (en) * 1998-02-20 2002-09-04 包头钢铁公司稀土研究院 Molten salt electrolytic cells for producing rare-earth metals and alloys
CN100443640C (en) * 2005-12-30 2008-12-17 重庆大学 Apparatus and method for adding element during metal smelting process
CN105671591A (en) * 2016-03-28 2016-06-15 北京科技大学 Method for directly preparing Sm2Fe17 alloy by molten salt electrolysis

Similar Documents

Publication Publication Date Title
CN103328663B (en) The manufacture method of highly pure lanthanum, highly pure lanthanum, comprise highly pure lanthanum sputtering target and take highly pure lanthanum as the metal gate film of main component
WO2002061168B1 (en) Methods of forming sputtering targets
CN114672850A (en) Method for preparing metal titanium by separating titanium-aluminum alloy through molten salt electrolytic deoxidation
KR20140037277A (en) Method for producing calcium of high purity
JPS62146291A (en) Method for refining rare earth metal
JP2670836B2 (en) High-purity titanium target material
CN110205652B (en) Preparation method and application of copper-scandium intermediate alloy
US4966662A (en) Process for preparing praseodynium metal or praseodymium-containing alloy
US5188711A (en) Electrolytic process for making alloys of rare earth and other metals
JP4198434B2 (en) Method for smelting titanium metal
US2887443A (en) Arc-cathode production of titanium
CN111187916B (en) Method for preparing high-purity titanium by using industrial titanium slag
CN108642529B (en) Method for refining high-purity titanium through metastable state high-temperature molten salt electrolysis based on cation blending
RU2401874C2 (en) Procedure by volkov for production of chemically active metals and device for implementation of this procedure
CN108441892B (en) Method for refining high-purity titanium through metastable state high-temperature molten salt electrolysis based on complex ions
Gilbert et al. Forging of Arc-Melted Chromium
JPH02101186A (en) Production of nd-fe alloy or metallic nd
Sehra et al. Studies and Preparation of Hafnium Metal
Tamamura et al. New Industrial Process for Electrowinning of Nd-Fe Alloy
Dutta et al. Niobium and Tantalum
Tripathy et al. Preparation of high purity vanadium metal by silicothermic reduction of oxides followed by electrorefining in a fused salt bath
JPS61223172A (en) Manufacture of intermetallic compound tial base alloy
JPH04236793A (en) Production of terbium alloy
JPH0192338A (en) High purity niobium-titanium alloy sponge and its manufacture
Balke Pure columbium