KR100353120B1 - Method for Preparing a Supported Metallocene Catalyst - Google Patents

Method for Preparing a Supported Metallocene Catalyst Download PDF

Info

Publication number
KR100353120B1
KR100353120B1 KR1019990056703A KR19990056703A KR100353120B1 KR 100353120 B1 KR100353120 B1 KR 100353120B1 KR 1019990056703 A KR1019990056703 A KR 1019990056703A KR 19990056703 A KR19990056703 A KR 19990056703A KR 100353120 B1 KR100353120 B1 KR 100353120B1
Authority
KR
South Korea
Prior art keywords
catalyst
derivative
solid catalyst
metallocene
olefin polymerization
Prior art date
Application number
KR1019990056703A
Other languages
Korean (ko)
Other versions
KR20010055488A (en
Inventor
강갑구
오재권
정영태
Original Assignee
대한유화공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한유화공업 주식회사 filed Critical 대한유화공업 주식회사
Priority to KR1019990056703A priority Critical patent/KR100353120B1/en
Publication of KR20010055488A publication Critical patent/KR20010055488A/en
Application granted granted Critical
Publication of KR100353120B1 publication Critical patent/KR100353120B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61912Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61916Component covered by group C08F4/60 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 반재결정법(Semi-recrystallization)에 의한 올레핀중합용 담지메탈로센 고체촉매의 제조방법에 관한 것으로 촉매제조 과정에서 고체성분인 마그네슘할라이드 담체가 일부분만 용해된 불균일한 용액상태에서 재결정화가 일어나면서 마그네슘 담체를 변형시키므로서 변형된 담체위에 메탈로센 유도체가 담지되어 각종 올레핀 및 스타이렌 공중합에 사용되는 담지메탈로센 촉매 제조방법과 이를 이용한 폴리에틸렌 및 에틸렌/α-올레핀 특히, 에틸렌/스티렌 공중합체를 제조하는 방법에 관한 것이다. 보다 상세하게는 올레핀중합용 담지메탈로센 고체촉매계로서는 주기율표 제 ⅤA 및 ⅥA족의 원소로 구성된 알코올 유도체, 아민과 인 유도체, 에테르 및 설파이드 유도체 혹은 산 유도체등과 같은 전자주게를 함유하는 화합물(A)와 주기율표 제 ⅠB∼ⅣB족의 금속과 알콕시가 조합된 금속화합물(B)와 마그네슘 할라이드류(C)가 접촉반응을 일으키고, 여기에 일반식 M(R)n(M=Mg, B, Al ,Zn)으로 표시되는 알킬금속화합물(D)를 처리하고 메탈로센 유도체(E)를 반응시켜 얻어진 담지메탈로센 촉매로 올레핀 중합 또는 공중합시키는 것을 특징으로 한다. 본 발명은 중합활성이 높아 잔류촉매제거를 위한 별도의 공정이 필요하지 않고 촉매제조후 후처리공정이 단순하여 제조원가를 절감할수 있다.The present invention relates to a method for preparing a supported metallocene solid catalyst for olefin polymerization by semi-recrystallization, wherein recrystallization is performed in a non-uniform solution state in which a part of a magnesium halide carrier, which is a solid component, is partially dissolved in a catalyst manufacturing process. A method of preparing a supported metallocene catalyst which is used to copolymerize various olefins and styrenes by carrying a metallocene derivative on a modified carrier by modifying a magnesium carrier, and polyethylene and ethylene / α-olefins, in particular ethylene / styrene It relates to a method of producing a copolymer. More specifically, as the supported metallocene solid catalyst system for olefin polymerization, a compound containing an electron donor such as an alcohol derivative, an amine and phosphorus derivative, an ether and a sulfide derivative or an acid derivative composed of elements of Groups VA and VIA of the periodic table (A ) And a metal compound (B) and magnesium halides (C) in combination with alkoxy and a metal of Groups IB to IVB of the periodic table cause a catalytic reaction, and the general formula M (R) n (M = Mg, B, Al And olefin polymerization or copolymerization with a supported metallocene catalyst obtained by treating an alkyl metal compound (D) represented by Zn) and reacting a metallocene derivative (E). The present invention does not require a separate process for removing residual catalyst due to high polymerization activity, and the post-treatment process after the preparation of the catalyst is simple, thereby reducing manufacturing costs.

Description

올레핀 중합용 담지메탈로센 고체촉매의 제조방법 {Method for Preparing a Supported Metallocene Catalyst}Method for preparing supported metallocene solid catalyst for olefin polymerization {Method for Preparing a Supported Metallocene Catalyst}

본 발명은 반재결정법 (Semi-recrystallization)에 의한 메탈로센이 담지된 올레핀 중합용 고체촉매의 제조방법 및 이를 이용한 폴리올레핀의 제조방법에 관한 것이다. 보다 상세하게는 촉매제조과정에서 촉매성분중의 하나인 고체성분이 완전히 용해되지 않고 일부분만 용해되어 재결정화가 일어나는 반재결정법에 의한 중합용 고체촉매의 제조방법을 이용한 올레핀중합용 담지메탈로센 고체촉매의 제조방법에 관한 것이다. 본발명의 담지메탈로센 촉매는 에틸렌 중합 및 프로필렌, 1-부텐, 1,3-부타디엔, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 스타이렌등의 호모중합 및 공중합이 가능한 촉매계이다.The present invention relates to a method for producing a solid catalyst for olefin polymerization on which metallocene is supported by semi-recrystallization and a method for producing polyolefin using the same. More specifically, the supported metallocene solid for olefin polymerization using the method of preparing a solid catalyst for polymerization by a semi-recrystallization method in which a solid component, which is one of the catalyst components, is not completely dissolved but is partially dissolved in the catalyst manufacturing process. It relates to a method for producing a catalyst. The supported metallocene catalyst of the present invention is ethylene polymerization and homopolymerization of propylene, 1-butene, 1,3-butadiene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, styrene, etc. And a catalyst system capable of copolymerization.

기존의 지글러-나타 촉매계는 전이금속화합물이 주성분인 주촉매와 유기금속화합물인 공촉매, 그리고 전자공여체의 조합으로 이루어지는 불균일 촉매계를 말한다. 좀더 상세하게는 Ziegler-Natta형태의 중합 촉매는 기본적으로 알킬알루미늄과 착화합물화한 마그네슘 화합물에 지지된 티타늄할라이드로 구성되어 있다. 담체로서 사용되는 마그네슘 화합물에는 디클로로마그네슘, 디브로모마그네슘, 디아요드마그네슘, 클로로에톡시마그네슘, 디에톡시마그네슘 및 디부톡시마그네슘등과 같은 디알콕시마그네슘, 디에칠마그네슘 및 디부칠마그네슘등과 같은 디알킬마그네슘, 그리고 클로로하이드록시마그네슘과 디하이드록시마그네슘 등이 있다. 이들 중에서 현재 가장 많이 사용되고 있는 것으로는 디클로로마그네슘, 디에톡시마그네슘, 클로로하이드록시마그네슘, 디알킬마그네슘, 등으로 이들의 사용되어지는 방법도 다양하다. 이러한 여러 가지 마그네슘 담체를 이용하여 촉매를 합성한 예로는 미국특허 : 4,218,339; 4,439,540; 4,115,319, 유럽특허 : 0,412,696; 0,412,750등에 많이 발표되었다. 특히 디클로로마그네슘과 디에톡시마그네슘등은 입자의 모양, 크기에 따라 합성되어진 촉매의 모양, 크기도 달라질 뿐만 아니라 중합된 고분자의 모양, 크기 및 입도 분포 등이 결정되는 데 불균일상 촉매계에서는 담체입자의 크기, 형태, 다공도등이 중합후 고분자의 크기 및 형태를 결정하게 된다. 즉, 담체 입자가 구형에 가까우면 중합한 후 고분자의 벌크밀도(g/㎖)가 상승할 수 있는 요인이 되며 이는 상업적인 규모의 폴리올레핀의 생산능력에 직결되며, 또한 균일한 입도분포를 갖는 것은 중합장치의 생산능력과 이송등의 후처리의 관점에서 볼 때 매우 중요한 문제이다. 따라서 이들 마그네슘 화합물들을 분쇄 (milling), 재결정 (recrystallization) 혹은 반재결정 (semirecrystallization)등의 방법을 통해 미세하고 구형에 가까운 균일한 입자 모양을 갖도록 노력해 왔다.The existing Ziegler-Natta catalyst system refers to a heterogeneous catalyst system composed of a combination of a main catalyst composed mainly of transition metal compounds, a cocatalyst composed of an organic metal compound, and an electron donor. More specifically, the Ziegler-Natta type polymerization catalyst is basically composed of titanium halide supported on magnesium compound complexed with alkylaluminum. Magnesium compounds used as carriers include, for example, dialkyl magnesiums such as dichloromagnesium, dibromo magnesium, diaiod magnesium, chloroethoxymagnesium, diethoxy magnesium, and dibutoxymagnesium, such as dialkoxymagnesium, diemagnesium and dibutylmagnesium. Magnesium, and chlorohydroxymagnesium and dihydroxymagnesium. Among the most widely used among them, dichloromagnesium, diethoxymagnesium, chlorohydroxymagnesium, dialkylmagnesium, and the like are variously used. Examples of synthesizing a catalyst using such various magnesium carriers include US Pat. No. 4,218,339; 4,439,540; 4,115,319, European Patents: 0,412,696; It was announced a lot at 0,412,750. In particular, dichloromagnesium and diethoxy magnesium not only vary the shape and size of the synthesized catalyst depending on the shape and size of the particles, but also determine the shape, size and particle size distribution of the polymerized polymer. , Shape, porosity, etc. determine the size and shape of the polymer after polymerization. That is, when the carrier particles are close to the spherical shape, the bulk density (g / ml) of the polymer may increase after polymerization, which is directly related to the production capacity of commercial scale polyolefins, and having a uniform particle size distribution It is a very important problem from the point of view of post-processing such as production capacity and transportation of the device. Therefore, these magnesium compounds have been tried to have a uniform, fine, spherical uniform particle shape by milling, recrystallization, or semi-crystallization.

분쇄에 의한 방법은 분쇄기의 종류, 분쇄시간등의 변수에 따라 마그네슘 화합물들의 형태 및 크기가 좌우되기 때문에 이러한 조건들을 잘 고려하여 올레핀의종류, 채택된 중합의 형태에 맞게 숙련된 기술자들에 의해 적절하게 선택될 수 있다. 이런 분쇄를 통한 촉매합성의 예로는 미국 특허 4,777,216, 4,487,845등에 발표되었다.Since the method of pulverization depends on the type and size of magnesium compounds according to variables such as the type of pulverizer and the pulverization time, it is appropriate for the type of olefin and the type of polymerization adopted by the skilled technicians in consideration of these conditions. Can be chosen. Examples of catalytic synthesis through such grinding are disclosed in US Pat. Nos. 4,777,216, 4,487,845 and the like.

일반적으로 마그네슘 화합물들은 용해도 차이에 의한 용매법, 온도차 및 감압 건조등에 의해 재결정화하여 얻을 수 있다. 이 경우 용매의 선택이 중요한 부분을 차지하며, 동시에 미국 특허 4,469,648는 클로로마그네슘과 에탄올을 반응시켜 얻은 용액을 재결정화하는데 온도, 유속, 유량 등이 잘 조절되어저야만 원하는 형태 및 크기(직경이 1∼5,000마이크론 범위의 구형입자)를 가진 마그네슘 화합물을 얻을 수 있다고 발표하였다. 그러나 이런 재결정화 방법에는 액상으로부터의 고체 마그네슘 화합물들의 분리 및 건조등의 문제점이 있으며 또 다른 예들은 미국특허 3,308,221등에 발표되었다.In general, magnesium compounds can be obtained by recrystallization by a solvent method, temperature difference, and drying under reduced pressure by solubility difference. In this case, the choice of solvent plays an important part, and at the same time, US Patent 4,469,648 recrystallizes the solution obtained by reacting chloromagnesium and ethanol.The temperature, flow rate, and flow rate must be well controlled to obtain the desired shape and size (diameter 1). It is reported that magnesium compounds having spherical particles in the range of -5,000 microns can be obtained. However, this recrystallization method has problems such as separation and drying of solid magnesium compounds from the liquid phase, and other examples are disclosed in US Pat. No. 3,308,221.

반재결정화 방식은 완전한 균일상 용액이 아닌 불균일상 용액을 부분적으로 결정화함으로써 입자 조절에 필요한 많은 정보를 얻을 수 있다. 재결정법과 반재결정법을 비교하여 볼 때 재결정법은 완전한 균일상 용액으로부터 고체를 석출시키기 때문에 외부조건(예를 들면 온도, 속도, 용매등) 상당히 영향을 많이 받으나 반재결정법은 일부 균일상 용액을 포함하는 불균일상 용액으로부터 고체를 석출시키기 때문에 상기의 외부조건에 크게 영향을 받지 않으나 뷸균일상 용액으로부터 입자가 조절된 고체를 얻기 위해서는 입자를 조절할 수 있는 성분 혹은 인자들이 필요하며 이에 대한 예로써 본 발명자는 이미 한국특허출원(한국특허출원공개 1999년 제 75692호, 1999. 10. 15)한 바 있다.The semirecrystallization method provides a lot of information for particle control by partially crystallizing the heterogeneous solution rather than the complete homogeneous solution. Compared to recrystallization and anti-recrystallization, the recrystallization method is highly affected by external conditions (eg temperature, velocity, solvent, etc.) because it precipitates solids from the complete homogeneous solution, but the semi-recrystallization method is used for some homogeneous solutions. Precipitates the solid from the heterogeneous solution containing, but is not significantly affected by the external conditions, but in order to obtain a solid with the particles controlled from the heterogeneous solution, a component or a factor capable of controlling the particles is required. The inventor has already filed a Korean patent (Korean Patent Application Publication No. 1999 75692, 1999. 10. 15).

이에 반하여 2개의 시클로펜타디엔일기를 베이스로하는 메탈로센촉매는 일종의 유기금속화합물로서 균일계 촉매로 알려져 있다. 메탈로센 촉매는 일반적으로 고활성을 나타내며 단일한 중합활성점을 가짐으로써 중합체의 분자량 분포가 약 2 정도로 좁을뿐만 아니라 공중합체의 공단위체 분포도 균일한 특성을 가지고 있다. 종래의 지글러-나타 촉매계에 있어서는 고체표면에 존재하는 중합활성종의 배위 불포화도에 촉매의 입체특이성이 규제되었음에 비해, 메탈로센촉매계에서는 배위자의 대칭성만을 변화시킴으로써 어택틱(C2V대칭)으로부터 이소택틱(C2대칭), 신디오택틱 (CS대칭)까지 고분자의 입체특이성, 분자량, 촉매활성등에 다양한 변화를 보여준다. 이러한 메탈로센 촉매를 크게 중심금속, π리간드, 다리구조, σ리간드의 네부분으로 구성되어 있다. 중심금속과 리간드의 변화에 의한 메탈로센 촉매의 구조변화와 이에따른 전기적 및 입체적 영향등에 의하여 올레핀의 중합메카니즘이 영향을 받게되어 촉매의 활성과 중합된 고분자의 분자량, 입체특이성등이 달라지게 된다. 또한 올레핀의 공중합에 있어서도 일반적인 지글러-나타 촉매보다 공중합활성이 좋아 고분자내의 공단량체의 함량을 크게 높일수 있고 랜덤성이 높은 균질의 공중합체의 제조를 가능하게 하며, 시클로 펜텐, 노보넨등의 시클로 올레핀 또는 스티렌과 같은 벌키(Bulky)한 치환기를 가진 올레핀이나 1.3-디엔, α.ω-디엔 이외의 몇개의 극성올레핀에 대해서도 높은 반응성을 나타낸다. 이러한 메탈로센 촉매를 이용한 α-올레핀 중합에 관한 보고는 미국특허 4,730,071, 4,892,851등에 발표되었다.In contrast, metallocene catalysts based on two cyclopentadienyl groups are known as homogeneous catalysts as a kind of organometallic compound. Metallocene catalysts generally exhibit high activity and have a single polymerization activity point, which not only has a narrow molecular weight distribution of about 2, but also has a uniform distribution of copolymers. In the conventional Ziegler-Natta catalyst system, the stereospecificity of the catalyst is regulated in the coordination unsaturation of the polymerized active species present on the solid surface, whereas in the metallocene catalyst system, the isotropic (C 2V symmetry) isotropy is changed by changing only the symmetry of the ligand. From tactics (C 2 symmetry) to syndiotactic (C S symmetry), various changes in stereospecificity, molecular weight, and catalytic activity of polymers are shown. The metallocene catalyst is largely composed of four parts: a central metal,? Ligand, bridge structure, and? Ligand. The polymerization mechanism of the olefin is affected by the structural change of the metallocene catalyst due to the change of the central metal and the ligand and the subsequent electrical and steric influences, and thus the activity of the catalyst, molecular weight and stereospecificity of the polymerized polymer are changed. . In addition, the copolymerization of the olefin is better than the conventional Ziegler-Natta catalyst, which can greatly increase the content of the comonomer in the polymer and enable the production of a homogeneous copolymer having a high randomness, and cyclo olefins such as cyclopentene and norbornene. Or high polar olefins other than olefins having a bulky substituent such as styrene, 1.3-dienes, and α.ω-dienes. Reports on α-olefin polymerization using such metallocene catalysts have been published in US Pat. Nos. 4,730,071, 4,892,851 and the like.

한편 1개의 시클로펜타디엔일기를 가진 하프메탈로센 촉매가 에틸렌 뿐만아니라 스티렌에도 중합활성을 보이며 특히, 시클로펜타디엔일티타늄트리클로라이드 혹은 시클로펜타디엔일티타늄트리알콕사이드에 메틸알루미녹산과 조합하여 중합을 하면 신디오택틱폴리스티렌 (sPP)이 합성된다고 일본의 이데미쯔에서 발표하였고, 그 예로써 유럽특허공개 210,615, 312,976 및 미국특허 5,037,907등에 개시되어 있다. 또한 1개의 시클로펜타디엔일기를 중심으로 콘스트레인드 기하학적 구조를 가진 촉매 (Constrained Geometry Catalyst), 일명 CGC 촉매가 에틸렌 중합시 긴 측쇄구조를 가진 공단량체의 효과가 극대로 나타나는 특징을 가지고 있어 직쇄저밀도폴리에틸렌 (LLDPE)의 제조에 대단히 유용하다는 것이 유럽특허공개 416,815에 발표되어 있다.On the other hand, a half metallocene catalyst having one cyclopentadienyl group exhibits polymerization activity not only in ethylene but also in styrene. In particular, the polymerization is carried out in combination with methyl aluminoxane in cyclopentadienyl titanium trichloride or cyclopentadienyl titanium trialkoxide. Syndiotactic polystyrene (sPP) is synthesized by Idemitsu, Japan, and is disclosed in European Patent Publications 210,615, 312,976 and U.S. Patent 5,037,907. In addition, Constrained Geometry Catalyst, also known as CGC catalyst, has a long side chain structure for ethylene polymerization. Very useful for the preparation of polyethylene (LLDPE) is disclosed in European Patent Publication 416,815.

그러나 슬러리 또는 기상중합과 같이 중합체가 고체입자로서 형성되는 중합조건하에서는 균일한 메탈로센촉매들은 반응기 벽 및 교반기상에 중합체 침착물을 형성하며 이들 침착물은 반응기 내용물의 냉각을 위해 필요한 효율적인 열교환을 방해하고 반응기의 회전부품의 과도한 마모를 야기시킴으로 자주 제거해야 한다. 또한 메탈로센촉매들에 의해 형성된 중합체들은 낮은 벌크밀도를 갖으며 이는 중합체와 중합공정 모두에 대한 상업성을 제한한다. 기상 및 슬러리 공정에서 이러한 문제점을 해결하고 지속적인 운전을 위해서 우수한 중합체입자형성을 위해서 메탈로센촉매의 담지화작업이 필수적이다.However, under polymerization conditions in which polymers are formed as solid particles, such as slurries or gas phase polymerization, homogeneous metallocene catalysts form polymer deposits on the reactor walls and stirrers, and these deposits provide efficient heat exchange needed for cooling the reactor contents. They must be removed frequently as they interfere with and cause excessive wear on the rotating parts of the reactor. In addition, polymers formed by metallocene catalysts have a low bulk density, which limits commercial viability for both polymer and polymerization processes. In order to solve these problems in gas phase and slurry processes, and to maintain good polymer particles, it is necessary to carry out metallocene catalyst support.

종래의 메탈로센 촉매의 담지체로는 기공을 가지는 모든 유기물과 무기물이 그대로 사용되거나, 무기물인 경우 담지효율을 높이기 위해 소수성 기능기를 가지는 유기화합물로 표면처리된 무기물이 사용되며 담지체로 주로 실리카가 이용되고있는 실정이다. 메탈로센 촉매의 담지방법으로 메탈로센촉매를 담체의 표면에 공유 결합시키는 방법이 알려져 있으며, 이는 실리카 표면의 실라놀기(Si-OH)에 수분에 민감한 유기금속화합물을 결합시키는 방법이다. 담지방법은 크게 두가지로 나눌수 있으며, 하나는 메탈로센 촉매를 실리카 담체에 직접담지시키는 방법이고, 다른 하나는 실리카 담체를 다른 화합물로 표면처리한 후 담지시키는 방법이다. 그러나, 상기 담지방법은 담지과정중에 필연적으로 메탈로센 촉매 고유의 형태를 변형시키기 때문에, 담지 후의 촉매가 갖는 중합활성이 매우작다는 단점을 가지고 있다. 예를 들면, 미국특허 4,808,561, 4,912,075 및 4,904,631에는 실리카를 메틸알루미녹산으로 표면처리하거나 물이 흡착된 실리카를 알킬알루미늄으로 표면처리한 후 메탈로센을 결합시킨 담지된 촉매를 제조하는 방법이 제시되어있다. 실리카를 담지체로 이용하여 메탈로센 담지화를 시도한 다른 예로는 미국특허 4,659,685, 5,057,475등에 발표되어 있다. 또한, 미국특허 5,308,811에는 여러 가지의 담체 즉, 클레이, 클레이미네랄, 이온교환된 층상화합물 또는 실리케이트등을 사용하여 담지된 메탈로센 촉매를 제조하는 방법이 개시되어 있으나, 이 방법 역시 표면처리된 담체에 메탈로센 촉매를 화학적 결합을 통해 담지시키기 때문에 담지되는 촉매와 공촉매의 양이 매우적고 담지시 메탈로센 촉매의 형태가 변형되어 담지된 촉매의 활성이 급격히 감소되는 단점이 있다.As a support of the conventional metallocene catalyst, all organic and inorganic materials having pores are used as they are, or in the case of inorganic materials, inorganic materials surface-treated with organic compounds having hydrophobic functional groups are used to increase the carrying efficiency, and silica is mainly used as a support. It is becoming. As a method of supporting a metallocene catalyst, a method of covalently bonding a metallocene catalyst to the surface of a carrier is known, which is a method of bonding a moisture-sensitive organometallic compound to a silanol group (Si-OH) on a silica surface. The supporting method can be largely divided into two types, one is to directly support the metallocene catalyst on the silica carrier, and the other is to support the silica carrier after surface treatment with another compound. However, the supporting method inevitably deforms the form of the metallocene catalyst inevitably during the supporting process, and thus has a disadvantage in that the polymerization activity of the supported catalyst is very small. For example, US Pat. Nos. 4,808,561, 4,912,075 and 4,904,631 disclose methods for preparing supported catalysts that combine metallocenes after surface treatment of silica with methylaluminoxane or surface treatment of silica with alkylaluminum. have. Another example of attempting metallocene support using silica as a support is disclosed in US Pat. Nos. 4,659,685, 5,057,475 and the like. In addition, US Pat. No. 5,308,811 discloses a method for preparing a supported metallocene catalyst using various carriers, that is, clay, clay mineral, ion-exchanged layered compound, or silicate, but this method is also a surface-treated carrier. Since the metallocene catalyst is supported through chemical bonding, the amount of the supported catalyst and the cocatalyst is very small, and when supported, the form of the metallocene catalyst is deformed, thereby rapidly decreasing the activity of the supported catalyst.

한편 실리카의 담지와 비슷한 방법으로 알루미나 (Al2O3)를 이용하여 초고분자 폴리에틸렌의 생성이 가능하다는 것이 미국특허 5,075,394에 발표되어 있다.Meanwhile, it is disclosed in US Pat. No. 5,075,394 that the production of ultra high molecular polyethylene using alumina (Al 2 O 3 ) in a manner similar to that of silica is possible.

상기의 실리카 (SiO2)나 알루미나 (Al2O3)에 비해, 담지함으로써 활성이 훨씬 우수한 마그네슘클로라이드 (MgCl2) 담지체를 이용한 예들도 발표되어 있는데, 그 예로써 유럽특허공개 412,750에서는 마그네슘클로라이드에 티타늄부톡사이드와 실란 화합물을 함께 반응시켜 얻어진 변형된 마그네슘클로라이드 담체에 티타노센 착물을 반응시켜 담지메탈로센을 합성하였고, 미국특허 5,439,995에서는 디부틸마그네슘과 이소아밀에테르 및 t-부틸클로라이드를 반응시켜 얻어진 마그네슘클로라이드 위에 지르코노센 착물을 반응시켜 담지메탈로센을 합성하였다. 또 다른 예로는 유럽특허 436,328에서는 메탈로센 촉매를 화학적 반응에 의해 마그네슘클로라이드에 담지시키지 않고 물리적인 방법인 공분쇄(copulverization)에 의해 촉매를 제조하여 중합하면 넓은 분자량 분포를 가진 폴리머가 얻어 진다고 보고하고 있다.Examples using magnesium chloride (MgCl 2 ) carriers having superior activity by supporting them compared to silica (SiO 2 ) or alumina (Al 2 O 3 ) have been published. For example, in European Patent Publication 412,750, magnesium chloride is disclosed. Supported metallocene was synthesized by reacting a titanocene complex on a modified magnesium chloride carrier obtained by reacting titanium butoxide with a silane compound. In US Pat. No. 5,439,995, dibutylmagnesium, isoamyl ether and t-butylchloride are reacted. The supported metallocene was synthesized by reacting a zirconocene complex on the obtained magnesium chloride. As another example, European Patent 436,328 reports that a polymer having a wide molecular weight distribution can be obtained by preparing and polymerizing a metallocene catalyst without the chemical reaction by magnesium reaction by copulverization. Doing.

본 발명에서의 담체로 사용되는 마그네슘 화합물의 변형(modification)방법은 반재결정화 방식으로써 완전한 균일상 용액이 아닌 불균일상 용액을 부분적으로 결정화함으로써 입자 조절에 다양한 정보를 얻을 수 있다. 재결정법과 반재결정법을 비교하여 볼 때 재결정법은 완전한 균일상 용액으로부터 고체를 석출시키기 때문에 외부조건(예를 들면 온도, 속도, 용매등) 상당히 영향을 많이 받는다. 그러나 본 발명에서의 반재결정법은 일부 균일상 용액을 포함하는 불균일상 용액으로부터 고체를 석출시키기 때문에 상기의 외부조건에 크게 영향을 받지 않으나 뷸균일상용액으로부터 입자가 조절된 고체를 얻기 위해서는 입자를 조절할 수 있는 성분 혹은 인자들이 필요하다. 첫 번째 성분은 전자주게(electron donor)를 함유하는 원소(주기율표 제ⅤA 및 ⅥA족 원소)로 구성된 알코올 유도체(ROH, RSH등), 아민과 인 유도체(RNH2, R2NH, R3N, R3P등), 에테르 유도체(ROR, RSR등) 혹은 산 유도체(RCO OH, RCOSH)등의 화합물(A)로서 R은 탄소원자수 1내지 20개를 가지는, 바람직하게는 1내지 10개를 가지는 알킬 아릴 혹은 사이클로알킬기를 나타낸다. 두 번째 성분은 알콕시기를 함유하는 주기율표 제ⅠB∼ⅣB족의 금속화합물(B)로서 일반식 M(OR)n(M은 주기율표 제ⅠB∼ⅣB족의 금속을 나타내고 R는 탄소원자수 1내지 16개, 바람직하게는 1내지 10개를 가지는 알킬, 아릴 혹은 사이클로알킬기를 나타내며, 그리고 n은 금속(M)의 원자가를 표시한다)으로 나타낸다. 본 발명은 전자주게를 함유하는 화합물, 금속과 알콕시기가 조합된 금속화합물, 마그네슘할라이드, 메탈로센 유도체를 반응시켜 고활성의 담지메탈로센 고체촉매를 얻고 이를 폴리올레핀의 제조에 사용하여 중합체의 입자형상과 제조공정을 단순화하는데 있다.The modification method of the magnesium compound used as a carrier in the present invention is a semi-recrystallization method to obtain various information for particle control by partially crystallizing the heterogeneous solution rather than the complete homogeneous solution. In comparison with the recrystallization method and the semi-recrystallization method, the recrystallization method is significantly affected by external conditions (eg, temperature, velocity, solvent, etc.) because it precipitates a solid from a completely homogeneous solution. However, since the semi-recrystallization method of the present invention precipitates a solid from a heterogeneous solution containing some homogeneous solution, it is not significantly affected by the external conditions, but the particles are controlled to obtain a controlled solid from the homogeneous solution. You need ingredients or factors that can be used. The first component is an alcohol derivative (ROH, RSH, etc.) consisting of elements containing electron donors (groups VA and VIA of the periodic table), amine and phosphorus derivatives (RNH 2 , R 2 NH, R 3 N, R 3 P, etc.), an ether derivative (ROR, RSR, etc.) or an acid derivative (RCO OH, RCOSH), etc. (A) R having 1 to 20 carbon atoms, preferably 1 to 10 Alkyl aryl or cycloalkyl group. The second component is a metal compound (B) of group IB to IVB of the periodic table containing an alkoxy group, and the general formula M (OR) n (M represents a metal of group IB to IVB of the periodic table, R is 1 to 16 carbon atoms, Preferably an alkyl, aryl or cycloalkyl group having 1 to 10, and n represents the valence of the metal (M). The present invention provides a highly active supported metallocene solid catalyst by reacting a compound containing an electron donor, a metal compound combining a metal and an alkoxy group, magnesium halide, and a metallocene derivative, and using the same to prepare a polyolefin. To simplify the shape and manufacturing process.

기존의 담지메탈로센 촉매로는 낮은 중합활성의 중합체를 얻었던 데에 비해 본 발명의 담지메탈로센 촉매는 기존 지글러-나타 중합촉매에 상응하는 높은 중합활성을 갖는다. 또한, 본 발명은 기존의 담지메탈로센촉매가 고가의 알루미녹산 공촉매를 사용하는데 비해 일반 알킬알루미늄 공촉매에도 높은 중합활성을 보이며 촉매제조과정에서 반응용매로 헥산을 사용함으로 환경친화적인 촉매를 제조하는 방법을 제공한다. 또한, 일반적으로 마그네슘담지체에 메탈로센을 담지시키는 것이 용이하지 않은 것으로 알려져 있고 담지촉매의 중합체 입자형태도 불량한 것으로 알려져 있으나 본 발명의 담지촉매의 중합체 입자는 구형으로 우수하며 반재결정법을 응용하여 마그네슘화합물의 입자형성 및 메탈로센 담지를 위한 마그네슘담지체의 활성화반응을 동시에 이루는 특징을 갖는다. 즉, 담지체 입자형성과 활성화를 거친 마그네슘 화합물에 직접 메탈로센을 담지시키는 것을 특징으로 한다.The supported metallocene catalyst of the present invention has a high polymerization activity corresponding to the existing Ziegler-Natta polymerization catalyst, while a low polymerization activity polymer is obtained as the existing supported metallocene catalyst. In addition, the present invention shows high polymerization activity in general alkyl aluminum cocatalysts compared to conventional supported metallocene catalysts using expensive aluminoxane cocatalysts, and uses environmentally friendly catalysts by using hexane as a reaction solvent in the catalyst manufacturing process. It provides a method of manufacturing. In addition, it is generally known that it is not easy to support metallocene on a magnesium support, and the polymer particles of the supported catalyst are also known to be poor. However, the polymer particles of the supported catalyst of the present invention are excellent in spherical shape, and the anti-recrystallization method is applied. Therefore, it has the characteristics of simultaneously forming the magnesium compound and the activation reaction of the magnesium carrier for supporting the metallocene. That is, it is characterized in that the metallocene is directly supported on the magnesium compound that has undergone the carrier particle formation and activation.

본 발명은 전이금속 착체로된 성분과 알킬화제로 된 성분으로 이루어진 올레핀 중합용 촉매를 제공하는 것으로 담지메탈로센 촉매의 제조과정을 간략히 설명하면 다음과 같다.The present invention briefly describes a process for preparing a supported metallocene catalyst by providing a catalyst for olefin polymerization comprising a component composed of a transition metal complex and a component composed of an alkylating agent.

[담지메탈로센 촉매의 제조과정][Manufacturing process of supported metallocene catalyst]

탄화수소 용매, 성분 (A, B, C) → 반재결정화 및 담지체 활성화 (성분 B) →가열 → 성분 (D) → 반재결정화 및 담지체 활성화 (성분 D) → 고체성분 세정 (헥산) → 성분 (E) → 가열 → 세정 → 담지메탈로센 촉매 → 중합 → 폴리올레핀Hydrocarbon solvent, component (A, B, C) → semirecrystallization and carrier activation (component B) → heating → component (D) → semirecrystallization and carrier activation (component D) → solid component washing (hexane) → Component (E) → heating → washing → supported metallocene catalyst → polymerization → polyolefin

본 발명에서의 촉매 담지체의 변형과 메탈로센 화합물의 담지화를 조절할 수 있는 전자주게를 함유하는 화합물(A)와 알콕시기를 함유하는 금속화합물(B)이 각자 독립적으로 작용하는 것이 아니라 서로 어떤 공유관계 즉, 착화합물 형태를 취하면서 촉매 담체 입자를 조절하며 그 대표적인 반응식은 아래와 같다.In the present invention, the compound (A) containing the electron donor and the metal compound (B) containing the alkoxy group, which can control the modification of the catalyst carrier and the support of the metallocene compound, do not act independently of each other. The catalyst carrier particles are controlled while taking the form of a covalent relationship, that is, a complex reaction scheme.

M(OR')n+ ROH ↔ M(OR')n·(ROH)M (OR ') n + ROH ↔ M (OR') n

M(OR')n+ R2NH ↔ M(OR')n·(R2NH)M (OR ') n + R 2 NH ↔ M (OR') n (R 2 NH)

M(OR')n+ ROR ↔ M(OR')n·(ROR)M (OR ') n + ROR ↔ M (OR') n

M(OR')n+ RCOOH ↔ M(OR')n·(RCOOH)M (OR ') n + RCOOH ↔ M (OR') n

이들 알콕시 금속 화합물(B)과 전자주게 화합물(A)은 상기 식에서와 같이 평형(equilibrium)을 유지하면서 고체촉매담체로 사용되는 할로 마그네슘 담체(C)와 반응을 하면서 담체를 변형(modification)시키게 되며 아래 몇 가지 반응식으로 표시할 수 있다.These alkoxy metal compounds (B) and electron donor compounds (A) react with the halo magnesium carrier (C) used as a solid catalyst carrier while maintaining an equilibrium as in the above formula to modify the carrier. Here are some of the reactions:

MgX2+ ROH ↔ MgX2·(ROH)MgX 2 + ROH ↔ MgX 2 · (ROH)

MgX2+ M(OR')n↔ MgX2·[M(OR')n]MgX 2 + M (OR ') n ↔ MgX 2 · [M (OR') n ]

MgX2+ [M(OR')n]·[ROH] ↔ MgX2·[M(OR')n]·[ROH]MgX 2 + [M (OR ') n ] · [ROH] ↔ MgX 2 · [M (OR') n ] · [ROH]

MgX2+ [M(OR')n]·[ROH] ↔ MgX2·[M(OR')n]MgX 2 + [M (OR ') n ] · [ROH] ↔ MgX 2 · [M (OR') n ]

MgX2+ [M(OR')n]·[ROH] ↔ MgX2·(ROH)MgX 2 + [M (OR ') n ] · [ROH] ↔ MgX 2 · (ROH)

본 발명의 촉매조성물중 성분(E)의 메탈로센 유도체는 임의의 순서로 접촉시켜 담지메탈로센 촉매를 얻을 수 있다. 각 성분의 접촉은 일반적으로 알려진 임의의 방법으로 행할수 있다. 본 발명의 특징은 각 성분 (A), (B), (C), (D), (E)의 접촉방법에 있고 특히, 담지체 입자형성과정에서 성분(E)의 투입시기에 중요하다. 반재결정화전 상태에서 접촉시키는 방법, 반재결정화후 입자형성된 상태에서 접촉시키는 방법이 있을수 있다. 또한, 반재결정화과정의 입자형성시 사용되는 성분(D)의 알킬금속화합물의 종류, 알킬금속화합물의 사용비율에 따라서 마그네슘화합물의 활성화정도가 결정되며 메탈로센 유도체의 담지와 담지촉매의 중합성능에 영향을 미친다. 상기성분 (C)에 대한 (A), (B), (D)의 첨가량은 몰농도비로 각각 1 : 0.0001∼30, 0.01∼10, 0.1∼10이다. 또한, 상기성분 (C)에 대한 (E)의 첨가량은 몰농도비로 1 : 0.01∼10이다.The metallocene derivative of component (E) in the catalyst composition of the present invention may be contacted in any order to obtain a supported metallocene catalyst. Contact of each component can be performed by any method generally known. The feature of the present invention lies in the contact method of each component (A), (B), (C), (D), and (E), and is particularly important when the component (E) is introduced during the carrier particle formation process. There may be a method of contacting in the state before the semi-recrystallization, a method of contacting in the granulated state after the semi-recrystallization. In addition, the degree of activation of the magnesium compound is determined by the type of alkyl metal compound of the component (D) used in the formation of the semi-recrystallization process and the use ratio of the alkyl metal compound, and the support of the metallocene derivative and the polymerization of the supported catalyst Affect performance. The addition amount of (A), (B), (D) with respect to the said component (C) is 1: 0.0001-30, 0.01-10, 0.1-10 in molar concentration ratio, respectively. In addition, the addition amount of (E) with respect to the said component (C) is 1: 0.01-10 in molar concentration ratio.

한편, 본 발명의 알킬화제성분으로는 공지의 알루미녹산 공촉매가 바람직하지만, 원소 주기율표 상의 ⅠA, ⅡA, ⅡB, ⅢB, ⅣB족에 속하는 유기금속과 소수가 1∼20의 직쇄, 측쇄 또는 사이클로알킬기 또는 할로겐원자를 포함하는 유기금속화합물도 가능하고 일반 알킬화제인 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄을 포함한다. 본 발명에 따른 촉매는 특히, 올레핀 중합에 효과적으로 사용될 수 있다.On the other hand, as the alkylating agent component of the present invention, known aluminoxane cocatalysts are preferable, but organic metals belonging to groups IA, IIA, IIB, IIIB, and IVB on the Periodic Table of the Elements and a small number of straight-chain, branched or cycloalkyl groups having 1 to 20 or Organometallic compounds containing halogen atoms are also possible and include general alkylating agents trimethylaluminum, triethylaluminum and triisobutylaluminum. The catalyst according to the invention can be used particularly effectively for olefin polymerization.

중합방법은 공지된 모든 중합방법을 사용할수 있고, 그예로는 용액중합, 고온중합, 슬러리중합 또는 기상중합을 들 수 있다. 중합온도는 통상, 10℃∼200℃까지 가능하며, 더욱 바람직하게는 40℃∼140℃ 범위이다.As the polymerization method, any known polymerization method can be used, and examples thereof include solution polymerization, high temperature polymerization, slurry polymerization or gas phase polymerization. The polymerization temperature is usually from 10 ° C to 200 ° C, more preferably in the range from 40 ° C to 140 ° C.

본 발명에 의한 올레핀 중합용 고체 담지메탈로센 촉매는 다음성분들의 조합과 반응에 의해 제조된다.Solid supported metallocene catalyst for olefin polymerization according to the present invention is prepared by the combination and reaction of the following components.

(A) 전자주게를 함유하는 화합물(A) Compound containing electron donor

주기율표 제ⅤA및Ⅵ족의 원소로 구성된 알코올 유도체(ROH, RSH등), 아민과 인 유도체(RNH2, R2NH, R3N, R3P등), 에테르 및 설파이드 유도체(ROR, RSR등), 혹은산유도체(RCOOH, RCOSH등)들로서 R은 탄소원자수 1 내지 20개, 바람직하게는 1개 내지 10개를 가지는 알킬, 아릴 혹은 사이클로 알킬기를 나타낸다. 알코올류로는 1∼18개의 탄소원자를 지닌 직쇄또는 분지쇄 지방족 알코올, 지환식 알코올 또는 방향족 예를들면 메탄올, 메탄티올, 에탄올, 에탄티올, 아이소프로판올, 아이소 프로판티올, 노르말 프로판올, 노르말 프로판티올, 노르말부탄올, 노르말부탄티올, 아이소 부탄올, 아이소부탄티올, 헥산올, 헥산티올, 옥탄올, 옥탄티올, 2-에틸헥산올, 에틸렌글리콜, 글리세롤등이고 아민과 인유도체로는 메틸아민, 디메틸아민, 트리메틸아민, 트리메틸포스핀, 트리메틸포스파이드, 에틸아민, 디에틸아민, 트리에틸아민, 트리에틸포스핀, 트리에틸포스파이트, 부틸아민, 디부틸아민, 트리부틸포스핀, 트리부틸포스파이트등이며 에테르 및 설파이드유도체로는 디메틸에테르, 디메틸설파이드, 디에틸에테르, 디에틸설파이드, 디아이소아밀에테르, 디아이소아밀설파이드등이고 산유도체는 아세트산, 부탄산, 티오벤젠산등이 있다.Alcohol derivatives composed of elements of Groups VA and VI of the periodic table (ROH, RSH, etc.), amine and phosphorus derivatives (RNH 2 , R 2 NH, R 3 N, R 3 P, etc.), ethers and sulfide derivatives (ROR, RSR, etc.) Or, as acid derivatives (RCOOH, RCOSH, etc.), R represents an alkyl, aryl or cycloalkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Alcohols include linear or branched aliphatic alcohols having 1 to 18 carbon atoms, alicyclic alcohols or aromatics such as methanol, methanethiol, ethanol, ethanethiol, isopropanol, isopropanethiol, normal propanol, normal propanethiol, Normal butanol, normal butane thiol, iso butanol, isobutane thiol, hexanol, hexanethiol, octanol, octane thiol, 2-ethylhexanol, ethylene glycol, glycerol and the like. Amine, trimethylphosphine, trimethylphosphide, ethylamine, diethylamine, triethylamine, triethylphosphine, triethylphosphite, butylamine, dibutylamine, tributylphosphine, tributylphosphite and the like. And sulfide derivatives include dimethyl ether, dimethyl sulfide, diethyl ether, diethyl sulfide, diisoamyl ether, diisoamyl Sulfide or the like acid derivative may include acid, acid, thio acid benzene.

(B) 알콕시기를 함유하는 금속화합물(B) a metal compound containing an alkoxy group

주기율표 제ⅠB∼ⅣB족의 금속과 여러 가지 알콕시기가 조합된 화합물로서 일반식 M(OR')n또는 M(OR')n-mXm(M은 주기율표 제 ⅠB∼ⅣB족의 금속을 나타내고 R'는 탄소원자수 1내지 16개, 바람직하게는 1내지 10개를 가지는 알킬, 아릴 혹은 사이클로 알킬기, X는 할라이드기를 나타내며, 그리고 n은 금속(M)의 원자가를 표시하고 m은 M(금속)에 치환된 할라이드기 숫자를 나타낸다.)으로 나타낸다. 상기 알콕시기함유 금속화합물의 예를 들면, 티타늄에톡시트리클로라이드, 티타늄노르말부톡시트리클로라이드, 티타늄에톡시트리브로마이드, 티타늄이소부톡시트리브로마이드등의 알콕시 티타늄 트리할라이드류와 ; 티타늄디메톡시디클로라이드, 티타늄디에톡시디클로라이드, 티타늄디노르말부톡시디클로라이드, 및 티타늄디에톡시디브로마이드등의 디알콕시티타늄디할라이드류와 ; 티타늄트리메톡시클로라이드, 티타늄트리에톡시클로라이드, 티타늄트리노르말부톡시클로라이드,등의 트리알콕시 티타늄모노할라이드류와 ; 티타늄테트라메톡시드, 티타늄테트라에톡시드, 티타늄테트라이소프로폭시드, 티타늄테트라노르말부톡시드, 티타늄테트라이소부톡시드, 티타늄테트라(2-에틸헤토시드)등의 티타늄테트라알콕시드류와 테트라에톡시지르코늄, 테트라부톡시지르코늄, 테트라에톡시하프늄, 테트라 터시어리부톡시하프늄등이 있다. 이들중에서, 티타늄테트라알콕시드류, 특히 티타늄테트라에톡시드가 촉매제조시 후처리공정을 위해 바람직하다. 이들 알콕시금속화합물들은 단독으로 또는 2개이상 조합되어 사용될 수도 있다.A compound in which metals of Groups IB to IVB of the periodic table and various alkoxy groups are combined, and is a general formula M (OR ') n or M (OR') nm X m (M represents a metal of Groups IB to IVB of the periodic table and R 'is An alkyl, aryl or cycloalkyl group having 1 to 16 carbon atoms, preferably 1 to 10 carbon atoms, X represents a halide group, n represents the valence of the metal (M) and m is substituted for M (metal) A halide group number). Examples of the alkoxy group-containing metal compound include alkoxy titanium trihalides such as titanium ethoxy trichloride, titanium normal butoxy trichloride, titanium ethoxy tribromide and titanium isobutoxy tribromide; Dialkoxy titanium dihalides such as titanium dimethoxy dichloride, titanium diethoxy dichloride, titanium dinormal butoxy dichloride, and titanium diethoxy dibromide; Trialkoxy titanium monohalides, such as titanium trimethoxy chloride, titanium triethoxy chloride, titanium tri normal butoxy chloride; Titanium tetraalkoxides, such as titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, titanium tetra normal butoxide, titanium tetra isobutoxide, and titanium tetra (2-ethylhetoside), and tetraethoxy zirconium , Tetrabutoxy zirconium, tetraethoxy hafnium, tetra tertiary butoxy hafnium and the like. Among these, titanium tetraalkoxides, in particular titanium tetraethoxide, are preferred for the post-treatment process in the preparation of the catalyst. These alkoxymetal compounds may be used alone or in combination of two or more.

(C) 마그네슘 할라이드(C) magnesium halide

본 발명에서의 마그네슘할라이드는 일반식 MgX2로 표시되고 X는 할로겐원소이며 X가 다른 치환기에 의해 치환되는 MgX(OR)식으로 표시 가능하며 여기서 R은 탄소원자수 1내지 10개, 바람직하게는 1내지 5개를 가지며 혹은 R이 수소일 경우도 있다. 예를 들면 디플르오르 마그네슘, 디클로로 마그네슘, 디브로모 마그네슘, 디아요오드 마그네슘, 클로로하이드록시 마그네슘, 클로로에톡시마그네슘, 클로로메톡시마그네슘, 알릴옥시 염화마그네슘등이다. 특히 염화마그네슘이 바람직하게 사용된다.Magnesium halide in the present invention is represented by the general formula MgX 2 and X is a halogen element and X can be represented by MgX (OR) substituted by another substituent, where R is 1 to 10 carbon atoms, preferably 1 To 5 or R may be hydrogen. For example, magnesium difluoride, dichloro magnesium, dibromo magnesium, diaiod magnesium, chlorohydroxy magnesium, chloroethoxy magnesium, chloromethoxy magnesium, allyloxy magnesium chloride, etc. are mentioned. In particular, magnesium chloride is preferably used.

할로겐화 마그네슘화합물은 표면적 1m2/g내지 300m2/g의 것을 사용할 수가 있고 통상 공업적으로 입수가능한 1m2/g 내지 25m2/g 의 할로겐화 마그네슘도 그대로 사용할수 있으나, 분쇄등의 처리에 의하여 그 표면적을 30m2/g 내지 300m2/g로 한 것을 사용하면 더욱 바람직하다.Magnesium halide compounds may be used with a surface area of 1m 2 / g to 300m 2 / g, and commercially available magnesium halides of 1m 2 / g to 25m 2 / g may also be used as they are. It is more preferable to use what made surface area 30m <2> / g-300m <2> / g.

(D) 알킬금속화합물(D) alkyl metal compounds

일반식 M(R)n로 표시되며 M은 Mg, B, Al, Zn등이고 n은 금속원자가 이며 R은 탄소원자수 1내지 20개, 바람직하게는 1내지10개를 가지는 알킬기이다. 그리고 R에 산소가 삽입된 알콕시 형태도 존재하며 R대신에 할로겐 혹은 수소가 치환된 경우도 있다. 예를 들면 부틸에틸마그네슘, 디노르말헥실마그네슘, 트리메틸알루미늄, 메틸알루미녹산, 디에틸알루미늄브로마이드, 디에틸알루미늄클로라이드, 디에틸알루미늄아요오다이드, 디에틸 알루미늄에톡사이드, 디에틸 알루미늄하이드라이드, 디에틸징크, 트리에틸보란, 에틸알루미늄세스퀴클로라이드. 디이소부틸알루미늄클로라이드, 디이소부틸알루미늄에톡사이드, 디이소부틸알루미늄하이드라이드, 트리이소부틸보란, 트리이소부틸알루미늄, 트리노르말헥실알루미늄, 트리노르말옥틸알루미늄, 트리노르말옥틸보란등이 있다.It is represented by the general formula M (R) n , M is Mg, B, Al, Zn and the like, n is a metal atom and R is an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. There is also an alkoxy form in which oxygen is inserted in R, and in some cases halogen or hydrogen is substituted for R. For example, butyl ethyl magnesium, dinormal hexyl magnesium, trimethyl aluminum, methylaluminoxane, diethyl aluminum bromide, diethyl aluminum chloride, diethyl aluminum iodide, diethyl aluminum ethoxide, diethyl aluminum hydride, di Ethyl zinc, triethylborane, ethylaluminum sesquichloride. Diisobutyl aluminum chloride, diisobutyl aluminum ethoxide, diisobutyl aluminum hydride, triisobutyl borane, triisobutyl aluminum, trinormal hexyl aluminum, trinormal octyl aluminum, trinormal octyl borane, and the like.

(E) 메탈로센 유도체(E) metallocene derivatives

본 발명에 유용하게 사용되는 메탈로센 유도체는 최소한 하나의 시클로펜타디엔일 고리를 함유하는 것을 원칙으로 하나 함유하지 않을 수도 있다. 금속은 ⅣB , ⅤB, ⅥB 및 Ⅷ족 금속이며, ⅣB 및 ⅤB족 금속, 바람직하게는 티타늄, 지르코늄, 하프늄, 크로늄, 바나듐 특히 티타늄과 지르코늄이 바람직하다. 시클로펜타디엔일고리는 비치환되거나 또는 하이드로카빌치환체와 같은 치환체를 함유한 것일 수 있다. 메탈로센 유도체는 제로, 하나, 둘 또는 세 개의 시클로펜타디엔일 고리를 함유할 수 있으나 한 개 혹은 두 개의 고리가 바람직하고 다음식(Ⅰ)과 같은 구조를 가진다.The metallocene derivatives usefully used in the present invention may not contain one, in principle, containing at least one cyclopentadienyl ring. The metals are IVB, VB, VIB and Group VIII metals, with Group IVB and VB metals being preferred, preferably titanium, zirconium, hafnium, chromium, vanadium and especially titanium and zirconium. The cyclopentadienyl ring may be unsubstituted or contain a substituent such as a hydrocarbyl substituent. The metallocene derivative may contain zero, one, two or three cyclopentadienyl rings, but one or two rings are preferable and have a structure as shown in the following formula (I).

(C(C pp )) mm MRMR nn XX qq (Ⅰ)(Ⅰ)

상기식(Ⅰ)중, Cp는 시클로펜타디엔일고리, 혹은 탄소수 1 내지 20개로 치환된 시클로펜타디엔일고리 유도체In the formula (I), C p is a cyclopentadienyl ring or a cyclopentadienyl ring derivative substituted with 1 to 20 carbon atoms.

M은 ⅣB, ⅤB, ⅥB 또는 Ⅷ족 전이금속,M is IVB, VB, VIB or Group VIII transition metal,

R은 탄소수 1 내지 10개로된 알킬, 아릴알킬, 알콕시, 아미드, 할로겐드,설파이드, 포스핀기R is alkyl having 1 to 10 carbon atoms, arylalkyl, alkoxy, amide, halogenated, sulfide, phosphine group

X는 할로겐이다.X is halogen.

(m=0∼2, n=0∼4, q=0∼4이며, m+n+q의 합은 금속의 산화상태와 같다.)(m = 0-2, n = 0-4, q = 0-4, and the sum of m + n + q is the same as the oxidation state of the metal.)

일반식 (Ⅰ)로 나타나는 메탈로센의 예로는 비스(시클로펜타디엔일)티타늄디메틸, 비스(시클로펜타디엔일)티타늄디페닐, 비스(시클로펜타디엔일)지르코늄디메틸, 비스(시클로펜타디엔일)티타늄디페닐, 비스(시클로펜타디엔일)하프늄디메틸 및 디페닐, 비스(시클로펜타디엔일)티타늄디네오펜틸, 비스(시클로펜타디엔일)지르코늄디네오펜틸, 비스(시클로펜타디엔일)티타늄디벤질, 비스(시클로펜타디엔일)지르코늄디벤질, 비스(시클로펜타디엔일)바나듐디메틸과 같은 디알킬메탈로센: 비스(시클로펜타디엔일)티타늄메틸클로라이드, 비스(시클로펜타디엔일)티타늄에틸클로라이드, 비스(시클로펜타디엔일)티타늄페닐클로라이드, 비스(시클로펜타디엔일)지르코늄메틸클로라이드, 비스(시클로펜타디엔일)티타늄에틸클로라이드, 비스(시클로펜타디엔일)티타늄페틸클로라이드, 비스(시클로펜타디엔일)티타늄메틸브로마이드, 비스 (시클로펜타디엔일)티타늄메틸아이오다이드, 비스(시클로펜타디엔일)티타늄페닐브로마이드, 비스(시클로펜타디엔일)티타늄페닐아이오다이드, 비스(시클로펜타디엔일)지르코늄메틸블로마이드, 비스(시클로펜타디엔일)지르코늄아이오드, 비스(시클로펜타디엔일)지르코늄메틸브로마이드, 비스(시클로펜타디엔일)지르코늄페닐아이오다이드와 같은 모노알킬메탈로센: 시클로펜타디엔일티타늄트리메틸, 시클로펜타디엔일지르코늄트리페닐 및 시클로펜타디엔일지르코늄트리네오펜틸, 시클로펜타디엔일지르코늄트리메틸, 시클로펜타디엔일하프늄트리페닐, 시클로펜타디엔일하프늄트리네오펜틸 및 시클로펜타디엔일하프늄트리메틸과 같은 트리알킬메탈로센: 시클로펜타디엔일티타늄트리클로라이드, 시클로펜타디엔일지르코늄트리클로라이드, 시클로펜타디엔일하프늄트리클로라이드, 펜타메틸시클로펜타디엔일티타늄트리클로라이드, 펜타메틸시클로펜타디엔일지르코늄트리클로라이드, 펜타메틸시클로펜타디엔일하프늄트리클로라이드, 펜타에틸시클로펜타디엔일티타늄트리클로라이드, 펜타에틸시클로펜타디엔일지르코늄트리클로라이드, 펜타에틸시클로펜타디엔일하프늄트리클로라이드와 같은 트리클로라이드 메탈로센등이 있는데 이들만으로 제한되는 것은아니다.Examples of the metallocene represented by the general formula (I) include bis (cyclopentadienyl) titanium dimethyl, bis (cyclopentadienyl) titanium diphenyl, bis (cyclopentadienyl) zirconium dimethyl and bis (cyclopentadienyl). Titanium diphenyl, bis (cyclopentadienyl) hafnium dimethyl and diphenyl, bis (cyclopentadienyl) titanium diopentyl, bis (cyclopentadienyl) zirconium diopentyl, bis (cyclopentadienyl) titanium Dialkylmetallocenes such as dibenzyl, bis (cyclopentadienyl) zirconiumdibenzyl, bis (cyclopentadienyl) vanadiumdimethyl: bis (cyclopentadienyl) titaniummethylchloride, bis (cyclopentadienyl) titanium Ethyl chloride, bis (cyclopentadienyl) titaniumphenyl chloride, bis (cyclopentadienyl) zirconiummethylchloride, bis (cyclopentadienyl) titanium ethyl chloride, bis (cyclopentadienyl) Titanium pentyl chloride, bis (cyclopentadienyl) titanium methyl bromide, bis (cyclopentadienyl) titanium methyl iodide, bis (cyclopentadienyl) titanium phenyl bromide, bis (cyclopentadienyl) titanium phenyl iodide Such as id, bis (cyclopentadienyl) zirconiummethylblomide, bis (cyclopentadienyl) zirconium iodide, bis (cyclopentadienyl) zirconiummethyl bromide, bis (cyclopentadienyl) zirconiumphenyl iodide Monoalkylmetallocenes: cyclopentadienyl titanium trimethyl, cyclopentadienyl zirconium triphenyl and cyclopentadienyl zirconium trineopentyl, cyclopentadienyl zirconium trimethyl, cyclopentadienyl hafnium triphenyl, cyclopentadienyl hafnium triphenyl Trialkylmetallocenes such as trineopentyl and cyclopentadienylhafniumtrimethyl: cyclopenta Nyl titanium trichloride, cyclopentadienyl zirconium trichloride, cyclopentadienyl hafnium trichloride, pentamethylcyclopentadienyl titanium trichloride, pentamethylcyclopentadienyl zirconium trichloride, pentamethylcyclopentadienyl hafnium trichloride , Trichloride metallocenes such as pentaethylcyclopentadienyl titanium trichloride, pentaethylcyclopentadienyl zirconium trichloride, and pentaethylcyclopentadienyl hafnium trichloride, but are not limited to these.

본 발명에서의 촉매의 제조는 탄소원자수 5내지 12개를 가지는 적당한 탄화수소를 용매로 선택하여 마그네슘 할라이드(C)와 주기율표 제ⅤA 및 ⅥA족의 원소로 구성된 전자주게 화합물 (A) 및 주기율표 제 ⅠB∼ⅣB족의 금속에 알콕시기가 조합된 금속 알콕사이드(B)가 적당한 온도 범위(30℃∼150℃)에서 화학적인 반응에 의해 부분적인 반재결정화 과정이 진행되면서 마그네슘 할라이드(C)의 입자가 변형된다. 상기의 (A), (B), (C)의 혼합물에 알킬금속 화합물(D) 혹은 알킬금속화합물( D)의 혼합물을 적하시키면 완전한 반재결정화 과정이 일어나면서 변형된 마그네슘 할라이드의 결정이 석출된다. 변형된 마그네슘할라이드 고체를 상기의 적당한 탄화수소로 불순물이 없어질 때까지 세척한 후 메탈로센 유도체(E)와 반응시켜 최종의 고체 메탈로센 담지촉매를 얻을 수 있다.In the preparation of the catalyst in the present invention, an electron donor compound (A) composed of magnesium halide (C) and elements of Groups VA and VIA of the periodic table and the periodic table IB to the periodic table are selected by selecting a suitable hydrocarbon having 5 to 12 carbon atoms as a solvent. Particles of magnesium halide (C) are deformed as the metal alkoxide (B) in which the group IVB metal is combined with an alkoxy group is partially recrystallized by a chemical reaction in an appropriate temperature range (30 ° C. to 150 ° C.). . When a mixture of an alkyl metal compound (D) or an alkyl metal compound (D) is added dropwise to the mixture of (A), (B), and (C), a complete semi-recrystallization process occurs and crystals of the modified magnesium halide are precipitated. do. The modified magnesium halide solid may be washed with the appropriate hydrocarbon until the impurities are free and then reacted with the metallocene derivative (E) to obtain the final solid metallocene supported catalyst.

본 발명에서 중합에 사용되는 단량체는 일반식 RC2H3인 α-올레핀으로서 R은 수소 혹은 탄소 원자수 1개 내지 16개, 바람직하게는 1개 내지 10개를 가진 지방족 혹은 방향족 탄화수소이다. 예를 들면 에틸렌, 프로필렌, 1-부텐, 1,3-부타디엔, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 스티렌, 4-메틸스티렌 등을 들 수 있다. 또한 상기의 α-올레핀을 단량체와 호모중합(Homopolymerization)뿐만 아니라 단량체의 두성분 이상의 혼합물을 이용한 공중합(Copolymerization)도 가능하다. 특히 에틸렌 또는 에틸렌과 에틸렌 이외의 상기 α-올레핀과의 혼합물을 사용 것이 제일 적당하다. α-올레핀류의 중합은 소위 지글러법의 일반적인 방법으로 실시된다. 즉연속식 혹은 벳치식(batch type)으로 온도는 20℃∼200℃로 특히 슬러리상일때는 50℃∼100℃로 용액상일때는 120℃∼160℃로 중합을 행한다. 중합 압력은 특별히 한정할 필요는 없지만 대개 1∼100㎏/㎠, 바람직하게는 1∼40㎏/㎠ 범위가 적당하다.The monomer used for the polymerization in the present invention is an α-olefin having the general formula RC 2 H 3 , wherein R is hydrogen or an aliphatic or aromatic hydrocarbon having 1 to 16 carbon atoms, preferably 1 to 10 carbon atoms. For example, ethylene, propylene, 1-butene, 1,3-butadiene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, styrene, 4-methylstyrene, etc. are mentioned. In addition, the α-olefin may be copolymerized using a monomer and homopolymerization as well as a mixture of two or more components of the monomer. It is particularly suitable to use ethylene or a mixture of ethylene and the above α-olefins other than ethylene. Polymerization of alpha -olefins is performed by the general method of what is called a Ziegler method. In other words, the polymerization is carried out in a continuous or batch type at a temperature of 20 ° C. to 200 ° C., especially at a slurry phase of 50 ° C. to 100 ° C. and a solution phase at 120 ° C. to 160 ° C. Although polymerization pressure does not need to be specifically limited, Usually, 1-100 kg / cm <2>, Preferably 1-40 kg / cm <2> range is suitable.

본 발명에서의 중합은 반재결정의 과정에 의해 제조되어진 고체 마그네슘-메탈로센 촉매로 2ℓ들이 스텐레스강 고압 반응기를 질소로 충분히 치환시킨 후 질소 기류하에 용매는 노르말 헥산을 이용(슬러리 중합법)하고 공촉매로는 메틸알루미녹산 혹은 알킬 알루미늄을 적당히 선택하여 단량체의 압력을 1∼15㎏/㎠ 온도는 20℃∼100℃사이에서 행한다. 그리고 중합체의 분자량은 수소를 사용하여 조절할 수 있다.The polymerization in the present invention is a solid magnesium-metallocene catalyst prepared by a semi-recrystallization process, and after the 2L stainless steel high pressure reactor is sufficiently substituted with nitrogen, the solvent is subjected to normal hexane under a nitrogen stream (slurry polymerization method). As the cocatalyst, methylaluminoxane or alkyl aluminum is appropriately selected, and the pressure of the monomer is carried out at 20 ° C to 100 ° C for a temperature of 1 to 15 kg / cm 2. And the molecular weight of the polymer can be adjusted using hydrogen.

다음의 실시 예는 본 발명을 더욱 상세히 설명하기 위한 것으로서 이들 실시 예가 본 발명의 기술적 범위를 한정하는 것은 아니다.The following examples are intended to illustrate the present invention in more detail, and these examples do not limit the technical scope of the present invention.

<실시예 1 > < Example 1>

(a) 촉매의 제조(a) Preparation of Catalyst

질소 기류하에 자석교반기와 응축기, 온도감지기가 장착된 500mL 4구 환저 플라스크에 헥산 100ml와 마그네슘크로라이드 1.0g을 넣고 수분간 교반시킨후 에탄올 1.45 g과 티타늄테트라에톡시드 7.2 g를 넣고 온도를 70℃까지 승온시키고 1시간 동안반응시켜 부분적인 반재결정화 과정을 거친다. 반응이 끝난후 불균일 상태의 반응혼합물을 상온까지 냉각하여 노르말헥산에 희석된(15wt%) 디에틸알루미늄클로라이드 37 ml를 1시간 동안 적하시키면 완전한 반재결정화 과정이 일어나면서 용해된 일부 고체가 완전히 석출된다. 반응액을 상온에서 서서히 가열하여 1시간 정도 환류시켜 정치하고, 질소가압하에 상등액을 제거하고 노르말헥산 100ml를 넣어 고체성분을 교반, 정치, 상등액제거의 순서로 세정한후 톨루엔 100ml와 톨루엔에 녹인 시클로펜타다디엔일티타늄트리클로라이드 2.3 g을 넣고 70℃까지 승온시켜 2시간동안 환류시켜 메탈로센 촉매를 담지시킨다. 환류후 정치시켜 질소가압하에 상등액을 제거하고 상등액에 염소이온이 검출되지 않을 때까지 톨루엔으로 세정하고 30∼40℃에서 건조시켜 고체촉매를 얻었다.In a 500 mL four-neck round bottom flask equipped with a magnetic stirrer, condenser and temperature sensor under nitrogen stream, 100 ml of hexane and 1.0 g of magnesium chloride were stirred for several minutes, followed by stirring for 1.45 g of ethanol and 7.2 g of titanium tetraethoxide. It is heated to ℃ and reacted for 1 hour to undergo partial semi-recrystallization process. After the reaction was completed, the reaction mixture was cooled to room temperature, and 37 ml of diethylaluminum dilute (15wt%) diluted in normal hexane was added dropwise for 1 hour. As a result of complete semi-recrystallization, some dissolved solids were completely precipitated. do. The reaction solution was slowly heated at room temperature and refluxed for about 1 hour. The supernatant was removed under nitrogen pressure, 100 ml of normal hexane was added, the solids were washed in the order of stirring, standing and removing the supernatant, and then dissolved in 100 ml of toluene and toluene. 2.3 g of cyclopentadienyl titanium trichloride is added thereto, the temperature is raised to 70 ° C., and refluxed for 2 hours to support the metallocene catalyst. The mixture was left to stand after reflux, the supernatant was removed under nitrogen pressure, washed with toluene until no chlorine ion was detected in the supernatant, and dried at 30 to 40 ° C. to obtain a solid catalyst.

(b) 에틸렌중합(b) Ethylene Polymerization

자기교반기를 장착한 내용적 2ℓ의 스테인레스 오토클레이브를 질소로 충분히 치환시킨후 헥산 900㎖를 넣었다. 그후, 촉매성분으로 Al중량 9.5%의 메틸알루미녹산 톨루엔 용액 1㎖를 넣고 수분간 교반 시킨다. 그 다음 실시예 (a)에서 제조한 고체촉매 3㎎을 넣고 질소로 충진된 반응기에서 불활성기체를 제거한 후 수소를 4㎏/㎠가하고 온도를 65℃까지 승온시킨다. 온도가 65℃에 도달할 때 에틸렌을 가하면서 중합을 시작한다. 이때 에틸렌 압력을 7㎏/㎠로 하여 전체압력을 11㎏/㎠로 중합온도는 70℃로 유지하면서 50분동안 중합한다. 중합이 끝난후 미반응 기체는 서서히 배출시킨후 반응기를 개방하여 슬러리 분말을 여과하고 분말은 40℃ 진공에서 24시간동안 건조시킨다. 건조하여 얻은 중합체 분말은 153g으로 촉매활성은 51,000g-중합체/g-촉매이고 밀도는 0.960g/ml 녹는점은 137℃ MFR은 0.010g/10 min. 무게평균분자량(Mw)은 391,000 분자량분포 (Mw/Mn)는 7.7이었다.A 2 liter stainless autoclave equipped with a magnetic stirrer was sufficiently substituted with nitrogen, and 900 ml of hexane was added thereto. Thereafter, 1 ml of methylaluminoxane toluene solution having an Al weight of 9.5% by weight was added as a catalyst component, followed by stirring for several minutes. Then, 3 mg of the solid catalyst prepared in Example (a) was added and the inert gas was removed from the reactor filled with nitrogen. Then, hydrogen was added to 4 kg / cm 2 and the temperature was raised to 65 ° C. The polymerization starts with the addition of ethylene when the temperature reaches 65 ° C. At this time, the ethylene pressure was 7 kg / cm 2 and the total pressure was 11 kg / cm 2 while the polymerization temperature was maintained at 70 ° C. for 50 minutes. After the completion of the polymerization, the unreacted gas was gradually discharged, the reactor was opened, the slurry powder was filtered, and the powder was dried in a vacuum at 40 ° C. for 24 hours. The polymer powder obtained by drying was 153g, the catalytic activity was 51,000g-polymer / g-catalyst, the density was 0.960g / ml, the melting point was 137 ° C, and the MFR was 0.010g / 10 min. The weight average molecular weight (Mw) was 391,000, and the molecular weight distribution (Mw / Mn) was 7.7.

<실시예 2 > < Example 2>

촉매 제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 시클로펜타디엔일지르코늄트리클로라이드 2.7g을 사용한 것을 제외하고는 실시예 1과 동일한 실험을 수행하였다. 건조하여 얻은 중합체 분말은 96g으로 촉매활성은 32,000g-중합체/ g-촉매이고 밀도는 0.959 녹는점은 136℃ MFR은 0.009g/10 min. 무게평균분자량(Mw )은 411,000 분자량분포 (Mw/Mn)는 8.0이었다.The same experiment as in Example 1 was conducted except that 2.7 g of cyclopentadienyl zirconium trichloride was used instead of cyclopentadienyl titanium trichloride in preparing the catalyst. The polymer powder obtained by drying was 96 g, the catalytic activity was 32,000 g-polymer / g-catalyst, the density was 0.959, the melting point was 136 ° C, and the MFR was 0.009 g / 10 min. The weight average molecular weight (Mw) was 411,000 molecular weight distribution (Mw / Mn) was 8.0.

<실시예 3 > < Example 3>

촉매제조시 시클로펜타디엔일티타늄트리클로라이드 대신에 비스시클로펜타디엔일티타늄디클로라이드 2.6g을 사용한 것을 제외하고는 실시예 1과 동일한 실험을 수행하였다. 건조하여 얻은 중합체 분말은 145g으로 촉매활성은 48,300g-중합체/g-촉매이고 밀도는 0.963 녹는점은 137℃ MFR은 0.019g/10 min. 무게평균분자량(Mw)은 368,000 분자량분포 (Mw/Mn)는 7.2이었다.The same experiment as in Example 1 was performed except that 2.6 g of biscyclopentadienyl titanium dichloride was used instead of cyclopentadienyl titanium trichloride in preparing the catalyst. The polymer powder obtained by drying was 145g, the catalytic activity was 48,300g-polymer / g-catalyst, the density was 0.963, the melting point was 137 ° C and the MFR was 0.019g / 10 min. The weight average molecular weight (Mw) was 368,000 molecular weight distribution (Mw / Mn) was 7.2.

<실시예 4 > < Example 4>

촉매제조시 시클로펜타디엔일티타늄트리클로라이드 대신에 비스시클로펜타디엔일지르코늄디클로라이드 3.0g을 사용한 것을 제외하고는 실시예 1과 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 135g으로 촉매활성은 45,000g-중합체/g-촉매이고 밀도는 0.965 녹는점은 138℃ MFR은 0.009g/10 min. 무게평균분자량(Mw)은 400,000 분자량분포 (Mw/Mn)는 7.1이었다.Experiments were carried out in the same manner as in Example 1, except that 3.0 g of biscyclopentadienylzirconium dichloride was used instead of cyclopentadienyl titanium trichloride. The polymer powder obtained by drying was 135 g, the catalytic activity was 45,000 g-polymer / g-catalyst, the density was 0.965, the melting point was 138 ° C, and the MFR was 0.009 g / 10 min. The weight average molecular weight (Mw) was 400,000, and the molecular weight distribution (Mw / Mn) was 7.1.

<비교예 1 > < Comparative Example 1>

(a) 촉매의 제조(a) Preparation of Catalyst

질소 기류하에 자석교반기와 응축기, 온도감지기가 장착된 500mL 4구 환저플라스크에 톨루엔 100ml와 온도 800℃에서 3시간동안 충분히 소성(calcinated)된 실리카겔(SiO2) 2.0g 및 비스시클로펜타디엔일지르코늄디클로라이드 5.0g을 넣고 수분간 교반시킨후 온도를 100℃까지 승온시키고 3시간 동안반응시켜 메탈로센 촉매를 담지시킨다. 반응 종결후 정치시켜 질소가압하에 상등액을 제거하고 상등액에 미반응 비스시클로펜타디엔일지르코늄디클로라이드가 검출되지 않을 때까지 톨루엔으로 세정하고 30∼40℃에서 건조시켜 고체촉매를 얻었다.In a 500 mL four-neck round bottom flask equipped with a magnetic stirrer, condenser and temperature sensor under nitrogen stream, 2.0 g of silica gel (SiO 2 ) and biscyclopentadienyl zirconium di calcined sufficiently for 3 hours at 100 ml of toluene and a temperature of 800 ° C. 5.0 g of chloride was added thereto, stirred for several minutes, the temperature was raised to 100 ° C., and reacted for 3 hours to support the metallocene catalyst. After completion of the reaction, the mixture was left to stand, and the supernatant was removed under nitrogen pressure. The supernatant was washed with toluene until no unreacted biscyclopentadienyl zirconium dichloride was detected and dried at 30 to 40 ° C. to obtain a solid catalyst.

(b) 에틸렌중합(b) Ethylene Polymerization

상기 제조한 실리카 담지메탈로센 촉매 30mg을 사용한 것을 제외하고는 실시예 1(b)의 중합 방법과 동일하게 수행하였다. 건조하여 얻은 중합체 분말은 95g으로 촉매활성은 3,200g-중합체/g-촉매이고 밀도는 0.958 녹는점은 134℃ MFR은 0.06g/10 min. 무게평균분자량(Mw)은 250,000 분자량분포 (Mw/Mn)는 4.4이었다.The polymerization was carried out in the same manner as in the polymerization method of Example 1 (b), except that 30 mg of the silica-supported metallocene catalyst prepared above was used. The polymer powder obtained by drying was 95 g, the catalytic activity was 3,200 g-polymer / g-catalyst, the density was 0.958, the melting point was 134 ° C., and the MFR was 0.06 g / 10 min. The weight average molecular weight (Mw) was 250,000 molecular weight distribution (Mw / Mn) was 4.4.

<실시예 5 < Example 5

실시예 1의 촉매를 사용하여 중합시 공촉매로 메틸알루미녹산 대신에 헥산에 희석(15 w%)된 트리메틸알루미늄 2ml를 사용한 것을 제외하고는 나머지 중합과정은 실시예 1의 중합예와 동일하게 수행하였다. 건조하여 얻은 중합체 분말은 92g으로 촉매활성은 30,700g-중합체/g-촉매이고 중합체 밀도는 0.961 녹는점은 136℃ MFR은 0.5g/10 min. 무게평균분자량(Mw)은 176,000 분자량분포 (Mw/Mn)는 5.4 이었다.The polymerization was carried out in the same manner as in Example 1 except that 2 ml of trimethylaluminum diluted in hexane was used instead of methylaluminoxane as a cocatalyst when the catalyst of Example 1 was used. It was. The polymer powder obtained by drying was 92 g, the catalytic activity was 30,700 g-polymer / g-catalyst, the polymer density was 0.961, the melting point was 136 ° C, and the MFR was 0.5 g / 10 min. The weight average molecular weight (Mw) was 176,000, and the molecular weight distribution (Mw / Mn) was 5.4.

<실시예 6 > < Example 6>

실시예 1의 촉매를 사용하여 중합시 공촉매로 메틸알루미녹산 대신에 헥산에 희석(15 w%)된 트리이소부틸알루미늄 6ml를 사용한 것을 제외하고는 나머지 중합과정은 실시예 1의 중합예와 동일하게 수행하였다. 건조하여 얻은 중합체 분말은 65g으로 촉매활성은 22,700g-중합체/g-촉매이고 중합체 밀도는 0.961, 녹는점은 137℃ MFR은 0.6g/10 min. 무게평균분자량(Mw)은 180,000 분자량분포 (Mw/Mn)는 5.7 이었다.The polymerization was carried out in the same manner as in Example 1, except that 6 ml of triisobutylaluminum diluted in hexane (15 w%) was used as a cocatalyst for the polymerization of the catalyst of Example 1 instead of methylaluminoxane. Was performed. The polymer powder obtained by drying was 65 g, the catalytic activity was 22,700 g-polymer / g-catalyst, the polymer density was 0.961, and the melting point was 137 DEG C. MFR was 0.6 g / 10 min. The weight average molecular weight (Mw) was 180,000, and the molecular weight distribution (Mw / Mn) was 5.7.

<비교예 2 > < Comparative Example 2>

담지되지 않은 하프메탈로센인 시클로펜타디엔일티타늄트리클로라이드 촉매를 사용하여 중합시 공촉매로 메틸알루미녹산 대신에 헥산에 희석(15 w%)된 트리이소부틸알루미늄 6ml를 사용한 것을 제외하고는 나머지 중합과정은 실시예 1의 중합예와 동일하게 수행하였으나 폴리머는 전혀 얻을 수 없었다.Except for using unsupported half-metallocene cyclopentadienyl titanium trichloride catalyst, 6 ml of triisobutylaluminum diluted (15 w%) in hexane instead of methylaluminoxane was used as a co-catalyst for polymerization. The polymerization process was carried out in the same manner as in the polymerization example of Example 1, but no polymer was obtained.

<비교예 3 > < Comparative Example 3>

담지되지 않은 하프메탈로센인 시클로펜타디엔일지르코늄트리클로라이드 촉매를 사용하여 중합시 공촉매로 메틸알루미녹산 대신에 헥산에 희석(15 w%)된 트리이소부틸알루미늄 6ml를 사용한 것을 제외하고는 나머지 중합과정은 실시예 1의 중합예와 동일하게 수행하였으나 폴리머는 전혀 얻을 수 없었다.Except for using unsupported half-metallocene cyclopentadienyl zirconium trichloride catalyst, 6 ml of triisobutylaluminum diluted (15 w%) in hexane instead of methylaluminoxane was used as a co-catalyst in the polymerization. The polymerization process was carried out in the same manner as in the polymerization example of Example 1, but no polymer was obtained.

<실시예 7 > < Example 7>

촉매제조시 에탄올 대신에 2-에틸헥산올 4.1g을 사용한 것을 제외하고는 실시예 1과 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 155g으로 촉매활성은 51,700g-중합체/g-촉매이고 중합체 밀도는 0.963, 녹는점은 137℃ MFR은0.03g/10 min. 무게평균분자량(Mw)은 330,000 분자량분포 (Mw/Mn)는 8.1이었다.The experiment was carried out in the same manner as in Example 1, except that 4.1 g of 2-ethylhexanol was used instead of ethanol. The polymer powder obtained by drying was 155 g, the catalytic activity was 51,700 g-polymer / g-catalyst, the polymer density was 0.963, and the melting point was 137 DEG C. MFR was 0.03 g / 10 min. The weight average molecular weight (Mw) was 330,000, and the molecular weight distribution (Mw / Mn) was 8.1.

<실시예 8 > < Example 8>

촉매제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 시클로펜타디엔일지르코늄트리클로라이드 2.7g을 사용한 것을 제외하고는 실시예 7와 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 94g으로 촉매활성은 31,000g-중합체/ g-촉매이고 중합체 밀도는 0.958, 녹는점은 135℃ MFR은 0.024g/10 min. 무게평균분자량(Mw)은 350,000 분자량분포 (Mw/Mn)는 7.6었다.The experiment was carried out in the same manner as in Example 7, except that 2.7 g of cyclopentadienyl zirconium trichloride was used instead of cyclopentadienyl titanium trichloride in preparing the catalyst. The polymer powder obtained by drying was 94 g, the catalytic activity was 31,000 g-polymer / g-catalyst, the polymer density was 0.958, and the melting point was 135 DEG C. MFR was 0.024 g / 10 min. The weight average molecular weight (Mw) was 350,000 molecular weight distribution (Mw / Mn) was 7.6.

<실시예 9 > < Example 9>

촉매제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 비스시클로펜타디엔일지르코늄디클로라이드 3.0g을 사용한 것을 제외하고는 실시예 7와 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 125g으로 촉매활성은 41,600g-중합체/g-촉매이고 중합체 밀도는 0.960, 녹는점은 135℃ MFR은 0.021g/10 min. 무게평균분자량(Mw)은 361,000 분자량분포 (Mw/Mn)는 7.9었다.The experiment was carried out in the same manner as in Example 7, except that 3.0 g of biscyclopentadienyl zirconium dichloride was used instead of cyclopentadienyl titanium trichloride in preparing the catalyst. The polymer powder obtained by drying was 125 g, the catalytic activity was 41,600 g-polymer / g-catalyst, the polymer density was 0.960, and the melting point was 135 ° C., MFR was 0.021 g / 10 min. The weight average molecular weight (Mw) was 361,000 molecular weight distribution (Mw / Mn) was 7.9.

<실시예 10 > < Example 10>

촉매제조시 노르말헥산에 희석된(15wt%) 디에틸알루미늄클로라이드 대신에 트리이소부틸알루미늄 61ml을 사용한 것을 제외하고는 실시예 1과 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 120g으로 촉매활성은 40,000g-중합체/g-촉매이고 중합체 밀도는 0.965, 녹는점은 137℃ MFR은 0.012g/10 min. 무게평균분자량(Mw)은 388,000 분자량분포 (Mw/Mn)는 7.1이었다.The experiment was carried out in the same manner as in Example 1, except that 61 ml of triisobutylaluminum was used instead of diethylaluminum chloride diluted in normal hexane (15 wt%). The polymer powder obtained by drying was 120 g. The catalytic activity was 40,000 g-polymer / g-catalyst, the polymer density was 0.965, and the melting point was 137 DEG C. The MFR was 0.012 g / 10 min. The weight average molecular weight (Mw) was 388,000 and the molecular weight distribution (Mw / Mn) was 7.1.

<실시예 11 > < Example 11>

촉매제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 시클로펜타디엔일지르코늄트리클로라이드 2.7g을 사용한 것을 제외하고는 실시예 10과 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 81g으로 촉매활성은 27,000g-중합체/g-촉매이고 중합체 밀도는 0.960, 녹는점은 137℃ MFR은 0.012g/10 min. 무게평균분자량(Mw)은 390,000 분자량분포 (Mw/Mn)는 7.4이었다.The experiment was carried out in the same manner as in Example 10, except that 2.7 g of cyclopentadienyl zirconium trichloride was used instead of cyclopentadienyl titanium trichloride in preparing the catalyst. The polymer powder obtained by drying was 81 g. The catalytic activity was 27,000 g-polymer / g-catalyst, the polymer density was 0.960, and the melting point was 137 DEG C. The MFR was 0.012 g / 10 min. The weight average molecular weight (Mw) was 390,000, and the molecular weight distribution (Mw / Mn) was 7.4.

<실시예 12 > < Example 12>

촉매제조시 티타늄테트라에톡시드 및 시클로펜다디엔일티타늄트리클로라이드 대신에 티타늄테트라이소폭시드 8.9g과 시클로펜타디엔일지르코늄트리클로라이드 2.7g을 각각 사용한 것을 제외하고는 실시예 1과 동일하게 실험을 수행하였다. 건조하여 얻은 중합체 분말은 116g으로 촉매활성은 38,700g-중합체/g-촉매이고 중합체 밀도는 0.961, 녹는점은 137℃이었다.The experiment was carried out in the same manner as in Example 1, except that 8.9 g of titanium tetraisooxide and 2.7 g of cyclopentadienyl zirconium trichloride were used instead of titanium tetraethoxide and cyclopentadienyl titanium trichloride. It was. The polymer powder obtained by drying was 116 g, the catalytic activity was 38,700 g-polymer / g-catalyst, the polymer density was 0.961, and the melting point was 137 ° C.

<실시예 13 > < Example 13>

실시예 1의 촉매를 사용하여 중합시 수소를 가한후 프로필렌 4㎏/㎠를 가한 것을 제외하고는 나머지 중합과정은 실시예 1의 중합예와 동일하게 수행하였다. 건조하여 얻은 공중합체 분말은 98g으로 촉매활성은 33,000g-중합체/g-촉매이고 중합체 밀도는 0.936g/ml 녹는점은 125℃이다.The polymerization was carried out in the same manner as in Example 1 except that 4 kg / cm 2 of propylene was added after hydrogen was added during polymerization using the catalyst of Example 1. The copolymer powder obtained by drying was 98 g, the catalytic activity was 33,000 g-polymer / g-catalyst, and the polymer density was 0.936 g / ml.

<실시예 14 > < Example 14>

실시예 2의 촉매를 사용한 것을 제외하고는 실시예 13의 공중합예와 동일하게 수행하였다. 건조하여 얻은 중합체 분말은 83g으로 촉매활성은 27,700g-중합체/ g-촉매이고 밀도는 0.945 녹는점은 129℃이었다.The copolymerization was carried out in the same manner as in Example 13, except that the catalyst of Example 2 was used. The polymer powder obtained by drying was 83 g, the catalytic activity was 27,700 g-polymer / g-catalyst, and the density was 0.945 and the melting point was 129 ° C.

<실시예 15 > < Example 15>

자기교반기를 장착한 500ml 유리반응기에 톨루엔 200ml와 스타이렌 20ml를 넣고 Al중량 9.5%의 메틸알루미녹산 톨루엔 용액 1㎖를 넣어 수분간 교반한다. 실시예 1에서 제조한 고체촉매 20mg을 넣고 질소로 충진된 반응기에서 진공펌프를 이용하여 불활성기체를 제거한후 에틸렌을 가하면서 중합을 시작하여 에틸렌을 상압하에서 흘려주면서 중합온도는 60℃로 유지하면서 2시간동안 중합한다. 중합이 끝나면 미반응기체는 배출시킨후 염산처리된 메탄올로 반응을 종결시킨후 수회 세척한후 슬러리 분말을 여과하고 분말은 진공하에서 24시간동안 건조시킨다. 건조하여 얻은 고분자 분말은 45g으로 촉매활성은 2,200g-중합체/g-촉매이고 녹는점은 97, 126, 259℃로 각각 에틸렌-스티렌 공중합체, 에틸렌 호모중합체, 신디오택틱스티렌 중합체등의 혼합물이 얻어졌다.In a 500 ml glass reactor equipped with a magnetic stirrer, 200 ml of toluene and 20 ml of styrene were added, and 1 ml of methylaluminoxane toluene solution having an Al weight of 9.5% was added and stirred for several minutes. 20 mg of the solid catalyst prepared in Example 1 was added and the inert gas was removed using a vacuum pump in a reactor filled with nitrogen. Then, polymerization was started by adding ethylene, flowing ethylene under atmospheric pressure, and the polymerization temperature was maintained at 60 ° C. 2 Polymerize for time. After the polymerization is completed, the unreacted gas is discharged, the reaction is terminated with hydrochloric acid-treated methanol, washed several times, the slurry powder is filtered, and the powder is dried under vacuum for 24 hours. The polymer powder obtained by drying was 45 g, the catalytic activity was 2,200 g-polymer / g-catalyst, and the melting point was 97, 126, and 259 ° C., respectively, and a mixture of ethylene-styrene copolymer, ethylene homopolymer, and syndiotactic styrene polymer was used. Obtained.

<실시예 16 > < Example 16>

실시예 2의 촉매를 사용한 것을 제외하고는 실시예 15의 공중합예와 동일하게 수행하였다. 건조하여 얻은 중합체 분말은 31g으로 촉매활성은 1,600g-중합체/ g-촉매이고 녹는점은 134℃만 얻어졌으며, 이 경우의 촉매는 스티렌 중합 혹은 에틸렌-스티렌 공중합이 일어나지 않고 단지 에틸렌 호모 중합체만 얻어졌다.The same process as in Example 15 was carried out except that the catalyst of Example 2 was used. The polymer powder obtained by drying was 31 g, and the catalytic activity was 1,600 g-polymer / g-catalyst, and the melting point was only 134 ° C. In this case, the styrene polymerization or ethylene-styrene copolymerization did not occur, but only ethylene homopolymer was obtained. lost.

<실시예 17 > < Example 17>

촉매 제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 시클로펜타디엔일티타늄트리페녹사이드 2.0g을 사용한 것을 제외하고는 실시예 1(a)와 동일한 조건하에 촉매합성을 수행하였고 공중합은 실시예 15와 동일하게 실시하였다. 건조하여 얻은 중합체 분말은 55g으로 촉매활성은 2,800g-중합체/g-촉매이고 녹는점은 89, 128, 257℃로 각각 에틸렌-스티렌 공중합체, 에틸렌 호모중합체, 신디오택틱스티렌 중합체등의 혼합물이 얻어졌다.Catalytic synthesis was carried out under the same conditions as in Example 1 (a), except that 2.0 g of cyclopentadienyl titanium triphenoxide was used instead of cyclopentadienyl titanium trichloride in the preparation of the catalyst. It was carried out. The polymer powder obtained by drying was 55 g, and the catalytic activity was 2,800 g-polymer / g-catalyst, and the melting point was 89, 128, and 257 ° C., respectively, and a mixture of ethylene-styrene copolymer, ethylene homopolymer, and syndiotactic styrene polymer was used. Obtained.

<실시예 18 > < Example 18>

촉매 제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 시클로펜타디엔일티타늄트리메톡사이드 1.3g을 사용한 것을 제외하고는 실시예 1(a)와 동일한 조건하에 촉매합성을 수행하였고 공중합은 실시예 15와 동일하게 실시하였다. 건조하여 얻은 중합체 분말은 49g으로 촉매활성은 2,500g-중합체/g-촉매이고 녹는점은 101, 130, 256℃로 각각 에틸렌-스티렌 공중합체, 에틸렌 호모중합체, 신디오택틱스티렌 중합체등의 혼합물이 얻어졌다.The catalyst synthesis was carried out under the same conditions as in Example 1 (a), except that 1.3 g of cyclopentadienyl titanium trimethoxide was used instead of cyclopentadienyl titanium trichloride in preparing the catalyst, and the copolymerization was the same as in Example 15. It was carried out. The polymer powder obtained by drying was 49 g, and the catalytic activity was 2,500 g-polymer / g-catalyst, and the melting point was 101, 130, and 256 ° C., respectively, and a mixture of ethylene-styrene copolymer, ethylene homopolymer, and syndiotactic styrene polymer was used. Obtained.

<실시예 19 > < Example 19>

촉매 제조시 시클로펜다디엔일티타늄트리클로라이드 대신에 티타늄테트라클로라이드 20g과 중합시 공촉매로 메틸알루미녹산 대신에 헥산에 희석(15 w%)된 트리이소부틸알루미늄 6ml을 사용한 것을 제외하고는 실시예 1과 동일한 실험을 수행하였다. 건조하여 얻은 중합체 분말은 164g으로 촉매활성은 54,700g-중합체/g-촉매이고 밀도는 0.964 녹는점은 133℃ MFR은 0.7g/10 min. 무게평균분자량(Mw)은 171,000 분자량분포 (Mw/Mn)는 5.6이었다.Example 1 except that 20 g of titanium tetrachloride instead of cyclopentadienyl titanium trichloride and 6 ml of triisobutylaluminum diluted (15 w%) in hexane instead of methylaluminoxane were used as a cocatalyst in the polymerization. The same experiment as was performed. The polymer powder obtained by drying was 164 g, the catalytic activity was 54,700 g-polymer / g-catalyst, the density was 0.964, the melting point was 133 ° C, and the MFR was 0.7 g / 10 min. The weight average molecular weight (Mw) was 171,000, and the molecular weight distribution (Mw / Mn) was 5.6.

상기의 실시예들의 중합결과 및 얻어진 폴리머의 물성분석을 표 1에 요약 정리하였다.The polymerization results of the above examples and the physical property analysis of the obtained polymer are summarized in Table 1.

<표 1> 실시예들의 중합 및 물성 결과Table 1 Polymerization and Physical Property Results of Examples

실시예Example 고분자생성량(g)Polymer production amount (g) 활 성(g-고분자/g-촉매)Activation (g-polymer / g-catalyst) 밀 도(g/ml)Density (g / ml) 녹는점(℃)Melting Point (℃) MFR(g/10min)MFR (g / 10min) 분자량(Mw)Molecular Weight (Mw) 분자량 분포(Mw/Mn)Molecular Weight Distribution (Mw / Mn) 비 고Remarks 1One 153153 51,00051,000 0.9600.960 137137 0.0100.010 391,000391,000 7.77.7 에틸렌 호모중합Ethylene Homopolymerization 22 9696 32,00032,000 0.9590.959 136136 0.0090.009 411,000411,000 8.08.0 '' 33 145145 48,30048,300 0.9630.963 137137 0.0190.019 368,000368,000 7.27.2 '' 44 135135 45,00045,000 0.9650.965 138138 0.0090.009 400,000400,000 7.17.1 '' 비교예 1Comparative Example 1 9595 3,2003,200 0.9580.958 134134 0.060.06 250,000250,000 4.44.4 '' 55 9292 30,70030,700 0.9610.961 136136 0.50.5 176,000176,000 5.45.4 '' 66 6565 22,70022,700 0.9610.961 137137 0.60.6 180,000180,000 5.75.7 '' 비교예 2,3Comparative Examples 2 and 3 중합안됨Not polymerized 77 155155 51,70051,700 0.9630.963 137137 0.030.03 330,000330,000 8.18.1 '' 88 9494 31,00031,000 0.9580.958 135135 0.0240.024 350,000350,000 7.67.6 '' 99 125125 41,60041,600 0.9600.960 135135 0.0210.021 361,000361,000 7.97.9 '' 1010 120120 40,00040,000 0.9650.965 137137 0.0120.012 388,000388,000 7.17.1 '' 1111 8181 27,00027,000 0.9600.960 137137 0.0120.012 390,000390,000 7.47.4 '' 1212 116116 38,70038,700 0.9610.961 137137 -- -- -- '' 1313 9898 33,00033,000 0.9360.936 125125 -- -- -- 에틸렌-프로필렌 공중합Ethylene-propylene Copolymerization 1414 8383 27,70027,700 0.9450.945 129129 -- -- -- 에틸렌-프로필렌 공중합Ethylene-propylene Copolymerization 1515 4545 2,2002,200 -- 97,126,25997,126,259 -- -- -- 에틸렌-스티렌 공중합(청구항 9, 10참조)Ethylene-styrene copolymerization (see claims 9 and 10) 1616 3131 1,6001,600 -- 134134 -- -- -- 에틸렌-스티렌 공중합 안됨No ethylene-styrene copolymerization 1717 5555 2,8002,800 -- 89,128,25789,128,257 -- -- -- 에틸렌-스티렌 공중합(청구항 9, 10참조)Ethylene-styrene copolymerization (see claims 9 and 10) 1818 4949 2,5002,500 -- 101,130,256101,130,256 -- -- -- 에틸렌-스티렌 공중합(청구항 9, 10참조)Ethylene-styrene copolymerization (see claims 9 and 10) 1919 164164 54,70054,700 0.9640.964 133133 0.70.7 171,000171,000 5.65.6 청구항 7참조See claim 7

본 발명의 담지메탈로센 고체촉매를 이용하여 제조된 중합체의 수율이 기존의 담지메탈로센 촉매에 비하여 약 10이상 높고, 분자량은 약 1.6배 정도 높고 분자량분포는 약 1.6배 정도 넓다. 기존의 비담지메탈로센이 일반 알킬알루미늄 공촉매에는 거의 활성이 없지만 본 발명의 담지메탈로센 고체촉매는 일반 알킬알루미늄 공촉매에도 높은 활성을 보이며 입자 형상이 균일하여 슬러리 공정에서 중합체의 분리와 건조공정에서 분리와 여과를 용이하게 할 수 있다. 특히 고체촉매는 중합활성이 높아 잔류 촉매를 제거하기 위한 별도의 탈회공정이 필요하지 않으므로 생산공정에서 제조원가를 절감할 수 있으며, 기존의 지글러-나타 촉매제조설비상에서 추가 설비투자없이 메탈로센 담지촉매 제조가 가능하다. 또한 본 발명의 담지메탈로센 고체촉매는 α-올레핀들의 호모(단일) 중합체 뿐만아니라 공중합체 특히, 에틸렌-스티렌 공중합체의 제조도 가능하다.The yield of the polymer produced using the supported metallocene solid catalyst of the present invention is about 10 or more higher than the conventional supported metallocene catalyst, the molecular weight is about 1.6 times higher and the molecular weight distribution is about 1.6 times wider. Although the conventional unsupported metallocene is hardly active in the general alkylaluminum cocatalyst, the supported metallocene solid catalyst of the present invention exhibits high activity in the general alkylaluminum cocatalyst and has a uniform particle shape and thus the separation of the polymer in the slurry process. Separation and filtration can be facilitated in the drying process. In particular, since solid catalysts have high polymerization activity, no separate deliming process is required to remove residual catalysts, manufacturing costs can be reduced in the production process, and metallocene supported catalysts without additional equipment investment on existing Ziegler-Natta catalyst manufacturing facilities. Manufacturing is possible. In addition, the supported metallocene solid catalyst of the present invention is capable of preparing not only homo (single) polymers of α-olefins but also copolymers, in particular ethylene-styrene copolymers.

Claims (10)

올레핀중합용 담지메탈로센 고체촉매에 있어서, 전자주게를 함유하는 화합물 (A), 금속과 알콕시기가 조합된 금속화합물(B) 및 할로겐 함유 마그네슘(C)가 상호 접촉반응을 일으키면서 부분적으로 반재결정화가 형성되고 알킬금속화합물(D)을 첨가하여 완전한 반재결정화를 거쳐 메탈로센 유도체(E)를 반응시켜 용매로 세정하여 고체촉매를 얻는 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법In the supported metallocene solid catalyst for olefin polymerization, a compound (A) containing an electron donor, a metal compound (B) in combination with a metal and an alkoxy group, and a halogen-containing magnesium (C) are partially in contact with each other, causing a reaction. The supported metallocene solid catalyst for olefin polymerization is formed by recrystallization, addition of an alkyl metal compound (D) to complete semi-recrystallization, reaction of the metallocene derivative (E) and washing with a solvent to obtain a solid catalyst. Manufacturing Method 제 1항에 있어서, 구성성분(A)는 주기율표 제ⅤA 및 ⅥA 족의 원소로 구성된 알코올 유도체, 아민과 인 유도체, 에테르 및 설파이드 유도체 혹은 산 유도체로서 전자주게 화합물은 다음의 일반식으로 표시되는 화합물로써 구성성분(C)와의 몰비 범위가 1×10-4내지 30인 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법.The compound (A) is an alcohol derivative, an amine and phosphorus derivative, an ether and sulfide derivative or an acid derivative composed of elements of Groups VA and VIA of the periodic table, and the electron donor compound is represented by the following general formula The molar ratio of the component (C) is in the range of 1 × 10 −4 to 30, wherein the supported metallocene solid catalyst for olefin polymerization is used. 일반식: ROH, RSH, RNH2, R2NH, R3N, R3P, R3PO, ROR, RSR, RCOOH, RCOSHFormula: ROH, RSH, RNH 2 , R 2 NH, R 3 N, R 3 P, R 3 PO, ROR, RSR, RCOOH, RCOSH (식중 R은 탄소원자수 1내지 10개의 알킬기를 나타낸다.)(Wherein R represents an alkyl group having 1 to 10 carbon atoms) 제 1항에 있어서, 구성성분(B)는 주기율표 제ⅠB ∼ⅣB족의 금속과 알콕시기가 조합된 알콕시 금속화합물로서 다음의 일반식으로 표시되는 화합물로써 구성성분(C)와의 몰비 범위가 1×10-2내지 10인 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법The component (B) is an alkoxy metal compound in which a metal and an alkoxy group of the Groups IB to IVB of the periodic table are combined, and is represented by the following general formula. The molar ratio of the component (C) to the component (C) is 1 × 10. Method for producing a supported metallocene solid catalyst for olefin polymerization, characterized in that from -2 to 10 일반식: X4-nM(OR)n Formula: X 4-n M (OR) n (식중 M은 주기율표 제ⅠB ∼ⅣB족의 금속을 나타내고, R은 탄소원자수 1내지 16개의 알킬기를 나타낸다. 1≤n≤4)(Wherein M represents a metal of Groups IB to IVB of the periodic table, and R represents an alkyl group having 1 to 16 carbon atoms. 1 ≦ n ≦ 4) 제 1항에 있어서, 구성성분(C)의 마그네슘할라이드류는 다음의 일반식으로 표시되는 화합물인 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법The method for producing a supported metallocene solid catalyst for olefin polymerization according to claim 1, wherein the magnesium halides of the component (C) are compounds represented by the following general formula. 일반식 : MgXYFormula: MgXY (식중 X는 할로겐 원소를 나타내고, Y는 할로겐 원소 혹은 탄소원자수 1내지 5의 알킬기 혹은 알콕시기를 나타낸다.)(Wherein X represents a halogen element and Y represents a halogen element or an alkyl or alkoxy group having 1 to 5 carbon atoms) 제 1항에 있어서, 구성성분(D)의 알킬금속화합물은 다음의 일반식으로 표시되는 화합물로써 구성성분(C)와의 몰비범위가 1×10-1내지 10인 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법The method of claim 1, wherein the alkyl metal compound of the component (D) is a compound represented by the following general formula, characterized in that the molar ratio range of the component (C) is 1 × 10 -1 to 10 Method for preparing metallocene solid catalyst 일반식 : RnMX3-n General formula: R n MX 3-n (식중 M은 Mg, B, Al, Zn등을 나타내고, R은 탄소원자수 1내지 16개의 알킬기를 나타내며 n은 금속 원자가를 나타낸다.)(Wherein M represents Mg, B, Al, Zn, etc., R represents an alkyl group having 1 to 16 carbon atoms and n represents a metal valence.) 제 1항에 있어서, 구성성분(E)의 메탈로센유도체는 다음의 일반식으로 표시되는 화합물인 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법.The method for producing a supported metallocene solid catalyst for olefin polymerization according to claim 1, wherein the metallocene derivative of component (E) is a compound represented by the following general formula. 일반식: (Cp)mMRnXq Formula: (C p ) m MR n X q (식중, Cp는 시클로펜타디엔일고리, 혹은 탄소수 1 내지 20개로 치환된 시 클로펜타디엔일고리 유도체이고, M은 ⅣB, ⅤB, ⅥB 또는 Ⅷ족 전이금속이고, R은 탄소수 1 내지 10개로된 알킬, 아릴알킬, 알콕시, 아미드, 할로겐이드, 설파이드, 포스핀기이고, X는 할로겐이다. (m=0∼2, n=0∼4, q=0∼4이며, m+n+q의 합은 금속의 산화상태와 같다)Wherein C p is a cyclopentadienyl ring or a cyclopentadienyl ring derivative substituted with 1 to 20 carbon atoms, M is a IVB, VB, VIB or group VIII transition metal, and R is 1 to 10 carbon atoms Alkyl, arylalkyl, alkoxy, amide, halogenide, sulfide, phosphine group, X is halogen (m = 0-2, n = 0-4, q = 0-4, m + n + q Sum equals the oxidation state of the metal) 제 6항에 있어서, 구성성분(E)의 유도체로써 M=티타늄(Ti), m=0, n=0, q=4인 티타늄할라이드, 특히 티타늄테트라클로라이드 인 것을 특징으로 하는 올레핀중합용 고체촉매의 제조방법.7. The solid catalyst for olefin polymerization according to claim 6, wherein the derivative of component (E) is titanium halide with M = titanium (Ti), m = 0, n = 0, q = 4, in particular titanium tetrachloride. Manufacturing method. 제 1항에 있어서, 구성성분 (A), (B), (C)가 불균일한 용액상태에서 0 내지 150℃의 온도에서 10분 내지 6시간 동안 접촉반응을 일으키면서 부분적으로 반재결정화 과정이 형성되고 구성성분 (D)가 첨가되면서 완전한 반재결정화가 일어나게되며, 그때 형성된 담체위에 구성성분 (E)의 메탈로센 유도체가 담지되는 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법.The semi-recrystallization process according to claim 1, wherein the components (A), (B) and (C) are partially recrystallized in a non-uniform solution state at a temperature of 0 to 150 DEG C for 10 minutes to 6 hours. A method of preparing a supported metallocene solid catalyst for olefin polymerization, which is formed and complete recrystallization occurs as the component (D) is added, and then the metallocene derivative of the component (E) is supported on the formed carrier. . 제 1항 또는 제 8항에 있어서, 올레핀중합용 담지메탈로센 고체촉매는 올레핀의 호모중합 또는 공중합 및 에틸렌-스티렌유도체의 공중합체를 제조하는 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법The supported metallocene solid catalyst for olefin polymerization according to claim 1 or 8, wherein the supported metallocene solid catalyst for olefin polymerization is prepared by homopolymerization or copolymerization of olefins and a copolymer of ethylene-styrene derivatives. Manufacturing Method 제 6항, 제 8항, 제 9항중 어느 하나의 항에 있어서, 에틸렌-스티렌유도체의 공중합체를 제조하기위한 담지메탈로센 고체촉매계로서 구성성분 (E)의 메탈로센 유도체는 다음의 일반식으로 표시되는 화합물인 것을 특징으로 하는 올레핀중합용 담지메탈로센 고체촉매의 제조방법10. The metallocene derivative of component (E) according to any one of claims 6, 8, and 9 as a supported metallocene solid catalyst system for preparing a copolymer of ethylene-styrene derivatives. Method for producing a supported metallocene solid catalyst for olefin polymerization, characterized in that the compound represented by the formula 일반식: RMX3 Formula: RMX 3 (식중, R은 시클로펜타디엔일고리, 혹은 탄소수 1 내지 20개로 치환된 시 클로펜타디엔일고리 유도체이고, M은 Ti, Zr, Hf, V, Cr, Co, Ni, Pd등의 전이금속이고, X는 할로겐 혹은 탄소수 1 내지 10개의 지방족 혹은 방향족의 알콕시기이다.)(Wherein R is a cyclopentadienyl ring or a cyclopentadienyl ring derivative substituted with 1 to 20 carbon atoms, M is a transition metal such as Ti, Zr, Hf, V, Cr, Co, Ni, Pd, etc.). , X is halogen or aliphatic or aromatic alkoxy group having 1 to 10 carbon atoms.)
KR1019990056703A 1999-12-10 1999-12-10 Method for Preparing a Supported Metallocene Catalyst KR100353120B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990056703A KR100353120B1 (en) 1999-12-10 1999-12-10 Method for Preparing a Supported Metallocene Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990056703A KR100353120B1 (en) 1999-12-10 1999-12-10 Method for Preparing a Supported Metallocene Catalyst

Publications (2)

Publication Number Publication Date
KR20010055488A KR20010055488A (en) 2001-07-04
KR100353120B1 true KR100353120B1 (en) 2002-09-18

Family

ID=19625005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990056703A KR100353120B1 (en) 1999-12-10 1999-12-10 Method for Preparing a Supported Metallocene Catalyst

Country Status (1)

Country Link
KR (1) KR100353120B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186523A (en) * 1992-01-13 1993-07-27 Mitsui Toatsu Chem Inc Method of polymerizing alpha-olefin
KR940016776A (en) * 1992-12-31 1994-07-25 김주용 Method for manufacturing charge storage electrode of open box structure
JPH08151408A (en) * 1994-11-30 1996-06-11 Tonen Corp Method of polymerizing alpha-olefin
KR100270512B1 (en) * 1998-03-24 2000-11-01 서갑석 The precess for the preparation of solid catalysts for olefin polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186523A (en) * 1992-01-13 1993-07-27 Mitsui Toatsu Chem Inc Method of polymerizing alpha-olefin
KR940016776A (en) * 1992-12-31 1994-07-25 김주용 Method for manufacturing charge storage electrode of open box structure
JPH08151408A (en) * 1994-11-30 1996-06-11 Tonen Corp Method of polymerizing alpha-olefin
KR100270512B1 (en) * 1998-03-24 2000-11-01 서갑석 The precess for the preparation of solid catalysts for olefin polymerization

Also Published As

Publication number Publication date
KR20010055488A (en) 2001-07-04

Similar Documents

Publication Publication Date Title
US4701432A (en) Supported polymerization catalyst
KR950010227B1 (en) New supported polymerization catalyst
US5124418A (en) Supported polymerization catalyst
US20060142508A1 (en) Polymerization of polyethylene having high molecular weight
KR20020063279A (en) Mixed ziegler/metallocene catalysts for the production of bimodal polyolefins
US6444605B1 (en) Mixed metal alkoxide and cycloalkadienyl catalysts for the production of polyolefins
CA2036767A1 (en) Catalyst and prepolymer used for polymerising olefins, and (co-) polymer of ethylene obtainable therefrom
WO2001048038A1 (en) Hybrid ziegler-natta and cycloalkadienyl catalysts for the production of polyolefins
EP0726271B1 (en) Organoaluminoxy product, catalyst systems, preparation, and use
US6956002B2 (en) Process for polymerization of olefins
KR100382263B1 (en) Solid catalyst component, olefin polymerization catalyst, and olefin polymer production method
US6861487B2 (en) Catalyst precursor for the polymerization of olefins and polymerization process using the same
KR100353120B1 (en) Method for Preparing a Supported Metallocene Catalyst
EP1380601B1 (en) Supported Ziegler - metallocene catalyst composition and process for olefin polymerization and olefin copolymerization with alpha olefins using novel catalyst systems
MXPA02006565A (en) Selfsupported hybrid catalysts for the production of polyolefins.
EP1040132B1 (en) Process for polymerizing olefins with supported ziegler-natta catalyst systems
WO1996013531A1 (en) Preparation of modified polyolefin catalysts and in situ preparation of supported metallocene and ziegler-natta/metallocene polyolefin catalysts
JPH07188336A (en) Production of ethylenic copolymer
EP1040133A1 (en) Highly active, supported ziegler-natta catalyst systems for olefin polymerization, methods of making and using the same
EP1330476B1 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
JP2613621B2 (en) Process for producing ethylene polymer and catalyst for producing ethylene polymer
KR100270512B1 (en) The precess for the preparation of solid catalysts for olefin polymerization
KR19990082847A (en) Solid catalyst component and catalyst for olefin polymerization, process for producing olefin polymer and process for producing solid cataylst component
EP1302480B1 (en) Catalyst percursor for homo-or copolymerization of olefins and polymerization process using that catalyst precursor
US20030045659A1 (en) Process for polymerizing olefins with supported Ziegler-Natta catalyst systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050901

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee