CN114318135A - Wear-resistant high-speed steel - Google Patents

Wear-resistant high-speed steel Download PDF

Info

Publication number
CN114318135A
CN114318135A CN202110303427.9A CN202110303427A CN114318135A CN 114318135 A CN114318135 A CN 114318135A CN 202110303427 A CN202110303427 A CN 202110303427A CN 114318135 A CN114318135 A CN 114318135A
Authority
CN
China
Prior art keywords
wear
speed steel
percent
resistant high
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110303427.9A
Other languages
Chinese (zh)
Inventor
李小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Juneng Technology Co ltd
Original Assignee
Wuhan Juneng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Juneng Technology Co ltd filed Critical Wuhan Juneng Technology Co ltd
Priority to CN202110303427.9A priority Critical patent/CN114318135A/en
Publication of CN114318135A publication Critical patent/CN114318135A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention provides wear-resistant high-speed steel which is prepared by adopting a rapid solidification process, and comprises the following chemical components in percentage by mass: c: 0.9% -3.2%, Si: 0.4% -1.0%, Mn: 0.2% -1.0%, Cr: 3% -6%, W: 4% -15%, Mo: less than or equal to 10 percent, Co: 2% -13%, V: less than or equal to 8 percent, Ti: 0.5 to 6 percent, and the balance of Fe and impurities. The wear-resistant high-speed steel has the advantages that the second phase is small in size and uniform in distribution, has excellent comprehensive mechanical properties, and particularly has excellent wear resistance due to the existence of the high-hardness second phase in the structure.

Description

Wear-resistant high-speed steel
Technical Field
The invention relates to the technical field of high-speed steel materials, in particular to wear-resistant high-speed steel.
Background
The high-speed steel is used as a special high-alloy-content material and is widely applied to the manufacturing fields of cutters, molds and the like. In terms of application conditions, in order to improve the service life, higher and higher requirements are put on the wear resistance of high-speed steel.
The prior art proposals, mainly to promote the formation of a large amount of carbides in high speed steel to improve wear resistance, such as M6C, M23C6, M7C3, MC, etc., where the MC carbides mainly include V-rich or Nb-rich species. MC carbides have a higher hardness than other types of carbides and are better able to prevent surface wear during high speed steel applications, so they are commonly used in high speed steels. For example, the mass fraction of the V alloy of the commercial M35 high-speed steel is about 2 percent, and the mass fraction of the V alloy of the commercial T15 high-speed steel is up to 5 percent. It is noted that, in the production of high-V high-speed steel, since V and C have strong chemical bonding ability, they start to form and grow at an early stage of solidification of the high-speed steel, and easily cause coarse carbides, thereby affecting other necessary properties required for the high-speed steel, such as toughness, workability, and the like.
Based on this, the V content in powder metallurgy high speed steel alloys can be designed to very high levels, such as 3% vanadium in one published commercial grade 2030 and 6.5% vanadium in another commercial grade 2060. It is also obvious that the cost is increased along with the increase of the use amount of the V alloy element in the high-speed steel, and how to improve the wear resistance of the alloy on one hand and improve the cost performance of the alloy on the other hand is a problem to be considered.
Disclosure of Invention
In view of the above, the present invention is directed to a wear-resistant high-speed steel having excellent wear resistance.
In order to achieve the purpose, the technical scheme of the invention is realized as follows:
the wear-resistant high-speed steel is prepared by adopting a rapid solidification process, and comprises the following chemical components in percentage by mass: c: 0.9% -3.2%, Si: 0.4% -1.0%, Mn: 0.2% -1.0%, Cr: 3% -6%, W: 4% -15%, Mo: less than or equal to 10 percent, Co: 2% -13%, (V + Ti): 2% -12%, and V: less than or equal to 8 percent, Ti: 0.5 to 6 percent, and the balance of Fe and impurities.
Further, the chemical components comprise the following components in percentage by mass: c: 0.9% -2.5%, Si: 0.4% -1.0%, Mn: 0.2% -0.8%, Cr: 3% -6%, W: 4% -15%, Mo: 2% -10%, Co: 2% -13%, (V + Ti): 2% -9%, and V: less than or equal to 8 percent, Ti: 0.5 to 3 percent.
Further, the (V + Ti) range is: 2 to 12 percent.
Further, the (V + Ti) range is: 2 to 9 percent.
Further, the impurities include O, and O: less than or equal to 0.03 percent.
Further, the impurities include at least one of S and P, and S: less than or equal to 0.3 percent, P: less than or equal to 0.05 percent.
Further, the rapid solidification process includes a powder metallurgy process or a spray forming process.
Further, the volume fraction of Ti-rich MX carbides in the wear-resistant high-speed steel is 1-15%.
Furthermore, the grain size of the Ti-rich MX carbide is less than or equal to 7 μm.
Furthermore, at least 80% of the Ti-rich MX carbides have a particle size of less than or equal to 3 μm.
In the invention, specific chemical components and proportion are necessary conditions for realizing the wear resistance of the wear-resistant alloy, and the action and the principle of each chemical component are briefly described as follows:
part of the C element is dissolved in the matrix in a solid mode, so that certain hardness can be obtained after heat treatment, in addition, the C element participates in the formation of various carbides, for the wear-resistant high-speed steel of the embodiment, the key point for obtaining the wear resistance is to form ultra-high hardness Ti-rich type MX carbides, wherein M represents an element mainly comprising Ti, X represents an element mainly comprising C, and the C, N mixed type MX carbides can also be formed together with N.
It should be noted here that N is not an essential element for the wear-resistant high-speed steel of the present invention, but for cost reasons, when nitrogen is used as the atomizing medium in the gas atomization milling process, the content of N increases to a certain value, and within a certain content range, N can play a beneficial role, mainly participating in carbide formation together with C, and at this time, the content of C needs to be re-determined to maintain a proper carbon balance coefficient. The presence of too high N is considered disadvantageous for the alloy steel of the present invention, mainly due to: the increase of excessive N can lead to the atomizing process to have the risk of molten steel plugging leakage holes. From the viewpoint of obtaining the best overall mechanical properties, a suitable content range of C is set to 0.9% to 3.2%, preferably 0.9% to 2.5%, and a suitable content range of N is 0.15% or less, within which the maximum wear resistance and the combination of toughness can be obtained.
Si is used as a deoxidizer and a matrix-strengthening element, but too high Si causes an increase in matrix brittleness, so that the content of Si is suitably in the range of 0.4% to 1.0% in the present invention.
Mn is added as a deoxidizer to weaken the harmful effect of S, and proper Mn also increases hardenability, but too high Mn increases the risk of brittleness, so that in the present invention, Mn is suitably contained in the range of 0.2% to 1.0%, and preferably in the range of 0.2% to 0.8%.
Cr is mainly used for improving the hardenability of the matrix in the invention, and the proper content range of Cr is 3-6%.
W and Mo are mainly used for improving hardenability and promoting the hardness to reach the required hardness after heat treatment, the two elements have similar functions in the wear-resistant high-speed steel, W can partially replace Mo, both can react with C to form carbide, and the wear-resistant performance is also contributed to a certain degree. A suitable range of W content is 4% to 15%, a suitable range of Mo content is not more than 10%, and a preferred range of Mo is 2% to 10%.
In the present invention, Co mainly acts to promote precipitation of carbides and improve the red hardness of the alloy, and therefore, in the present invention, the appropriate content range of Co is 2% to 13%.
Ti reacts with C or N to form high-hardness Ti-rich MX carbide, the micro-hardness of the high-hardness Ti-rich MX carbide reaches more than HV3000 and is obviously higher than other types of carbide and most of hard particles possibly causing abrasion, so that the effect of better protecting a matrix can be realized under the condition of an abrasion working condition, and the abrasion resistance is improved. The Ti-rich MX carbide does not have the risk of surface falling in a manner similar to TiC or TiN coated on the surface in the presence of a matrix, and based on a powder metallurgy process, the Ti-rich MX carbide can be uniformly distributed in the whole matrix from outside to inside in the form of fine approximately spherical particles and can stably play a role in the whole life cycle of a workpiece in the using process. Since too high Ti forms a large amount of high-melting carbide to cause the gas atomization milling process to become unstable, the content of Ti is suitably in the range of 0.5% to 6%, preferably in the range of 0.5% to 3% in the present invention.
In principle, V can be replaced by Ti in whole or in part, and the content of V should be as low as possible in consideration of cost performance, but according to the design concept of the invention, although the effectiveness of V-rich MX carbide on improving the wear resistance is relatively poor, the risk of steel blockage in the gas atomization powder preparation process caused by the V element is low, so the V alloy element can be used as a supplement to be matched with the Ti alloy element to meet the requirement of extremely high wear resistance.
In the invention, the proper content range of V is less than or equal to 8 percent, and the total mass fraction of V and Ti is 2 to 12 percent. As a preferable scheme, the suitable range of V is less than or equal to 8 percent, and the total mass fraction of V and Ti is 2 to 9 percent.
In addition to the above-mentioned set chemical composition, the wear-resistant high-speed steel of the present invention, the balance being the Fe matrix, of course, includes some inevitable residual trace elements including O, S, P and the like, and in order to prevent adverse effects on the alloy mechanical properties, it is required that the appropriate content range of O is 0.03% or less, the appropriate content range of S is 0.3% or less, and the appropriate content range of P is 0.05% or less.
In addition, in the chemical composition of the present invention, the impurities may further include at least one of Zr, Mg, Al, Cu, Ni, Sn, and Pb, and the total amount of these impurities is not more than 1%.
According to the wear-resistant high-speed steel, by selecting proper chemical components and proportion, the volume fraction of high-hardness Ti-rich MX carbides in the high-speed steel is 1-15%, the grain size of the Ti-rich MX carbides in the high-speed steel is less than or equal to 7 microns, the grain size of at least 80% of the Ti-rich MX carbides in the high-speed steel is less than or equal to 3 microns, and the Ti-rich MX carbides in the high-speed steel are approximately spherical particles.
As a preferable feasible embodiment, the wear-resistant high-speed steel of the invention needs to be prepared by a rapid solidification process to avoid segregation of alloy elements, for example, the wear-resistant high-speed steel can be prepared by a powder metallurgy process or a spray forming process, the invention preferably adopts the powder metallurgy process, wherein the main preparation process of the powder metallurgy process comprises gas atomization powder preparation, hot isostatic pressing and the like, and the spray forming process directly atomizes and sprays alloy melt into ingots. In order to further improve the mechanical properties or to achieve a product size of a specific shape, it is of course possible to further hot-deform the ingot.
It should be noted that the gas atomization powder preparation process of the present invention includes the following steps and process parameters:
a. the alloy is filled into a smelting ladle and is powered and heated under the protective atmosphere;
b. after the alloy is melted, continuously heating to more than or equal to 1600 ℃, sampling and analyzing components, and adjusting to a qualified range;
c. preheating an atomizing tundish crucible in advance, wherein the temperature of the tundish before the molten alloy is atomized reaches 900-1300 ℃, and the superheat degree of the molten alloy is controlled at 100-300 ℃;
d. starting high-pressure nitrogen or argon and an evacuation fan after the temperature of the alloy melt meets the requirement, enabling the alloy melt to enter an atomization system through a ceramic eyelet at the bottom of a tundish, starting atomization of the alloy melt, and controlling the atomization flow of the alloy melt to be 10kg/min-50 kg/min;
e. conveying the atomized powder to a powder collecting tank body through air flow, and cooling to be less than or equal to 50 ℃.
In addition, the hot isostatic pressing process comprises the following steps:
a. placing the alloy powder prepared by the gas atomization powder making process in a metal sheath, vacuumizing the metal sheath, discharging gas in the sheath, and then welding and sealing;
b. and placing the powder-filled and sealed sheath in a hot isostatic pressing furnace, and realizing the complete densification of the powder in the sheath under the conditions that the temperature exceeds 1000 ℃ and the pressure exceeds 100MPa to form a hot isostatic pressing ingot.
In addition, the hot deformation is to further improve the mechanical property or realize the product size with a specific shape, and the ingot prepared by the hot isostatic pressing process is further subjected to hot deformation processing, wherein the hot deformation processing temperature is 950-1180 ℃.
Compared with the prior art, the invention has the following advantages:
the key point of the realization of the wear resistance of the wear-resistant high-speed steel is to select proper chemical components and proportion to form high-hardness Ti-rich MX carbide, the microhardness of the carbide reaches over HV3000 and exceeds the hardness of most of the existing metal or nonmetal hard abrasive particles, so that the effect of improving the wear resistance is achieved, and meanwhile, the performance-price ratio is high.
In addition, the wear-resistant high-speed steel is prepared by adopting proper chemical components and proportions and combining a rapid solidification process, so that alloy element segregation can be effectively prevented, and high-hardness Ti-rich MX carbides in the steel are distributed in a matrix in a fine dispersion manner, so that the wear resistance can be improved, and the machinability cannot be damaged too much.
In addition, the wear-resistant high-speed steel is suitable for turning processing, such as hobbing cutters, broaching cutters, turning tools and the like, can also be used for cold working processing, including stamping, punching, powder pressing and the like, and is also suitable for manufacturing various wear-resistant parts, such as oil nozzles, screw rods, pump body sliding blades and the like, based on the wear-resistant characteristics of the wear-resistant high-speed steel. It should be understood here that the above application is not a limitation on the scope of application of the invention, but serves to illustrate the mechanical properties of the invention, in addition to the wear resistance, the steel grade having at the same time the following performance characteristics: after heat treatment, the alloy has high toughness and hardness, small difference of different orientations of mechanical properties, small heat treatment deformation and easy grinding.
The achievement of one or more of the above properties depends on the selection of appropriate chemical components and proportions, and as a necessary condition, it employs a rapid solidification process to prepare ingots to avoid segregation of alloying elements.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment of the invention and, together with the description, serve to explain the invention and not to limit the invention. In the drawings:
FIG. 1 is a microstructure picture of a wear-resistant high-speed steel according to example 1 of the present invention;
FIG. 2 is a microstructure picture of a wear-resistant high-speed steel according to example 2 of the present invention;
FIG. 3 is a microstructure picture of a wear-resistant high-speed steel according to example 3 of the present invention;
fig. 4 is a graphical representation of a comparison of the relative wear resistance of various embodiments of the wear-resistant high speed steel according to the present invention.
Detailed Description
It should be noted that the embodiments and features of the embodiments may be combined with each other without conflict.
The present invention will be described in detail below with reference to the embodiments with reference to the attached drawings.
The chemical composition of the conventional powder metallurgy high-speed steel and several specific examples of the present invention will be described below, and specific reference will be made to table 1.
Table 1: chemical composition of examples of high speed Steel
Figure BDA0002987184200000061
Figure BDA0002987184200000071
In table 1, example 1 is a comparative example, which is a chemical composition of general powder metallurgy high speed steel 2030 purchased.
Examples 2 to 9 are chemical components of the wear-resistant high-speed steel of the present invention, and are prepared by a powder metallurgy process, wherein a powder is prepared by a gas atomization powder preparation process, then hot isostatic pressing densification is performed on the powder, an ingot blank with a diameter of 120mm is prepared, and a bar with a diameter of 50mm is obtained after further hot deformation processing.
The atomization powder preparation process comprises the following steps and process parameters:
a. the alloy is filled into a smelting ladle and is powered and heated under the protective atmosphere;
b. after the alloy is melted, the temperature is continuously raised to 1800 ℃, and after sampling and analyzing the components, the components are adjusted to a qualified range;
c. preheating an atomization tundish crucible, wherein the temperature of the tundish reaches 1000 ℃ before the molten alloy is atomized;
d. starting high-pressure nitrogen or argon and an evacuation fan after the temperature of the alloy melt meets the requirement, enabling the alloy melt to enter an atomization system through a ceramic eyelet at the bottom of a tundish, starting atomization of the alloy melt, and controlling the atomization flow of the alloy melt to be 20 kg/min;
e. conveying the atomized powder to a powder collecting tank body through air flow, and cooling to 50 ℃.
The hot isostatic pressing process comprises the following steps:
a. placing the alloy powder prepared by the gas atomization powder making process in a metal sheath, vacuumizing the metal sheath, discharging gas in the sheath, and then welding and sealing;
b. and placing the powder-filled and sealed capsule in a hot isostatic pressing furnace, and completely densifying the powder in the capsule at the temperature of 1100 ℃ and under the pressure of 110MPa to form a hot isostatic pressing ingot.
It should be noted here that in example 9, since Ti was added excessively, the molten steel was easily clogged with the atomizing nozzle during the production process, and stable production was difficult.
Next, the high speed steels of examples 1 to 8 in table 1 were subjected to comparative tests in the following respects: (1) microstructure after heat treatment; (2) heat treatment hardness; (3) wear resistance. The comparative results are as follows:
(1) microstructure after heat treatment
The high speed steels of examples 1 to 8 were heat treated according to the process parameters shown in Table 2, and the microstructures were analyzed.
Table 2: carbide content and particle size comparison for each example
Figure BDA0002987184200000081
In table 2, after the high-speed steels of the examples were quenched and tempered, the structures of the steels were composed of martensite, a small amount of retained austenite, and a hard second phase, and the second phase was subjected to morphological analysis and classification and analysis of the volume content thereof by using a scanning electron microscope.
The alloy microstructure of example 1 has typical characteristics of powder metallurgy high speed steel, the microstructure is shown in figure 1, the second phase particles are fine and uniformly distributed, and the size of at least 80 percent of the second phase particles is less than or equal to 3 mu m. By energy spectrum analysis, the alloy carbide phase of the example 1 is mainly M6C type W, Mo-rich carbide and 3-6% volume fraction of MC type V-rich carbide.
Since the high-speed steels of examples 2 to 7 were all prepared by the powder metallurgy process, the microstructures of examples 2 and 3 are shown in fig. 2 and 3, respectively, and exhibit the characteristics of the powder metallurgy structure, and the carbide particles are fine and distributed discretely. Through the composition identification analysis, the high-speed steels of the examples 2 to 7 contain 1 to 15 volume percent of Ti-rich MX carbides, the grain size of the Ti-rich MX carbides is less than or equal to 7 microns, at least 80 percent of the Ti-rich MX carbides has the grain size of less than or equal to 3 microns, and the Ti-rich MX carbides are in the form of approximately spherical grains. The high-hardness Ti-rich MX carbide is distributed in the matrix in a fine dispersion mode, so that the wear resistance can be improved, and the processability cannot be excessively damaged.
In the high-speed steel of example 8, the addition amount of Ti is small, and thus, it is detected that the amount of formed wear-resistant TiC particles is too small, and the improvement of wear resistance is limited.
(2) Hardness by heat treatment
The high speed steels of examples 1 to 8 were heat treated according to the process parameters in table 3 and tested for hardness.
Table 3: hardness test results after Heat treatment of examples
Examples Austenitizing Tempering hardness/HRC
1 1160℃ 540 ℃ for 2 hours 3 times 67
2 1170℃ 550 ℃ for 2 hours 3 times 67
3 1170℃ 550 ℃ for 2 hours 3 times 66
4 1170℃ 550 ℃ for 2 hours 3 times 67
5 1170℃ 550 ℃ for 2 hours 3 times 68
6 1170℃ 550 ℃ for 2 hours 3 times 67
7 1170℃ 550 ℃ for 2 hours 3 times 67
8 1170℃ 550 ℃ for 2 hours 3 times 66
The technological parameters after heat treatment are shown in Table 3, hardness tests are carried out on the examples after heat treatment by referring to GB/T230.1-2018, and the results show that the alloys of examples 1-8 can reach high hardness level, and can meet the requirements of most cutter and die working conditions on material hardness.
(3) Wear resistance
The wear resistance of the alloy is tested by a metal-to-metal wear test, the friction pair is 45# steel, the load is 50kg, and the revolution is 200 r/min. The process parameters for the heat treatment of the high speed steels of examples 1 to 8 are shown in table 3. The wear resistance is measured according to the weight loss of the tested material and divided into 10 wear resistance grades, wherein 1 is the worst wear resistance and 10 is the best wear resistance.
Comparative results as shown in fig. 4, the high speed steels of examples 2 to 7 all showed more excellent wear resistance, particularly example 3, having a higher Ti alloy content and matching design with a corresponding C content to form a Ti-rich MX carbide structure, thereby showing the most excellent wear resistance.
On the other hand, the high-speed steel of example 8 has no significant improvement in wear resistance compared to example 1 because the amount of Ti added is too small.
Generally, the alloy is a complex system, various alloy elements can interact with each other, so that various chemical components can simultaneously participate in one or more reactions and influence each other, taking C in TiC as an example, the C has the functions of solid solution in a matrix, promoting martensite formation and solid solution strengthening, participating in TiC combination reaction, participating in other carbide combination precipitation and the like, and in addition, the action part of N is similar to the C, so that the balance among various different reactions needs to be comprehensively considered, and the proper C alloy content and other alloy content need to be designed, so that TiC can be formed according to the required amount.
On the other hand, if the TiC is expected to play an effective role in the alloy, it is necessary to control the existence form of TiC, including the particle size, distribution, etc., the proper alloy composition and the combination of the rapid solidification process. Finally, the difficulty of process implementation needs to be considered, the design of excessively high TiC content cannot be implemented in production, and the wear-resisting effect is not obvious if the TiC content is too low.
In the description of the present specification, embodiments of the present invention have been given, it is to be understood that the above embodiments are exemplary and not to be construed as limiting the invention, and that one skilled in the art can combine, replace and modify the features of the various embodiments or examples described in the specification without contradiction.

Claims (10)

1. The wear-resistant high-speed steel is characterized by being prepared by adopting a rapid solidification process, and comprising the following chemical components in percentage by mass: c: 0.9% -3.2%, Si: 0.4% -1.0%, Mn: 0.2% -1.0%, Cr: 3% -6%, W: 4% -15%, Mo: less than or equal to 10 percent, Co: 2% -13%, V: less than or equal to 8 percent, Ti: 0.5 to 6 percent, and the balance of Fe and impurities.
2. The wear-resistant high-speed steel according to claim 1, characterized in that: the chemical components of the material comprise the following components in percentage by mass: c: 0.9% -2.5%, Si: 0.4% -1.0%, Mn: 0.2% -0.8%, Cr: 3% -6%, W: 4% -15%, Mo: 2% -10%, Co: 2% -13%, V: less than or equal to 8 percent, Ti: 0.5 to 3 percent.
3. The wear-resistant high-speed steel according to claim 1, characterized in that: (V + Ti) ranges: 2 to 12 percent.
4. The wear-resistant high-speed steel according to claim 3, characterized in that: (V + Ti) ranges: 2 to 9 percent.
5. The wear-resistant high-speed steel according to claim 1, characterized in that: the impurities include O, and O: less than or equal to 0.03 percent.
6. The wear-resistant high-speed steel according to claim 1, characterized in that: the impurities include at least one of S and P, and S: less than or equal to 0.3 percent, P: less than or equal to 0.05 percent.
7. The wear-resistant high-speed steel according to claim 1, characterized in that: the rapid solidification process includes a powder metallurgy process or a spray forming process.
8. The wear-resistant high-speed steel according to claim 1, characterized in that: the volume fraction of Ti-rich MX carbides in the wear-resistant high-speed steel is 1-15%.
9. The wear-resistant high-speed steel according to claim 8, characterized in that: the grain size of the Ti-rich MX carbide is less than or equal to 7 mu m.
10. The wear-resistant high-speed steel according to claim 9, characterized in that: at least 80% of the Ti-rich MX carbides have a particle size of less than or equal to 3 μm.
CN202110303427.9A 2021-03-22 2021-03-22 Wear-resistant high-speed steel Pending CN114318135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110303427.9A CN114318135A (en) 2021-03-22 2021-03-22 Wear-resistant high-speed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110303427.9A CN114318135A (en) 2021-03-22 2021-03-22 Wear-resistant high-speed steel

Publications (1)

Publication Number Publication Date
CN114318135A true CN114318135A (en) 2022-04-12

Family

ID=81044449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110303427.9A Pending CN114318135A (en) 2021-03-22 2021-03-22 Wear-resistant high-speed steel

Country Status (1)

Country Link
CN (1) CN114318135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921729A (en) * 2022-06-02 2022-08-19 江苏应用元素科技有限公司 High-speed steel cutter wire and preparation method thereof
CN114990440A (en) * 2022-06-02 2022-09-02 宿迁学院 Powder metallurgy high-speed steel wire and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230576A1 (en) * 1985-12-06 1987-08-05 AKADEMIA GORNICZO-HUTNICZA im. Stanislawa Staszica Alloyed tool steel with high wear-resistance
CN1106981A (en) * 1993-03-31 1995-08-16 日立金属株式会社 Wear- and seizure-resistant roll for hot rolling
CN101469392A (en) * 2007-12-29 2009-07-01 张朝龙 High wear resistance alloy for slitting roller and manufacturing method thereof
CN104001905A (en) * 2014-06-16 2014-08-27 枣庄瑞兴机械制造有限公司 Abrasion-resistance casting high-speed steel composite roller and manufacturing method thereof
CN104131211A (en) * 2014-08-20 2014-11-05 江苏飞达钻头股份有限公司 Preparation method of jet-molded multi-gradient high-speed steel
CN104878301A (en) * 2015-05-15 2015-09-02 河冶科技股份有限公司 Spray forming high-speed steel
CN104878306A (en) * 2015-05-15 2015-09-02 河冶科技股份有限公司 Wearproof tool steel for spray forming

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230576A1 (en) * 1985-12-06 1987-08-05 AKADEMIA GORNICZO-HUTNICZA im. Stanislawa Staszica Alloyed tool steel with high wear-resistance
CN1106981A (en) * 1993-03-31 1995-08-16 日立金属株式会社 Wear- and seizure-resistant roll for hot rolling
CN101469392A (en) * 2007-12-29 2009-07-01 张朝龙 High wear resistance alloy for slitting roller and manufacturing method thereof
CN104001905A (en) * 2014-06-16 2014-08-27 枣庄瑞兴机械制造有限公司 Abrasion-resistance casting high-speed steel composite roller and manufacturing method thereof
CN104131211A (en) * 2014-08-20 2014-11-05 江苏飞达钻头股份有限公司 Preparation method of jet-molded multi-gradient high-speed steel
CN104878301A (en) * 2015-05-15 2015-09-02 河冶科技股份有限公司 Spray forming high-speed steel
CN104878306A (en) * 2015-05-15 2015-09-02 河冶科技股份有限公司 Wearproof tool steel for spray forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921729A (en) * 2022-06-02 2022-08-19 江苏应用元素科技有限公司 High-speed steel cutter wire and preparation method thereof
CN114990440A (en) * 2022-06-02 2022-09-02 宿迁学院 Powder metallurgy high-speed steel wire and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109877311B (en) MIM injection molding high-end cutter, metal powder and preparation method thereof
KR100373169B1 (en) Powder metallurgy cold oral with high impact toughness and abrasion resistance and manufacturing method
TWI482865B (en) High strength low alloyed sintered steel
SE0850040A1 (en) Steel material and process for making them
US20030133824A1 (en) High-toughness and high-strength ferritic steel and method of producing the same
US5238482A (en) Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same
US10094007B2 (en) Method of manufacturing a ferrous alloy article using powder metallurgy processing
CN114318135A (en) Wear-resistant high-speed steel
JP4703005B2 (en) Steel, use of the steel, product made of the steel and method for producing the steel
KR100909922B1 (en) Cold work steel
KR100693666B1 (en) Powder metallurgy manufactured high speed steel
US20030156965A1 (en) Nitrogen alloyed steel, spray compacted steels, method for the production thereof and composite material produced from said steel
JP2019116688A (en) Powder high speed tool steel
GB1573052A (en) Method of producing high carbon hard alloys
CN113215482B (en) Wear-resistant cold-work tool steel
CN114318134A (en) Wear-resistant high-speed steel
CN114318131B (en) Wear-resistant alloy
CN114318133A (en) Wear-resistant tool steel
CN114318164B (en) Wear-resistant corrosion-resistant tool steel
CN114318132B (en) Corrosion-resistant wear-resistant tool steel
JPH0143017B2 (en)
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance
CN114318130A (en) Precipitation hardening alloy
JP7026629B2 (en) Alloy steel and tools
CN117165838A (en) Powder metallurgy wear-resistant dual-reinforcement phase precipitation hardening high-speed steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220412

RJ01 Rejection of invention patent application after publication