KR100361041B1 - Hybrid power train vehicle and its control method - Google Patents

Hybrid power train vehicle and its control method Download PDF

Info

Publication number
KR100361041B1
KR100361041B1 KR1019960706830A KR19960706830A KR100361041B1 KR 100361041 B1 KR100361041 B1 KR 100361041B1 KR 1019960706830 A KR1019960706830 A KR 1019960706830A KR 19960706830 A KR19960706830 A KR 19960706830A KR 100361041 B1 KR100361041 B1 KR 100361041B1
Authority
KR
South Korea
Prior art keywords
engine
output
speed
vehicle
determined
Prior art date
Application number
KR1019960706830A
Other languages
Korean (ko)
Other versions
KR970703248A (en
Inventor
챨스 엘. 쥬니어. 그레이
칼 에이치. 헬만
마이클 제이. 사포우틴
Original Assignee
유.에스. 인바이론멘탈 프로텍션 에이전씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22962307&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100361041(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 유.에스. 인바이론멘탈 프로텍션 에이전씨 filed Critical 유.에스. 인바이론멘탈 프로텍션 에이전씨
Publication of KR970703248A publication Critical patent/KR970703248A/en
Application granted granted Critical
Publication of KR100361041B1 publication Critical patent/KR100361041B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

엔진(1) 출력 속도는 무단 변속기(CVT:3)의 입력 속도 조정에 의해 최적 효율이 이루어지도록 제어된다. 엔진(1)에 의해 발생되는 출력 이상의 출력이 요구되면, 추가동력이 축압기(6)내에 저장된 유체 압력에 의해 구동되는 펌프 모터(7)로 부터 구동트레인으로 입력된다. 최적 효율로 작동하는 엔진(1)이 차량에 의해 요구되는 출력 이상의 출력을 발생시키는 주행 상태에서, 펌프 모터(7)는 펌프로서 작동되게 변환되고, 과도의 엔진 출력은 펌프를 구동하는데 사용되며 축압기(6)내에 유체 압력의 형태로 에너지를 저장한다. 마이크로 프로세서는 센서(14)에 의해 나타나는 출력의 합으로서 엔진의 요구 출력을 결정하고, 상기 센서는 운전자에 의해 요구되는 출력 및 임계치 이상의 축압기(6)의 압력을 유지하기 위해 요구되는 출력증분을 감지한다.The output speed of the engine 1 is controlled to achieve optimum efficiency by adjusting the input speed of the continuously variable transmission CVT: 3. If an output above the output generated by the engine 1 is required, additional power is input from the pump motor 7 driven by the fluid pressure stored in the accumulator 6 into the drive train. In a running state in which the engine 1 operating at optimum efficiency generates an output above the power required by the vehicle, the pump motor 7 is converted to operate as a pump, and the excessive engine output is used to drive the pump and the shaft Energy is stored in the form of fluid pressure in the inflator 6. The microprocessor determines the required output of the engine as the sum of the outputs presented by the sensors 14, which outputs the output required by the driver and the output increment required to maintain the pressure of the accumulator 6 above a threshold. Detect.

Description

하이브리드 파워트레인 차량 및 그의 제어방법Hybrid powertrain vehicle and control method thereof

차량 이용이 증가하여, 이산화탄소와 같은 온실가스를 포함한 여러 가지 오염원들이 대기속에 증가한다. 이러한 이유에 의해 차량용 파워트레인을 위한 연료의 이용효율을 개선하려는 노력이 있었다. 전형적으로 현재 파워트레인은 단지 약 10%내지 15%의 열효율을 가진다.As vehicle use increases, many sources of pollution, including greenhouse gases such as carbon dioxide, increase in the atmosphere. For these reasons, efforts have been made to improve the utilization of fuel for vehicle powertrains. Typically, current powertrains have thermal efficiency of only about 10% to 15%.

종래기술의 차량용 파워트레인은 상당한 에너지손실을 발생시켜서, 효과적으로 배출물을 제어하기 곤란하고, 차량연료절감에 상당한 개선을 구하려는 가능성을 제한적으로 제공한다. 종래기술의 파워트레인은 내연기관, 구분된 기어비 단수를 가진 단순형 기계식 변속장치로 구성된다. 상기 비효율에 기인하여, 상기 시스템에 의해 소비되는 연료에너지의 약 80%내지 90%는 열로서 폐기된다. 상기 에너지의 10% 내지 15%만이 차량을 추진하기 위해 이용되고, 상당량의 에너지가 제동시 열로서 소산된다.Prior art vehicle powertrains generate significant energy losses, making it difficult to control emissions effectively and offer limited possibilities for seeking significant improvements in vehicle fuel savings. The powertrain of the prior art consists of an internal combustion engine, a simple mechanical transmission with a distinct gear ratio stage. Due to the inefficiency, about 80% to 90% of the fuel energy consumed by the system is disposed of as heat. Only 10% to 15% of the energy is used to propel the vehicle, and a significant amount of energy is dissipated as heat during braking.

상당량의 에너지손실은 엔진출력용량 및 평균출력요구사이의 부적절한 조합에 기인한다. 주어진 순간에 엔진에 가해진 부하가 상기 순간에 전체 도로부하에 의해 직접 결정되고, 전체 도로부하는 극도로 높은 부하 및 극도로 작은 부하사이에서 변화한다. 가속요구를 만족시키기 위해, 엔진은 차량을 추진하기 위한 평균 출력의 여러 배에 해당하는 출력을 발생시켜야 한다. 내연기관의 효율은 도로에 따라 상당히 변하고, 거의 최고부하에 근접한 고부하에서 최고이고, 저부하에서 최저이다. 정상적인 구동을 하는 엔진작동은 거의 항상 부하범위의 하단에 해당하기 때문에, 심지어 종래기술의 일부 엔진들의 35%내지 40% 범위의 최고효율을 가지더라도, 엔진의 효율은 대부분의 시간동안 불량하다.Significant energy losses are due to an inadequate combination between engine power capacity and average power demand. The load on the engine at a given moment is directly determined by the total road load at that moment, and the overall road load varies between extremely high loads and extremely small loads. In order to meet the acceleration demand, the engine must generate power that is several times the average power to propel the vehicle. The efficiency of the internal combustion engine varies considerably from road to road, highest at high loads close to the highest load, and lowest at low loads. Since normal engine operation is almost always at the bottom of the load range, even with the highest efficiency in the range of 35% to 40% of some prior art engines, the engine's efficiency is poor for most of the time.

에너지손실의 또 다른 주요 요인은 제동과 관련된다. 휠들의 에너지를 전달해야 하는 가속작용과 대조적으로, 제동작용은 휠들로 부터 에너지를 제거해야 한다. 내연기관은 단지 에너지를 발생시킬 뿐이고 재생하지 못하기 때문에, 종래기술의 파워트레인은 일방적인 에너지경로를 가진다. 제동은 마찰제동시스템에 의해 이루어지고, 일시적으로 불필요한 운동에너지를 열로 변환시켜 차량의 상기 운동에너지를 쓸모없게 만든다.Another major source of energy loss is related to braking. In contrast to the acceleration, which must transfer the energy of the wheels, the braking action must remove energy from the wheels. Since internal combustion engines only generate energy and do not reproduce, prior art powertrains have a one-way energy path. Braking is achieved by a friction braking system, which temporarily converts unnecessary kinetic energy into heat, making the kinetic energy of the vehicle useless.

종래기술의 파워트레인에서 엔진에 대해 가해지는 광범위한 부하 및 속도에 기인하여, 엔진은 다수의 서로 다른 연소상태에서 작동해야 하기 때문에, 배출물을 효율적으로 제어하기 곤란하다. 더욱 일정한 속도 및 부하에서 엔진을 작동하면, 배출물의 제어장치가 훨씬 더 양호하게 최적화될 수 있고, 전체적으로 더욱 효율적인 엔진세팅에 의해 이동거리당 소모연료는 감소될 수 있다.Due to the wide range of loads and speeds imposed on the engine in prior art powertrains, it is difficult to control emissions efficiently because the engine must operate in a number of different combustion conditions. By operating the engine at a more constant speed and load, the emissions control can be optimized much better, and overall fuel consumption per travel can be reduced by more efficient engine setting.

종래기술의 파워트레인에 의하면, 공기역학적인 드레그(drag) 중량 및 롤링(rolling)저항에 관한 개선이 제공되는 때를 제외하면, 차량연료절감을 개선하는 가능성이 제한된다. 상기 개선은 단지 효율의 제한적인 개선을 제공할 뿐이고, 개선된 파워트레인과 양호하게 적용될 수 있다.Prior art powertrains limit the possibility of improving vehicle fuel savings, except when improvements in aerodynamic drag weights and rolling resistance are provided. This improvement merely provides a limited improvement in efficiency and can be applied well with the improved powertrain.

상기 비효율을 감소시키기 위한 수단으로서 하이브리드 차량 시스템이 연구되었다. 엔진에 대해 가해지는 출력요구의 변화를 완화시키기 위해, 내연기관에 의해 발생되는 출력 및 차량을 추진하기 위한 출력사이에서 하이브리드차량시스템은 " 버퍼(buffer)"를 제공한다. 버퍼는 엔진이외의 공급원으로부터 에너지를 수용하고 저장할 수 있기 때문에, 버퍼에 의해 재생제동작용이 허용된다. 하이브리드차량시스템의 효율은 엔진을 최고효율에서 작동하는 능력 및 버퍼매체의 용량과 효율에 의존한다. 전형적인 버퍼매체는 전기배터리(battery), 기계식 플라이휠 및 유압식축압기를 포함한다.Hybrid vehicle systems have been studied as a means to reduce the inefficiency. In order to mitigate the change in the power demand imposed on the engine, the hybrid vehicle system provides a "buffer" between the power generated by the internal combustion engine and the power for propulsion of the vehicle. Because the buffer can receive and store energy from sources other than the engine, regenerative braking is allowed by the buffer. The efficiency of a hybrid vehicle system depends on the capacity of the engine to operate at peak efficiency and the capacity and efficiency of the buffer medium. Typical buffer media include electric batteries, mechanical flywheels and hydraulic accumulators.

버퍼로서 유압식축압기를 이용하기 위해, 유압식 펌프/모터가 시스템에 일체 구성된다. 펌프/모터는 펌프 또는 모터로서 상호작동한다. 펌프로서 유압유체를 축압기에 가압하기 위해 펌프/모터가 엔진 또는 " 제동"출력을 이용하고, 유압유체가 일정량의 (예를 들어, 질소와 같은 )가스에 대해 압축된다. 모터로서 압축된 유체가 펌프/모터를 통해 방출되어, 동력을 발생시킨다.In order to use a hydraulic accumulator as a buffer, a hydraulic pump / motor is integrated in the system. The pump / motor interacts as a pump or a motor. The pump / motor uses an engine or “braking” output to pressurize the hydraulic fluid to the accumulator as a pump, and the hydraulic fluid is compressed against a certain amount of gas (eg nitrogen). Fluid compressed as a motor is discharged through the pump / motor to generate power.

유압식 하이브리드차량시스템은 두가지 일반적인 형태를 가진다. " 직렬구조식" 시스템에 의하면, 엔진에 의해 발생된 모든 에너지가 유압출력경로를 통해 전달되고, 유체출력측부가 가변적인 도로부하를 가한다. 따라서 유체출력경로의 효율은 출력요구변화에 대해 민감하지 않고 엔진이 도로부하로부터 독립적이어서 엔진이 최고효율에서 작동하거나 정지할 수 있기 때문에, 효율이 증가한다.Hydraulic hybrid vehicle systems take two general forms. According to the "serial structure" system, all the energy generated by the engine is transmitted through the hydraulic output path, and the fluid output side exerts a variable road load. Thus, the efficiency of the fluid output path is not sensitive to changes in power demand and the engine is independent of road load, which increases the efficiency since the engine can run or stop at peak efficiency.

직렬식시스템은 제어 및 개념상 상대적으로 단순하지만, 모든 에너지가 유체출력으로 변환되고 차량을 추진하기 위해 기계적 출력으로 복원되어야 하기 때문에, 다른 시스템보다 효율이 작다. 최적효율을 위해 상기 직렬식시스템들은 엔진의 잦은 작동 또는 정지에 의존한다. "병렬구조식"시스템은 직접적이고 종래기술을 따르는 기계적 구동라인 및 유체동력라인사이에서 출력유동을 분리한다. 따라서 에너지의 일부가 유체동력으로 변환저장되고 다시 복원된다. 상기 시스템의 가장 흔한 형태는 " 출발보조" 모드에 있고, 상기 모드에서, 주로 제동에너지를 저장하고 저장에너지를 다음의 차량가속을 보조하도록 이용한다. 상기 병렬식 시스템은 휠들에 대하여 종래기술 및 유압동력경로를 요구하기 때문에, 직렬구조식시스템보다 복잡하고 매끄러운 제어가 곤란해지는 경향이 있다. 특정설계에 의존하여, 직렬구조식 및 병렬구조식 시스템에 의해 엔진크기가 다소 감소될 수 있지만, 아직까지 상대적으로 큰 엔진이 요구된다.In-line systems are relatively simple in control and concept, but are less efficient than other systems because all energy must be converted to fluid output and restored to mechanical output to propel the vehicle. For optimum efficiency the tandem systems rely on frequent starting or stopping of the engine. The "parallel structure" system separates output flow between the direct and prior art mechanical drive lines and fluid power lines. Thus, part of the energy is converted to fluid power and stored. The most common form of the system is in the "start-up" mode, in which the primary energy is used to store the braking energy and to assist the next vehicle acceleration. Since the parallel system requires the prior art and hydraulic power path for the wheels, it tends to be more complicated and smoother than the tandem system. Depending on the particular design, the engine size can be reduced somewhat by the tandem and parallel systems, but relatively large engines are still required.

예를 들어, 시버 씨에게 허여된 미국특허 제 4,223,532호 ( 1980년 9월23일)에 의하면, 두 개의 펌프/모터를 이용하고, 간헐적인 엔진작동을 형성하는 이론에 기초하는 유압식 하이브리드변속장치시스템이 공개된다.For example, according to US Patent No. 4,223,532 (September 23, 1980) issued to Mr. Seaber, a hydraulic hybrid transmission system based on the theory of using two pumps / motors to form intermittent engine operation. Is released.

본 발명은 일체형 내연기관 또는 외연기관에 의해 발생된 에너지를 매우 효율적으로 이용할 수 있는 차량용 하이브리드 파워트레인의 설계에 관련된다. 본 발명은 차량용 추진시스템에 적용된다.The present invention relates to the design of a hybrid powertrain for a vehicle that can utilize the energy generated by an integrated internal combustion engine or an external combustion engine very efficiently. The present invention is applied to a propulsion system for a vehicle.

도 1은 본 발명을 따르는 하이브리드 동력트레인추진시스템을 가진 차량의 제 1 실시예를 도시한 개략선도.1 is a schematic diagram showing a first embodiment of a vehicle having a hybrid powertrain propulsion system according to the present invention;

도 2a, 2b, 2c 및 2d는 도 1에 도시된 시스템의 여러 가지 작동모드들에서 엔진부하 대 엔진속도를 도시한 그래프.2A, 2B, 2C and 2D are graphs showing engine load versus engine speed in the various modes of operation of the system shown in FIG.

도 3은 본 발명을 따르는 하이브리드 추진시스템의 제 2 실시예를 가진 차량의 개략도.3 is a schematic representation of a vehicle with a second embodiment of a hybrid propulsion system in accordance with the present invention.

도 4는 본 발명을 따르는 하이브리드 동력트레인 추진시스템의 제 3 실시예를 가진 차량의 개략도.4 is a schematic representation of a vehicle with a third embodiment of a hybrid powertrain propulsion system in accordance with the present invention.

도 5는 본 발명을 따르는 하이브리드 동력트레인 추진시스템의 제 4 실시예를 가진 차량의 개략도.5 is a schematic representation of a vehicle with a fourth embodiment of a hybrid powertrain propulsion system in accordance with the present invention.

도 6은 본 발명에 따라 마이크로프로세서에 의해 차량작동을 제어하기 위한 논리흐름선도.6 is a logic flow diagram for controlling vehicle operation by a microprocessor in accordance with the present invention.

*부호설명** Symbol description *

1, 10... 엔진 2, 9... 구동축1, 10 ... engine 2, 9 ... drive shaft

3... 변속장치 4... 프리휠클러치3 ... Transmission 4 ... Freewheel Clutch

5... 휠 6... 축압기5 ... wheel 6 ... accumulator

7... 펌프/모터 11... 클러치7 ... pump / motor 11 ... clutch

12... 차량속도센서 42,44,46... 프로세서12 ... vehicle speed sensor 42,44,46 ... processor

따라서 본 발명의 목적은 차량의 내연기관의 크기를 상당히 감소시킬수 있는 하이브리드파워트레인 차량을 제공하는 것이다.It is therefore an object of the present invention to provide a hybrid powertrain vehicle that can significantly reduce the size of an internal combustion engine of a vehicle.

본 발명의 또 다른 목적은 차량의 내연기관이 거의 최고 효율에서 일정하게작동될 수 있는 파워트레인시스템을 제공하는 것이다.It is a further object of the present invention to provide a powertrain system in which the internal combustion engine of a vehicle can be operated constantly at near maximum efficiency.

본 발명의 또 다른 목적은 (1 )차량에 요구되는 출력토크를 내연기관으로 제공하기 불충분하고, (2)교퉁정체와 같이 엔진작동이 비효율적일 때, 출력요구치가 매우 작을 때, 구동력을 발생시키기 위해 내연기관에 의해 형성되고 현재 불필요한 동력이 " 버퍼(buffer)"내에 저장될 수 있는 하이브리드 추진시스템을 제공하는 것이다.It is still another object of the present invention to (1) generate insufficient driving torque for an internal combustion engine, and (2) generate a driving force when the output demand is very small when the engine operation is inefficient, such as a stabilization body. It is to provide a hybrid propulsion system which is formed by an internal combustion engine and in which currently unnecessary power can be stored in a "buffer".

본 발명의 또 다른 목적은 내연기관에 의해 발생된 에너지가 종래기술보다 더욱 효율적으로 이용될 수 있는 파워트레인설계를 제공하는 것이다.It is a further object of the present invention to provide a power train design in which energy generated by an internal combustion engine can be used more efficiently than in the prior art.

본 발명의 또 다른 목적은 고효율을 유지하는 동시에 도로부하의 상당한 변화를 허용하는 하이브리드 파워트레인 추진시스템을 제공하는 것이다.It is a further object of the present invention to provide a hybrid powertrain propulsion system that allows for significant changes in road load while maintaining high efficiency.

본 발명에 의하면, 상기 목적들을 충족하는 작동방법 및 " 병렬구조의 "하이 브리드 추진시스템이 제공된다. 구체적으로 본 발명의 하이브리드 파워트레인은 차량프레임위에서 회전가능하게 장착된 구동휠들에 의해 도로면위에 지지되는 차량프레임을 포함한다. 차량프레임위에 장착되는 내연기관 또는 외연기관과 같은 제1 엔진이 엔진출력을 종래기술에 따라 출력축을 통해 제공한다. 또한 " 버퍼(buffer)"로서 작동하도록, 제동출력 또는 " 초과"엔진출력을 저장하거나 방출하기위해 출력저장장치가 또한 차량프레임위에 장착된다. 제 1 구동트레인은 엔진출력을 구동휠들에 전달하고, 가변유효직경을 가지고 이동가능한 풀리들을 포함한 무단 변속장치(CVT)( 또는 다중기어비 변속기)를 포함한다.According to the present invention, there is provided an operating method and a "parallel" hybrid propulsion system that meet the above objects. Specifically, the hybrid powertrain of the present invention includes a vehicle frame supported on a road surface by driving wheels rotatably mounted on the vehicle frame. A first engine, such as an internal combustion engine or an external combustion engine, mounted on a vehicle frame, provides engine power through an output shaft according to the prior art. An output storage device is also mounted on the vehicle frame to store or release the braking output or the "over" engine output, so as to act as a "buffer". The first drivetrain transmits engine power to the drive wheels and includes a CVT (or multiple gear ratio transmission) including pulleys that are movable with variable effective diameter.

선호되는 실시예에 있어서, 제 1 모드에서 축압기유체압력에 의해 구동되며,모터출력을 제 1 구동트레인에 전달하고, 제 2 모드에서 축압기내에 유체압력을 저장하기 위해 제 1 구동트레인에 의해 구동되는 펌프로서 작동하도록, 가역유체변위수단 또는 " 가역 펌프/모터"가 유체압력의 축압기 및 제 1 구동트레인사이에 배열된다. 또 다른 실시예들에 있어서, 예를 들어, 동력저장장치는 저장배터리 (battery), 발전기/알터네이터 및 전기모터의 조합으로 구성될 수 있다.In a preferred embodiment, it is driven by the accumulator fluid pressure in the first mode, by the first drive train to transmit the motor output to the first drive train and to store the fluid pressure in the accumulator in the second mode. To act as a driven pump, a reversible fluid displacement means or "reversible pump / motor" is arranged between the accumulator of the fluid pressure and the first drive train. In still other embodiments, for example, the power storage device may be composed of a combination of a storage battery, a generator / alternator and an electric motor.

제 2 구동트레인이 동력저장장치를 제 1 구동트레인에 연결하며, "병렬구조"의 추진시스템을 형성한다.The second drive train connects the power storage device to the first drive train and forms a "parallel structure" propulsion system.

추진시스템의 제어작용이 부분적으로 세 개의 센서들 즉, 차량속도센서, 예를 들어, 측압기내부의 유체압력을 감지하기 위한 압력센서와 같은 동력저장센서 및 예를 들어, "스로틀"페달위치 또는 "가속"페달의 가압을 감지하기 위한 센서와 같이 차량에 대해 운전자가 요구하는 토크( 또는 동력)를 감지하기 위한 토크(또는 동력) 요구센서에 의해 형성된다. 저장된 동력의 정해진 최소값과 저장된 동력의 감지된 값을 비교하고, 저장된 동력의 정해진 최소값보다 감지된 값이 작거나 동일하다고 결정될 때 요구신호를 발생시키기 위한 비교수단이 마이크로프로세서에 포함된다. 요구신호에 따라 추가 토크를 결정하고 감지된 토크요구값 및 추가 토크의 합으로서 엔진출력토크를 결정하기 위한 토크출력결정수단이 마이크로프로세서에 포함된다. 결정된 엔진출력토크 및 감지된 차량속도에 따라 최적효율의 엔진속도를 결정하고, 결정된 엔진속도를 나타내는 변속신호를 출력하기 위한 엔진속도결정프로세서가 마이크로프로세서에 포함된다. 변속장치의 기어비를 변화시켜 엔진 속도제어수단이 엔진출력축의 회전속도를 제어한다. 선호되는 실시예에 있어서, 엔진출력축의 회전속도를 제어하기 위해, 엔진속도결정프로세서의 변속신호출력에 응답하여 무단변속기에 구성된 풀리의 유효직경을 변화시킨다. 변속신호에 응답하여 제 l엔진에 대한 연료공급을 제어하여 엔진부하제어기가 엔진출력을 제어한다. 동력저장모드 및 동력방출모드사이에서 출력저장장치를 변환하도록 모드제어기가 작동한다. 선호되는 실시예에 있어서, 모드제어기에 의해, 요구신호에 응답하여, 제 1 모드 및 제 2 모드사이에서 유체변위수단의 작동이 변환되고, 감지된 유체압력에 응답하여 유체변위수단의 변위가 상기 모드제어기에 의해 변화된다.The control action of the propulsion system is partly based on three sensors: a vehicle speed sensor, for example a power storage sensor such as a pressure sensor for sensing fluid pressure inside the pressure gauge and for example a "throttle" pedal position or " It is formed by a torque (or power) demand sensor for sensing the torque (or power) required by the driver for the vehicle, such as a sensor for detecting the pressure of the "pedal" pedal. Comparing means for comparing the sensed value of the stored power with the determined minimum value of the stored power and generating a request signal when it is determined that the detected value is less than or equal to the determined minimum value of the stored power is included in the microprocessor. Torque output determining means for determining the additional torque in accordance with the request signal and determining the engine output torque as the sum of the detected torque demand value and the additional torque is included in the microprocessor. The microprocessor includes an engine speed determination processor for determining an engine speed of optimum efficiency according to the determined engine output torque and the detected vehicle speed, and outputting a shift signal representing the determined engine speed. By changing the gear ratio of the transmission, the engine speed control means controls the rotation speed of the engine output shaft. In a preferred embodiment, to control the rotational speed of the engine output shaft, the effective diameter of the pulley configured in the continuously variable transmission is changed in response to the shift signal output of the engine speed determination processor. The engine load controller controls the engine output by controlling the fuel supply to the first engine in response to the shift signal. The mode controller operates to switch the output storage device between the power storage mode and the power discharging mode. In a preferred embodiment, the mode controller, in response to the request signal, switches the operation of the fluid displacement means between the first mode and the second mode, and the displacement of the fluid displacement means in response to the sensed fluid pressure. Changed by the mode controller.

선택적으로 예를 들어 급한 경사면을 을라가기 위해 필요한 추가의 엔진용량을 제공하도록 내연기관과 같은 제 2 엔진이 차량프레임위에 장착된다. 제 2 엔진이 차량위에 장착될 때, 제 2 엔진의 출력속도를 제 1 엔진의 출력과 일치시키기 위해 제 1구동트레인 및 제 2 엔진의 출력부사이에 제 2 엔진클러치가 배열된다.Optionally, a second engine, such as an internal combustion engine, is mounted on the vehicle frame to provide additional engine capacity, for example necessary to climb a steep slope. When the second engine is mounted on the vehicle, a second engine clutch is arranged between the output of the first drive train and the second engine to match the output speed of the second engine with the output of the first engine.

선택적으로 본 발명의 추진시스템은 출력요구가 영인 것을 나타내는 신호에 응답하여, 구동휠들 및 변속장치(CVT)사이에서 휠들을 제 1 구동트레인으로부터 분리하기 위한 프리휠클러치를 가진다.Optionally, the propulsion system of the present invention has a freewheel clutch for separating the wheels from the first drive train between the drive wheels and the transmission CVT in response to a signal indicating that the output demand is zero.

본 발명에 있어서, 차량속도를 감지하고, 축압기내부의 유체압력을 감지하여 차량에 대해 운전자가 요구하는 출력을 감지하여 추진시스템이 제어된다. 축압기 내부에 저장된 유체압력 및 토크요구에 응답하여 가역유체변위장치(펌프/모터)가 펌프모드 및 모터모드사이에서 변환된다. 감지된 유체압력이 정해진 최소유체압력과 비교되고, 감지된 유체압력이 최소유체압력보다 작다고 결정되면, 요구신호가 발생된다. 유체압력을 적합하게 상승시키기 위해 필요한 추가 토크가 요구신호에따라 결정되고, 감지된 토크요구 및 결정된 추가토크의 합으로서 엔진출력토크가 결정된다. 변속신호에 응답하여 CVT의 풀리유효직경을 변화시켜 출력축의 회전속도가 엔진속도제어기에 의해 제어된다. 결정된 엔진출력토크 및 감지된 차량속도에 따르는 최적효율의 엔진속도가 엔진속도프로세서에 의해 결정되고, 결정된 엔진 속도를 나타내는 변속신호가 엔진속도프로세서에 의해 출력된다. 변속신호에 응답하여 엔진에 대한 연료공급을 제어하여 엔진출력이 제어된다.In the present invention, the propulsion system is controlled by sensing the vehicle speed, sensing the fluid pressure inside the accumulator to sense the output required by the driver for the vehicle. In response to fluid pressure and torque demands stored inside the accumulator, a reversible fluid displacement device (pump / motor) is switched between pump mode and motor mode. If the sensed fluid pressure is compared with the determined minimum fluid pressure and it is determined that the sensed fluid pressure is less than the minimum fluid pressure, a request signal is generated. The additional torque required to properly raise the fluid pressure is determined in accordance with the request signal, and the engine output torque is determined as the sum of the detected torque demand and the determined additional torque. The rotational speed of the output shaft is controlled by the engine speed controller by changing the effective pulley diameter of the CVT in response to the shift signal. The engine speed of optimum efficiency in accordance with the determined engine output torque and the detected vehicle speed is determined by the engine speed processor, and a shift signal indicative of the determined engine speed is output by the engine speed processor. The engine output is controlled by controlling the fuel supply to the engine in response to the shift signal.

종래기술과 대조적으로 본 발명에 따르면 크기가 매우 작은 제 1 엔진을 이용하고 엔진을 가능한 많이 유지하도록 유압보조시스템을 이용하고, 제 1 구동트레인내에 단지 한 개의 펌프/모터가 요구된다.In contrast to the prior art, the present invention requires a very small first engine and uses a hydraulic auxiliary system to keep the engine as much as possible, and only one pump / motor in the first drivetrain is required.

본 발명은 " 병렬구조식"시스템에 관련되지만, 직렬구성으로 작동될 수 있다. 본 발명의 시스템은 최고출력요구조건보다는 평균출력요구조건에 해당하는 크기의 매우 작은 엔진을 포함한다. 엔진에 대해 요구되는 동력요구를 " 감소"시키도록 유압보조시스템은 동력감소장치로서 작동한다. 즉, 유압보조시스템의 목적은 추진출력요구가 작을 때, 엔진에 추가부하를 가하고 추진출력요구가 최고일 때 추가 동력을 전달하여, 엔진이 가능한 최고효율과 근접하게 작동하는 데 있다. 본 발명에 있어서, 한 개의 유압식 펌프/모터 및 축압기가 양쪽기능을 수행한다. 엔진에 대해 추가부하를 가하기 위하여, 엔진은 최고효율에 해당하는 출력수준으로 작동하고, 초과출력이 유압식 (펌프기능의 )펌프/모터를 통해 축압기내부로 전달되고, 초과출력은 매우 경미한 에너지손실로 저장된다. 추가동력을 전달하기 위해, 저장된 에너지가 (모터기능의 )유압식 펌프/모터를 통해 파워트레인으로 방출된다.The present invention relates to a "parallel" system, but can be operated in series. The system of the present invention includes a very small engine of a size corresponding to an average power requirement rather than a peak power requirement. The hydraulic auxiliary system acts as a power reducer to "reduce" the power demands on the engine. That is, the purpose of the hydraulic auxiliary system is to apply an additional load to the engine when the propulsion output demand is small and to transmit additional power when the propulsion output demand is the highest, so that the engine operates as close as possible to the highest efficiency. In the present invention, one hydraulic pump / motor and accumulator perform both functions. To apply additional load to the engine, the engine operates at the power level corresponding to the highest efficiency, and the excess power is delivered into the accumulator through a hydraulic (pumped) pump / motor, and the excess output is very slight energy loss. Is stored as. To deliver additional power, the stored energy is released to the powertrain through a hydraulic pump / motor (motorized).

단순구성에 있어서, 파워트레인으로부터 동력이 불필요할 때, 변속장치 및 휠들사이의 클러치배열은 프리휠작용을 허용한다. 단순구성을 위해 엔진, 유압식 펌프/모터 및 변속장치사이에 클러치구성이 제공되지 않는다. 따라서 재생제동작용동안 펌프/모터가 축압기를 충진하거나 펌프/모터에 의해 다소 감소되는 드레그 (drag)가 파워트레인에 형성된다. 엔진의 변위가 작고 상기 작동모드에서 짧은 시간에 기인하여, 상기 배열과 관련한 마찰손실이 최소화된다.In a simple configuration, when power is not needed from the power train, the clutch arrangement between the transmission and the wheels allows freewheel operation. For simplicity, no clutch configuration is provided between the engine, hydraulic pump / motor and transmission. Thus, during the regenerative braking action, a drag is formed in the powertrain, in which the pump / motor fills the accumulator or is somewhat reduced by the pump / motor. Due to the small displacement of the engine and a short time in the operating mode, frictional losses associated with the arrangement are minimized.

본 발명은 유압식재생제동기능을 위한 2개이상의 구성을 포함한다. 제 1 실시예에 있어서, 마찰브레이크가 작동되고 다음에 유압제동이 개시된다. 상기 방법에 의하면, 휠들로부터 동력의 매끄러운 전달에 필요한 제어민감도가 감소되고, 유압시스템고장시 안전이 보장된다. 제 2 실시예에 있어서, 우선 백업(back up)시스템으로서 추가된 마찰브레이크에 의해 유압제동이 형성된다. 상기 제 2 실시예는 제어하기에 더욱 복잡하지만, 제동에너지를 최대로 회수하기 때문에 선호된다.The present invention includes two or more configurations for the hydraulic regenerative braking function. In the first embodiment, the friction brake is activated and then hydraulic braking is started. According to this method, the control sensitivity required for smooth transmission of power from the wheels is reduced, and safety in the event of hydraulic system failure is ensured. In the second embodiment, hydraulic braking is first formed by the friction brake added as a back up system. The second embodiment is more complicated to control, but is preferred because it recovers maximum braking energy.

정지상태로부터 가속할 때, 엔진은 구동라인의 비유압부분을 통해 출력을 휠들에 제공한다. 엔진이 제공할 수 있는 출력보다 큰 출력이 필요할 때, 모터기능의 펌프/모터에 의해 추가 동력이 제공된다. 연속해서 2 회 또는 3회이상 추가 동력이 제공될 수 있는 충분한 크기를 상기 축압기가 가진다. 일회이상의 가속을 위한 축압기용량이 재생제동에 필요하고, 정지상태에서 재생제동이 제공될 수 없는 경우에 또 다른 가속을 위한 용량이 필요하다.When accelerating from a stationary state, the engine provides output to the wheels through the non-hydraulic portion of the drive line. When more power is needed than the engine can provide, additional power is provided by a motor / pump. The accumulator has a sufficient size to provide additional power two or three times in succession. An accumulator capacity for one or more accelerations is required for regenerative braking, and a capacity for another acceleration is required if regenerative braking cannot be provided at standstill.

주행속도가 도달되고, 출력요구가 낮은 수준으로 강하될 때, 엔진의 최고효율이 평균도로부하의 부하특성에 일치할 정도로 엔진의 크기가 작기 때문에, 엔진출력은 도로부하와 일치한다. 최고 작동효율을 유치하기 위하여, 더 많은 출력이 엔진에 요구될 때, 펌프기능의 펌프/모터를 통해 축압기를 충진하여 추가 부하가 제공된다. 축압기가 추가로 충진될 수 없다면, 펌프/모터의 변위는 영으로 설정되고, 엔진은 단지 감소된 출력으로 작동한다. 주행하는 동안, 엔진의 크기는 평균출력부하에 근접하도록 제공되기 때문에, 상기 설정기능에서 보상작용은 전혀 없다. 또한 저속의 주행 및 정지상태에서 처럼 부하가 매우 작으면, 엔진은 정지될 수 있고, 축압기가 모터기능의 펌프/모터를 구동할 수 있다.When the running speed is reached and the power demand falls to a low level, the engine output matches the road load because the engine is small enough that the maximum efficiency of the engine matches the load characteristics of the average road load. To achieve maximum operating efficiency, when more power is required of the engine, additional load is provided by filling the accumulator through a pumped / motored pump. If the accumulator cannot be further charged, the displacement of the pump / motor is set to zero and the engine only operates at reduced power. While running, since the size of the engine is provided to approximate the average output load, there is no compensating action in the setting function. In addition, if the load is very small, such as at low speed travel and standstill, the engine can be stopped and the accumulator can drive a motor / function pump / motor.

제동작용이 발생하고, 축압기내에 저장되고 이용하지 않는 저장용량이 충분하면 재생제동이 발생되고, 펌프/모터는 축압기를 가압하는 펌프/모터로서 작동한다. 축압기내부에 저장용량이 남아 있지 않다면, 마찰브레이크가 이용된다. 정상적으로 재생제동에 이용될 수 있는 충분한 저장용량이 존재하도록 시스템이 구성된다.If a braking action takes place and there is sufficient storage capacity stored in the accumulator and not in use, regenerative braking occurs and the pump / motor acts as a pump / motor to pressurize the accumulator. If no storage capacity remains inside the accumulator, friction brakes are used. The system is configured such that there is sufficient storage capacity available for normal braking.

주행하는 동안 돌발적으로 가속이 요구되면, 가장 양호한 효율곡선을 따라 엔진출력이 상승되어 차량이 가속된다. 최대효율을 가진 엔진출력에 도달하면, 펌프/모터를 통해 축압기로부터 추가동력을 회수하기 위해 유압보조시스템이 작동된다.If acceleration is required suddenly while driving, the engine power is increased along the best efficiency curve to accelerate the vehicle. When the engine output is reached with maximum efficiency, the hydraulic auxiliary system is activated to recover additional power from the accumulator through the pump / motor.

교통정체에서 처럼, 차량이 매우 저속으로 주행할 때, 엔진은 정지되고, 차량을 구동하기 위해, 펌프/모터 및 축압기가 이용된다. 심지어 저속 및 요구출력이 작을 때에도 펌프/모터는 우수한 효율로 작동할 수 있기 때문에, 상기 모드에서 오직 엔진을 사용하는 것보다 상기 구성이 디욱 유리하다.As in traffic jams, when the vehicle runs at very low speeds, the engine is stopped and a pump / motor and accumulator are used to drive the vehicle. Since the pump / motor can operate with good efficiency even at low speeds and low power requirements, the configuration is much more advantageous than using an engine only in this mode.

부품크기의 적합한 선택 및 제어시스템의 최적화를 통해, 여러 가지 목적들을 최적화하도록 시스템이 설계될 수 있다. 예를 들어, (a)재생제동에너지를 이용할 수 있을 때 충분히 충진된 축압기와 충돌할 가능성 또는 (b) 축압기를 재충진 하지 않고 여러 번의 빠른 가속작용에 의해 축압기를 고갈시킬 가능성을 최소화할 수 있다.Through proper selection of component sizes and optimization of the control system, the system can be designed to optimize several purposes. For example, it minimizes the possibility of (a) colliding with a fully charged accumulator when renewable braking energy is available, or (b) depleting the accumulator by several rapid accelerations without recharging the accumulator. can do.

한정된 에너지저장용량의 축압기에 의해 보조되는 소형엔진을 이용하면 긴 경사면을 가속할 때 곤란하다. 가속작용과 동일하게, 상향경사면은 상당량의 동력을 요구하고 가속작용과 상이하게, 긴 경사면은 연장된 시간동안 상기 동력을 요구한다. 본 발명의 작동원리는 가속작용에 관한 상당량의 동력을 유압식축압기에 의해 제공하는 것이기 때문에, 긴 경사면은 짧은 시간동안 축압기를 고갈시키고, 차량의 동력은 불충분하게 된다.Using small engines assisted by accumulators with limited energy storage capacity is difficult when accelerating long slopes. Like the acceleration action, the upward slope requires a considerable amount of power and, unlike the acceleration action, the long slope requires the power for an extended time. Since the operation principle of the present invention is to provide a considerable amount of power related to the acceleration action by the hydraulic accumulator, the long inclined surface depletes the accumulator for a short time, and the power of the vehicle becomes insufficient.

크기가 극도로 큰 축압기용량에 대해 선택적으로, 무제한적인 시간동안 제 1 엔진 및 펌프/모터를 보조하기 위해 임시로 사용되기 때문에, 단지 적합한 내구성을 가지고 저가인 제 2 엔진이 클러치연결된다,Optionally for extremely large accumulator capacities, a second engine, which is only suitable for durability and inexpensive, is clutched, since it is temporarily used to assist the first engine and pump / motor for unlimited time,

3천 내지 4천 파운드의 중량을 가진 차량에 적합한 실시예가 도 1 에 도시된다. (예를 들어, 20마력(hp)을 가진) 소형내연기관의 엔진(1)에 의해 상기 시스템에 에너지가 전달된다. 제 1 구동트레인을 형성하는 구동축(2)을 따라 에너지가 전달되고, 상기 실시예에서 무단변속기(CVT)와 같은 변속장치(3) 또는 (제 2 모드에서 펌프로서 작동하는 ) 펌프/모터(7)로 에너지가 전달되거나 변속장치(3) 및 펌프/모터(7)에 모두 전달될 수 있다. 펌프/모터(7)는 스와시플레이트펌프(swashplate pump)와 같은 가역유압변위발생장치이고, 상기 펌프/모터(7)내에서 유동역전 기능이 펌프 또는 굽은 축펌프에 제공되며, 펌프외부에서 밸브작용이 이루어지면, 유동역전기능에 의해 제 1 모드에서 모터로서 작동하거나 제 2 모드에서 펌프로서 작동할 수 있다. 펌프/모터(7)는 다양한 변위를 가진다. 유체가 축압기(6)에 펌핑되고, ( 펌프로서 작동하는 )펌프/모터(7)에 전달된 에너지에 의해 가스(A)에 대하여 유체(B)가 압축된다. 변속장치(3)에 전달된 에너지가 구동축(9)을 따라 프리휠클러치(4)를 지나 휠(5)들에 전달된다. 제 1 모드 및 제 2 모드로 상기 펌프/모터 (7)가 변환되고, 신호(FPs)에 응답하는 모드제어기(20)에 의해 상기 펌프/모터(7)의 변위가 변화된다.An embodiment suitable for a vehicle having a weight of 3,000 to 4,000 pounds is shown in FIG. 1. Energy is transferred to the system by the engine 1 of the small internal combustion engine (for example having 20 hp). Energy is transferred along the drive shaft 2 forming the first drive train, in this embodiment a transmission 3 such as continuously variable transmission CVT or a pump / motor 7 (operating as a pump in the second mode). May be delivered to the transmission 3 and to the pump / motor 7. The pump / motor 7 is a reversible hydraulic displacement generator, such as a swashplate pump, in which a flow reversal function is provided to the pump or to a curved shaft pump within the pump / motor 7, the valve outside the pump When the action is taken, the flow reversal function can operate as a motor in the first mode or as a pump in the second mode. The pump / motor 7 has various displacements. The fluid is pumped to the accumulator 6 and the fluid B is compressed against the gas A by the energy delivered to the pump / motor 7 (acting as a pump). Energy transmitted to the transmission 3 is transmitted along the drive shaft 9 via the freewheel clutch 4 to the wheels 5. The pump / motor 7 is converted into a first mode and a second mode, and the displacement of the pump / motor 7 is changed by the mode controller 20 in response to the signals FPs.

휠(5)들에서 요구되는 동력이 오직 엔진(1)에 의해 전달가능한 출력보다 클때, ( 제 1 모드에서 모터로서 작동하는 )펌프/모터(7)에 의해 동력이 추가로 공급된다. 상기 제 1 모드에서, 축압기(6)내부의 압축유체가 (모터로서 작동하는 ) 펌프/모터(7)로 유입되고, 구동축(30)을 따라 구동축(2) 및 변속장치(3)로 유동하며, 상기 휠(5)로 전달되는 기계적 출력을 형성한다. 유압식 축압기(6), 펌프/모터(7) 및 구동축(30)이 제 1 구동트레인과 " 병렬구조"를 형성하는 제 2 구동트레인을 구성한다.When the power required at the wheels 5 is only greater than the output deliverable by the engine 1, additional power is supplied by the pump / motor 7 (which acts as a motor in the first mode). In the first mode, the pressurized fluid inside the accumulator 6 enters the pump / motor 7 (acting as a motor) and flows along the drive shaft 30 to the drive shaft 2 and the transmission 3. And forms a mechanical output that is transmitted to the wheel 5. The hydraulic accumulator 6, the pump / motor 7 and the drive shaft 30 constitute a second drive train forming a "parallel structure" with the first drive train.

연료인젝션펌프(fuel injection pump)와 같은 엔진제어장치(26)는 신호(Es)에 응답하여 엔진(1)에 대해 연료주입량을 제어하고 상기 신호(Es)는 엔진속도의 함수이다. 신호(Es)는 마이크로프로세서(18)에 의해 산출되거나, 속도센서(40)로 부터 직접 입력되는 신호이다.An engine control device 26, such as a fuel injection pump, controls the fuel injection amount for the engine 1 in response to the signal Es and the signal Es is a function of engine speed. The signal Es is a signal produced by the microprocessor 18 or directly input from the speed sensor 40.

프리휠클러치(4)의 하류위치에 구성된 구동축의 회전속도를 감지하는 rpm 센서와 같은 차량속도센서(12), 축압기(6)내부의 압력을 감지하고 감지된 압력을 나타내는 신호(Ps)를 발생시키기 위한 압력센서(16) 및 " 가속페달"의 위치를 감지하기 위한 센서와 같은 출력요구센서(14)가 차량작동을 위한 제어용하드웨어에 포함된다. 압력센서(16)에 의해 감지되고 유체압력을 나타내는 신호(Ps)가 제 1 프로세서(42)에 입력되고, 상기 제 1 프로세서(42)에 의해 상기 감지된 유체압력이 정해진 최소유체압력과 비교되며, 감지된 유체압력이 정해진 최소유체압력보다 작으면, 상기 제 1 프로세서(42)에 의해 신호(FPs)가 발생된다. 펌프/모터(7)가 펌프로서 작동하기 위한 제 2 모드로 변환하여, 유체압력형태의 에너지를 축압기(6)내부에 저장하도록, 상기 신호(FPs)가 모드제어기(20)에 전달된다.The vehicle speed sensor 12, such as the rpm sensor for detecting the rotational speed of the drive shaft configured in the downstream position of the freewheel clutch 4, detects the pressure inside the accumulator 6 and generates a signal Ps indicating the detected pressure. An output request sensor 14, such as a pressure sensor 16 and a sensor for sensing the position of the "accelerator", is included in the control hardware for vehicle operation. A signal Ps sensed by the pressure sensor 16 and indicative of the fluid pressure is input to the first processor 42, and the sensed fluid pressure by the first processor 42 is compared with a predetermined minimum fluid pressure. When the sensed fluid pressure is less than the predetermined minimum fluid pressure, the signal FPs is generated by the first processor 42. The signal FPs is transmitted to the mode controller 20 so that the pump / motor 7 switches to a second mode for operating as a pump and stores energy in the form of fluid pressure inside the accumulator 6.

제 2 프로세서(44)에 의해 신호(FPs)를 따르는 추가동력이 결정되고, 출력요구센서(14)에 의해 감지된 요구동력 및 상기 추가동력의 합으로서 엔진출력이 발생된다. 결정된 차량속도에 의해 최적엔진속도를 나타내는 변속장치의 신호(Ts)를 엔진속도제어기(24)에 전달한다. 신호(Ts)에 응답하고, 무단변속기와 같은 변속장치 (3)에 구성된 풀리(22)의 유효직경을 변화시켜 엔진속도가 엔진속도제어기(24)에 의해 제어된다. 상기 프로세서(42,44,46)들이 선택적으로 메모리(48)를 포함한 한 개의 마이크로 프로세서(18)로 구성될 수 있다. 최적 효율의 출력 및 엔진속도를 위한 수치들이 비교되는 메모리(48)내에 저장된 두개의 수치맵(dimensional map)을 참고하여 신호(Ts)가 결정된다. 차량속도센서(12)로부터 감지된 차량속도 및 소요 엔진속도가 산출되면, 신호(Ts)가 산출된다. 동일하게 상기 제어장치는 하기 다른실시예에 적용될 수 있다.The additional power along the signal FPs is determined by the second processor 44, and the engine output is generated as the sum of the required power detected by the output demand sensor 14 and the additional power. The transmission signal Ts indicating the optimum engine speed is transmitted to the engine speed controller 24 by the determined vehicle speed. In response to the signal Ts, the engine speed is controlled by the engine speed controller 24 by changing the effective diameter of the pulley 22 configured in the transmission 3 such as a continuously variable transmission. The processors 42, 44, 46 may optionally be comprised of one microprocessor 18 including a memory 48. The signal Ts is determined by referring to two dimensional maps stored in the memory 48 where the values for the optimum efficiency output and engine speed are compared. When the vehicle speed and the required engine speed detected from the vehicle speed sensor 12 are calculated, the signal Ts is calculated. Likewise, the control device can be applied to the following other embodiments.

선택적인 제 2 엔진(10)에 의해 추가로 예비출력이 제공될 수 있다. 이 경우, 전자적으로 제어되는 클러치(11)가 연결되고, 상기 클러치(11)에 의해 엔진(10)의 출력이 엔진(1)을 포함한 장치내부로 공급된다. 제 2엔진(10)은 가혹하거나 반복되는 가속주행 및 길고 가파른 경사에서 가속주행을 위한 보조출력을 제공한다. 제 2 엔진(10) 및 클러치(11)가, (출력을 구동축(2)에 전달하도록)도면과 같이 구성되거나, 출력을 직접 구동축(9)에 전달한다. 엔진(10)은 전자적으로 시동되고, 예를 들어, 감지된 " 가속페달"위치 및 축압기내부의 유체압력의 함수로서 발생되는 신호(SEs)에 응답하여 클러치(11)가 연결된다. 상기 클러치(11)에 의해 제 1 엔진(1)의 출력속도에서 제 2 엔진(10)이 연결된다. 제 1 엔진(1) 및 제 2 엔진(10)의 조합은 다양한 변위의 엔진과 기능적으로 등가하게 간주될 수 있다.An additional reserve may be provided by the optional second engine 10. In this case, the electronically controlled clutch 11 is connected, and the output of the engine 10 is supplied to the inside of the apparatus including the engine 1 by the clutch 11. The second engine 10 provides auxiliary outputs for accelerated driving in harsh or repeated acceleration and long and steep slopes. The second engine 10 and the clutch 11 are configured as in the drawing (to transmit the output to the drive shaft 2) or directly transmit the output to the drive shaft 9. The engine 10 is electronically started and the clutch 11 is connected in response to a signal SEs generated, for example, as a function of the sensed "accelerator" position and the fluid pressure inside the accumulator. The second engine 10 is connected at the output speed of the first engine 1 by the clutch 11. The combination of the first engine 1 and the second engine 10 may be considered functionally equivalent to engines of various displacements.

휠(5)들에서 요구되는 동력이 영일 때, 마이크로 프로세서(18)의 신호(Cs)에 응답하고 프리휠클러치(4)를 분리하여, 차량은 코스팅모드(coasting mode)로 변환된다. 상기 방법에 의해, 차량은 구동트레인내부의 회전마찰손실로부터 격리되어, 차량의 모든 운동에너지는 롤링저항( rolling resistance) 및 공기역학적인 드레그 (drag)을 극복하는 데 이용된다. 정상적으로 프리휠클러치(4)는 연결된 상태이고 출력요구센서(14)에 의해 감지된 요구출력이 영일때만 분리된다.When the power required at the wheels 5 is zero, in response to the signal Cs of the microprocessor 18 and detaching the freewheel clutch 4, the vehicle is switched to the coasting mode. By this method, the vehicle is isolated from rotational friction losses in the drivetrain, so that all of the kinetic energy of the vehicle is used to overcome rolling resistance and aerodynamic drag. Normally the freewheel clutch 4 is disconnected only when it is connected and the required output detected by the output request sensor 14 is zero.

차량이 제동될 때, 재생제동기능이 형성된다. 운동에너지는 휠(5)들로부터 프리휠클러치(4) 및 변속장치(3)를 통해 구동축(2)을 따라 (펌프로서 작동하는 )펌프/모터(7)로 전달된다. 상기 설명과 같이 펌프/모터(7)는 유체를 가압하고, 축압기(6)내에 에너지를 저장한다.When the vehicle is braked, a regenerative braking function is formed. Kinetic energy is transmitted from the wheels 5 via the freewheel clutch 4 and the transmission 3 to the pump / motor 7 (acting as a pump) along the drive shaft 2. As described above, the pump / motor 7 pressurizes the fluid and stores energy in the accumulator 6.

엔진(1)을 시동하기 위해, 제 1 모드에서 모터로서 작동하는 펌프/모터(7)가 축압기(6)내의 유체압력을 이용하고, 그 결과 종래기술의 시동모터는 불필요하다.In order to start the engine 1, the pump / motor 7 operating as a motor in the first mode uses the fluid pressure in the accumulator 6, and as a result, the starting motor of the prior art is unnecessary.

본 발명의 작동이 도 2A 내지 도 2E를 참고하여 더욱 명확히 설명된다. 하기 설명에 따르면, " 최적효율(optimum efficiency)"은 점 A 및 점 B사이의 속도 및 부하의 범위로서 엔진(1)의 효율이 합리적으로 최적효율에 근접한다고 간주된다.The operation of the present invention is described more clearly with reference to FIGS. 2A-2E. According to the following description, "optimum efficiency" is a range of speeds and loads between points A and B, and the efficiency of the engine 1 is considered to be reasonably close to optimum efficiency.

도 2A를 참고할 때, (점 B에서 )도 1의 실시예에 구성된 엔진(1)에 의해 최적효율로 전달될 수 있는 출력보다 큰 출력이 요구되는 경우를 도시한 그래프이다. 이 경우, 점 B를 초과하는 부분의 부하가 (모터로서 작동하는 ) 펌프/모터(7)에 의해 제공되고, 나머지부분의 부하가 엔진(1)에 의해 제공된다. 엔진 및 펌프/모터의 축들이 클러치연결 또는 기어연결되지 않는 실시예들에 있어서, 엔진(1), 펌프/모터(7) 및 변속장치(3)의 입력축은 동일속도로 작동한다. 상기 모드의 기본기능을 변화시키지 않고 클러치 또는 기어감속배열이 제공될 수 있다.Referring to FIG. 2A, it is a graph showing the case where an output larger than the output that can be delivered at optimum efficiency by the engine 1 configured in the embodiment of FIG. 1 (at point B) is required. In this case, the load of the portion exceeding the point B is provided by the pump / motor 7 (which acts as a motor), and the load of the remaining portion is provided by the engine 1. In embodiments in which the shafts of the engine and pump / motor are not clutched or geared, the input shafts of engine 1, pump / motor 7 and transmission 3 operate at the same speed. A clutch or gear reduction arrangement can be provided without changing the basic function of the mode.

도 2B를 참고할 때, 엔진(1)에 대해 요구되는 출력이 (점(A) 및 점(B)사이의)최적효율의 범위내에 해당하는 모드 2에서 도 1의 시스템작동을 도시한다. 엔진(1)에 대한 상기 요구출력은 마이크로 프로세서(18)에 의해 결정되고, 상기 마이크로 프로세서는 출력요구센서(14)에 의해 요구되는 출력을 고려하며, 축압기(6)에 대한 출력의 유출입을 결정한다. 축압기(6)로부터 출력제공이 불필요하다면, 모든 동력은 엔진(1)에 의해 공급되고, 펌프/모터(7)의 행정은 모드제어기(20)에 의해 영 ( 즉 중립위치)이 되고, 상기 펌프/모터(7)는 축압기(6)내부로 유체를 가압하거나 장치에 동력을 제공하지 않는다.Referring to FIG. 2B, the system operation of FIG. 1 is shown in mode 2 where the power required for engine 1 falls within the range of optimum efficiency (between point A and point B). The required output for the engine 1 is determined by the microprocessor 18, which takes into account the output required by the output demand sensor 14 and allows the inflow and outflow of the output to the accumulator 6. Decide If power supply from the accumulator 6 is not necessary, all power is supplied by the engine 1, and the stroke of the pump / motor 7 is zeroed (ie neutral position) by the mode controller 20, and The pump / motor 7 does not pressurize fluid into the accumulator 6 or power the apparatus.

도 2C를 참고할 때, 운전자의 요구출력이 엔진(1)에 의해 충족되고, 축압기(6)를 가압하는 것이 필요(즉 축압기의 에너지수준이 정해진 최소수준에 도달하고 엔진(1)이 최적출력수준 점(b)에서 작동)하거나, 축압기(6)를 가압하려는 요구(즉 운전자의 요구출력수준점(a)에서 엔진(1)이 최적효율로 작동되는 것이 필요)가 있다(모드 3). 도 2C에서, 요구되는 노면부하가 점(a) 또는 점(b)중 한 개로 도시될 때, 엔진의 출력은 최적효율선을 따라 충분한 과도출력이 발생되는 점(c)까지 증가한다. 노면부하에 이용되지 않는 과도출력이 (펌프로서 작동하는 )펌프/모터(7)로 공급되고, 다음의 모드 1 또는 모드 4를 위해 상기 펌프/모터(7)는 축압기내에 과도출력을 저장한다.Referring to FIG. 2C, the driver's required output is satisfied by the engine 1, and it is necessary to pressurize the accumulator 6 (ie, the energy level of the accumulator reaches a predetermined minimum level and the engine 1 is optimal). There is a request to pressurize the accumulator 6 (ie, the engine 1 needs to operate at optimum efficiency at the driver's required output level point a) (mode 3). . In Fig. 2C, when the required road surface load is shown as one of points (a) or (b), the output of the engine increases to point (c) where sufficient transient power is generated along the optimum efficiency line. Transient outputs that are not used for road loads are supplied to the pump / motor 7 (acting as a pump), and the pump / motor 7 stores the transient output in the accumulator for the next mode 1 or mode 4. .

도 2D는 노면부하가 작게 발생하는 모드 4를 도시한다. 이 경우, 엔진에 의해 허용할 만한 효율로 상당히 작은 출력을 전달할 수 없고, 상당한 압력이 측압기(6)내에 존재한다. 엔진으로 연료유입이 차단되고, (모터로서 작동하는 )펌프/모터(7)가 스스로 출력을 제공한다.2D shows Mode 4 in which road surface loads are small. In this case, it is not possible to deliver a significantly small output at an acceptable efficiency by the engine, and considerable pressure is present in the side pressure regulator 6. The fuel inlet to the engine is shut off and the pump / motor 7 (acting as a motor) provides its own output.

재생제동기능은 모드 4 (도 2D )의 연장이라고 고려될 수 있고, 상기 모드 4에서 요구동력은 영이고, 차량은 롤링저항 및 공기역학적 드레그가 발생시키는 감속률보다 더 큰 비율로 차량이 감속되어야 한다. 운전자는 브레이크를 작동시키고, 차례로 ( 펌프로서 작동하는 )펌프/모터(7)를 작동시키며, 상기 펌프/모터는 구동축(2), 변속장치(3) 및 구동축(9)을 통해서 얻은 차량의 운동에너지를 이용하여 유체를 가압한다. 그 결과 마찰제동기능에 의한 감속과 유사한 감속이 이루어지고,에너지는 폐기되지 않고 축압기(6)내에 저장된다.Regenerative braking can be considered an extension of mode 4 (FIG. 2D), where the required power is zero in mode 4, and the vehicle must be decelerated at a rate greater than the rate of deceleration generated by rolling resistance and aerodynamic drag. do. The driver actuates the brake, which in turn activates the pump / motor (which acts as a pump), which is the movement of the vehicle obtained through the drive shaft 2, the transmission 3 and the drive shaft 9 Pressurize the fluid using energy. As a result, deceleration similar to the deceleration by the friction braking function is achieved, and energy is stored in the accumulator 6 without waste.

더욱 광범위한 정지 및 주행기능을 포함하는 작동에 적합한 또 다른 실시예가 도 3에 도시된다. 정지 및 주행작동이 계속될 때, 엔진의 작동없이, 펌프/모터가 직접 차량을 구동시키는 모드로 전환된다. 클러치(8)가 엔진(1) 및 펌프/모터(7)사이에 구성되어, 상기 모드에서 엔진(1)과의 연결을 차단하고, 엔진(1)의 작동과 관련된 마찰작용이 방지된다.Another embodiment suitable for operation involving a wider range of stop and drive functions is shown in FIG. 3. When the stop and drive operations continue, the pump / motor is switched to the mode in which the vehicle is directly driven without the engine being operated. A clutch 8 is configured between the engine 1 and the pump / motor 7, which disconnects the connection with the engine 1 in this mode and prevents frictional action associated with the operation of the engine 1.

도 4에 도시된 또 다른 실시예에 있어서, 제 2 펌프/모터(13)가 휠(5)들 및 변속장치(3)사이에 구성된다. 도 4의 구성에 의하면, 재생제동에너지가 변속장치(3)를 통과하면서 마찰손실을 발생시키지 않고 제 2 펌프/모터(13)를 통해 축압기(6)로 직접 전달된다. 만약 중립위치에서, 제 2 펌프/모터(13)의 드레그 (drag)가 충분히 작을 때, 제 2 펌프/모터(13)는 모든 주행모드에서 구동축(9)에 기어로 직접 연결될 수 있다. " 중립" 상태의 상기 드레그를 제거하기 위하여, 제 2 펌프/모터(13) 및 구동축(9)사이에 클러치를 추가할 수 있다. 가속 및 주행모드에서, 제 2 펌프/모터(13)가 휠들에 동력을 제공할 수 있기 때문에, 제 1 펌프/모터(7)의 크기가 감소될 수 있다. 펌프/모터(7)의 크기가 감소하면, 휠들에 의해 요구되는 동력에 대하여 선택된 모터의 크기를 더욱 양호하게 일치시킬 수 있도록 상기 펌프/모터(7)의 크기가 선택적으로 작동될 수 있어서, 평균효율이 향상될 수 있다. 상기 효과는 작거나 적정한 가속으로 빈번히 도심주행할 때 매우 중요하고, 크기가 상대적으로 작은 펌프/모터(7)에 의해 작은 동력증분에 대해 더욱 효율적으로제 1 엔진(1)을 보조할 수 있다. 가속이 크고 가파른 경사길 주행에서 이용되는 제 2 펌프/모터(13)가 추가되면, 변속장치의 크기는 상당히 감소될 수 있고, 따라서 상기 제 2 펌프/모터는 무단변속장치에서 매우 중요하다. 가파른 경사길에 대하여, 엔진(10)이 작동할 수 있고, 펌프/모터(7)가 모터로서 펌프/모터(13)를 구동하는 펌프로서 작동할 수 있다. 선택적으로 펌프가 엔진(10)에 부착되어, 클러치(11)를 제거할 수 있고, 모터기능의 펌프/모터(13)를 통해 동력을 공급한다.In another embodiment shown in FIG. 4, a second pump / motor 13 is configured between the wheels 5 and the transmission 3. According to the configuration of FIG. 4, the regenerative braking energy is transmitted directly to the accumulator 6 through the second pump / motor 13 without generating friction loss while passing through the transmission 3. If in the neutral position the drag of the second pump / motor 13 is sufficiently small, the second pump / motor 13 may be directly geared to the drive shaft 9 in all driving modes. To remove the drag in the "neutral" state, a clutch can be added between the second pump / motor 13 and the drive shaft 9. In the acceleration and drive mode, the size of the first pump / motor 7 can be reduced because the second pump / motor 13 can power the wheels. As the size of the pump / motor 7 decreases, the size of the pump / motor 7 can be selectively operated to better match the size of the selected motor with respect to the power required by the wheels, so that the average The efficiency can be improved. This effect is very important when frequenting downtown with small or moderate acceleration, and the pump / motor 7 of relatively small size can assist the first engine 1 more efficiently for small power increments. With the addition of a second pump / motor 13, which is used for high acceleration and steep ramps, the size of the transmission can be significantly reduced, so that the second pump / motor is very important in a continuously variable transmission. For steep slopes, the engine 10 may operate and the pump / motor 7 may operate as a pump that drives the pump / motor 13 as a motor. Optionally, a pump is attached to the engine 10 to remove the clutch 11 and supply power through the pump / motor 13 with motor function.

도 5의 또 다른 실시예에 있어서, 도 1, 도 3 및 도 4의 실시예와 같이 제 1 엔진(1)의 후방위치보다는 프리휠클러치(4)의 상류위치 또는 하류위치에서 구동축(9)과 상기 제 2 엔진(10)이 직접 클러치연결된다. 상기 구성에 의해 제 2 엔진(10)에서 발생되는 에너지가 구동계통의 상부에 위치한 요소들사이에서 손실을 발생시키지 않고 직접 휠(5)들로 전달되고, 변속장치(3)의 크기가 감소되며, 모든 위치에서, 상기 제 2 엔진(10)이 구성되어, 계속되는 경사길을 주행하는 동안 동력을 추가로 공급하는 것 뿐만아니라 매우 강한 가속작용이 요구되는 동안 가속력을 추가로 제공하며, 축압기압력이 없을 때, 시동용 긴급동력을 공급하고 축압기 또는 펌프/모터의 크기가 감소되도록 정상적인 가속작용시 보조동력을 제공하는 여러 가지 목적을 위하여 동력 및 노면부하 요구값에 대해 선택된 엔진의 크기를 더욱 양호하게 일치시키도록 선택적인 동력이 제공된다.In a further embodiment of FIG. 5, as in the embodiment of FIGS. 1, 3, and 4, the drive shaft 9 is located at an upstream or downstream position of the freewheel clutch 4 rather than the rear position of the first engine 1. The second engine 10 is directly clutched. With this configuration, energy generated in the second engine 10 is transferred directly to the wheels 5 without causing a loss between the elements located at the top of the drive system, and the size of the transmission 3 is reduced. In all positions, the second engine 10 is configured to provide additional power as well as to provide additional power while driving on a steep slope, as well as to provide acceleration while a very strong acceleration action is required. Better engine size selected for power and road load requirements for various purposes to provide emergency power for start-up and to provide auxiliary power during normal acceleration to reduce the size of the accumulator or pump / motor. Optional power is provided to ensure a consistent match.

도 3에 도시된 실시예의 수정예에 의하면, 변속장치(3)를 제거하고, 프리휠클러치(4)를 적합하게 이용하여, 펌프/모터(7)에 의해 차량을 시동하게 된다.According to the modification of the embodiment shown in FIG. 3, the transmission 3 is removed and the vehicle is started by the pump / motor 7 by using the freewheel clutch 4 suitably.

도 4에 도시된 실시예의 수정예에 의하면, (선택적으로 클러치 및 ) 변속장치(3)을 제거하고, 펌프/모터(13) 및 구동축(9)사이에 클러치를 추가할 수 있다. ( 클러치(8)를 지지하는) 펌프/모터(7) 또는 펌프/모터(13)에 의해 차량이 시동된다. 특정의 최소속도( 예를 들어, 시간당 20마일의 속도 )이상의 속도에서 엔진(1)이 연결되어 직접적인 축동력을 공급하고 상기 설명과 같이 작동된다. 상기 구성에 의해 축압기의 압력이 고갈되는 위험이 제거된다.According to a modification of the embodiment shown in FIG. 4, it is possible to remove the (optionally clutch and) transmission 3 and add a clutch between the pump / motor 13 and the drive shaft 9. The vehicle is started by the pump / motor 7 or the pump / motor 13 (which supports the clutch 8). At speeds above a certain minimum speed (eg, 20 miles per hour), the engine 1 is connected to provide direct axial force and operate as described above. This configuration eliminates the risk of exhaustion of the pressure in the accumulator.

마이크로프로세서(18)에 의한 제어용 논리플로우가 도 6에 도시된다. 도 6의 플로우차트에 의하면, 컴퓨터유니트 또는 마이크로프로세서(18)에 의해 제어플로우가 처리된다. 단계(S1)에서, 브레이크의 연결여부에 관하여 브레이크센서(50)로부터 전달되는 신호에 의해 결정이 이루어진다. 브레이크가 연결되면(Y), 제동 에너지를 축압기(6)내부에 저장된 유체압력으로 변환시키도록 펌프기능의 펌프/모터에 의해 재생제동작용을 허용하기 위하여, 엔진(1)의 연결이 분리된다. 단계(S2)에서, 재생제동기능이외에 제동작용의 필요여부에 대한 결정이 이루어진다. 필요한 경우에, 마찰브레이크가 연결된다. 단계(S3)에서 출력요구센서(14)로부터 전달된 신호에 따라 출력의 요구여부가 결정된다. 만약 출력이 요구되지 않는다면, 압력센서(16)로부터 전달되는 신호의 함수로서 결정되는 축압기압력이 축압기압력의 최저값과 비교되고, 만약 상기 최저값보다 작으면, 엔진은 엔진출력을 유압에너지의 형태로 변환하도록 펌프기능의 펌프/모터(7)를 계속 작동시킨다. 단계(S4)의 압력비교기능에 의해 감지된 유압이 최저값보다 크다고 결정되면, 엔진은 정지되고, 제어싸이클이 다시 시작된다. 단계(S3)에서 운전자에 의해 출력이 필요하다고 결정되면, 제어작용은 단계(S5)로 진행되고, 상기 단계(S5)에서 요구출력 및 차량속도에 대해 최적효율로 엔진의 작동여부가 결정된다. 메모리(48)내에 저장된 차량속도( 곡선상의 모든 점은 고유출력수준을 나타냄) 및 엔진출력토크( 즉 부하 )의 관계에 대하여 최적효율에 관한 곡선을 참고하여 결정이 이루어진다. 엔진(1)이 최적효율의 범위내에서 작동하고 있는 것이 단계(S5)에서 결정되면, 제어작용이 단계(S6)로 진행되어, 감지된 유체압력이 유체압력의 정해진 최고값파 동일하거나 큰가를 결정한다. 단계(S6)에서 정해진 최대값보다 유체압력이 크면, 축압기(6)의 유체압력에 의해 작동되는 모터기능의 펌프/모터(7)의 작동에 의해 운전자가 요구하는 출력이 공급된다. 축압기의 유체압력이 정해진 최대값이 아닐 때, 제어작용이 단계(S7)로 진행되고, 상기 단계(S7)에서, 감지된 유체압력이 유체압력의 최저값과 비교되며, 감지된 유체압력이 상기 최저값보다 작으면, 제어작용이 단계(S8)로 진행되고, 단계(S8)에서, 엔진출력을 추가로 이용가능한지를 결정하며, 엔진출력을 추가로 이용할 수 있으면, 추가로 이용가능한 엔진출력은 펌프기능의 펌프/모터(7)의 작동에 의해 축압기내에 추가로 유체압력을 저장하는데 이용된다. 단계(S7)에서 감지된 유체압력이 정해진 최저값보다 작지 않거나 단계(S8)에서 엔진출력을 추가로 이용할 수 없다고 결정되면, 제어작용이 제어개시단계로 돌아간다. 단계(S5)에서, 엔진(1)이 최적효율로 작동하지 않는다고 결정되면, 제어작용은 단계(S9)로 진행되고, 단계(S9)에서, 엔진이 최적효율이하의 범위내에서 작동여부를 결정한다. 단계(S9)에서 엔진이 최적효율이하에서 작동한다고 결정되면, 제어작용은 단계(S10)로 진행되고, 상기 단계(S10)에서, 감지된 유체압력은 유체압력의 결정된 최저값과 비교되고, 감지된 유체압력이 최저값보다 작다면, 엔진출력이 증가하고,펌프/모터(7)가 펌프로서 작동하여, 축압기(6)내부에서 유체압력을 증가시킨다. 단계(S10)에서, 축압기의 압력이 " 저압" 이 아니라고 결정되면, 축압기(6)의 유체압력에 의해 구동되는 모터기능의 펌프/모터(7)에 의해 파워트레인이 구동되어 출력요구가 만족된다.The control logic flow by the microprocessor 18 is shown in FIG. 6. According to the flowchart of FIG. 6, the control flow is processed by the computer unit or the microprocessor 18. In step S1, a determination is made by a signal transmitted from the brake sensor 50 as to whether the brake is connected. When the brake is connected (Y), the connection of the engine 1 is disconnected to allow regenerative braking action by the pump / motor of the pump function to convert the braking energy to the fluid pressure stored in the accumulator 6. . In step S2, a determination is made as to whether the braking action is required in addition to the regenerative braking function. If necessary, friction brakes are engaged. In step S3, whether the output is required or not is determined according to the signal transmitted from the output request sensor 14. If no output is required, the accumulator pressure, which is determined as a function of the signal transmitted from the pressure sensor 16, is compared with the lowest value of the accumulator pressure, and if less than the minimum value, the engine outputs the engine output in the form of hydraulic energy. The pump / motor (7) with the pump function continues to operate so as to convert to. If it is determined that the oil pressure sensed by the pressure comparing function of step S4 is larger than the minimum value, the engine is stopped and the control cycle is started again. If it is determined in step S3 that the output is required by the driver, then the control action proceeds to step S5, where in step S5 the engine is determined to operate at optimum efficiency for the required output and the vehicle speed. Determination is made by referring to the curve concerning the optimum efficiency with respect to the relationship between the vehicle speed stored in the memory 48 (all points on the curve indicate the intrinsic power level) and the engine output torque (ie load). If it is determined in step S5 that the engine 1 is operating within the range of optimum efficiency, the control action proceeds to step S6 to determine whether the sensed fluid pressure is equal to or greater than the specified maximum value of the fluid pressure. do. If the fluid pressure is greater than the maximum value determined in step S6, the output required by the driver is supplied by the operation of the pump / motor 7 of the motor function operated by the fluid pressure of the accumulator 6. When the fluid pressure of the accumulator is not the predetermined maximum value, the control action proceeds to step S7, in which the sensed fluid pressure is compared with the lowest value of the fluid pressure and the sensed fluid pressure is If less than the minimum value, the control action proceeds to step S8, and in step S8, it is determined whether additional engine power is available, and if additional engine power is available, the additionally available engine power is pumped. It is used to further store the fluid pressure in the accumulator by the operation of the functioning pump / motor 7. If it is determined that the fluid pressure sensed in step S7 is not less than the predetermined minimum value or that the engine power is not additionally available in step S8, the control action returns to the control start step. If it is determined in step S5 that the engine 1 is not operating at optimum efficiency, then the control action proceeds to step S9, and in step S9, it is determined whether the engine is operating within the range below the optimum efficiency. do. If it is determined in step S9 that the engine is operating below optimum efficiency, then the control action proceeds to step S10, in which the sensed fluid pressure is compared with the determined lowest value of the fluid pressure and the sensed If the fluid pressure is less than the minimum value, the engine output increases and the pump / motor 7 acts as a pump, increasing the fluid pressure inside the accumulator 6. In step S10, if it is determined that the pressure of the accumulator is not " low pressure ", the power train is driven by a pump / motor 7 of motor function driven by the fluid pressure of the accumulator 6, so that the output demand is Are satisfied.

단계(S9)에서 엔진이 최적효율범위이하에서 작동하지 않고, 즉 엔진이 최적효율범위이상에서 작동한다고 결정되면, 제어작용은 단계(S11)로 진행되고, 단계(S11)에서 감지된 유체압력이 유체압력의 정해진 "최저값"과 비교된다. 단계(S11)에서 유체압력의 상기 " 최저값"보다 작다고 결정되면, ( 도 1에서 ) 제 2 엔진(10)이 시동되고, 클러치(11)가 연결되어, 양쪽의 엔진(1, 10)들이 직렬로 차량을 구동한다. 단계(S11)에서, 유체압력이 최저값보다 작다고 결정되면, 제어작용은 단계(S12)로 진행되고, 단계(S12)에서, 동력이 추가로 필요한지를 결정한다. 동력이 추가로 필요하다고 결정되면, 펌프/모터(7)는 동력을 추가로 공급하기 위해 모터로서 작동한다. 단계(S11)에서, 감지된 유체압력이 유체압력의 " 최저값"보다 크다고 결정되면, 제 2 엔진은 시동되지 않고, 대신에 차량은 제 1 엔진(1) 및 모터기능의 펌프/모터(7)에 의해 구동된다.If in step S9 the engine does not operate below the optimum efficiency range, that is, it is determined that the engine operates above the optimum efficiency range, the control action proceeds to step S11, where the fluid pressure sensed in step S11 is The fluid pressure is compared to a defined "lowest value". If it is determined in step S11 that it is smaller than the "lowest value" of the fluid pressure, the second engine 10 is started (in FIG. 1), the clutch 11 is connected, and both engines 1, 10 are in series. To drive the vehicle. If it is determined in step S11 that the fluid pressure is smaller than the minimum value, the control action proceeds to step S12, and in step S12, it is determined whether additional power is required. If it is determined that additional power is needed, the pump / motor 7 acts as a motor to supply additional power. In step S11, if it is determined that the sensed fluid pressure is greater than the "lowest value" of the fluid pressure, the second engine is not started, but instead the vehicle is the first engine 1 and the pump / motor 7 of the motor function. Driven by

도 6에 대한 설명이 다음과 같다.Description of FIG. 6 is as follows.

(1) 소요제동수준이 형성되도록 유압펌프의 변위 및 무단변속장치(CVT)의 변속비를 구동휠의 미끄럼상태까지 설정한다.(1) Set the displacement of the hydraulic pump and the transmission ratio of CVT to the sliding state of the drive wheel so that the required braking level is formed.

(2)최적의 엔진 속도/출력이 형성되도록 무단변속장치의 변속비를 설정한다.(2) Set the transmission ratio of the continuously variable transmission so that the optimum engine speed / power is produced.

(3)최적효율의 출력이 형성되도록 무단변속장치의 변속비 및 유압모터의 변위를 설정한다.(3) Set the transmission ratio of the continuously variable transmission and the displacement of the hydraulic motor so that the output of optimum efficiency is formed.

(4)최대출력을 위한 엔진속도를 형성하도록 무단변속장치의 변속비를 설정한다.(4) Set the speed ratio of the continuously variable transmission to form an engine speed for maximum output.

본 발명이 본 발명의 사상 및 주요특성에서 벗어나지 않고 다른 형태로 실시될 수 있다. 따라서 본 발명의 실시예들은 모든 면에서 설명을 위한 것이고 비제한적이며, 본 발명의 범위가 상기 설명에 의해 제한되기 보다는 하기 청구범위에 의해 제시되고, 청구범위와 등가한 내용의 의미 및 범위내에 있는 모든 변형예들이 허용된다.The present invention can be implemented in other forms without departing from the spirit and main characteristics of the present invention. Accordingly, the embodiments of the invention are intended to be illustrative in all respects and non-limiting, and the scope of the invention is set forth by the following claims rather than by the above description, and is within the meaning and range of equivalency of the claims. All variations are allowed.

Claims (16)

차량 프레임,Vehicle frame, 상기 차량프레임위에서 회전가능하게 장착된 휠들,Wheels rotatably mounted on the vehicle frame, 상기 차량프레임위에 장착되고 구동축의 회전운동에 의해 엔진출력을 제공하기 위한 제 1 엔진,A first engine mounted on the vehicle frame and providing an engine output by a rotational movement of a drive shaft; 상기 차량프레임위에 장착되고, 상기 엔진에 의해 발생된 출력을 저장하거나 방출하기 위한 출력저장수단,An output storage means mounted on the vehicle frame, for storing or discharging the output generated by the engine; 상기 휠들에 상기 엔진출력을 전달하기 위한 제 1 구동트레인이 구성되고, 조정가능한 속도입력 및 출력을 가진 변속장치가 상기 구동트레인에 포함되며,A first drive train for delivering the engine power to the wheels is configured, a transmission having an adjustable speed input and output is included in the drive train, 제 2 모드에서 상기 제 1 엔진의 회전운동에 의해 구동될 때, 선택적으로 상기 출력저장수단에 상기 엔진출력을 전달하거나, 제 1 모드에서 모터로서 작동할 때, 상기 출력저장수단으로부터 상기 제 1 구동트레인으로 저장된 출력을 전달하기위한 가역구동수단이 구성되며,When driven by the rotational motion of the first engine in the second mode, selectively transmitting the engine output to the output storage means, or when operating as a motor in the first mode, the first drive from the output storage means. Reversible drive means for delivering the output stored in the train 상기 제 1 구동트레인의 일부분과 병렬구조로 구성되고, 상기 제 1 모드에서 저장된 상기 출력을 상기 제 1 구동트레인에 전달하며, 상기 엔진출력의 일부분을 상기 출력저장수단에 전달하고 동시에 상기 엔진출력의 나머지부분을 상기 휠들에 전달하도록, 상기 제 2 모드에서 상기 엔진의 회전운동을 상기 가역구동수단에 전달하기 위하여 상기 가역구동수단을 상기 제 1 구동트레인에 연결되는 제 2 구동트레인이 구성되며,The output structure is configured in parallel with the portion of the first drive train, and transmits the output stored in the first mode to the first drive train, and transmits a portion of the engine output to the output storage means and simultaneously A second drive train configured to connect the reversible drive means to the first drive train for transmitting the rotational motion of the engine to the reversible drive means in the second mode, to transfer the remainder to the wheels, 차량속도를 감지하기 위한 차량속도센서수단이 구성되고,Vehicle speed sensor means for detecting the vehicle speed is configured, 상기 출력저장수단내에 저장된 출력크기를 감지하기 위한 저장출력센서수단이 구성되며,A storage output sensor means for sensing an output size stored in the output storage means, 차량에 대해 운전자가 요구하는 출력을 감지하기 위한 출력요구센서수단이 구성되고,An output request sensor means for detecting an output required by the driver for the vehicle, 저장된 출력의 정해진 최소값과 저장된 출력의 감지된 크기를 비교하고, 상기 정해진 최소값보다 상기 감지된 크기가 작다고 결정될 때, 요구신호를 발생시키기 위한 비교수단이 구성되며,A comparison means for comparing the determined minimum value of the stored output with the detected magnitude of the stored output and generating a request signal when it is determined that the detected magnitude is smaller than the predetermined minimum value, 상기 요구신호에 따라 출력의 추가증분을 결정하고, 감지된 운전자의 요구출력 및 출력의 상기 추가증분의 합으로서 엔진출력을 결정하기 위한 출력의 결정수단이 구성되고,Output determination means for determining an additional increment of output in accordance with the request signal, and for determining an engine output as the sum of the detected driver's required output and the additional increment of the output; 변속신호에 응답하고 상기 변속장치의 입력속도를 변경하여 상기 구동축의 회전속도를 제어하기 위한 엔진속도제어수단이 구성되며,Engine speed control means is configured to control the rotational speed of the drive shaft in response to a shift signal and change the input speed of the transmission, 결정된 상기 엔진출력 및 감지된 상기 차량속도에 따라 최적효율의 엔진속도를 결정하고, 결정된 엔진속도를 나타내는 변속신호를 상기 엔진속도제어수단에 출력하기 위한 엔진속도결정수단이 구성되며,Engine speed determination means for determining an engine speed of optimum efficiency according to the determined engine output and the detected vehicle speed, and outputting a shift signal indicative of the determined engine speed to the engine speed control means, 상기 변속신호에 응답하여 상기 제 1 엔진에 대하여 연료공급을 제어하여 상기 엔진출력을 제어하기 위한 엔진부하제어수단이 구성되고,Engine load control means for controlling the engine output by controlling the fuel supply to the first engine in response to the shift signal, 상기 요구신호에 응답하여 상기 가역구동수단의 작동을 제 1 모드 및 제 2 모드사이에서 변환시키기 위한 모드제어수단이 구성되는 것을 특징으로 하는 하이브리드 파워트레인 차량.And mode control means for converting the operation of the reversible driving means between the first mode and the second mode in response to the request signal. 제 1 항에 있어서,The method of claim 1, 제 2 엔진,2nd engine, 감지된 요구출력에 응답하여 제 2 엔진의 출력을 상기 제 1 구동트레인에 연결하기 위한 제 2 엔진의 클러치가 추가로 구성되는 것을 특징으로 하는 하이브리드 파워트레인 차량.And a clutch of the second engine for connecting the output of the second engine to the first drivetrain in response to the sensed required output. 제 2항에 있어서, 상기 제 1 엔진에 대하여 정해진 최대출력과 감지된 요구출력이 비교수단에 의해 비교되고, 감지된 상기 요구출력이 정해진 상기 최대 출력을 초과할 때, 상기 비교수단이 상기 제 2 엔진을 시동하고 상기 제 2 엔진의 클러치를 연결하기 위한 명령신호를 발생시키는 것을 특징으로 하는 하이브리드 파워트레인 차량.3. The apparatus according to claim 2, wherein when the detected maximum requested output is compared with the determined maximum output for the first engine by the comparing means, and the detected requested output exceeds the predetermined maximum output, the comparing means is arranged for the second output. And a command signal for starting the engine and for connecting the clutch of the second engine. 제 3 항에 있어서, 저장된 출력의 감지된 크기가 정해진 상기 최대출력보다 작다고 결정될 때만 상기 명령신호가 발생되는 것을 특징으로 하는 하이브리드 파웨트레인 차량.4. The hybrid far west train vehicle according to claim 3, wherein the command signal is generated only when it is determined that the sensed magnitude of the stored output is smaller than the predetermined maximum output. 제 1항에 있어서, 감지된 요구출력이 영인 것을 나타내는 신호에 응답하여, 상기 휠들이 상기 제 1 구동트레인으로부터 분리하기 위해 상기 변속장치 및 휠들사이에 배열된 프리휠클러치가 추가로 구성되는 것을 특징으로 하는 하이브리드 파워트레인 차량.2. A freewheel clutch according to claim 1, further comprising a freewheel clutch arranged between the transmission and the wheels for separating the wheels from the first drive train in response to a signal indicating that the sensed required output is zero. Hybrid powertrain vehicle. 제 1항에 있어서, 상기 최적효율의 엔진속도 및 엔진출력에 대한 수치들을 관련시키고 저장된 맵을 포함하는 메모리가 추가로 구성되고,2. The apparatus of claim 1, further comprising a memory that associates values for engine speed and engine power of the optimum efficiency and includes a stored map, 최적효율의 엔진속도를 결정하도록 상기 엔진속도의 결정수단에 의해 상기 결정된 엔진출력 및 상기 감지된 차량속도가 상기 맵에 적용되는 것을 특징으로 하는 하이브리드 파워트레인 차량.And the determined engine output and the sensed vehicle speed are applied to the map by the engine speed determining means to determine an engine speed of optimum efficiency. 휠들, 가역구동수단, 상기 휠들 및 상기 가역구동수단을 동시에 병렬 구조로 회전가능하게 구동하기 위한 제 1 엔진, 상기 제 1엔진에 의해 발생된 엔진 출력을 저장하기 위한 출력저장수단, 조정가능한 속도입력을 가진 변속장치 및 상기 변속장치의 입력속도를 변경하기 위한 엔진속도제어수단을 포함한 하이브리드 파워트레인 차량의 제어방법에 있어서,A first engine for rotatably driving wheels, reversible driving means, the wheels and the reversible driving means in parallel in parallel, output storage means for storing engine output generated by the first engine, adjustable speed input In the control method of a hybrid powertrain vehicle including a transmission having an engine speed control means for changing the input speed of the transmission, 차량속도를 감지하고,Detect vehicle speed, 출력저장수단내에 저장된 출력크기를 감지하며,Detects the output size stored in the output storage means, 차량에 대해 운전자가 요구하는 출력을 감지하고,Detect the power required by the driver for the vehicle, 제 1 엔진의 출력보다 큰 상기 요구출력을 나타내는 신호에 응답하여, 상기 휠들을 구동하기 위해 모터로서 가역구동수단을 이용하도록, 상기 출력저장수단으로부터 가역구동수단으로 출력을 공급하며,In response to a signal indicative of the requested output greater than the output of the first engine, supplying output from the output storage means to the reversible driving means to use the reversible driving means as a motor to drive the wheels, 동시에 ( i )정해진 값보다 작다고 감지된 저장출력에 응답하여 상기 가역구동수단에 의해 제 1 엔진의 출력중 일부분을 상기 출력저장수단내부로 전달하고, (ii)제 1 엔진의 출력중 나머지부분을 휠들에 전달하며,At the same time (i) the reversible drive means transmits a portion of the output of the first engine into the output storage means in response to the stored output detected as being less than the predetermined value, and (ii) delivers the remaining portion of the output of the first engine. To the wheels, 저장된 출력의 감지된 크기와 정해진 최소값을 비교하고, 저장된 출력의 감지된 크기가 정해진 최소값보다 작다고 결정되면 요구신호를 발생시키며,Compares the detected magnitude of the stored output with a predetermined minimum value and generates a request signal if it is determined that the detected magnitude of the stored output is smaller than the predetermined minimum value, 요구신호에 따라 추가 출력을 결정하고, 감지된 요구출력 및 추가 출력의 합으로서 엔진의 출력을 결정하며,Determine the additional power according to the request signal, determine the output of the engine as the sum of the detected required output and the additional output, 변속신호에 응답하여 변속장치의 입력속도를 변경하여 제 1 엔진의 회전속도를 제어하고,In response to the shift signal, the input speed of the transmission is changed to control the rotation speed of the first engine, 정해진 엔진출력 및 감지된 차량속도에 따라 최적효율의 엔진속도를 결정하며, 정해진 엔진속도에 따라 변속신호를 출력하는 것을 특징으로 하는 하이브리드 파워트레인 차량의 제어방법.A method for controlling a hybrid power train vehicle, comprising: determining an engine speed having an optimum efficiency according to a determined engine output and a detected vehicle speed, and outputting a shift signal according to the determined engine speed. 제 7항에 있어서, 최적의 엔진속도 및 결정된 엔진출력에 대한 수치들을 관련시키고 저장된 제 1 맵 및 , 차량속도 및 상기 변속장치신호들에 대한 수치들을 관련시키는 제 2 맵을 포함한 메모리가 포함되고, 각각의 변속장치속도들이 최적엔진속도를 구하기 위한 변속장치속도(기어)비율을 나타내며,8. The apparatus of claim 7, further comprising a memory comprising a first map associated with the values for the optimum engine speed and the determined engine power and a second map correlating the values for the vehicle speed and the transmission signals, Each of the transmission speeds represents the transmission speed (gear) ratio for obtaining the optimum engine speed. 결정된 상기 엔진출력 및 감지된 상기 차량속도에 대한 최적효율의 엔진속도를 선택하고 상기 변속장치신호를 설정하도록 결정된 엔진출력 및 감지된 차량속도를 상기 맵들에 적용하여 최적엔진속도가 결정되는 것을 특징으로 하는 하이브리드파워트레인 차량의 제어방법.The optimum engine speed is determined by selecting an engine speed having an optimum efficiency for the determined engine output and the detected vehicle speed, and applying the determined engine power and the detected vehicle speed to the maps to set the transmission signal. Hybrid power train vehicle control method. 차량프레임,Vehicle Frame, 상기 차량프레임위에서 회전가능하게 장착된 휠들,Wheels rotatably mounted on the vehicle frame, 상기 차량프레임위에 장착되고, 구동축의 회전운동에 의해 엔진출력을 제공하기 위한 제 1 엔진,A first engine mounted on the vehicle frame and configured to provide an engine output by a rotational movement of a drive shaft; 상기 차량프레임위에 장착되고, 유체압력을 저장하거나 방출하기 위한 유체압력의 축압기,A pressure accumulator mounted on the vehicle frame for storing or releasing fluid pressure, 상기 휠들에 상기 엔진출력을 전달하기 위한 제 1 구동트레인이 구성되고, 가변유효직경을 가진 한 개이상의 풀리를 포함한 무단변속장치가 상기 제 1 구동트레인에 포함되며,A first drive train is configured to transmit the engine output to the wheels, and a continuously variable transmission including one or more pulleys having a variable effective diameter is included in the first drive train. 제 1 모드에서, 상기 제 1 구동트레인에 모터출력을 제공하기 위해 상기 축압기로부터 방출된 유체압력에 의해 유체구동되는 모터로서 작동하고, 제 2 모드에서, 상기 유체압력을 저장하기 위해 상기 제 1 구동트레인을 통해 상기 제 1 엔진의 회전운동에 의해 구동되는 펌프로서 작동하기 위한 가역유체변위수단이 구성되고,In a first mode, it operates as a motor fluidly driven by the fluid pressure released from the accumulator to provide a motor output to the first drive train, and in a second mode, the first to store the fluid pressure. Reversible fluid displacement means for operating as a pump driven by the rotational movement of the first engine via a drive train is configured, 상기 가역유체변위수단을 상기 제 1 구동트레인에 연결하고, 상기 제 1 모드에서, 상기 모터출력을 상기 제 1 구동트레인에 전달하며, 상기 제 2 모드에서 상기 엔진출력을 상기 가역유체변위수단에 전달하기 위한 제 2 구동트레인이 구성되며,Coupling the reversible fluid displacement means to the first drive train, in the first mode, transmitting the motor output to the first drive train, and in the second mode, transmitting the engine output to the reversible fluid displacement means. A second drive train is configured to 차량속도를 감지하기 위한 차량속도센서수단이 구성되고,Vehicle speed sensor means for detecting the vehicle speed is configured, 상기 축압기내부의 유체압력을 감지하기 위한 압력센서가 구성되며,A pressure sensor is configured to detect the fluid pressure inside the accumulator, 차량에 대해 운전자가 요구하는 출력을 감지하기 위한 출력요구센서수단이 구성되고,An output request sensor means for detecting an output required by the driver for the vehicle, 정해진 최소유체압력과 감지된 상기 유체압력을 비교하고, 상기 정해진 최소 유체압력보다 감지된 상기 유체압력이 작다고 결정될 때, 요구신호를 발생시키기 위한 비교수단이 구성되며,Comparison means for comparing the determined minimum fluid pressure with the sensed fluid pressure and for generating a request signal when it is determined that the sensed fluid pressure is smaller than the determined minimum fluid pressure, 상기 요구신호에 따라 출력의 추가증분을 결정하고, 감지된 운전자의 요구출력 및 출력의 상기 추가증분의 합으로서 엔진출력을 결정하기 위한 출력의 결정수단이 구성되고,Output determination means for determining an additional increment of output in accordance with the request signal, and for determining an engine output as the sum of the detected driver's required output and the additional increment of the output; 변속신호에 응답하고 상기 풀리의 유효직경을 변경하여 상기 구동축의 회전속도를 제어하기 위한 엔진속도제어수단이 구성되며,Engine speed control means is configured to control the rotational speed of the drive shaft in response to a shift signal and change the effective diameter of the pulley, 결정된 상기 엔진출력 및 감지된 상기 차량속도에 따라 최적효율의 엔진속도를 결정하고, 결정된 엔진속도를 나타내는 변속신호를 상기 엔진속도제어수단에 출력하기 위한 엔진속도결정수단이 구성되고,Engine speed determination means for determining an engine speed of optimum efficiency according to the determined engine output and the detected vehicle speed, and outputting a shift signal indicative of the determined engine speed to the engine speed control means, 상기 변속신호에 응답하여 상기 제 1 엔진에 대하여 연료공급을 제어하여 상기 엔진출력을 제어하기 위한 엔진부하제어수단이 구성되며,Engine load control means for controlling the engine output by controlling the fuel supply to the first engine in response to the shift signal, 상기 요구신호에 응답하여 상기 가역유체변위수단의 작동을 제 1 모드 및 제 2 모드사이에서 변환시키고 감지된 유체압력에 응답하여 상기 가역유체변위수단의 변위를 변화시키기 위한 모드제어수단이 구성되는 것을 특징으로 하는 하이브리드파워트레인 차량.Mode control means for converting the operation of the reversible fluid displacement means in response to the request signal between the first mode and the second mode and for changing the displacement of the reversible fluid displacement means in response to the sensed fluid pressure. A hybrid power train vehicle characterized by the above-mentioned. 제 9 항에 있어서,The method of claim 9, 제 2 엔진,2nd engine, 감지된 요구출력에 응답하여 제 2 엔진의 출력을 상기 제 1 구동트레인에 연결하기 위한 제 2 엔진의 클러치가 추가로 구성되는 것을 특징으로 하는 하이브리드 파워트레인 차량.And a clutch of the second engine for connecting the output of the second engine to the first drivetrain in response to the sensed required output. 제 10 항에 있어서, 상기 제 1 엔진에 대하여 정해진 최대출력과 감지된 요구출력이 비교수단에 의해 비교되고, 감지된 상기 요구출력이 정해진 상기 최대출력을 초과할 때, 상기 비교수단이 상기 제 2 엔진을 시동하고 상기 제 2 엔진의 클러치를 연결하기 위한 명령신호를 발생시키는 것을 특징으로 하는 하이브리드 파워트레인 차량.11. The apparatus according to claim 10, wherein the comparing means determines the second output when the maximum output determined for the first engine and the sensed requested output are compared by comparing means, and when the sensed requested output exceeds the predetermined maximum output. And a command signal for starting the engine and for connecting the clutch of the second engine. 제 11 항에 있어서, 감지된 유체압력이 정해진 유체압력보다 작다고 결정될 때만 상기 명령신호가 발생되는 것을 특징으로 하는 하이브리드 파워트레인 차량.12. The hybrid powertrain vehicle according to claim 11, wherein the command signal is generated only when it is determined that the sensed fluid pressure is less than the predetermined fluid pressure. 제 9 항에 있어서, 감지된 요구출력이 영인 것을 나타내는 신호에 응답하여, 상기 휠들을 상기 제 1 구동트레인으로부터 분리하기 위해 상기 변속장치 및 휠들사이에 배열된 프리휠클러치가 추가로 구성되는 것을 특징으로 하는 하이브리드 파워트레인 차량.10. The apparatus of claim 9, further comprising a freewheel clutch arranged between the transmission and the wheels for separating the wheels from the first drive train in response to a signal indicating that the sensed demand output is zero. Hybrid powertrain vehicle. 제 9 항에 있어서, 상기 최적효율의 엔진속도 및 엔진출력에 대한 수치들을 관련시키고 저장된 맵을 포함하는 메모리가 추가로 구성되고,10. The apparatus of claim 9, further comprising a memory that relates the figures for engine speed and engine power of the optimum efficiency and includes a stored map, 최적효율의 엔진속도를 결정하도록 상기 엔진속도의 결정수단에 의해 상기 결정된 엔진출력 및 상기 감지된 차량속도가 상기 맵에 적용되는 것을 특징으로 하는 하이브리드 파워트레인 차량.And the determined engine output and the sensed vehicle speed are applied to the map by the engine speed determining means to determine an engine speed of optimum efficiency. 휠들, 상기 휠들을 구동하기 위한 제 1 엔진, 가역유체변위수단, 유체압력을 축압하기 위한 축압기, 가변유효직경을 가지고 이동가능한 풀리를 가진 무단변속장치 및 유효직경을 변화시키기 위해 상기 풀리를 기계적으로 이동시키기 위한 제어기를 포함한 하이브리드 파워트레인 차량의 제어방법에 있어서,Wheels, a first engine for driving the wheels, reversible fluid displacement means, an accumulator for accumulating fluid pressure, a continuously variable transmission having a variable effective diameter and a pulley movable and a mechanical pulley for changing the effective diameter. In a control method of a hybrid powertrain vehicle including a controller for moving to 차량속도를 감지하고,Detect vehicle speed, 축압기내부의 유체압력을 감지하며,Detects the fluid pressure inside the accumulator, 차량에 대해 운전자가 요구하는 출력을 감지하고,Detect the power required by the driver for the vehicle, 제 1 엔진의 출력보다 큰 상기 요구출력을 나타내는 신호에 응답하여, 상기 휠들을 구동하기 위해 모터로서 가역유체변위수단을 이용하도록, 상기 축압기로부터 가역유체변위수단으로 유체압력을 공급하며,In response to a signal indicative of the required output greater than the output of the first engine, supplying fluid pressure from the accumulator to the reversible fluid displacement means to use the reversible fluid displacement means as a motor to drive the wheels, 정해진 값보다 작다고 감지된 유체압력에 응답하여, 가역유체변위수단을 펌프로서 구동하기 위해 제 1 엔진의 출력중 일부분을 이용하여 축압기내부로 유체압력을 가압하고,In response to the detected fluid pressure being less than the predetermined value, pressurizing the fluid pressure into the accumulator using a portion of the output of the first engine to drive the reversible fluid displacement means as a pump, 감지된 유체압력과 정해진 최소유체압력을 비교하며, 감지된 유체압력이 정해진 유체압력보다 작다고 결정되면, 요구신호를 발생시키고,Compares the sensed fluid pressure with the set minimum fluid pressure, and if it is determined that the sensed fluid pressure is less than the set fluid pressure, generates a request signal, 요구신호에 따라 추가출력을 결정하고, 감지된 요구출력 및 추가출력의 합으로서 엔진의 출력을 결정하며,Determine additional output according to the request signal, determine the output of the engine as the sum of the detected requested output and the additional output, 변속신호에 응답하여 이동가능한 풀리의 유효직경을 변경하여 제 1 엔진의 회전속도를 결정하고,In response to the shift signal, the effective diameter of the movable pulley is changed to determine the rotational speed of the first engine, 정해진 엔진출력 및 감지된 차량속도에 따라 최적효율의 엔진속도를 결정하여, 정해진 엔진속도에 따라 변속신호를 출력하는 것을 특징으로 하는 하이브리드 파워트레인 차량의 제어방법.A method for controlling a hybrid power train vehicle, comprising: determining an engine speed having an optimum efficiency according to a determined engine output and a sensed vehicle speed, and outputting a shift signal according to the determined engine speed. 제 15 항에 있어서, 최적의 엔진속도 및 결정된 엔진출력에 대한 수치들을 관련시키고 저장된 제 1 맵 및, 차량속도 및 상기 변속장치신호들에 대한 수치들을 관련시키는 제 2 맵을 포함한 메모리가 포함되고, 각각의 변속장치 속도들이 최적엔진속도를 구하기 위한 변속장치속도(기어)비율을 나타내며,16. The apparatus of claim 15, comprising a memory comprising a first map associated with values for optimal engine speed and determined engine power and stored and a second map relating values for vehicle speed and the transmission signals, Each of the transmission speeds represents the transmission speed (gear) ratio for obtaining the optimum engine speed. 결정된 상기 엔진출력 및 감지된 상기 차량속도에 대한 최적효율의 엔진속도를 선택하고 상기 변속장치신호를 설정하도록 결정된 엔진출력 및 감지된 차량속도를 상기 맵들에 적용하여 최적엔진속도가 결정되는 것을 특징으로 하는 하이브리드 파워트레인 차량의 제어방법.The optimum engine speed is determined by selecting an engine speed having an optimum efficiency for the determined engine output and the detected vehicle speed, and applying the determined engine power and the detected vehicle speed to the maps to set the transmission signal. Hybrid powertrain vehicle control method.
KR1019960706830A 1994-06-03 1995-06-02 Hybrid power train vehicle and its control method KR100361041B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/253,944 1994-06-03
US08/253,944 US5495912A (en) 1994-06-03 1994-06-03 Hybrid powertrain vehicle

Publications (2)

Publication Number Publication Date
KR970703248A KR970703248A (en) 1997-07-03
KR100361041B1 true KR100361041B1 (en) 2003-02-11

Family

ID=22962307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960706830A KR100361041B1 (en) 1994-06-03 1995-06-02 Hybrid power train vehicle and its control method

Country Status (8)

Country Link
US (1) US5495912A (en)
EP (1) EP0762957B2 (en)
JP (1) JP3525932B2 (en)
KR (1) KR100361041B1 (en)
CN (1) CN1073516C (en)
AU (1) AU681797B2 (en)
DE (1) DE69520431T3 (en)
WO (1) WO1995033629A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152619A2 (en) * 2010-06-03 2011-12-08 Bang Jung-Min Mild hybrid system
KR20180039195A (en) * 2016-10-07 2018-04-18 현대자동차주식회사 Integrated control method and system of motor for electric vehicle

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790779B2 (en) * 1994-08-22 1998-08-27 本田技研工業株式会社 Power generation control device for hybrid vehicle
JP2796698B2 (en) * 1995-02-02 1998-09-10 株式会社エクォス・リサーチ Hybrid vehicle
JP3534271B2 (en) * 1995-04-20 2004-06-07 株式会社エクォス・リサーチ Hybrid vehicle
JPH0937410A (en) * 1995-07-24 1997-02-07 Toyota Motor Corp Drive controller for car
JP3412352B2 (en) * 1995-08-15 2003-06-03 アイシン・エィ・ダブリュ株式会社 Control device for vehicle drive unit
SE505214C2 (en) * 1995-09-04 1997-07-14 Chandur Sadarangani hybrid Drive
JP3094872B2 (en) * 1995-10-20 2000-10-03 トヨタ自動車株式会社 Control device for hybrid vehicles
JP3454036B2 (en) * 1995-11-13 2003-10-06 トヨタ自動車株式会社 Hybrid drive
JPH09267647A (en) * 1996-04-02 1997-10-14 Honda Motor Co Ltd Power transmitting mechanism for hybrid car
US5982045A (en) * 1996-04-19 1999-11-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system adapted to prevent concurrent mode change and transmission shifting or torque distribution ratio change
US5845731A (en) * 1996-07-02 1998-12-08 Chrysler Corporation Hybrid motor vehicle
US5847470A (en) * 1996-10-31 1998-12-08 Mitchell; Herman Roosevelt Auxiliary motor drive system
WO1998047732A1 (en) 1997-04-18 1998-10-29 Transport Energy Systems Pty. Ltd. Hybrid propulsion system for road vehicles
CN1093478C (en) * 1997-04-23 2002-10-30 江洪 Accumulating automotive electronic energy saving system
US6167339A (en) * 1997-05-30 2000-12-26 Continential Isad Electronic Systems Gmbh Drive system for a vehicle and method for operating a drive system
JP3214437B2 (en) * 1998-03-06 2001-10-02 トヨタ自動車株式会社 Drive control device for hybrid vehicle
US20040173396A1 (en) * 1998-09-03 2004-09-09 Permo-Drive Research And Development Pty. Ltd. Energy management system
US6338391B1 (en) 1999-03-01 2002-01-15 Paice Corporation Hybrid vehicles incorporating turbochargers
US6209672B1 (en) 1998-09-14 2001-04-03 Paice Corporation Hybrid vehicle
US6554088B2 (en) 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
FR2785857B1 (en) * 1998-11-18 2001-01-05 Fransceco Sbarro ADDITIONAL MOTOR FOR MOTOR VEHICLE AND MOTOR VEHICLE COMPRISING SUCH MOTOR
JP3153527B2 (en) * 1999-04-05 2001-04-09 本田技研工業株式会社 Hybrid vehicle control device
DE19934790A1 (en) * 1999-07-27 2001-02-08 Bosch Gmbh Robert Drive system for motor vehicles
JP2001146121A (en) 1999-11-19 2001-05-29 Toyota Motor Corp Control device for hybrid vehicle with transmission
US6306056B1 (en) 1999-12-17 2001-10-23 Daimlerchrysler Corporation Dual engine hybrid electric vehicle
US7374005B2 (en) * 2000-01-10 2008-05-20 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Opposing pump/motors
US8177009B2 (en) 2000-01-10 2012-05-15 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Independent displacement opposing pump/motors and method of operation
US6719080B1 (en) 2000-01-10 2004-04-13 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Hydraulic hybrid vehicle
US7337869B2 (en) * 2000-01-10 2008-03-04 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Hydraulic hybrid vehicle with integrated hydraulic drive module and four-wheel-drive, and method of operation thereof
SE515756C2 (en) * 2000-01-13 2001-10-08 Volvo Car Corp Power units for motor vehicles
US6691807B1 (en) * 2000-04-11 2004-02-17 Ford Global Technologies Llc Hybrid electric vehicle with variable displacement engine
US6834737B2 (en) 2000-10-02 2004-12-28 Steven R. Bloxham Hybrid vehicle and energy storage system and method
US7338335B1 (en) 2001-01-23 2008-03-04 Frank Messano Hybrid electric heavy-duty vehicle drive system
US6769415B2 (en) * 2001-05-25 2004-08-03 General Motors Corporation Evaporative control system
DE50210441D1 (en) * 2001-06-11 2007-08-23 Siemens Ag Method for controlling a drive train of a hybrid vehicle
US6568186B2 (en) 2001-06-21 2003-05-27 Nano Precision, Inc. Hybrid expansible chamber engine with internal combustion and pneumatic modes
US6722458B2 (en) * 2001-08-27 2004-04-20 Fev Motorentechnik Gmbh Multi-engine drive system for a vehicle
US7121304B2 (en) 2001-12-19 2006-10-17 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Low permeation hydraulic accumulator
DE10204083B4 (en) * 2002-02-01 2007-10-11 Siemens Ag Method for adjusting a torque model and arrangement
JP2003285671A (en) * 2002-03-29 2003-10-07 Nissan Diesel Motor Co Ltd Hybrid vehicle
US7416045B2 (en) * 2002-08-28 2008-08-26 Torvec, Inc. Dual hydraulic machine transmission
US6986725B2 (en) * 2002-11-01 2006-01-17 Eaton Corporation Continuously variable stepped transmission
US7024858B2 (en) 2003-03-05 2006-04-11 The United States Of America As Represented By United States Environmental Protection Agency Multi-crankshaft, variable-displacement engine
US6998727B2 (en) * 2003-03-10 2006-02-14 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a parallel hybrid vehicle having an internal combustion engine and a secondary power source
US6876098B1 (en) * 2003-09-25 2005-04-05 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a series hybrid vehicle
US20050193733A1 (en) * 2003-11-20 2005-09-08 Donald Ochs Hydraulic powertrain systems for a vehicle including hydraulically and auxiliary powered air injection
US6996982B2 (en) * 2003-12-09 2006-02-14 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Method and device for switching hydraulic fluid supplies, such as for a hydraulic pump/motor
US6973782B2 (en) * 2003-12-19 2005-12-13 Dana Corporation Pressurized hydraulic fluid system with remote charge pump
US7104349B2 (en) * 2004-01-26 2006-09-12 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Hybrid powertrain motor vehicle with homogenous charge compression ignition (HCCI) engine, and method of operation thereof
US7305914B2 (en) * 2004-01-28 2007-12-11 The United States Of America, As Represented By The Administrator Of The Environmental Protection Agency Hydraulic actuator control valve
US7402027B2 (en) 2004-02-11 2008-07-22 Haldex Hydraulics Corporation Rotating group of a hydraulic machine
US7086225B2 (en) 2004-02-11 2006-08-08 Haldex Hydraulics Corporation Control valve supply for rotary hydraulic machine
US7364409B2 (en) 2004-02-11 2008-04-29 Haldex Hydraulics Corporation Piston assembly for rotary hydraulic machines
US7380490B2 (en) 2004-02-11 2008-06-03 Haldex Hydraulics Corporation Housing for rotary hydraulic machines
US7151987B2 (en) * 2004-02-17 2006-12-19 Ford Global Technologies, Llc System for reducing powertrain reaction torque
US7380890B2 (en) * 2004-02-17 2008-06-03 Ford Global Technologies Llc System for controlling brake pulsing at vehicle natural vibration frequencies
JP4296957B2 (en) * 2004-02-18 2009-07-15 トヨタ自動車株式会社 Control device for continuously variable transmission for vehicle
US7108016B2 (en) 2004-03-08 2006-09-19 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Lightweight low permeation piston-in-sleeve accumulator
DE102004012767A1 (en) * 2004-03-15 2005-10-20 Deere & Co Drive system for a vehicle
US7147078B2 (en) * 2004-07-01 2006-12-12 Ford Global Technologies, Llc Charging a fluid accumulator while operating a hybrid vehicle powertrain including an engine and a pump/motor
US7082757B2 (en) * 2004-07-01 2006-08-01 Ford Global Technologies, Llc Pump/motor operating mode switching control for hydraulic hybrid vehicle
US7232192B2 (en) * 2004-07-01 2007-06-19 Ford Global Technologies, Llc Deadband regenerative braking control for hydraulic hybrid vehicle powertrain
US7146266B2 (en) * 2004-07-01 2006-12-05 Ford Global Technologies, Llc Controlling a hydraulic hybrid vehicle powertrain having an internal combustion engine and a hydraulic pump/motor
US7147239B2 (en) * 2004-07-01 2006-12-12 Ford Global Technologies, Llc Wheel creep control of hydraulic hybrid vehicle using regenerative braking
US20060014608A1 (en) * 2004-07-13 2006-01-19 Mitchell Herman R Continuous variable control methods for hydraulic powertrain systems of a vehicle
US20060024172A1 (en) * 2004-08-02 2006-02-02 Sauer-Danfoss Inc. Sealing ring for a swinging yoke hydrostatic unit
US7381150B2 (en) * 2004-08-18 2008-06-03 Permo-Drive Research & Development Pty. Ltd. Hydraulic regenerative drive system and controls
CA2479890A1 (en) * 2004-09-27 2006-03-27 Samuel Beaudoin High efficiency generator system and continuously variable transmission therefor
US7273122B2 (en) * 2004-09-30 2007-09-25 Bosch Rexroth Corporation Hybrid hydraulic drive system with engine integrated hydraulic machine
US7013646B1 (en) 2004-11-18 2006-03-21 The Gates Corporation Auxiliary power system for a motor vehicle
US20060107920A1 (en) * 2004-11-18 2006-05-25 Alexander Serkh Auxiliary power system for a motor vehicle
EP1824699B1 (en) * 2004-11-22 2010-10-06 Bosch Rexroth Corporation Hydro-electric hybrid drive system for motor vehicle
CA2588290A1 (en) 2004-12-01 2006-06-08 Haldex Hydraulics Corporation Hydraulic drive system
US7427156B2 (en) * 2004-12-20 2008-09-23 Odyne Corporation Thermally managed battery enclosure for electric and hybrid electric vehicles
CA2531295C (en) * 2004-12-22 2013-10-22 Odyne Corporation Battery management and equalization system for batteries using power line carrier communications
US7395887B2 (en) * 2004-12-23 2008-07-08 Bosch Rexroth Corporation Complementary regenerative torque system and method of controlling same
US7830117B2 (en) 2005-01-10 2010-11-09 Odyne Systems, Llc Vehicle charging, monitoring and control systems for electric and hybrid electric vehicles
US7597172B1 (en) 2005-04-22 2009-10-06 Parker-Hannifin Corporation Gear box for hydraulic energy recovery
ITTO20050288A1 (en) * 2005-04-29 2006-10-30 Mauro Palitto START-STOP CONTROL UNIT FOR A MOTOR VEHICLE
WO2006138447A2 (en) * 2005-06-15 2006-12-28 Torvec, Inc. Dual hydraulic machine transmission
US7398147B2 (en) * 2005-08-02 2008-07-08 Ford Global Technologies, Llc Optimal engine operating power management strategy for a hybrid electric vehicle powertrain
US7325638B1 (en) * 2005-11-21 2008-02-05 Belloso Gregorio M Motor vehicle with a primary engine for acceleration and secondary engine augmented by an electric motor for cruising
US20070130950A1 (en) * 2005-12-12 2007-06-14 Alexander Serkh Auxiliary power system for a motor vehicle
US7654355B1 (en) * 2006-01-17 2010-02-02 Williams Kevin R Flywheel system for use with electric wheels in a hybrid vehicle
CN101037087A (en) 2006-03-14 2007-09-19 朱荣辉 mix-driving and energy-saving device of continuously variable motor vehicle
DE102006055544A1 (en) * 2006-04-26 2007-11-08 Borgwarner Inc., Auburn Hills Automotive hydraulic clutch power system has pressure reservoir recharged by power tapped from drive train during periods of deceleration
DE202006009223U1 (en) * 2006-05-17 2007-09-27 Liebherr-Werk Bischofshofen Ges.M.B.H. Machine, in particular construction machine
US20080039262A1 (en) * 2006-08-10 2008-02-14 Caterpillar Inc. Vehicle drivetrain having hydraulic power assist
US8485291B2 (en) * 2006-08-22 2013-07-16 John William O'Neill Self frequency ramping alternating current wheel motor system for hybrid vehicles
US8356985B2 (en) 2006-09-29 2013-01-22 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Safe over-center pump/motor
US8408144B2 (en) * 2006-10-04 2013-04-02 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Hybrid locomotive regenerative energy storage system and method
US20080083576A1 (en) * 2006-10-04 2008-04-10 Read David H Regenerative energy storage system for hybrid locomotive
JP5019870B2 (en) * 2006-12-27 2012-09-05 ボッシュ株式会社 Control method of hybrid vehicle
US20100140043A1 (en) * 2007-01-16 2010-06-10 Permo-Drive Technologies Ltd Drive Assembly For A Regenerative Drive System
US7779628B2 (en) * 2007-05-10 2010-08-24 Eaton Corporation Hydraulic drive system with exiting from pumping and motoring
US8297198B2 (en) * 2007-05-29 2012-10-30 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Hydraulic-electric regenerative energy storage system
US8408341B2 (en) 2007-07-12 2013-04-02 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
US8818588B2 (en) * 2007-07-12 2014-08-26 Odyne Systems, Llc Parallel hybrid drive system utilizing power take off connection as transfer for a secondary energy source
US9878616B2 (en) 2007-07-12 2018-01-30 Power Technology Holdings Llc Hybrid vehicle drive system and method using split shaft power take off
US9061680B2 (en) 2007-07-12 2015-06-23 Odyne Systems, Llc Hybrid vehicle drive system and method for fuel reduction during idle
US8978798B2 (en) 2007-10-12 2015-03-17 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
US20120207620A1 (en) 2007-07-12 2012-08-16 Odyne Systems, LLC. Hybrid vehicle drive system and method and idle reduction system and method
US20090032317A1 (en) * 2007-07-30 2009-02-05 Grigoriy Epshteyn Superefficient hydraulic hybrid powertrain and method of operation
DE102007044491A1 (en) * 2007-09-18 2009-03-19 Robert Bosch Gmbh hybrid drive
US7849953B2 (en) * 2007-11-29 2010-12-14 Caterpillar Paving Products Inc Control system and method for operating a hydrostatically driven vehicle
DE112008003207A5 (en) * 2007-11-30 2010-08-26 Luk Lamellen Und Kupplungsbau Beteiligungs Kg A method of controlling the operation of a generator in a vehicle driveline and vehicle driveline
WO2009089079A2 (en) * 2008-01-02 2009-07-16 Parker-Hannifin Corporation Hydraulic power output unit and hydraulic hybrid drive system including same
DE102008001159A1 (en) * 2008-04-14 2009-10-15 Robert Bosch Gmbh Method and control module for controlling the drive mode of a hybrid drive to prevent jerking
US20090288899A1 (en) * 2008-05-20 2009-11-26 Belloso Gregorio M Vehicle with multiple engines coupled to a transmission via a jackshaft
DE102008026515A1 (en) 2008-06-03 2009-12-10 Robert Bosch Gmbh hybrid drive
US20100006362A1 (en) * 2008-07-14 2010-01-14 Armstrong Larry D Vehicle Suspension Kinetic Energy Recovery System
US8360222B2 (en) * 2008-08-12 2013-01-29 Limo-Reid, Inc. Transmission braking and four-wheel locking for hydraulic hybrid transmission equipped vehicles
US8290653B2 (en) * 2008-08-27 2012-10-16 Ecomotors International, Inc. Powertrain with multiple, selectable power sources
US8337359B2 (en) * 2008-08-27 2012-12-25 EcoMotors International Hybrid engine system
DE102008045211A1 (en) 2008-08-30 2010-03-04 Robert Bosch Gmbh Vehicle e.g. refuse collecting vehicle, has hydraulic accumulator loaded by conveying pressuring medium from fluid accumulator during braking process, where fluid that serves for other purposes is utilized as medium for hybrid function
DE102008047993B3 (en) * 2008-09-18 2010-04-08 Voith Patent Gmbh Method for operating a drive train
US20100122864A1 (en) * 2008-11-17 2010-05-20 Allan Rosman Hybrid hydraulic drive system for all terrestrial vehicles, with the hydraulic accumulator as the vehicle chassis
US8079437B2 (en) * 2008-11-17 2011-12-20 Allan Rosman Hybrid hydraulic drive system with accumulator as the frame of vehicle
US8151916B2 (en) * 2009-01-26 2012-04-10 Ford Global Technologies, Llc Energy management system and method for hybrid electric vehicles
US8302720B2 (en) * 2009-01-28 2012-11-06 Robert Bosch Gmbh Energy storage system for a hybrid vehicle
EP2396544A2 (en) 2009-02-06 2011-12-21 Government of The United States of America, as represented by The Administrator of The U.S. Environmental Protection Agency Variable length bent-axis pump/motor
US20100240491A1 (en) * 2009-03-17 2010-09-23 Parag Vyas System for vehicle propulsion having and method of making same
US8535200B2 (en) * 2009-03-17 2013-09-17 General Electric Company Vehicle propulsion system having a continuously variable transmission and method of making same
JP5174952B2 (en) * 2009-03-27 2013-04-03 株式会社小松製作所 Fuel saving control device for work vehicle and fuel saving control method for work vehicle
DE102009016673A1 (en) * 2009-03-31 2010-10-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft hybrid vehicle
US7913791B2 (en) * 2009-05-04 2011-03-29 Robert Bosch Gmbh Energy storage system for a hybrid vehicle
US8087900B2 (en) * 2009-05-22 2012-01-03 Deere & Company Agricultural harvester with propulsion load shifting between dual engines
US7974757B2 (en) * 2009-05-22 2011-07-05 Deere & Company Agricultural harvester with dual engine failure power transfer system
EP2438303A1 (en) * 2009-06-03 2012-04-11 Eaton Corporation Fluid device with magnetic latching valves
DE102009027564B4 (en) * 2009-07-09 2022-02-03 Zf Friedrichshafen Ag Method of operating a power train
FR2951409B1 (en) * 2009-10-15 2012-03-09 Peugeot Citroen Automobiles Sa TRACTION CHAIN FOR A HYBRID VEHICLE
US8646558B2 (en) 2009-10-31 2014-02-11 Grigoriy Epshteyn Ultra-efficient hydraulic hybrid drivetrain and method of operation
KR101524877B1 (en) * 2009-12-23 2015-06-01 두산인프라코어 주식회사 Power control apparatus for hybrid industrial vehicle
KR101524878B1 (en) * 2009-12-23 2015-06-10 두산인프라코어 주식회사 Power control apparatus according to work mode in hybrid industrial vehicle
WO2011078574A2 (en) * 2009-12-23 2011-06-30 두산인프라코어 주식회사 Apparatus for controlling battery power in accordance with a work mode in a hybrid industrial vehicle
US8359133B2 (en) * 2010-02-19 2013-01-22 Ford Global Technologies, Llc Engine power elevation and active battery charge energy management strategies for plug-in hybrid electric vehicles
TWI444550B (en) * 2010-06-08 2014-07-11 Ind Tech Res Inst Method and system for controlling hydraulic apparatus for continuously variable transmission of hybrid vehicle system
US8483898B2 (en) * 2010-08-05 2013-07-09 GM Global Technology Operations LLC Method and apparatus for controlling speed of an electric pump in a vehicle
FI20106157A (en) * 2010-11-04 2012-05-05 Sandvik Mining & Constr Oy Rock drilling rigs and method for power transmission of rock drilling rigs
US8596404B1 (en) 2010-12-22 2013-12-03 Eaton Corporation Commissioning a hybrid drive assembly of a vehicle
FR2971013B1 (en) * 2011-01-27 2013-02-15 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A RECHARGE ENGINE INVOLVING A HYDRAULIC PUMP
FR2971742B1 (en) * 2011-02-22 2013-02-22 Richard Chene MOTOR VEHICLE HAVING THREE ELECTRICAL, HYDRAULIC AND THERMAL MOTORS AND METHOD FOR MANAGING ENERGY STORED ON BOARD
US10233949B2 (en) 2011-03-21 2019-03-19 Dana Belgium N.V. Accumulator assisted hydrostatic driveline and optimization method thereof
DE112012002971B4 (en) 2011-08-06 2024-02-29 Cummins Inc. Diesel-electric hybrid powertrains and emissions testing therefor
US8771138B2 (en) * 2011-09-16 2014-07-08 Eaton Corporation Hybrid hydraulic drive system architecture
CN104125902B (en) 2011-12-02 2018-04-06 电力科技控股有限责任公司 System and method for the fuel optimization in hybrid vehicle
US11225240B2 (en) 2011-12-02 2022-01-18 Power Technology Holdings, Llc Hybrid vehicle drive system and method for fuel reduction during idle
US9453503B2 (en) 2012-01-09 2016-09-27 Eaton Corporation Method for obtaining a full range of lift speeds using a single input
US9580062B2 (en) * 2012-01-10 2017-02-28 Ford Global Technologies, Llc Method for increasing fuel economy of plug-in hybrid electric vehicles
US9140356B2 (en) * 2012-07-04 2015-09-22 Kanzaki Kokyukoki Mfg. Co., Ltd. Travel control unit of working vehicle
CN102839822B (en) * 2012-09-19 2015-06-03 中联重科股份有限公司 Construction equipment and power control method for construction equipment
JP5958868B2 (en) * 2012-10-11 2016-08-02 本田技研工業株式会社 Power generation control device
KR101364640B1 (en) * 2012-10-25 2014-02-21 국방과학연구소 Control method of vehicle with independent driving wheels
US8810418B2 (en) * 2012-11-29 2014-08-19 GM Global Technology Operations LLC Vehicle fluid regulator valve diagnostic system
BE1021140B1 (en) 2013-04-09 2016-01-08 Cnh Industrial Belgium Nv A HYBRID DRIVE SYSTEM FOR A HARVESTER
EP2792522B1 (en) 2013-04-15 2017-12-27 HAWE Hydraulik SE Hybrid transmission system
CN105764764B (en) * 2013-06-26 2019-06-07 派克汉尼汾制造有限公司 Energy efficient control system for electric vehicle
US8960358B2 (en) 2013-06-27 2015-02-24 Robert Bosch Gmbh Speed-based hydraulic pump control system and method for noise reduction in hybrid vehicles
EP3071438A4 (en) 2013-11-18 2017-08-02 Power Technology Holdings LLC Hybrid vehicle drive system and method using split shaft power take off
CN103738180B (en) * 2014-01-08 2016-03-23 重庆绿色科技开发有限公司 Utilize vehicle sliding power automatic energy accumulating energy conserving system
US10399572B2 (en) 2014-05-06 2019-09-03 Eaton Intelligent Power Limited Hydraulic hybrid propel circuit with hydrostatic option and method of operation
JP6806409B2 (en) 2014-10-27 2021-01-06 イートン コーポレーションEaton Corporation Flood hybrid propulsion circuit with static pressure option and its operation method
CN106369127A (en) * 2015-07-21 2017-02-01 熵零股份有限公司 Gear pump energy adjustment system
JP6869981B2 (en) 2015-11-17 2021-05-12 トランスオーシャン イノベーション ラブス リミテッド Reliability assessable system and related methods for operating hydraulically actuated devices
AT15564U1 (en) * 2016-06-21 2018-01-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Rail vehicle and method for operating a rail vehicle
WO2018119326A1 (en) 2016-12-21 2018-06-28 A & A International, Llc Hydraulic clutches, gearboxes, transmissions, and energy recovery systems
JP6819526B2 (en) * 2017-09-21 2021-01-27 トヨタ自動車株式会社 Control device for four-wheel drive vehicles
SE542091C2 (en) * 2017-11-03 2020-02-25 Scania Cv Ab A gearbox and a method for controlling a gearbox to achieve a freewheeling mode
US11448268B2 (en) 2018-08-03 2022-09-20 A & A International, Llc System and method for hydraulic transformer clutches
US11511642B2 (en) 2019-04-05 2022-11-29 Oshkosh Corporation Electric concrete vehicle systems and methods
CN110588631B (en) * 2019-09-20 2021-03-26 安徽合力股份有限公司 Control method of hybrid power system
US11541863B2 (en) 2019-10-11 2023-01-03 Oshkosh Corporation Energy management for hybrid fire fighting vehicle
IT201900019247A1 (en) * 2019-10-18 2021-04-18 Bosch Gmbh Robert PROPULSION SYSTEM FOR VEHICLES
KR20220056893A (en) * 2020-10-28 2022-05-09 현대자동차주식회사 Braking control system and method for vehicle
US11679752B2 (en) 2020-12-21 2023-06-20 Fca Us Llc Method of supervisory control for power management of a parallel two motor hybrid powertrain
AT17665U1 (en) * 2020-12-28 2022-10-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Rail vehicle and method for operating the rail vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993780A (en) * 1988-10-24 1991-02-19 Isuzu Motors Limited Regenerative braking system for car
US5088041A (en) * 1988-10-27 1992-02-11 Isuzu Motors Limited Regenerative braking system for car

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350220A (en) * 1978-10-05 1982-09-21 Advanced Energy Systems Inc. Automotive drive system
US4372414A (en) * 1980-09-04 1983-02-08 Advanced Energy Systems, Inc. Fuel-efficient energy storage automotive drive system
JPS59204402A (en) * 1983-05-06 1984-11-19 Nissan Motor Co Ltd Hybrid automobile
JPS62110535A (en) * 1985-11-06 1987-05-21 Toyota Motor Corp Controller for vehicle driving system
JPH0620835B2 (en) * 1988-10-27 1994-03-23 いすゞ自動車株式会社 Vehicle brake energy regeneration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993780A (en) * 1988-10-24 1991-02-19 Isuzu Motors Limited Regenerative braking system for car
US5088041A (en) * 1988-10-27 1992-02-11 Isuzu Motors Limited Regenerative braking system for car

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152619A2 (en) * 2010-06-03 2011-12-08 Bang Jung-Min Mild hybrid system
WO2011152619A3 (en) * 2010-06-03 2012-04-19 Bang Jung-Min Mild hybrid system
KR20180039195A (en) * 2016-10-07 2018-04-18 현대자동차주식회사 Integrated control method and system of motor for electric vehicle
KR101905981B1 (en) 2016-10-07 2018-10-10 현대자동차주식회사 Integrated control method and system of motor for electric vehicle
US10343689B2 (en) 2016-10-07 2019-07-09 Hyundai Motor Company Integrated control method and system of motor for electric vehicle

Also Published As

Publication number Publication date
DE69520431D1 (en) 2001-04-26
AU681797B2 (en) 1997-09-04
WO1995033629A1 (en) 1995-12-14
US5495912A (en) 1996-03-05
EP0762957A4 (en) 1999-04-28
JPH10504363A (en) 1998-04-28
EP0762957B2 (en) 2008-06-18
DE69520431T2 (en) 2001-10-18
EP0762957B1 (en) 2001-03-21
KR970703248A (en) 1997-07-03
AU2662295A (en) 1996-01-04
CN1149856A (en) 1997-05-14
DE69520431T3 (en) 2009-01-22
MX9605867A (en) 1998-06-30
JP3525932B2 (en) 2004-05-10
EP0762957A1 (en) 1997-03-19
CN1073516C (en) 2001-10-24

Similar Documents

Publication Publication Date Title
KR100361041B1 (en) Hybrid power train vehicle and its control method
KR100481199B1 (en) Drive train and operation method of hybrid vehicle
US8381851B2 (en) Methods of operating a series hybrid vehicle
US6834737B2 (en) Hybrid vehicle and energy storage system and method
US7201095B2 (en) Vehicle system to recapture kinetic energy
US7311163B2 (en) Regeneration and brake management system
US5384521A (en) Power capacitor powertrain
WO1997013650A9 (en) Continuously smooth transmission
US20100287922A1 (en) Hybrid hydraulic drive system with accumulator as the frame of vehicle
EP2362839A1 (en) Hybrid hydraulic drive system with accumulator as chassis of vehicle
JP2016175495A (en) Hybrid vehicle and control method therefor
JP2017030598A (en) Hybrid vehicle and its control method
CA2191447C (en) Hybrid powertrain vehicle
MXPA96005867A (en) Vehiculo de tren de potencia hibrido
US20140200754A1 (en) Methods of Operating a Series Hybrid Vehicle
JP2016175499A (en) Hybrid vehicle and control method therefor
JPH07233871A (en) Hydraulic driving system for vehicle
MXPA98002625A (en) Transmission continually your

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121030

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee