KR100376495B1 - A method of manufacturing Co-free having superior wear resistance high speed steels - Google Patents
A method of manufacturing Co-free having superior wear resistance high speed steels Download PDFInfo
- Publication number
- KR100376495B1 KR100376495B1 KR1019970070165A KR19970070165A KR100376495B1 KR 100376495 B1 KR100376495 B1 KR 100376495B1 KR 1019970070165 A KR1019970070165 A KR 1019970070165A KR 19970070165 A KR19970070165 A KR 19970070165A KR 100376495 B1 KR100376495 B1 KR 100376495B1
- Authority
- KR
- South Korea
- Prior art keywords
- manufacturing
- hot
- hot working
- melt
- high speed
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 고속도공구강의 제조방법에 관한 것으로, 보다 상세하게는 고가이면서 고속도의 절삭성을 확보해주는 코발트(Co)를 함유하지 않고도 고내마모성을 갖는 고속도공구강의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high-speed coated oral cavity, and more particularly, to a method for manufacturing a high-speed coated oral cavity having high wear resistance without containing cobalt (Co) which secures high cutting speed and high speed.
고속도공구강이라 함은 탄화물 형성원소가 다량으로 첨가된 고탄소 합금강으로, 그 기계적 성질은 합금내에 분포하는 탄화물의 형상 및 크기, 분포경향에 의해 좌우되며 5μm 이하의 탄화물이 구형으로 균일하게 분포하여야 우수한 공구강이라 할 수 있다.High-speed coated steel is high carbon alloy steel with a large amount of carbide forming elements, and its mechanical properties depend on the shape, size, and distribution of carbides in the alloy. It can be called tool steel.
종래의 고속도공구강에는 고온 내마모성을 확보해주는 Co를 함유하여 고속도의 절삭성을 더욱 높였다. 그런데, Co는 원소재의 가격이 고가이므로 고속도공구강의 제조단가를 상승시킨다. 따라서, 고속도공구강의 범용화를 위해서 Co를 배제하고도 내마모성을 가지는 고속도공구강이 이미 알려져 있다.Conventional high-speed coated oral contains Co, which secures high temperature wear resistance, thereby further improving cutting speed. However, Co increases the manufacturing cost of high-speed coated steel because the price of the raw material is high. Therefore, the high speed coated oral which has abrasion resistance even if Co is excluded for the general purpose of the high speed coated oral is known.
지금까지 코발트(Co)를 함유하지 않는 고속도공구강의 주된 제조방법은 주조에 의한 방법이 있다. 그런데, 주조에 의해 제조되는 공구강용 빌렛은 주조시 합금내에 탄화물이 조대하게 형성되고, 이 조대한 탄화물이 빌렛내 불균일하게 분포되어 취약한 내마모성, 가공성, 저인성 및 저충격 특성 등의 단점이 있다. 또한, 주조에 의한 방법은 조대한 탄화물의 생성과 미세조직의 심한 편석으로 인하여 첨가할 수 있는 합금원소의 종류 및 함량이 제한되는 단점을 가지고 있다.Until now, the main manufacturing method of high speed coating oral which does not contain cobalt (Co) has been the method by casting. However, the billet for tool steel manufactured by casting has a disadvantage in that carbides are coarsened in the alloy at the time of casting, and the coarse carbides are unevenly distributed in the billet, and thus have poor wear resistance, workability, low toughness and low impact characteristics. In addition, the casting method has a disadvantage in that the type and content of alloying elements that can be added are limited due to the formation of coarse carbides and severe segregation of microstructures.
이에 반해 최근, 공정이 간단해 제조상 많은 장점이 있는 분무성형(spray forming)에 의한 공구강의 제조방법이 제안된 바 있다(대한민국 특허출원 94-38977호). 그러나, 현재까지의 분무성형(spray forming)에 의한 방법은 탄화물의 편석정도가 심하여 특정조성에만 적용되고 있을 뿐 아직은 상용화 단계에 이르지 못하고 있는 실정이다.On the other hand, in recent years, a method of manufacturing a tool steel by spray forming has been proposed, which is simple in manufacturing and has many advantages in manufacturing (Korean Patent Application No. 94-38977). However, until now, the spray forming method has been applied only to a specific composition due to the degree of segregation of carbides, but has not yet reached the commercialization stage.
본 발명은 상기 종래문제를 해결하기 위해 안출된 것으로, Co를 함유하지 않은 고속도공구강을 제조공정이 보다 간단한 분무성형방법에 의해 균일한 탄화물조직을갖고, 특히, 우수한 내마모성을 갖도록 하는 개선된 공구강의 제조방법을 제공하는데, 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The present invention provides an improved tool steel which has a uniform carbide structure, in particular, excellent abrasion resistance, by a simple spray molding method for manufacturing a high-speed coated steel containing no Co. To provide a manufacturing method, the object is.
도 1은 본 발명에 따라 열간가공한 시편의 미세조직을 나타내는 사진이다.1 is a photograph showing the microstructure of a specimen hot worked according to the present invention.
상기 목적을 달성하기 위한 본 발명의 제조방법은, 분무성형(spray forming)에 의해 고속도공구강을 제조하는 방법에 있어서, CraVbCcMoxWyFez를 기본조성으로 하고, 그 함량은 중량%를 기준으로 4.2%≤a≤5.6%, 4.0%≤b≤6.0%, 1.3%≤c≤1.7%, 6.0%≤x≤12.0%, 6.0%≤y≤18.0%, 59%≤z≤78.5%의 조성을 갖도록 합금을 용해한 다음, 상기 용융물을 가스분사에 의해 모재(bulk material)를 얻고, 이 모재를 열간가공하는 것을 포함하여 구성된다.The manufacturing method of the present invention for achieving the above object, in the method for producing a high-speed coated oral by spray forming, Cr a V b C c Mo x W y Fe z as a basic composition, the content 4.2% ≤a≤5.6%, 4.0% ≤b≤6.0%, 1.3% ≤c≤1.7%, 6.0% ≤x≤12.0%, 6.0% ≤y≤18.0%, 59% ≤z And dissolving the alloy to have a composition of ≦ 78.5%, and then obtaining the bulk material by gas spraying the melt, and hot working the base material.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
우선, 본 발명의 냉간가공용 공구강은 Cr-V-C-Mo-W-Fe계 합금으로 이루어지는 공구강이며 기본적으로 Cra-Vb,-Cc-Mox-Wy-Fez의 형태를 이루는데, 여기서 각 성분조성은 편석을 방지하고 탄화물이 기지내에 균일하게 분포되도록 제어된다. 이를 위해 각 성분조성은 중량% 기준으로 4.2%≤a≤5.6%, 4.0%≤b≤6.0%, 1.3%≤c≤1.7%, 6.0%≤x≤12.0%, 6.0%≤y≤18.0%, 59%≤z≤78.5%의 범위를 갖는다.First, the cold working tool steel of the present invention is a tool steel made of Cr-VC-Mo-W-Fe-based alloy and basically forms Cr a -V b, -C c -Mo x -W y -Fe z , Each component composition is controlled here to prevent segregation and to distribute the carbide evenly within the matrix. To this end, each component composition is 4.2% ≤a≤5.6%, 4.0% ≤b≤6.0%, 1.3% ≤c≤1.7%, 6.0% ≤x≤12.0%, 6.0% ≤y≤18.0%, 59% ≦ z ≦ 78.5%.
구체적으로 상기 Cr은 공구강의 경화능 향상에 요구되는 합금원소로 그 조성이 4.2∼5.6%의 범위로 유지되면 경도 및 내마모성에는 별다른 차이가 발생되지 않는다.Specifically, Cr is an alloying element required for improving the hardenability of tool steel, and if its composition is maintained in the range of 4.2 to 5.6%, there is no difference in hardness and wear resistance.
상기 V은 그 함량이 부족하면 세멘타이트(Fe3C) 탄화물이 형성될 수 있으며, 그 함량이 과다하면 공정 MC 탄화물이 형성될 수 있으므로 V의 함량은 4.0 ∼ 6.0%의 범위로 조절하는 것이 필요하다.When the content of V is insufficient, cementite (Fe 3 C) carbide may be formed, and when the content is excessive, process MC carbide may be formed, so the content of V needs to be adjusted in the range of 4.0 to 6.0%. Do.
상기 C는 탄화물형성 및 경화능 향상에 필수적인 원소로서 1.3 ∼ 1.7%의 범위로 함유되면 탄화물조직에 별다른 조직의 차이가 발생되지 않는다.When C is contained in the range of 1.3 to 1.7% as an essential element for forming carbide and improving hardenability, no difference in structure occurs in the carbide structure.
Mo은 공구강의 대표적인 탄화물 형성원소로 그 조성이 6.0∼12.0%의 범위로 유지되야 하는데, 그 이유는 Mo의 함량이 6.0%미만이면 텅스텐이나 탄소의 과다로 인해 조대한 헤링-본(herring-bone) 형태의 공정 M6C 탄화물이 형성되고 12.0%를 넘는 경우 침상의 공정 M2C 탄화물이 형성되기 때문이다.Mo is a typical carbide forming element of tool steels, and its composition should be maintained in the range of 6.0 to 12.0%, because if the Mo content is less than 6.0%, coarse herring-bone due to excessive tungsten or carbon This is because acicular process M 2 C carbide is formed when the process form M 6 C carbide is formed and exceeds 12.0%.
W은 공구강의 대표적인 탄화물원소로 6.0-18.0%의 범위로 함유되어야 하는데, 그 이유는 W이 6.0%미만의 경우 조대한 공정 M2C 탄화물이 형성되며, 18.0%를 넘으면 공정 M6C 탄화물이 형성되기 때문이다.W is a representative carbide element of tool steel and should be contained in the range of 6.0-18.0%, because when W is less than 6.0%, coarse process M 2 C carbide is formed, and when 18.0% is exceeded, process M 6 C carbide is formed. Because it is formed.
상기와 같은 조성을 갖도록 합금을 용해한 다음, 이 용융물을 가스분사에 의해 모재(bulk material)를 얻는데, 이때 주조방법은 분무성형를 이용한다.After dissolving the alloy to have the composition as described above, the melt is obtained by gas spraying, and the casting method uses spray molding.
분무성형(spray forming)은 턴디쉬(tundish)내의 용탕을 가스제트로 분무하여 일정한 기판에 충돌시키므로서 약 50∼70% 정도의 액상상태를 유지하면서 빌렛과 같은일정한 형태를 갖는 모재(bulk material)로 제조하는 방법이다.Spray forming sprays molten metal in a tundish with a gas jet and impinges on a substrate, thereby maintaining a liquid state of about 50 to 70%, and having a uniform material such as a billet. It is a method of manufacturing.
여기서, 중요한 것은 MC 탄화물을 갖는 모재를 얻기 위해 가스분사직전의 용융물의 온도를 액상선온도+(70∼170℃)의 범위로 유지하여 구형의 MC+M6C 탄화물조직을 갖는 모재를 제조한다. 만일 용융물의 온도가 액상선온도+70℃ 미만이면 조업도중 노즐이 막혀 모재의 제조가 불가능하며, 액상선온도+170℃를 넘으면 과다한 열량유입에 의한 온도상승으로 인해 조대한 공정(Eutectic) 탄화물이 형성될 수 있다.Here, it is important to prepare a base material having a spherical MC + M 6 C carbide structure by maintaining the temperature of the melt just before gas injection in the range of the liquidus temperature + (70 ~ 170 ℃) in order to obtain a base material having MC carbide . If the melt temperature is lower than liquidus temperature + 70 ℃, the nozzle is clogged during operation and manufacturing of the base metal is impossible.If the liquidus temperature exceeds + 170 ℃, coarse eutectic carbides are formed due to temperature rise due to excessive caloric inflow. Can be formed.
여기서, 합금조성에 따른 액상선온도는 다음의 식(1)로 구할 수 있다.Here, the liquidus temperature according to the alloy composition can be obtained by the following equation (1).
[식 1][Equation 1]
액상선온도(℃) = 1536-{0.1+83.9[%C]+10[%C]2+1.5[%Cr]+3.3[%Mo]+2[%V]}Liquidus temperature (° C) = 1536- {0.1 + 83.9 [% C] +10 [% C] 2 +1.5 [% Cr] +3.3 [% Mo] +2 [% V]}
(여기서 모든 원소함량은 무게중량% 임)(Wherein all elements are weight percent by weight)
상기와 같이 용탕온도를 조절한 다음에 분무를 실시하는데, 이때 분무조건은 통상의 분무조건이면 가능하다. 바람직한 분무성형조건을 예로들면, 턴디쉬의 용탕유출내경은 3-9mm정도로 하고, 이때 액적의 비행거리는 400-700mm정도, 가스노즐의 1차가스압 및 2차가스압은 각각 1.5-4bar 및 5-10bar의 범위로, 그리고 상기 각 노즐의 스캐닝빈도는 약 12-18cycle/sec의 범위로 하는 것이다.Spraying is performed after adjusting the melt temperature as described above, in which case the spraying conditions may be ordinary spraying conditions. For example, the preferred spray molding condition is that the melt flow diameter of the tundish is about 3-9 mm, and the flying distance of the droplets is about 400-700 mm, and the primary and secondary gas pressures of the gas nozzle are 1.5-4 bar and 5-10 bar, respectively. And the scanning frequency of each nozzle is in the range of about 12-18 cycles / sec.
상기와 같이 분무성형로 제조된 모재는 열간가공하는데, 이때의 열간가공은 열간단조, 열간압연 및 열간압출등 어느 것이나 무방하다. 다만, 모재의 미세조직이 결정립계를 따라 분포된 MC 및 M6C탄화물과 결정립내에 미세하게 석출된 MC탄화물로 구성된 불균일한 탄화물조직을 나타내므로 열간가공시 열간가공온도를 적절하게 설정하여야 한다.The base material manufactured by spray molding as described above is hot working, the hot working may be any of hot forging, hot rolling and hot extrusion. However, since the microstructure of the base material exhibits a nonuniform carbide structure composed of MC and M 6 C carbides distributed along grain boundaries and MC carbide finely precipitated in grains, the hot working temperature should be appropriately set during hot working.
본 발명에 의하면 열간가공온도는 1000-1150℃가 바람직하다. 그 이유는 열간가공온도가 1000℃미만의 경우 열간가공온도가 낮아 열간가공시 결정립계를 따라 심한 균열이 발생되어 원활한 열간가공이 불가능하며, 열간가공온도가 1150℃를 넘으면 M6C탄화물과 결정립크기가 증가되어 물성에 악영향을 미치기 때문이다.According to the present invention, the hot working temperature is preferably 1000-1150 ° C. The reason is that if the hot working temperature is less than 1000 ℃, the hot working temperature is low, so severe cracks occur along the grain boundaries during hot processing, so that the hot working is not possible smoothly.If the hot working temperature is over 1150 ℃, M 6 C carbide and grain size This is because the increase in adversely affects the physical properties.
상기와 같이 가열된 모재의 열간가공방법으로 열간단조를 이용하는 경우 단조비는 6이상으로 하는 것이 필요하다. 그 이유는 불균일한 탄화물조직을 가지는 모재의 미세조직을 균일하게 분포시키기 위해서는 단조비를 6이상 하여야 하기 때문이다.When hot forging is used as the hot working method of the heated base material as described above, the forging ratio needs to be 6 or more. This is because the forging ratio should be 6 or more in order to uniformly distribute the microstructure of the base material having the non-uniform carbide structure.
이때, 열간압연의 경우 압하율을 80%이상으로 하고, 압출의 경우 압출비를 10:1이상으로 행하면 그 효과가 비슷해진다.In this case, in the case of hot rolling, the reduction ratio is 80% or more, and in the case of extrusion, the extrusion ratio is 10: 1 or more, and the effect is similar.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
[실시예]EXAMPLE
아래 표 1과 같이 조성된 합금계를 대기유도용해로에서 용해한 후, 분무성형 장치를 이용하여 빌렛으로 제조하였다.The alloy system prepared as shown in Table 1 below was dissolved in an air induction furnace, and then prepared into a billet using a spray molding apparatus.
이렇게 제조된 각 합금은 각각 1100℃에서 단조비 8로 하여 열간단조한 다음, 최종적으로 경화처리하여 기계적특성을 측정하고, 그 결과를 하기표 1에 나타내었다.Each alloy thus prepared was hot forged at a forging ratio of 8 at 1100 ° C., and finally hardened to measure mechanical properties, and the results are shown in Table 1 below.
상기 경화처리는 각 합금을 모두 1176℃에서 10분간 오스테나이징처리한 후 유냉한 다음, 560℃에서 1시간씩 3번 소려처리하였다.In the curing treatment, all alloys were austenized at 1176 ° C. for 10 minutes, and then cooled in oil, followed by 3 times of treatment at 560 ° C. for 3 hours.
상기와 같이 경화처리된 합금에 대한 기계적특성은 경도와 내마모성으로 평가하였다. 먼저, 경도는 20×20×20(mm) 규격의 경도시편을 가공하여 로크월 경도기로 측정하였으며, 내마모성 평가는 30×30×5(mm) 규격의 마모시편을 가공하고, SKD61 합금강을 상대재로 하여 하중 100kgf에서 행하였다.Mechanical properties of the hardened alloy as described above were evaluated by the hardness and wear resistance. First, the hardness was measured by a rockwall hardness tester by processing a hardness specimen of 20 × 20 × 20 (mm) standard, wear resistance evaluation was processed a wear specimen of 30 × 30 × 5 (mm) standard, and the SKD61 alloy steel relative material The load was carried out at a load of 100 kgf.
하기 표 1에서 비교재(1,2)는 통상의 주조에 의한 방법으로 제조된 것으로 일명 M2 및 M42로 불리며 상용화되고 있는 고속도공구강이다. 이들은 모두 본 발명예와 동일한 열간가공 및 경화처리를 거쳐 동일한 방법으로 기계적 특성이 비교되었다.In the following Table 1, the comparative materials (1, 2) are manufactured by a method of ordinary casting and are known as M2 and M42. All of them were subjected to the same hot working and curing treatment as in the present invention, and mechanical properties were compared in the same manner.
상기 표 1에 나타낸 바와 같이, 본 발명예(1-3)의 경우 통상의 방법으로 주조된 비교예(1,2)와 비교해 보면, 경도는 110∼120% 정도로 증가하였으며, 내마모성은 약 2-3배 이상 증가하였다.As shown in Table 1, in the case of the present invention (1-3) compared with the comparative examples (1,2) cast in a conventional manner, the hardness was increased to about 110 to 120%, wear resistance is about 2- Increased more than threefold.
참고로, 도 1은 본 발명에 따라 제조된 빌렛을 열간가공한 후의 미세조직을 나타낸 것으로 균일한 MC탄화물조직이 나타났다.For reference, Figure 1 shows a microstructure after hot processing the billet prepared according to the present invention showed a uniform MC carbide structure.
이상의 결과를 볼 때, 본 발명재는 현재 광범위하게 사용되고 있는 M2합금 및 M42합금에 비해 제조단가면에서도 동등한 수준을 나타내면서도 월등히 향상된 물성을 나타내었다.In view of the above results, the present invention exhibited significantly improved physical properties while exhibiting an equivalent level in manufacturing unit cost compared to M2 alloys and M42 alloys currently widely used.
상술한 바와 같이, 본 발명에 의하면 미세한 탄화물의 균일한 분포를 갖는 고인성, 고내마모성 고속도공구강을 저렴하게 제조할 수 있어서 현재 광범위하게 사용되고 있는 M2합금 및 M42합금을 대체할 수 있고, 동시에 고품위 고속도공구강 소재의 응용분야를 확대시킬 수 있는 유용한 효과가 있다.As described above, according to the present invention, it is possible to inexpensively manufacture high toughness and high wear resistance high-speed coated steel having a uniform distribution of fine carbides, thereby replacing M2 alloy and M42 alloy which are widely used at the same time, and at the same time, high quality high speed This has a useful effect in expanding the application of tool steel materials.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970070165A KR100376495B1 (en) | 1997-12-17 | 1997-12-17 | A method of manufacturing Co-free having superior wear resistance high speed steels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970070165A KR100376495B1 (en) | 1997-12-17 | 1997-12-17 | A method of manufacturing Co-free having superior wear resistance high speed steels |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990050963A KR19990050963A (en) | 1999-07-05 |
KR100376495B1 true KR100376495B1 (en) | 2003-05-22 |
Family
ID=37416955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970070165A KR100376495B1 (en) | 1997-12-17 | 1997-12-17 | A method of manufacturing Co-free having superior wear resistance high speed steels |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100376495B1 (en) |
-
1997
- 1997-12-17 KR KR1019970070165A patent/KR100376495B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19990050963A (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2641006B2 (en) | Pre-alloyed high vanadium cold work tool steel particles and method for producing the same | |
SE0850040A1 (en) | Steel material and process for making them | |
US8795584B2 (en) | Free-machining powder metallurgy steel articles and method of making same | |
US7563333B2 (en) | Process for producing steel article | |
KR20040003067A (en) | Cold work steel | |
CN114318135A (en) | Wear-resistant high-speed steel | |
KR100685544B1 (en) | Steel material, its use and its manufacture | |
US6200394B1 (en) | High speed tool steel | |
KR100376495B1 (en) | A method of manufacturing Co-free having superior wear resistance high speed steels | |
KR20020012556A (en) | Steel cold work tool, its use and manufacturing | |
US5976277A (en) | High speed tool steel, and manufacturing method therefor | |
KR100530043B1 (en) | Mill roll and method for manufacturing the roll | |
KR100321062B1 (en) | Process for manufacturing tool steel with superior abrasion resistance for cold working | |
EP0386311A2 (en) | Method of producing corrosion-, heat- and wear-resistant member, and the member produced | |
KR100299463B1 (en) | A method of manufacturing cold work tool steel with superior toughness and wear resistance | |
EP3636791B1 (en) | Steel for mold | |
CN107475632A (en) | A kind of wear-resistant high speed steel coating of high tungsten content and preparation method thereof | |
CA2436423A1 (en) | Steel article | |
US20040103959A1 (en) | Steel article | |
Yang et al. | Soundness of spray formed disc shape tools of hot-work steels | |
KR100316342B1 (en) | high speed steel produced by powder metallurgy | |
KR0146867B1 (en) | Method of high-speed tool steels for superior toughness | |
CN1958833A (en) | Technical method for preparing cold work die steel in high alloy through jetting deposition | |
KR0174784B1 (en) | Method of manufacturing high speed tool steels by fog casting | |
JPH03291144A (en) | Nozzle for producing rapidly cooled metal strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130221 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20140305 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20150226 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20160307 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20170306 Year of fee payment: 15 |
|
EXPY | Expiration of term |