KR100353175B1 - method for heating food/drink - Google Patents

method for heating food/drink Download PDF

Info

Publication number
KR100353175B1
KR100353175B1 KR1020000031877A KR20000031877A KR100353175B1 KR 100353175 B1 KR100353175 B1 KR 100353175B1 KR 1020000031877 A KR1020000031877 A KR 1020000031877A KR 20000031877 A KR20000031877 A KR 20000031877A KR 100353175 B1 KR100353175 B1 KR 100353175B1
Authority
KR
South Korea
Prior art keywords
food
reaction
quicklime
temperature
beverage
Prior art date
Application number
KR1020000031877A
Other languages
Korean (ko)
Other versions
KR20000058524A (en
Inventor
김인걸
Original Assignee
김인걸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김인걸 filed Critical 김인걸
Priority to KR1020000031877A priority Critical patent/KR100353175B1/en
Publication of KR20000058524A publication Critical patent/KR20000058524A/en
Priority to JP2001154587A priority patent/JP2002017273A/en
Application granted granted Critical
Publication of KR100353175B1 publication Critical patent/KR100353175B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/24Warming devices
    • A47J36/28Warming devices generating the heat by exothermic reactions, e.g. heat released by the contact of unslaked lime with water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cookers (AREA)

Abstract

본 발명은 적은 량의 생석회와 적어도 인 또는 인산화합물을 수화 발열반응에 의해 짧은 시간내에 높은 발열온도를 얻어서 음식료를 가열하거나, 또는 적은 량의 생석회와 과산화물을 산화-환원반응에 의해 짧은 시간내에 높은 발열온도를 얻어서 음식료를 가열하거나, 또는 적은 량의 생석회와 인산화합물(인을 포함한다)과 과산화물을 혼합한 혼합액을 혼합반응에 의해 짧은 시간내에 높은 발열온도를 얻어서 음식료를 가열한다.The present invention obtains a high exothermic temperature in a short time by hydrating exothermic reaction of a small amount of quicklime and at least a phosphorus or phosphate compound to heat the food or drink, or a small amount of quicklime and peroxide by a redox reaction in a short time. The food and beverages are heated by obtaining an exothermic temperature, or the food and beverages are heated by obtaining a high exothermic temperature in a short time by a mixed reaction of a mixture of a small amount of quicklime, a phosphate compound (including phosphorus) and a peroxide.

따라서, 본 발명은 짧은 시간내에 발열에 따른 고온의 온도와 상대적인 압력에 의해 음식료를 맛있게 가열할 수 있고, 저렴한 비용으로 인스턴트 음식료를 질감의 변화없이 맛있게 가열할 수 있으며, 또한 발열에 따라 환경 친화적인 물질인 무공해의 반응산물이 생성되어 환경오염을 일으키지 않을 뿐만 아니라, 용이하게 음식료를 가열할 수 있다.Therefore, the present invention can deliciously heat the food and beverage by the high temperature and relative pressure of the heat generated within a short time, and can be deliciously heated instant food beverage without changing the texture at low cost, and also environmentally friendly according to the heat generation Pollutant-free reaction products are produced, which do not cause environmental pollution, and the food and beverage can be easily heated.

Description

음식료 가열방법.{method for heating food/drink}{Method for heating food / drink}

생석회에 강산(황산, 염산, 질산)을 접촉시키면 단순히 물을 첨가할 때보다 더 높은 열이 발생된다는 사실은 이미 통념상 알려져 왔다. 그 중에서 염산이나 염산화합물을생석회에 주입하여 발열을 얻은 사례는 많이 보고되어 왔다.It has already been known that contacting quicklime with strong acids (sulfuric acid, hydrochloric acid, nitric acid) generates higher heat than simply adding water. Among them, many cases have been reported in which exothermic hydrochloric acid or hydrochloric acid is injected into quicklime .

한국 특허공보 공고번호 제92-210호에는 생석회와 10∼20% 염화칼슘에 20∼30% 염화마그네슘(MgCl2)에 용융된 혼합용액을 사용해서 열을 발열시키고 있고, 일본국 공개특허공보 소62-9151호, 동 공개특허공보 소61-217650호 및 동 공개특허공보 소61-217649호에는 생석회나 염화칼슘 약 42g이상과 수용성 염수용액에 소량의 부동액을 첨가한 12g이상을 사용하여 180㎖ 음료를 50℃이상 발열시킨 것에 대해 개시되어 있고, 미국특허 제 4,748,035호에는 2가지 유형의 생석회와 물을 사용하여 발열시켜서 125g의 스프를 가열하여 12분 후, 58.5℃∼70℃의 최고온도를 얻은 것에 대하여 개시되어 있다.Korean Patent Publication No. 92-210 uses a mixed solution of quicklime and 10-20% calcium chloride dissolved in 20-30% magnesium chloride (MgCl 2 ) to generate heat, and Japanese Patent Laid-Open No. 62 -9151, Japanese Patent Application Laid-Open No. 61-217650, and Japanese Patent Laid-Open No. 61-217649 use 180 ml of beverage using at least 42 g of quicklime or calcium chloride and at least 12 g of a small amount of antifreeze added to an aqueous saline solution. It is disclosed that it is heated to 50 ℃ or more, US Patent No. 4,748,035 is a heat generated by using two types of quicklime and water to heat the 125g soup 12 minutes, after obtaining a maximum temperature of 58.5 ℃ to 70 ℃ Is disclosed.

본 발명보다 많은 양의 생석회 200∼400g에 170∼250 ㎖의 물이나 염산 또는 염산화합물을 반응시켜서 가열할 음식료를 가상(假想)한 290∼310 ㎖ 물을 반응시켜서 반응시작 약 7분 경과하여 최고 89℃까지 가열하였다. 이는 본 발명과 같이 적은 양에 해당되는 생석회 30∼400g에 용액 40∼250㎖로 반응시키면 75℃∼80℃로 가열시키는 발열량을 얻을 수 있다. 발열반응 후 반응산물은 염소이온이 함유된 취급이 위험한 환경 유해물질이 생성된다. 이 유해물질은 수용액의 용출을 나타내는데 알루미늄박(箔) 용기를 실험적으로 반복 사용하면 용기의 밑바닥 여러 곳을 미세하게 천공시켰다. 그리고 발열온도의 최고점이 낮고 그 지속시간이 짧아 음식료를 충분히 가열할 수 없어 맛에 대한 소비자의 욕구를 만족시킬 수 없다는 문제점이 있었다.200 to 400 g of quicklime than the present invention reacts with 170 to 250 ml of water or hydrochloric acid or hydrochloric acid to react with 290 to 310 ml of water, which is the food and beverage to be heated. Heated to 89 ° C. It is possible to obtain a calorific value that is heated to 75 ° C. to 80 ° C. by reacting 30 to 400 g of quicklime with a solution of 40 to 250 ml. After exothermic reaction, the reaction product generates environmentally hazardous substances that are dangerous to handle containing chlorine ions. This harmful substance indicates the elution of the aqueous solution. When the aluminum foil container was repeatedly used experimentally, the bottom part of the container was minutely drilled. In addition, since the peak of the exothermic temperature was low and its duration was short, the food and beverage could not be sufficiently heated to satisfy the consumer's desire for taste.

CaO + 2HCl →CaCl2+ H2O + Q calCaO + 2HCl → CaCl 2 + H 2 O + Q cal

이 가열방법은 외부의 온도변화에 영향을 받아 발열은 완만히 상승되는데, 뒤늦은 수증기 방출로 인한 낮은 최고온도와 그 지속시간이 짧아서 수증기가 방출된 전체 시간에 따라 음식료를 가열할 만한 발열온도와 가열시간이 부족하여 음식료를 일정시간내에 맛있게 조리할 수 없다는 문제점이 있었다.다시 말하면, Amonton의 법칙에 따라 용기내부에서 가열할 음식료예를 들면, 290∼310㎖ 용량의 물을 최고 75℃∼80℃ 정도(수증기압은 80℃ = 355.1 Torr, 90℃ = 525.76 Torr)까지 올린 발열반응으로 비교적 낮은 압력과 낮은 반응 발열량에 의해 음식료를 가열시키므로, 상대적으로 압력이 낮아서 음식료를 일정시간내에 맛있게 조리할 수 없다는 문제점이 있었다.This heating method is affected by the external temperature change, and the heat generation rises slowly.The low maximum temperature due to the late steam release and its duration are short, so that the exothermic temperature and heating time to heat the food and beverage according to the whole time the steam is released. There is a problem in that the food and beverage can not be cooked deliciously within a certain time. In other words, according to Amonton's law, the food and beverage to be heated inside the container, for example, water of a capacity of 290 to 310 ml up to about 75 to 80 ℃ (The steam pressure is 80 ℃ = 355.1 Torr, 90 ℃ = 525.76 Torr) Exothermic reaction heats food and beverage by relatively low pressure and low reaction calorific value, so the food is not cooked in a certain time due to the relatively low pressure. There was this.

본 발명은 상기 여러 가지 문제점을 감안해서 이루어진 것으로서, 본 발명의 목적은 일정 시간내에 발열에 따른 고온의 온도와 상대적인 압력에 의해 음식료를 맛있게 가열할 수 있는 음식료 가열방법을 제공하는데 있다.본 발명의 다른 목적은 저렴한 비용으로 인스턴트 음식료를 맛있게 가열할 수 있는 음식료 가열방법을 제공하는데 있다.본 발명의 또 목적은 발열에 따라 무공해의 반응산물이 생성되는 음식료를 맛있게 가열할 수 있는 음식료 가열방법을 제공하는데 있다.본 발명의 또 목적은 용이하게 음식료를 가열할 수 있는 음식료 가열방법을 제공하는데 있다.상기 목적을 달성하기 위하여 본 발명은 생석회와 적어도 인 또는 인산화합물을 수화 발열반응시켜서 얻어지는 열에 의해 음식료를 가열하는 것을 특징으로 한다.상기 목적을 달성하기 위하여 본 발명은 생석회와 적어도 과산화물을 산화-환원 발열반응시켜서 얻어지는 열에 의해 음식료를 가열하는 것을 특징으로 한다.또한, 본 발명은 생석회와 적어도 인 또는 인산화합물과 과산화물로 구성되는 혼합용액을 발열반응시켜서 얻어지는 열에 의해 음식료를 가열하는 것을 특징으로 한다.따라서, 본 발명의 음식료 가열방법은 뜨거운 상태에서 섭취할 수 있는 액상, 반죽상, 고형상(固狀)의 음식료, 예를 들면 국수류ㆍ라면류ㆍ숙면류ㆍ피자ㆍ햄버거 등의 인스턴스식품, 건조식품, 훈연식품, 조리된 야채나 고기 덩어리와 혼합이 가능한 조리된 반죽형 음식, 떡볶이, 가공밥, 짜장ㆍ카레 등을 소스로 사용하는 음식, 1차 조리가 끝나고 레토르트 파우치에 포장될 수 있는 레토르트식품, 통조림ㆍ병조림되는 보존성 식품, 콩가공 식품, 각종 죽ㆍ주류ㆍ우유ㆍ커피ㆍ차ㆍ건강 및 약용음료 등을 포함한 다양한 액상식품, 그리고 미래에 개발될 가열해서 먹을 수 있는 음식료 등을 불꽃없이 안전하게 가열하여 맛있게 조리할 수 있다.레토르트식품은 카레ㆍ스튜(stew)ㆍ미트소스ㆍ햄버거ㆍ미트볼ㆍ밥ㆍ소세지ㆍ캐서롤 등의 동양ㆍ서양식 요리의 기본재료와 수프ㆍ중국음식의 조미료ㆍ쌀밥 등 동양ㆍ서양식 요리로 분류된다. 상온에서 장기보존이 가능한 진공포장 식품을 이용하여 바쁜 현대인의 간식이나 편의식, 등산ㆍ운동ㆍ공연관람 등 문화ㆍ레져생활, 단체모임, 조리시설이 없는 장소, 수용시설, 장ㆍ단기 해외 또는 지방출장, 각종 재난과 재해의 구급식량, 예비군 훈련 등 특수모임, 특히 군전투식량 등에 각각 사용될 수 있다. 그리고 산소를 필요로 하지 않는 연료로 고산지대ㆍ오지ㆍ극한지역ㆍ습한 정글 등에서도 온수 및 취사문제를 해결하는데 그 진가를 한층 더 발휘할 수 있다.또한, 본 발명은 최고온도와 발열연료의 양을 조절하여 물리치료용 도구와 내수면 양식장의 수온조절에 사용할 수 있고, 발열반응시에 일어나는 강력한 비산(飛散)을 이용하여 해충구제 및 살충작업 보조체 등의 용도에도 활용할 수 있다.The present invention has been made in view of the above various problems, and an object of the present invention is to provide a food and beverage heating method capable of deliciously heating food and beverage by high temperature and relative pressure according to heat generation within a predetermined time. Another object of the present invention is to provide a food beverage heating method capable of deliciously heating instant food beverage at a low cost. Another object of the present invention is to provide a food beverage heating method capable of deliciously heating food beverages in which pollution-free reaction products are generated by heat generation. Another object of the present invention is to provide a food and beverage heating method capable of easily heating food and beverage. To achieve the above object, the present invention provides a food and beverage by heat obtained by hydrating exothermic reaction of quicklime and at least phosphorus or phosphate compounds. It characterized in that for heating. To achieve the above object. The present invention is characterized in that the food and beverage is heated by the heat obtained by the oxidation-reduction exothermic reaction of quicklime and at least peroxides. The present invention is also carried out by exothermic reaction of quicklime with a mixed solution composed of at least phosphorus or phosphoric acid compounds and peroxides. The food and beverage heating method of the present invention is characterized in that the food and beverage heating method of the present invention is liquid, dough-like and solid food beverages which can be ingested in a hot state, such as noodles, ramens, and noodles. Instant foods such as lute, pizza and hamburger, dried foods, smoked foods, cooked dough foods that can be mixed with cooked vegetables or meat chunks, foods using tteokbokki, processed rice, jjajang, curry, etc. Retort foods that can be packaged in retort pouches after cooking, preserved foods, canned and canned foods, Various liquid foods including porridge, liquor, milk, coffee, tea, health and medicinal beverages, and heated and edible foods to be developed in the future can be cooked deliciously by heating safely without flame. It is classified into basic ingredients of oriental and western cuisine such as stew, meat sauce, hamburger, meatball, rice, sausage and casserole, and oriental and western cuisine such as seasoning and rice of soup, Chinese food. By using vacuum-packed foods that can be stored for a long time at room temperature, it is a snack or convenience for busy modern people, culture, leisure life such as mountain climbing, exercise, performance, etc. It can be used for special meetings such as business trips, emergency food for various disasters and disasters, and reserve army training, especially for military combat food. In addition, the fuel that does not require oxygen can be further used to solve hot water and cooking problems in high mountains, remote areas, extreme regions, and wet jungles. It can be used to control water temperature in physiotherapy tools and aquaculture farms, and can also be used for pest control and pesticide aids by using strong scattering that occurs during exothermic reactions.

도 1은 본 발명의 실시예에 적용되는 용액별 온도 상승곡선을 나타낸 그래프이다.1 is a graph showing a temperature rise curve for each solution applied to an embodiment of the present invention.

이하, 본 발명의 실시예에 대하여 첨부도면을 참조하면서 설명한다.본 발명은 종래 기술이 갖는 많은 양의 발열물질을 사용해도 발열온도가 낮고 환경 유해한 최종산물이 형성되는 결점을 해소하기 위하여 100∼200 g 생석회에 3∼60wt%의 인 또는 인산화합물을 수화반응시키거나, 100∼200 g 생석회에 2∼35wt% 과산화물을 산화-환원반응시키거나, 혹은 100∼200 g 생석회에 3∼60wt%의 인 또는 인산화합물과 2∼35wt% 과산화물을 혼합시킨 혼합용액 40∼250㎖을 각각 반응시켜서 3분∼6분 동안에 발열시킴과 동시에, 이들 반응에 의해 환경 친화적인 최종산물이 생성되었다.그리고, 최고온도는 73℃∼100℃까지 발열시킬 수 있었고, 이들 발열반응후에 환경 친화적인 반응산물에서 기화되는 충분한 수증기는 외부의 온도변화를 대체로 받지 않고 밀폐용기 내로 분출되어 내부압력(수증기압은 100℃ = 760.00 Torr임)을 급격히 높였다. Amonton의 법칙에서 수증기압은 80℃에서 보다 90℃∼100℃에서 갑자기 높아지므로 상대적인 고온고압을 나타낸다.이와 같은 수증기의 방출시간 연장은 최종 반응산물의 발열량으로 외부온도의 영향을 받아 완만히 하강되면서 그 발열 지속시간이 연장되었다. 이때 음식료를 가상한 용기내의 물 290∼310 ㎖에서 10∼50 ㎖ 정도가 반응동안에 손실되었고, 밀폐용기의 윗면을 뜨겁게 부풀렸다. 이는 일반 가정에서 압력밥솥으로 밥을 지을 때 일어나는 압력과 같은 유사한 현상으로, 짧은 시간 내에 뜨겁게 가열된 음식료는 처음 조리했을 때처럼 음식의 질감이 변화되지 않은 본래의 맛과 유사하면서 따뜻하게 먹을 수 있었다.본 발명의 음식료 가열방법에 사용되는 발열체는 고상의 생석회 분말과 액상의 용액을 반응시킨다. 여기에서 액상의 용액이라 함은 인 또는 인산화합물, 과산화물 그리고 인산화합물(인을 포함한다)과 과산화물을 혼합시킨 혼합용액을 말한다. 이를 구체적으로 설명하면 다음과 같다.Embodiments of the present invention will be described below with reference to the accompanying drawings. The present invention is directed to solving the drawback of low temperature of heating and formation of environmentally harmful final products even when a large amount of heat generating material used in the prior art is formed. Hydrating 3 to 60 wt% of phosphorus or phosphate compounds in 200 g quicklime, or redoxing 2 to 35 wt% peroxide in 100 to 200 g quicklime, or 3 to 60 wt% of 100 to 200 g quicklime 40 to 250 ml of a mixed solution of phosphorus or phosphoric acid compound mixed with 2 to 35 wt% peroxide were reacted to generate heat for 3 to 6 minutes, and the reaction produced an environmentally friendly final product. The temperature could be exothermic from 73 ° C to 100 ° C, and after these exothermic reactions, sufficient water vapor vaporized from the environmentally friendly reaction products was ejected into the sealed container without being largely affected by external temperature changes. The internal pressure (water vapor pressure is 100 ° C = 760.00 Torr) was sharply increased. In Amonton's law, water vapor pressure suddenly rises from 90 ° C to 100 ° C rather than at 80 ° C, indicating a relatively high temperature and high pressure.The extension of the release time of this vapor is a calorific value of the final reaction product, which is slowly lowered under the influence of external temperature. The duration has been extended. At this time, about 10 to 50 ml was lost during the reaction from 290 to 310 ml of water in the food container, and the top surface of the sealed container was inflated hot. This is a similar phenomenon, such as the pressure generated when cooking with a pressure cooker in a home, where hot foods heated in a short time can be eaten warmly, similar to the original taste without changing the texture of the food as when cooked for the first time. The heating element used in the food and beverage heating method of the present invention reacts the solid lime powder with a liquid solution. Here, the liquid solution refers to a mixed solution in which phosphorus or phosphate compounds, peroxides and phosphate compounds (including phosphorus) and peroxides are mixed. This will be described in detail as follows.

산화칼슘(CaO)이 주성분인 생석회는 과량(過量) 및 고운 입자로부터 거친 입자까지 사용할 수 있으나, 본 발명에서는 반응 최적공간을 감안해서 입자사이즈가 2∼20mm인 생석회를 30∼400g 사용하였다. 생석회를 부주의하게 보관하면 공기중의 수분과 탄산가스를 흡수하여 재료의 변질에 의해 반응열량의 일부 손실이 본 발명에서 관찰되었다.그리고 고상(固狀)의 발열물질을 흡수지로 포장하면 조작시간 연장과 분말에 액상의 용액의 느린 주입으로 최고온도가 3∼6℃ 정도 낮지만 지속시간은 더 연장되었다.The quicklime whose main component is calcium oxide (CaO) can be used from excessive and fine particles to coarse particles. However, in the present invention, 30 to 400 g of quicklime having a particle size of 2 to 20 mm was used in consideration of the optimum space for reaction. Inadvertent storage of quicklime absorbs moisture and carbonic acid gas in the air, and some loss of reaction heat is observed in the present invention due to material deterioration. Slow infusion of liquid solutions into the powders and powders resulted in longer peak temperatures of 3-6 ° C but longer duration.

본 발명은 음식료를 가상한 290∼310㎖ 물을 가열할 목적으로 입자사이즈가 2∼20mm인 생석회를 30∼400g에 적어도 인 또는 인산화합물 수용액 및 수용성염 40∼250㎖과 수화반응시키거나 또는 과산화물 수용액 및 과산화물의 수용성염 40∼250㎖에 산화-환원반응시키거나 또는 이들을 혼합한 혼합용액(인산화물과 과산화물의 혼합용액) 40∼250㎖를 각각 사용하여 낮은 농도에서 높은 농도까지 발열량을 각각 관찰하였다.하한농도의 실험에서 3%이하의 인 또는 인산화합물 용액과 2%이하의 과산화물 용액의 미세한 농도는 밀폐용기 내부에 담겨진 가열할 음식료를 가상한 290∼310㎖의 물을 대체로 75 내지 80℃까지 상승시켰다.이에 반하여, 높은 농도, 예를 들면 25%∼48%의 인 또는 인산화합물, 17%∼35%의 과산화물 또는 25%∼48%의 인 또는 인산화합물과 17%∼35%의 과산화물을 혼합한 혼합용액은 90℃ 이상의 높은 발열량을 얻었다. 인 또는 인산화합물 용액의 상한(上限) 농도, 즉 55%이상의 높은 농도에서는 충분한 온도로 상승되었으나, 만족할 만한 온도 상승이 이루어지지 않았다. 실제반응에서 반응에 필요한 물 부족으로 포장용기가 뚫어지는 문제가 일어났으며, 인 또는 인산화합물 용액은 흡수지에 흡수가 덜 되었고 소량의 잔류용액이 용기바닥에서 관찰되었다. 그리고 흡수지는 까맣게 그을리고 냄새를 내면서 미흡하게 반응된 생석회 일부와 덩어리를 형성하였다.반응결과, 인 또는 인산화합물 용액내 평균 함수량은 5∼77%가 필요하며, 반응속도와 발열온도에 영향을 미쳤다.The present invention hydrates or reacts with 30 to 400 g of quicklime having a particle size of 2 to 20 mm and at least 40 to 250 ml of an aqueous solution of phosphorus or phosphate compounds and a water-soluble salt for the purpose of heating 290 to 310 ml of simulated food or water. Observe the calorific value from low to high concentrations by using 40 to 250 ml of an aqueous solution and 40 to 250 ml of a water-soluble salt of a peroxide or a mixed solution (mixed solution of phosphate and peroxide) mixed with each other. In the experiment of the lower limit, the fine concentration of the phosphorus or phosphate solution of 3% or less and the peroxide solution of 2% or less is generally 75 to 80 ℃ with 290-310 ml of water simulating the food and beverage to be contained in the sealed container. In contrast, high concentrations, for example, 25% to 48% phosphorus or phosphate compounds, 17% to 35% peroxides, or 25% to 48% phosphorus or phosphate compounds and 17% to 35% excess A mixed solution mixed cargo is to obtain a high heating value at least 90 ℃. The upper limit concentration of the phosphorus or phosphate solution, that is, a high concentration of 55% or more, was raised to a sufficient temperature, but a satisfactory temperature increase was not achieved. In the actual reaction, there was a problem of puncture of the packaging container due to lack of water required for the reaction. The phosphorus or phosphate solution was less absorbed into the absorbent paper and a small amount of residual solution was observed at the bottom of the container. The blotter formed agglomerates and lumps of unreacted quicklime with a charred and odorous reaction. The reaction resulted in an average moisture content of 5 to 77% in the solution of phosphorus or phosphate, affecting the reaction rate and exothermic temperature.

용액의 농도를 미세농도로부터 포화농도까지 조정하면, 3%∼60%의 인 또는 인산화합물의 농도, 2%∼35%의 과산화물 농도, 또는 이들 두 종류의 물질 중에서 적어도 하나 이상의 분말, 그리고 이들 두 종류의 혼합용액은 5㎖이상의 용량과 5g이상의 분말량으로도 73℃∼100℃까지 발열시킬 수 있다.다만, 농도조정 없이 발열원료의 양을 추가하면 최고온도가 약간 상승되고 지속시간이 연장되었다. 발열물질의 사용량은 가열할 음식료의 비열이나 수화반응(水和反應) 또는 산화-환원반응 양을 계산한 후에 반응 양에 따라 산출하였다.반대로, 음식료의 양이 적거나 90℃이하의 낮은 온도가 요구될 때는 필요한 열량, 가열할 음식료의 무게에 따라 발열원가를 줄이기 위하여 외부 밀폐용기를 특수제작해서 생석회의 양 및 인 또는 인산화합물이나 과산화물, 또는 이들 두 종류의 혼합물질의 농도와 양을 각각 조절하여 사용할 수 있다. 그리고 인 또는 인산화합물 또는 과산화물, 그 외에 알루미나 또는 무수 염화 알루미늄 분말 중 적어도 1종 또는 2종 이상을 각각 생석회에 첨가하고 용액을 물로 사용하여 수용성 가열방법을 실행하였다.When the concentration of the solution is adjusted from the fine concentration to the saturation concentration, the concentration of phosphorus or phosphate compound of 3% to 60%, the peroxide concentration of 2% to 35%, or at least one powder of these two kinds of substances, and the two Different types of mixed solution can generate heat from 73 ℃ to 100 ℃ with a volume of more than 5ml and powder of more than 5g. However, adding the amount of exothermic material without adjusting the concentration raises the maximum temperature slightly and extends the duration. . The amount of the exothermic material was calculated according to the amount of the reaction after calculating the specific heat, hydration reaction or oxidation-reduction reaction amount of the food to be heated. According to the required amount of heat and the weight of the food to be heated, specially manufactured external airtight containers are used to control the amount of quicklime and the concentration and amount of phosphorus or phosphate compounds, peroxides, or mixtures of these two types, respectively. Can be used. At least one or two or more of phosphorus or phosphate compounds or peroxides, and other alumina or anhydrous aluminum chloride powders were added to the quicklime, respectively, and a water-soluble heating method was performed using the solution as water.

발열시의 일반적인 화학반응을 살펴보면, 화학적으로 칼슘 양이온과 발열용액의 음이온과의 최적 반응조건은 생석회 분말과 액상 용액의 조성, 생석회 분말의 입자의 크기, 생석회 분말의 소성온도 등의 제조과정 뿐만 아니라, 생석회 분말과 액상 용액의 비, 액상 용액의 농도, 반응조건, 주위 환경의 온도와 반응시간, 촉매반응에 사용되는 밀폐용기의 건조상태 등 취급방법에 따라 현저하게 변화된다. 특히, 주변온도와 생석회 분말에 액상 용액이 주입되는 속도가 취급상 요인으로 영향을 받는다. 예를 들면 생석회 분말의 입자가 크면 용액과의 접촉면적 감소로 인하여 반응이 지연되고, 액상 용액의 수분함량이 적어지는 고농도의 용액은 응결시간이 연장된다. 발열반응은 생석회 분말-액상 용액의 혼합비를 증가시키면 반응시간을 줄일 수 있고, 액상 용액에 생석회 분말의 첨가속도를 빠르게 하면 발열반응 시간을 줄일 수 있으며, 또한 외부온도가 높을수록 발열반응이 빠르게 진행된다.Looking at the general chemical reaction during exothermation, chemically, the optimum reaction condition of calcium cation and anion of exothermic solution is not only manufacturing process such as composition of quicklime powder and liquid solution, particle size of quicklime powder, firing temperature of quicklime powder, etc. , The ratio of quicklime powder and liquid solution, the concentration of the liquid solution, the reaction conditions, the temperature and reaction time of the surrounding environment, the dry state of the closed container used for the catalytic reaction, and the like varies considerably. In particular, the ambient temperature and the rate at which the liquid solution is injected into the quicklime powder are affected by handling factors. For example, when the particles of quicklime powder are large, the reaction is delayed due to the decrease of the contact area with the solution, and the concentration of the solution in which the water content of the liquid solution is low increases the setting time. The exothermic reaction can reduce the reaction time by increasing the mixing ratio of the quicklime powder-liquid solution, and the faster the addition rate of the quicklime powder to the liquid solution can reduce the exothermic reaction time, and the higher the external temperature, the faster the exothermic reaction. do.

칼슘과 인의 몰비는 가능한 0.3∼4.2 범위로 적정(適定)하였고, 칼슘과 과산화물 산의 몰비는 0.2∼4.1로 적정(適定)하였다. 용액 중에 잔존하는 미반응 인산 음이온의 함량은 몰비가 낮으면 많이 남았고, 몰비가 높으면 대체로 검출되지 않는다. 가능하면 용액에 비해 분말의 양을 많이 첨가하면 더 높은 pH를 얻을 수 있었다. 용액의 온도가 높을수록 인산 음이온의 함량은 증가되었다. 가열된 음식의 온도는 수화반응이 계속되고 있어 가열된 음식을 식음하는 동안에 높게 유지되는데 용해 재결정되어 용액 중으로 방출되면서 용액 중의 pH에 영향을 준다.The molar ratio of calcium and phosphorus was titrated in the range of 0.3-4.2 as possible, and the molar ratio of calcium and peroxide acid was titrated at 0.2-4.1. The content of unreacted phosphate anion remaining in the solution remains large when the molar ratio is low, and is largely not detected when the molar ratio is high. If possible, higher amounts of powder could be obtained compared to the solution. The higher the temperature of the solution, the higher the content of phosphate anion. The temperature of the heated food is kept high during the hydration reaction, so that the heated food is cooled down and dissolved and recrystallized and released into the solution, affecting the pH in the solution.

생석회는 인 또는 인산화합물과의 수화반응이나, 생석회와 과산화물과의 산화-환원반응, 혹은 생석회와 인산화물(인을 포함한다)과 과산화물의 혼합용액을 혼합반응에 의해서 새로운 고체가 매우 신속히 형성되면서 열을 발산한다.첫째로, 생석회와 인 또는 인산화합물의 수화반응에서 처음에는 액상의 용액이 생석회 분말입자의 표면층을 녹이면서, 온도와 농도에 따라 반응하여 난용성(難容性)의 반응산물[Ca(MrPxOy)z](식에서 M은 금속이온, rxyz은 상수)를 형성하였다. 반응산물내의 인 또는 인산화합물 성분에 의해 액상의 용액의 낮은 농도에서 높은 농도까지 반응산물의 기질(基質) 속에는 미반응된 산화칼슘 입자가 잔류하는데 근본적으로 불완전하게 용해된 산화칼슘 입자를 둘러싼 반응산물의 비정질상 망목(網目)구조로 구성된다. 반응산물의 무게는 반응전보다 감소되었고 반응조건에 따라 각 반응단계에서 생성된 산성염이 잔존할 수 있다.발열반응시에 생석회 분말-액상 용액의 비율이 낮거나, 또 더 낮은 pH의 혼합물에서는 발열온도가 낮으므로 가능한 한 많은 양의 분말을 첨가해야 한다.염기성 산화물인 산화칼슘의 수화반응(水和反應)은 분말 표면의 알칼리 성질에 의존하면서 동역학적(動力學的)으로 조절된다. CaO-mP2O5·nH2O계의 평형반응(平衡反應)에서는 반응산물의 결정생성이 인정되고 주된 반응과정은 다음 식과 같다.Quicklime is formed by hydration of phosphorus or phosphate compounds, oxidation-reduction of quicklime with peroxides, or by mixing reaction mixtures of quicklime with phosphates (including phosphorus) and peroxides. First, in the hydration reaction of quicklime with phosphorus or phosphate compounds, a liquid solution initially melts the surface layer of the quicklime powder particles and reacts according to temperature and concentration, resulting in poorly soluble reaction products. [Ca (M r P x O y ) z ] in which M is a metal ion and rxyz is a constant. Unreacted calcium oxide particles remain in the substrate of the reaction product from the low to high concentrations of the liquid solution by the phosphorus or phosphate compounds in the reaction product, and the reaction product surrounding the incompletely dissolved calcium oxide particles. It is composed of an amorphous network. The weight of the reaction product is lower than before the reaction, and acid salts generated in each reaction stage may remain, depending on the reaction conditions. Exothermic temperature in the mixture of low-lime quick-powder-liquid solution or lower pH during exothermic reaction The amount of powder should be added as much as possible. The hydration of calcium oxide, a basic oxide, is dynamically controlled depending on the alkali properties of the surface of the powder. In the equilibrium reaction of CaO-mP 2 O 5 · nH 2 O system, crystal formation of the reaction product is recognized and the main reaction process is as follows.

CaO + mP2O5·nH2O →Ca(MrPxOy)z+ qH2O + K cal (식에서 M은 금속이온, m,n,r,x,y,z,q는 상수) CaO + mP 2 O 5 · nH 2 O → Ca (M r P x O y) z + qH 2 O + K cal ( formula M is a metal ion, m, n, r, x , y, z, q is a constant )

둘째로, 과산화물 이온은 모두 강한브뢴스테트염기로서 02 2-와 물과의 반응하는 산화-환원 반응이다. 산화물의 염기성 성질은 물과는 반응하지 않고 산과 반응한다.Second, all of the peroxide ions are redox reactions that react with 0 2 2- and water as strong Bronsted bases . The basic nature of oxides does not react with water, but with acid.

CaO(s) + 2H+(aq) →Ca2+(aq) + H2O(ℓ)CaO (s) + 2H + (aq) → Ca 2+ (aq) + H 2 O (ℓ)

생석회에 과산화물을 사용하면 인 또는 인산화합물 용액보다 조기(약 3초 정도)에 반응이 시작되면서 발열반응이 일어났다. 과산화물은 생석회로 주입되는 속도가 빨라서 열이 가해지면 발생기 산소가 빠져나오는 속도가 점점 빨라지게 되어 수증기를 더 힘차게 밀어내어 높은 최고온도까지 도달하였다. 반응산물은 표면이 산화물·질소화물 및 수산화물로 이루어지는 황회색의 피막으로 덮인 염기성 칼슘이 만들어진다.그리고, 반응산물의 무게는 반응전보다 감소되었으며, 반응속도에 영향을 주는 인자들로서는 반응물질의 종류, 온도, 농도(기체는 압력) 및 촉매가 있다.The use of peroxides in quicklime caused an exothermic reaction that started earlier than the phosphorus or phosphate solution (about 3 seconds). The peroxide was injected into the quicklime quickly, and when heat was applied, the rate at which the generator oxygen escaped became faster, pushing the water vapor more intensely to reach a high maximum temperature. The reaction product is made of basic calcium, which is covered with a yellow-gray coating of oxide, nitride, and hydroxide, and the weight of the reaction product is reduced than before, and the factors affecting the reaction rate are the kinds of reactants, Temperature, concentration (gas is pressure) and catalyst.

CaO + aLxOy·bH2O →Ca + cH2O + O2↑+ P cal (식에서 L은 금속이온, a,b,c,x,y는 상수) CaO + aL x O y · bH 2 O → Ca + cH 2 O + O 2 ↑ + P cal ( where L is a metal ion, a, b, c, x , y is a constant)

셋째로, 생석회에 인 또는 인산화합물과 과산화물을 혼합한 혼합용액을 사용하면, 과산화물이 먼저 산화-환원 반응이 일어난다. 이 산화-환원 반응은 주위온도에 따라 영향을 받는 발열반응은 먼저 인 또는 인산화합물에 의한 난용성의 고형산물을 먼저 형성시키는데, 표면이 하얗게 탈색되면서 발열하였다.그리고, 충분하게 혼합용액을 주입하면, 산화-환원 반응에 의해서 형성된 난용성(難容性) 고형산물과 혼합용액성분 중의 과산화물이 계속 반응하여 염기성의 칼슘이 일부 최종산물로 남는다. 특히, 과산화물은 인 또는 인산화합물이 생석회나 칼슘(Ca)·칼륨(K)·마그네슘(Mg) 등 이온이 함유된 물질과 반응하여 생성된인산칼슘계반응산물에서 또 다시 발열반응이 계속 진행되었다.Third, when a mixed solution of phosphorus or phosphoric acid compound and peroxide is used in quicklime, the peroxide first undergoes an oxidation-reduction reaction. The redox reaction, which is influenced by the ambient temperature, first forms a poorly soluble solid product by phosphorus or phosphate compound, which is exothermic as the surface is discolored white. The poorly soluble solid product formed by the oxidation-reduction reaction and the peroxide in the mixed solution component continue to react, leaving basic calcium as part of the final product. In particular, the peroxide continued to exotherm in the calcium phosphate-based reaction product formed by reacting phosphorus or phosphate compounds with ions such as quicklime, calcium (Ca), potassium (K), and magnesium (Mg). .

본 발명에서는 첫째로 인화합물의 최종산물로 만들어지는 인(Pn) 또는 인산화합물(PmOn-)을 사용하였다. 인화합물로는 인의 수소화물·할로겐화물·산화물과 산소산(酸素酸)이 있다. 산화물에는 삼산화인(三酸化燐), 오산화인(五酸化燐), 십산화인(十酸化燐) 등이 있고, 황, 염소, 브롬, 불소, 셀레늄, 요오드가 함유된 화합물이 있다. 오산화인이 수화(水和)되어 생성된 일련의 산 mP2O5·nH2O로 총칭되는 인산은 오르토(ortho)인산·피로(pyro)인산·폴리(poly)인산·메타(meta)인산 등이 있다. 산소산(酸素酸)으로는 아인산(亞燐酸)·인산(燐酸)·하이포(hypo)아인산(亞燐酸)·삼인산(亞燐酸) 오르토(ortho)인산 등이 있다. 인산은 인산, 인산수소 이온, 인산이수소(燐酸二水素) 이온의 약한 이양자산(二陽子酸)과 다양자산(多陽子酸)이며, 액상의 1기압 25℃에서 표준생성열(ΔHo f)은 -1284.07∼-3012.48 kJ/mol이다. 인 또는 인산화합물의 분말상으로는 아인산 등의 무수인, 무수 인산염, 그리고 칼슘·칼륨·암모니아·아연·나트륨·알루미늄·바륨·스트론튬·마그네슘이온 등이 함유된 인산염이 있다. 인 또는 인산화합물에 알루미늄, 마그네슘, 또는 비스무스, 이온물질을 첨가하면 반응속도의 억제와 반응의 완충효과를 얻을 수 있다.In the present invention, first, a phosphorus (Pn) or a phosphoric acid compound (PmOn-) made of the final product of the phosphorus compound was used. Phosphorus compounds include hydrides, halides, oxides and oxygen acids of phosphorus. Oxides include phosphorus trioxide, phosphorus pentoxide, phosphorus pentoxide, and the like, and compounds containing sulfur, chlorine, bromine, fluorine, selenium, and iodine. Phosphoric acid, collectively referred to as a series of acids mP 2 O 5 · nH 2 O produced by hydration of phosphorus pentoxide, is ortho-phosphate, pyro-phosphate, poly-phosphate, meta-phosphate Etc. Oxygen acids include phosphorous acid, phosphoric acid, hypophosphorous acid, triphosphate orthophosphoric acid, and the like. Phosphoric acid is a weak transition and various assets of phosphoric acid, hydrogen phosphate ions, and dihydrogen phosphate ions, and the standard heat of production (ΔH o f ) at 25 ℃ Is -1284.07 to-3012.48 kJ / mol. Phosphorus or phosphate powders include anhydrous phosphorus such as phosphorous acid, anhydrous phosphate, and phosphate containing calcium potassium potassium ammonia zinc sodium aluminum barium strontium magnesium ion. Addition of aluminum, magnesium, bismuth, or ionic materials to the phosphorus or phosphate compounds can reduce the reaction rate and buffer the reaction.

둘째로, 과산화물을 사용하였다. 과산화물은 산화물 중 음성성분으로서 과산화물이온 O2 2-내지 -O-O-를 포함한다. 결합의 길이는 O-O로 약 1.3Å이다. M2 IO2형(MI=Li·Na·K·Rb·Cs 등), MO2형(M=Mg·Ca·Sr·Ba·Zn·Cd·Hg), M2 IO3형, MIO2형, MIO3형이 있다. 또한 천이금속으로 O2 2-를 함유하는 과산화물 용액에 CrO5=CrO(O2)2등도 있다. 분자 내에 O2를 갖는 초과산화물(超過酸化勿)은 과산화수소와 과산화나트륨·과산화수소나트륨 등의 과산화수소 화합물, 과산화요소(過酸化尿素)와 그 화합물, 과붕산나트륨과 그 화합물·과(過)망간산칼륨·과초산·과산화바륨 등을 들 수 있다. 액상의 1기압 25℃에서 표준생성열(ΔHo f)은 과산화수소(過酸化水素)가 -187.6 kJ/mol이고, 과(過)붕산은 -1087.9 kJ/mol(固狀), -1067.8 kJ/mol(液狀)이다. 한편 인산·요산(尿酸) 등은 반대로 분해를 막는데 안정제(安定濟)로 사용된다.Secondly, peroxides were used. Peroxides include peroxide ions O 2 2- to -OO- as negative components in the oxide. The length of the bond is OO, about 1.3 mm 3. M 2 I O 2 type (M I = Li, Na, K, Rb, Cs, etc.), M II O 2 type (M II = Mg, Ca, Sr, Ba, Zn, Cd, Hg), M 2 I O There are 3 types, M I O 2 type and M I O 3 type. CrO 5 = CrO (O 2 ) 2 and the like are also included in a peroxide solution containing O 2 2- as the transition metal. The superoxide having O 2 in the molecule includes hydrogen peroxide compounds such as hydrogen peroxide, sodium peroxide and sodium peroxide, urea peroxide and the compound, sodium perborate and the compound, and manganese permanganate. Potassium, peracetic acid, barium peroxide, etc. are mentioned. The standard heat of production (ΔH o f ) at -1 at 25 ° C in the liquid phase is -187.6 kJ / mol for hydrogen peroxide, -1087.9 kJ / mol for hydrochloric acid, and -1067.8 kJ / mol (Iii). Phosphoric acid and uric acid, on the other hand, are used as stabilizers to prevent degradation.

[실시예]EXAMPLE

이하, 본 발명의 구체적인 실시예를 들어서 상세히 설명한다.Hereinafter, specific examples of the present invention will be described in detail.

팩본체 또는 일체형의 덮개가 있는 상자형·사발형·봉지형·금속캔·종이팩 등의 밀폐포장 내부에서 발생되는 열이나 증기가 밖으로 유출이 거의 차단되는 용기를 준비하였다. 가열할 음식료의 양을 가상한 290∼310㎖ 물을 담을 수 있는 알루미늄박 용기를 기준으로 상단과 하단으로 분리하였다. 흡수성 용지로 포장된 생석회와, 인 또는 인산화합물·과산화물·혹은 이들 인산화합물(인을 포함한다)과 과산화물을 혼합한 혼합용액으로 구성되는 발열용액 중에서 선택된 일종의 용액을 담은 비닐포장을 용기의 하단에 위치시켰다. 생석회와 선택된 일종의 발열용액의 포장 사이에 테이프를 붙여 외부포장 벽에 천설된 구멍을 통해 외부에서 테이프를 당기면 비닐포장이 찢어져 생석회에 발열용액이 주입되도록 설계하였다.밀폐포장내에 들어 있는 알루미늄박 용기의 하부 위치에 생석회 분말과 선택된 액상 발열용액을 배치하고 가열반응을 진행시키기 위해 외부포장 밖의 테이프를 잡아당겼다. 알루미늄박 내의 290∼310㎖ 물에 온도계를 넣고 초기온도, 최고온도, 10분, 12분 후 온도를 각각 측정하였다(도 1 참조). 다음에, 생석회 보관기간에 따라 각각 실시된 예로 3회 측정하여 그 평균값을 얻고 온도차를 산출하여 표1에 나타내었다.A container was prepared in which the heat or steam generated inside the sealed packaging, such as a box body, a box type, a bowl type, an encapsulated type, a metal can, or a paper pack with an integral cover, is almost prevented from leaking out. The amount of food and beverage to be heated was separated into the top and bottom on the basis of the aluminum foil container that can hold 290 ~ 310ml water simulated. At the bottom of the container is a vinyl package containing a kind of solution selected from quicklime packaged with absorbent paper and a heating solution consisting of phosphorus or phosphate compounds, peroxides, or a mixed solution of these phosphate compounds (including phosphorus) and peroxides. Located. A tape is attached between the quicklime and the packaging of the selected type of exothermic solution to pull the tape from the outside through a hole in the outer packaging wall, tearing the plastic packaging and injecting the exothermic solution into the quicklime. The quicklime powder and the selected liquid exothermic solution were placed in the lower position and the tape was pulled out of the outer packaging to proceed with the heating reaction. The thermometer was placed in 290-310 ml of water in an aluminum foil, and the initial temperature, maximum temperature, 10 minutes, and 12 minutes later, respectively, were measured (see FIG. 1). Next, three measurements were taken according to the quicklime storage period to obtain the average value, and the temperature difference was calculated and shown in Table 1.

실시예12개월 이내 보관된 생석회 30∼400g에 40∼250㎖의 물을 주입하여 발열반응을 행하였다. Example 1 Exothermic reaction was performed by injecting 40-250 ml of water into 30-400 g of quicklime stored within 2 months.

가열할 음식료를 가상한 290∼310㎖ 물의 초기온도는 평균 20.57℃, 평균 반응 출발시간은 37.3초, 10분 경과 후 온도는 73℃였고, 반응 온도차(ΔT)는 52.43℃였다. 12분 후 온도는 72℃였고, 반응 온도차(ΔT)는 51.43℃였다. 최고온도는 6분 10초에 73.83℃였고, 반응 온도차(ΔT)는 53.26℃였다.The initial temperature of 290-310 ml water which simulated the food-drinks to heat was 20.57 degreeC on average, the starting time of reaction was 37.3 second, after 10 minutes, the temperature was 73 degreeC, and reaction temperature difference ((DELTA) T) was 52.43 degreeC. After 12 minutes, the temperature was 72 ° C and the reaction temperature difference (ΔT) was 51.43 ° C. The maximum temperature was 73.83 ° C. at 6 minutes and 10 seconds, and the reaction temperature difference (ΔT) was 53.26 ° C.

실시예22개월 이내 보관된 생석회 30∼400g에 25∼48wt% 농도의 인 또는 인산화합물 용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 2 An exothermic reaction was carried out by injecting 40-250 ml of 25-48 wt% phosphorus or phosphate compound solution into 30-400 g of quicklime stored within 2 months.

290∼310㎖ 물의 초기온도는 평균 20.6℃, 평균 반응 출발시간은 6.6초, 10분 경과 후 온도는 90℃이며 반응 온도차(ΔT)는 69.4℃이다. 12분 후 온도는 87.7℃였고, 반응 온도차(ΔT)는 67.1℃였다. 최고온도는 약 3분 6초에 98.3℃였고, 반응 온도차(ΔT)는 77.7℃였다.The initial temperature of 290-310 ml of water was 20.6 ° C on average, the average reaction start time was 6.6 seconds, after 10 minutes the temperature was 90 ° C and the reaction temperature difference (ΔT) was 69.4 ° C. After 12 minutes, the temperature was 87.7 ° C and the reaction temperature difference (ΔT) was 67.1 ° C. The maximum temperature was 98.3 ° C. at about 3 minutes 6 seconds and the reaction temperature difference (ΔT) was 77.7 ° C.

실시예32개월 이내 보관된 생석회 30∼400g에 염산 또는 염산화합물 용액 40∼250㎖을 주입하여 발열반응을 행하였다. Example 3 An exothermic reaction was carried out by injecting 40-250 ml of hydrochloric acid or a hydrochloric acid compound solution into 30-400 g of quicklime stored within 2 months.

가열할 음식료를 가상한 290∼310 ㎖ 물의 초기온도는 평균 20℃, 평균 반응 출발시간은 7초, 10분 경과 후 온도는 75.2℃였고, 반응 온도차(ΔT)는 55.2℃였다. 12분 후 온도는 74.5℃였고, 반응 온도차(ΔT)는 54.5℃였다. 최고온도는 7분 30초에 76.5℃였고, 반응 온도차(ΔT)는 56.5℃였다.The initial temperature of 290-310 ml water which simulated the food-drinks to heat was 20 degreeC on average, the average reaction start time was 7 second after 10 second, and the temperature was 75.2 degreeC, and reaction temperature difference ((DELTA) T) was 55.2 degreeC. After 12 minutes, the temperature was 74.5 ° C and the reaction temperature difference (ΔT) was 54.5 ° C. The maximum temperature was 76.5 ° C. at 7 minutes 30 seconds, and the reaction temperature difference (ΔT) was 56.5 ° C.

실시예42개월 이내 보관된 생석회 30∼400g에 17∼35wt% 농도의 과산화물 용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 4 An exothermic reaction was carried out by injecting 40-250 ml of a peroxide solution at a concentration of 17-35 wt% into 30-400 g of quicklime stored within 2 months.

290∼310 ㎖ 물의 초기온도는 평균 20℃, 평균 반응 출발시간은 3초, 10분 경과 후 온도는 86.5℃였고, 반응 온도차(ΔT)는 66.5℃였다. 12분 후 온도는 83℃였고, 반응 온도차(ΔT)는 63℃였다. 최고온도는 3분 29초에 96℃였고, 반응 온도차(ΔT)는 76℃였다.The initial temperature of 290-310 mL water was 20 degreeC on average, the average reaction start time was 3 second, after 10 minutes, the temperature was 86.5 degreeC, and reaction temperature difference ((DELTA) T) was 66.5 degreeC. After 12 minutes, the temperature was 83 ° C and the reaction temperature difference (ΔT) was 63 ° C. The maximum temperature was 96 ° C. at 3 minutes 29 seconds, and the reaction temperature difference (ΔT) was 76 ° C.

실시예517개월 정도 보관된 생석회 30∼400g에 물 40∼250 ㎖를 주입하여 발열반응을 행하였다. Example 5 Exothermic reaction was performed by injecting 40-250 ml of water into 30-400 g of quicklime stored for about 17 months.

290∼310 ㎖ 물의 초기온도는 평균 19℃, 평균 반응 출발시간은 7초, 10분 경과 후 온도는 48.6℃였고, 반응 온도차(ΔT)는 29.6℃였다. 12분 후 온도는 최고온도로 48.9℃였고, 반응 온도차(ΔT)는 29.9℃였다.The initial temperature of 290-310 mL water was 19 degreeC on average, the average reaction start time was 7 second, after 10 minutes, the temperature was 48.6 degreeC, and reaction temperature difference ((DELTA) T) was 29.6 degreeC. After 12 minutes, the temperature was 48.9 ° C at the highest temperature and the reaction temperature difference (ΔT) was 29.9 ° C.

실시예617개월 정도 보관된 생석회 30∼400g에 25∼48wt% 농도의 인 또는 인산화합물 용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 6 An exothermic reaction was carried out by injecting 40-250 ml of 25-48 wt% phosphorus or phosphate compound solution into 30-400 g of quicklime stored for 17 months.

290∼310 ㎖ 물의 초기온도는 평균 20.3℃, 평균 반응 출발시간은 5초, 10분 경과 후 온도는 77.1℃였고, 반응 온도차(ΔT)는 56.8℃였다. 12분 후 온도는 75℃였고, 반응 온도차(ΔT)는 54.7℃였다. 최고온도는 5분 5초에 79.4℃였고, 반응 온도차(ΔT)는 59.1℃였다.The initial temperature of 290-310 ml of water was 20.3 ° C on average, the average reaction start time was 5 seconds, after 10 minutes, the temperature was 77.1 ° C, and the reaction temperature difference (ΔT) was 56.8 ° C. After 12 minutes, the temperature was 75 ° C and the reaction temperature difference (ΔT) was 54.7 ° C. The maximum temperature was 79.4 ° C. in 5 minutes 5 seconds, and the reaction temperature difference (ΔT) was 59.1 ° C.

실시예72개월 이내 보관된 생석회 30∼400g에 40∼60wt% 농도의 인 또는 인산화합물 용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 7 An exothermic reaction was carried out by injecting 40 to 250 mL of a 40 to 60 wt% phosphorus or phosphate compound solution into 30 to 400 g of quicklime stored within 2 months.

290∼310㎖ 물의 초기온도는 평균 18.6℃, 평균 반응 출발시간은 3초, 10분 경과 후 온도는 75.7℃였고, 반응 온도차(ΔT)는 57.1℃였다. 12분 후 온도는 74.7℃였고, 반응 온도차(ΔT)는 56.1℃였다. 최고온도는 7분 10초에 77.1℃였고, 반응 온도차(ΔT)는 58.5℃였다.The initial temperature of 290-310 mL water was 18.6 degreeC on average, the average reaction start time was 3 second, after 10 minutes, the temperature was 75.7 degreeC, and reaction temperature difference ((DELTA) T) was 57.1 degreeC. After 12 minutes, the temperature was 74.7 ° C and the reaction temperature difference (ΔT) was 56.1 ° C. The maximum temperature was 77.1 ° C at 7 minutes 10 seconds, and the reaction temperature difference (ΔT) was 58.5 ° C.

실시예82개월 이내 보관된 생석회 30∼400g에 3∼35wt% 농도의 인 또는 인산화합물 용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 8 An exothermic reaction was carried out by injecting 40 to 250 ml of a solution of 3 to 35 wt% phosphorus to a 30 to 400 g of quicklime stored within 2 months.

290∼310 ㎖ 물의 초기온도는 평균 20.5℃, 평균 반응 출발시간은 34초, 10분 경과 후 온도는 75.8℃였고 반응 온도차(ΔT)는 55.3℃였다. 12분 후 온도는 75℃였고, 반응 온도차(ΔT)는 54.5℃였다.The initial temperature of 290-310 mL water was 20.5 ° C on average, average reaction start time was 34 seconds, after 10 minutes, the temperature was 75.8 ° C and the reaction temperature difference (ΔT) was 55.3 ° C. After 12 minutes, the temperature was 75 ° C and the reaction temperature difference (ΔT) was 54.5 ° C.

실시예92개월 이내 보관된 생석회 30∼400g에 2∼25wt% 농도의 과산화물 용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 9 An exothermic reaction was carried out by injecting 40-250 ml of a peroxide solution at a concentration of 2-25 wt% into 30-400 g of quicklime stored within 2 months.

290∼310㎖ 물의 초기온도는 평균 20℃, 평균 반응 출발시간은 17초, 10분 경과 후 온도는 76℃였고, 반응 온도차(ΔT)는 56℃였다. 12분 후 온도는 72℃였고, 반응 온도차(ΔT)는 52℃였다.The initial temperature of 290-310 mL water was 20 degreeC on average, the average reaction start time was 17 second, after 10 minutes, the temperature was 76 degreeC, and reaction temperature difference ((DELTA) T) was 56 degreeC. After 12 minutes, the temperature was 72 ° C and the reaction temperature difference (ΔT) was 52 ° C.

실시예102개월 이내 보관된 생석회 30∼400g에 인 또는 인산화합물과 과산화물을 섞은 혼합용액 40∼250㎖를 주입하여 발열반응을 행하였다. Example 10 An exothermic reaction was carried out by injecting 40 to 250 ml of a mixed solution of phosphorus or phosphoric acid compound and peroxide into 30 to 400 g of quicklime stored within 2 months.

290∼310 ㎖ 물의 초기온도는 평균 19℃, 평균 반응 출발시간은 4초, 10분 경과 후 온도는 88℃였고, 반응 온도차(ΔT)는 69℃였다. 12분 후 온도는 84℃였고, 반응 온도차(ΔT)는 65℃였다. 최고온도는 3분 20초에 96℃였고, 반응 온도차(ΔT)는 77℃였다.The initial temperature of 290-310 mL water was 19 degreeC on average, the average reaction start time was 4 second, after 10 minutes, the temperature was 88 degreeC, and reaction temperature difference ((DELTA) T) was 69 degreeC. After 12 minutes, the temperature was 84 ° C and the reaction temperature difference (ΔT) was 65 ° C. Maximum temperature was 96 degreeC in 3 minutes 20 second, and reaction temperature difference ((DELTA) T) was 77 degreeC.

* 가: 290∼310 ㎖ 물의 평균 초기온도(℃), 나: 평균 반응 출발시간(초), 다: 10분 경과 후 온도(℃), 라: 12분 후 온도(℃), 마: 최고온도/최고온도에 도달한 시간(초), ΔT: 온도차(℃)를 각각 의미한다.* A: average initial temperature (℃) of water, 290-310 ml, b: average reaction start time (sec), c: temperature after 10 minutes (℃), d: temperature after 12 minutes (℃), e: maximum temperature The time (second) at which the maximum temperature is reached, ΔT: means the temperature difference (° C), respectively.

앞에서 설명한 바와 같이 본 발명의 음식료 가열방법에 의하면, 적은량의 생석회와 적어도 인 또는 인산화합물을 수화 발열반응에 의해 짧은 시간내에 높은 발열온도를 얻어서 음식료를 가열하거나, 또는 적은 량의 생석회와 과산화물을 산화-환원반응에 의해 짧은 시간내에 높은 발열온도를 얻어서 음식료를 가열하거나, 또는 적은 량의 생석회와 인산화합물(인을 포한한다)과 과산화물을 혼합한 혼합액을 혼합반응에 의해 짧은 시간내에 높은 발열온도를 얻어서 음식료를 가열하므로, 짧은 시간내에 발열에 따른 고온의 온도와 상대적인 압력에 의해 음식료를 맛있게 가열할 수 있고, 저렴한 비용으로 인스턴트 음식료를 질감의 변화없이 맛있게 가열할 수 있으며, 또한 발열에 따라 환경 친화적인 물질인 무공해의 반응산물이 생성되어 환경오염을 일으키지 않을 뿐만 아니라, 용이하게 음식료를 가열할 수 있다는 매우 뛰어난 효과가 있다.As described above, according to the food and beverage heating method of the present invention, a small amount of quicklime and at least a phosphorus or phosphate compound can be heated to obtain a high exothermic temperature within a short time by a hydration exothermic reaction, or to oxidize a small amount of quicklime and peroxide -A high exothermic temperature can be obtained within a short time by a reduction reaction to heat food and beverages, or a mixture of a small amount of quicklime, phosphoric acid compounds (including phosphorus), and peroxide can be mixed to obtain a high exothermic temperature within a short time. Since the food and beverages are heated, the food and beverages can be deliciously heated by the high temperature and relative pressure due to the heat generation within a short time, and the instant food and beverage can be deliciously cooked without changing the texture at low cost, and also environmentally friendly according to the heat generation. Pollutant-free reaction product is produced to prevent environmental pollution Not only does it have a good effect, but the food and beverage can be easily heated.

Claims (8)

삭제delete 삭제delete 생석회와 인 또는 인산화합물을 수화 발열반응시켜서 얻어지는 열에 의해 음식료를 가열하는 음식료 가열방법에 있어서,In the food beverage heating method of heating the food and beverage by the heat obtained by the hydrated exothermic reaction of quicklime and phosphorus or phosphate compound, 상기 생석회 30∼400g에 대하여 칼슘과 인의 몰비가 0.3∼4.2 범위이고, 3∼60wt% 농도의 인 또는 인산화합물 용액 40∼250 ㎖을 첨가하여 발생되는 열에 의해서 음식료를 가열시키는 것을 특징으로 하는 음식료 가열방법.The food and beverage heating characterized in that the molar ratio of calcium and phosphorus is in the range of 0.3 to 4.2 with respect to 30 to 400 g of the quicklime, and the food and beverage is heated by the heat generated by adding 40 to 250 ml of a solution of 3 to 60 wt% of phosphorus or phosphate compound. Way. 삭제delete 삭제delete 생석회와 과산화물을 산화-환원반응시켜서 얻어지는 열에 의해 음식료를 가열하는 방법에 있어서,In the method of heating food and drink by the heat obtained by the oxidation-reduction reaction of quicklime and peroxide, 상기 생석회 30∼400g에 대하여 칼슘과 과산화물의 몰비가 0.2∼4.1 범위이고 2∼35wt% 농도의 염소이온을 포함하지 않는 과산화물 용액 40∼250㎖을 첨가하여 발생되는 열에 의해서 음식료를 가열시키는 것을 특징으로 하는 음식료 가열방법.The food and beverage is heated by the heat generated by adding 40-250 ml of a peroxide solution in which the molar ratio of calcium and peroxide is in the range of 0.2-4.1 and does not contain chlorine ions at a concentration of 2-35wt%. Food and beverage heating method to do. 삭제delete 인 또는 인산화합물과 염소이온을 포함하지 않는 과산화물의 혼합물을 생석회와 발열반응시켜 얻어지는 열에 의해서 음식료를 가열하는 것을 특징으로 하는 음식료 가열방법.A food and beverage heating method comprising heating a food and beverage by heat obtained by exothermic reaction of a mixture of phosphorus or a phosphate compound with a chlorine ion with quicklime.
KR1020000031877A 1999-11-02 2000-06-09 method for heating food/drink KR100353175B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020000031877A KR100353175B1 (en) 1999-11-02 2000-06-09 method for heating food/drink
JP2001154587A JP2002017273A (en) 2000-06-09 2001-05-23 Method for heating food/drink

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019990048251 1999-11-02
KR19990048251 1999-11-02
KR1020000031877A KR100353175B1 (en) 1999-11-02 2000-06-09 method for heating food/drink

Publications (2)

Publication Number Publication Date
KR20000058524A KR20000058524A (en) 2000-10-05
KR100353175B1 true KR100353175B1 (en) 2002-09-18

Family

ID=26636268

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000031877A KR100353175B1 (en) 1999-11-02 2000-06-09 method for heating food/drink

Country Status (1)

Country Link
KR (1) KR100353175B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562029B1 (en) * 2002-11-08 2006-03-16 권동순 Conductible non metal solid, conductible ion solution produced by using the solid, liquid heating matter produced by using the solution and method for producing the heating matter
KR101810164B1 (en) 2015-09-07 2017-12-19 주식회사 쓰리스타 Manufacturing method of heating composition
KR102237429B1 (en) 2018-11-16 2021-04-07 전북대학교 산학협력단 Foamable heating composition and maunfacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386171A (en) * 1989-08-31 1991-04-11 Akira Matsuoka Exothermic agent for sterilizing treatment of medical treatment waste
JPH04331281A (en) * 1991-01-25 1992-11-19 Kobe Steel Ltd Heating element packed in container
KR20010009107A (en) * 1999-07-07 2001-02-05 조충묵 Manufacturing Method for Portable Foods Pyrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386171A (en) * 1989-08-31 1991-04-11 Akira Matsuoka Exothermic agent for sterilizing treatment of medical treatment waste
JPH04331281A (en) * 1991-01-25 1992-11-19 Kobe Steel Ltd Heating element packed in container
KR20010009107A (en) * 1999-07-07 2001-02-05 조충묵 Manufacturing Method for Portable Foods Pyrogen
KR100309745B1 (en) * 1999-07-07 2001-09-29 조충묵 Manufacturing Method for Portable Foods Pyrogen

Also Published As

Publication number Publication date
KR20000058524A (en) 2000-10-05

Similar Documents

Publication Publication Date Title
KR19990037954A (en) Portable heat source
US5085878A (en) Deoxidizer package
US7537002B2 (en) Exothermic agent
US20120210996A1 (en) Heater
WO2014063145A1 (en) Electrolyte formulations for oxygen activated portable heater
JP4044264B2 (en) Cooked reheated reduced food
KR100353175B1 (en) method for heating food/drink
KR100442560B1 (en) A heating meterial for heating food packed in a package
JP2000211901A (en) Gel composition containing chlorine dioxide, its production, its storage, filling material composed of gel composition containing chlorine dioxide, bag for holding filling material composed of gel composition containing chlorine dioxide and vessel for holding gel composition containing chlorine dioxide
ES2606459T3 (en) Food dough suitable for microwaves
KR910004344B1 (en) Packing paper for using deoxygen
US9193588B2 (en) Hydrogen elimination and thermal energy generation in water-activated chemical heaters
JP2002017273A (en) Method for heating food/drink
JP2010051296A (en) Instant food packed in container for microwave oven cooking
CA1295804C (en) Alkali metal acid pyrophosphate leavening acid compositions and methods for producing the same
KR100804257B1 (en) Heating element composition and apparatus for heating food the same
JP5930280B2 (en) Exothermic composition and oxygen absorbing composition
JP2008023363A (en) Heat source for heating, food heating method and retort pouch food using the same
KR101277378B1 (en) Heating element composition and apparatus for heating food using thereof
JPS62502943A (en) How to heat food in cans
CA1115954A (en) Exothermic composition from calcium chloride, sodium sulfate when contacted with water
KR101437348B1 (en) Heating element composition for heating food
JPS5857364B2 (en) Teikoketsei no Daiichirinsan Calcium Suiwabutsunoseihou
KR102237429B1 (en) Foamable heating composition and maunfacturing method thereof
JPH0527672B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070904

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee